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Abstract

Maintainable and general software allows developers to build robust applications
efficiently, yet achieving these qualities often requires refactoring specialized so-
lutions into reusable components. This challenge becomes particularly relevant
as code agents become increasingly accurate at solving isolated programming
problems. We investigate code agents’ capacity to refactor code in ways supporting
growth and reusability. We first investigate what makes a good refactoring, finding
via a human study that an MDL (Minimum Description Length) objective best
aligns with developer preferences for code refactoring quality. We then present
both a method and a benchmark for refactoring: LIBRARIAN, a sample-and-rerank
method for generating reusable libraries, built on this objective, and MINICODE, a
benchmark where code agents must minimize and refactor multiple independent
solutions into a joint library. Compared to state-of-the-art code agents, LIBRAR-
IAN achieves strong results on both compression and correctness on MINICODE,
obtaining compression rates 1.6-2x better than coding agents while also improving
correctness.

1 Introduction

Writing code is mainly a matter of rewriting code: debugging, refactoring, optimizing, and other
activities within the software engineering lifecycle. But poor rewrites incur technical debt, with such
debt costing up to $2 trillion annually [1]]. This problem will likely worsen as language models become
increasingly responsible for generating code, because they excel at solving isolated programming
problems, but their context length demands a myopic view of the codebase. It is therefore valuable to
understand not just the ability of language models to solve programming problems, but also their
ability to rewrite and refactor code in ways that support growth and reuse.

Effective code refactoring at scale is a design problem. When refactoring codebases, developers must
navigate design decisions around concerns such as generality, re-usability, and maintainability. A
classic example illustrates this design challenge: Human programmers often create overly-specialized,
redundant solutions to similar problems and would benefit from redesigning specialized solutions
into a shared library. This consolidation requires careful design decisions about the right level of
abstraction — neither too specific nor too general — and appropriate interfaces that balance flexibility
with usability.

Here we focus on refactoring multiple code sources into a reusable software library, and pose the
following question: To what extent can code agents address this problem, both within human-written
codebases, and also in language model-generated code? To answer that question, we develop a
new method and a benchmark. This goes beyond past work [2} 3 4,15, 16l [7, 18] in library learning
that synthesized subroutines across small programs in i.e. A-calculus, instead tackling the more
naturalistic problem of redesigning large bodies of code written in contemporary high-level languages,
such as Python, producing classes, methods, and helper functions in the style of a human-written
library. We develop a method, LIBRARIAN (Figure[I)), which samples possible code rewrites then
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Figure 1: Overview of the refactoring problem and the general structure of its solutions. Given a
collection of different code sources, where a source is either program or repository,—and optionally
an existing library—we refactor the code sources by designing a new modular and reusable library.
Candidate refactorings are evaluated based on program simplicity (compression), and are expected to
maintain correctness of the original code sources (pass rate).

reranks those samples based on criteria designed to capture what it means to have a good refactoring.
To generate potential rewrites, we develop methods for clustering pieces of code together that share
common structure, so that a succinct prompt can rewrite them jointly into their refactored form.
To find strong criteria for ranking potential rewrites, we study a variety of metrics across machine
learning and software engineering, both on program synthesis benchmarks and via a human study.

To evaluate our method and systematically assess the capability of current agents to perform such
design-intensive refactorings, we introduce a new benchmark, MINICODE, which addresses three
key desiderata missing from existing benchmarks. First, open-ended design: unlike SWE-Bench [9],
Commit0 [10], and RefactorBench [[11] which primarily focus on functional correctness, MINICODE
presents an unconstrained library design problem. Agents must create a library that can be imported
into multiple repositories, with complete freedom to design the interface and implementation from
scratch—optimizing for software engineering objectives like reusability and maintainability. Second,
verifiability: we ensure objective evaluation by retaining the unit tests from all repositories that will
import the designed library, allowing us to verify that the solutions work correctly across multiple
use cases. Third, large context: agents must understand and synthesize information from multiple
repositories simultaneously to design a unified library that consolidates specialized code sources into
a general interface. Prior benchmarks typically focus on single-repository tasks.

Our results show that state-of-the-art code agents, based on Claude Sonnet 3.7, struggle to jointly
preserve correctness and improve reusability across all domains of MINICODE. In the competition
coding domain, our method LIBRARIAN improves refactoring quality by 1.89x while also enhancing
correctness. However, on the repository-level refactoring, even the strongest agents fail to produce
high-quality refactorings, highlighting a substantial gap between current capabilities and the demands
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of design-oriented code rewriting. Addressing this challenge remains an open and important direction
for future research.

2 Related work

Library Learning. Systems which perform library learning research discover shared abstractions
across a large number of small programs, which they use to automatically define new subroutines.
Systems such as DreamCoder [4], Trove [[12], LiLo [7]], and REGAL [3]] automatically construct such
libraries with the goal of making future program synthesis tasks easier to solve, once the learned
library is in hand. Our work is closest to REGAL [3]], which clusters related code and refactors using
language models. However, existing library learning approaches have primarily been demonstrated in
small-scale, constrained domains, limiting their applicability to typical software engineering tasks,
such as consolidating multiple repositories into cohesive libraries. By framing library learning within
the context of realistic, large-scale code repository development, we expand the relevance of library
learning to everyday software engineering practice.

Repo-level coding benchmarks. Recent work has explored the application of language models to
repository-level software engineering tasks. Existing benchmarks include SWE-bench [9], which
evaluates models on their ability to resolve real-life GitHub issues, and Commit-0 [[10], which requires
agents to fill in function definitions. Such benchmarks primarily evaluate functional correctness
via unit tests, without assessing the quality or maintainability of the resulting codebase. Refactor-
Bench [11] takes a step in this direction by benchmarking the ability to follow specific refactoring
instructions. Our work differs by requiring models to perform a more open-ended task: Redesigning
code to be more modular and compact by discovering and drawing out reused abstractions, while
retaining verifiability by re-using downstream unit tests. Additionally, libraries must be created
without any scaffolding limitations such as preexisting function definitions affording more design
freedom than Commit-0.

Program optimization. While our goal is to optimize the quality of libraries, other works focus
on improving execution speed through correctness-preserving transformations [[13} [14} [15]. Both
forms of program optimization, compression and speed, are more open-ended than optimizing only
for correctness, as there does not exist a ground-truth answer. Prior work on program optimization
benchmarks study code at the file level. We propose a benchmark that transforms programs at a larger
scale, across multiple code repositories.

3 Problem Statement

In this section, we propose a refactoring task: Given multiple code sources that contain problem-
specific implementations, the goal is to create a cohesive library that captures shared abstractions.
This library must reduce the total code size while supporting all original use cases, potentially opening
up new use cases as well by mining and formalizing latent shared abstractions. This is accomplished
by searching for refactorings that are both correct and simple. Correctness is straightforward to define
as the fraction of unit tests passed, but simplicity is more elusive.

One potential measure of simplicity is counting the total number of tokens in the proposed library
and refactored code [6l 16} 5, [17]. However, just minimizing program size has obvious failure modes:
code should also be natural, elegant, and extensible, which can be in tension with merely finding the
shortest programﬂ Other work in program synthesis [[18, [19} 4] defines simplicity as the minimum
description length (MDL), or negative log probability under a reference distribution. In the software
engineering community, other metrics such as cyclomatic complexity and maintainability index have
been defined for similar purposes: These are more complex metrics that examine the syntax tree, call
graph, and other statically-analyzable structures [20]. What metric should we use? The right choice
of simplicity metric remains unclear. We return to this question in Section[6] where we empirically
compare candidate metrics and human preferences before fixing our choice for the rest of the paper.

"Perl Golf|is a game where participants attempt to write the shortest Perl program accomplishing a given
task. The resulting code is famously incomprehensible, even by the standards of Perl.


https://wiki.c2.com/?PerlGolf
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Without committing to a simplicity metric, let’s use a placeholder metric M ; assume we are given a

collection of code sources { pn}gzl, and output both a new library £, as well as rewritten refactorings
of the original code sources, { p’n}szl. We define the pass rate 7(p,,) as the fraction of unit tests
program p,, passes. In practice we are concerned both with the case where we are refactoring several
code sources (N > 1) and also the case where there is only a single large code source we are

refactoring (N = 1).

We optimize the following objective, which rewards refactorings that pass at least as many tests as
the original program and minimize the chosen metric M:

e = (VR S =T o

where M (L, {p,/}) may be instantiated in different ways depending on the notion of simplicity under
consideration.

One example of M is minimum description length (MDL), given by My pr(L,{p,}) =
—logpm (L) + >, —logpim(pl, | £), where prar(p),|£) is concatenating the library and the
program into one prompt, but only counting the perplexity of the later program tokens.

4 MINICODE—Library Design and Refactoring Benchmark

MINICODE evaluates a code agent’s capability to identify abstractions across implementations and
design reusable libraries. In order to measure these capabilities, our benchmark presents agents with a
collection of code sources, then asks agents to refactor the code sources into a unified library alongside
refactorings of the original code sources. There are two key desiderata for collections of code sources:
The collections must be compressible, in that there exists a latent shared library abstraction, and
verifiable, so that we can measure how well refactored code sources preserve functional correctness.
See Appendix [C|for details on our clustering. We source problems from three domains, both real
world and synthetic: Competition coding (Code Contests), Huggingface Transformers model
implementations, and synthesized repositories (Table|[T).

Agents are expected to interact with MINICODE via the terminal. We structure the benchmark as
refactoring a multi-package Python repository, where each code source in a collection is a Python
package in a subdirectory. This requires knowledge of basic bash commands for exploring repositories,
editing code, and running tests, as well as how to manage complex, multi-package Python libraries.

Table 1: MINICODE Statisics

Domain Sources Collections Avg LoC Avg Tests Gen by
Code Contests 300 30 87 10 Humans
Transformers 8 2 538 181 Humans
Synthetic Repositories 20 10 6,433 101 Claude-Sonnet 3.7

CodeContests. Competition problems are crafted with specific variations of algorithmic approaches
in mind, resulting in both shared latent concepts and required test cases. As a result, competition
coding is naturally both compressible and verifiable.

Each collection consists of multiple code sources, each containing a solution to a competition
programming prompt, with associated tests for verification. We take solutions, prompts, and tests
from CODECONTESTS [21], a dataset consisting of competition coding problems. Each code source
in the collection is structured as a subdirectory consisting of the task description in PROBLEM.md,
the initial solution in main.py, and a script to run tests in run. sh. Agents are instructed to create a
library.py file, which is imported into each code source. Since CODECONTESTS has no external
dependencies on Python packages, this can be done without explicit structuring as a Python package.

Huggingface Transformers Library. In this domain, we test whether agents can refactor across
implementations of large language and vision—language models (modelling_<name>.py files)
from the Huggingface transformers repository (e.g., Qwen2, LLaMA, DeepSeek-V3). Unlike
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competition coding, these sources are production-scale and Huggingface requires that all changes
pass an extensive suite of integration tests before being accepted into the main branch. A refactoring
is only deemed correct if it passes the unmodified Transformers test suite, making this a high-stakes
setting that requires correctness and compatibility.

Synthetic Repositories. We synthesize repositories by first generating project ideas and then
specialized variations, allowing us to control both complexity and overlap between code sources in a
collection. Each code source in the repositories domain consists of a task description, source code,
and test cases for functionality and correctness. MINICODE includes repositories, approximately
6.5k lines of source code each, which represent realistic settings where different people with different
needs use language models to help them write software for their particular use cases. The refactoring
agent is tasked with extracting re-usable functions from across code repositories, and re-writing the
original code source repositories to use them.

Concretely, we prompt coding agents to generate a list of ideas. For each idea, agents generate a
collection consisting of two variations of that idea, targeting an imagined persona. Each variation is
then instantiated in code as a Python repository with at least 100 tests. The prompts for each step
are shared in Appendix [F| Each collection is structured as a multi-package Python library: every
synthetic repository becomes a subpackage with its source and tests. Agents are instructed to write a
shared library in a shared subpackage named common. This common shared library must be imported
and used to refactor each of the original subpackages.

S LIBRARIAN: Refactoring Code to Create Libraries

This section details our method to compress collections of code sources into libraries, while migrating
the code sources to use these shared building blocks. Figure [I]illustrates our method, LIBRARIAN.

LIBRARIAN follows a simple sample-and-rerank framework to maximize our refactoring objective
described in Section 3} It maintains and grows a library of useful functions as part of this objective.
Concretely, our framework follows:

L5 {pn} = arg min (L, {p,}), ()
L£{p}, yeSAMPLE({pn })

for a chosen metric M. The choice of M is analysed in Section [f]

5.1 Sample with clustering

Meaningful abstractions arise when programs share underlying functionality or structure. To surface
these, we cluster input programs into small groups that are likely to share reusable structure. Most
modern language models cannot be prompted with the entire collection of input programs— even long
context models cannot process the entirety of e.g the Linux kernel, and even if they could, it is not
clear that such a strategy is the most efficient way of focusing the language model’s attention.

We consider clustering algorithms for discovering small groups of related code; we call these ruples.
This extends REGAL [3]], which clusters programs solving similar problems by assuming each
program is paired with a natural language description of the problem it solves, and clustering
embeddings of those descriptions. Since similar problems need not imply similar code structure, we
instead prompt a model to summarize each code source and cluster by these summaries.

Each tuple is refactored in two stages: (1) if a library has already been built from previous tuples,
we prompt the model with the current tuple and the accumulated library, asking it to identify which
existing functions can be reused. This lets abstractions discovered earlier carry forward across the
collection; (2) the retrieved functions and the tuple of programs are then provided as context to the
model, which proposes a sample budget of K candidate refactorings.

5.2 Rank refactorings

Once sampled, all K candidate refactorings are passed through a sort-and-filter evaluation harness
to select the refactoring that (1) scores the highest on refactor quality (under metric M) and (2)
maintains (or improves) test accuracy compared to the original. If no such candidate exists, the
original code is preserved, maintaining existing functionality.
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New library functions in the selected refactor are saved into the LIBRARIAN library for potential use
in downstream refactoring of other programs. We provide the full algorithm in Appendix

6 What Makes a Good Refactoring?

We evaluate candidate metrics along two complementary axes: (i) how they behave as optimization
objectives when varying the sample budget K (Fig[3); and (ii) how well they align with human
judgment of refactoring quality (Fig4).

6.1 Objective function comparison

We run LIBRARIAN on 6 collections of CodeCon-
tests using MDL, number of tokens, and cyclomatic
complexity [ZOﬂ as objective functions M (Figure .
While minimizing MDL also minimizes the other
two objectives, the converse is not true. This suggests
that MDL is a pareto-optimal loss among the three
objectives in this experiment.

Mean Best@k

+1 SE N
To confirm that the library does indeed expose shared --- Baseline
abstractions, we calculate the average number of
times that each library routine is used. Scaling the
inference budget to K = 8 discovers better libraries,
reusing each library function on average about 5

times.

Best@k compression (%)

1 3 5 7 9 1 13
Sample Size (k)

Figure 2: Best@k compression for LIBRAR-
TAN on the Transformers domain. Increasing
the sample budget (k) improves compression.

This scaling benefit holds for complex, real-world
code as well, as demonstrated by monotonic com-
pression improvements on the Transformers codebase
(Figure 2). This reinforces our choice of MDL as a
robust search objective. We prove that our best@k metric provides an unbiased estimate of this
performance in Appendix

6.2 Human evaluation best aligns with the MDL objective function

We complement the quantitative analysis with a small-
scale human study: for 19 CodeContests tuples of 3
problems and a pair of refactorings for each, 4 hu-
man judges pick which refactoring they prefer. Each
refactoring comprises three re-written programs, plus
the library generated by LIBRARIAN. Each pair of
refactorings passed all testcases, and were chosen to
include both the highest and lowest MDL refactor-
ings. Human judges are authors on this paper, but
were ‘blinded’ to not know relative objective function
scores for the candidate refactorings.
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Figure 4: Human evaluation of different refac-
toring objectives. Judges compare pairs of
refactorings that both pass all test cases. MDL
aligns best with human preferences.

An MDL objective aligns best with human prefer-
ences (Figure[d), although number of tokens is also
a reasonable proxy for human judgment. That token
count and MDL yield different statistics furthermore
implies that the lowest MDL program is not always the shortest program. LLM-as-judge (LLM-C)
shows promising results, but currently underperforms MDL. Maintainability—lnde)ﬂ and Cyclomatic-
Complexity perform the worst on our test.

2Cyclomatic complexity (CC) is a classic metric from the software engineering community that analyses the
number of paths through a program’s control flow, and unlike MDL is only loosely coupled with program size.

3Maintainability Index (MI) is a composite software engineering metric that combines lines of code, cy-
clomatic complexity, and Halstead volume into a single score. Higher MI values are intended to indicate
easier-to-maintain code.
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Figure 3: Comparing 3 different objective functions for refactoring (different columns) according to
different downstream success metrics (different rows), as a function of refactoring budget (horizontal
axes).The values are averaged over 6 collections of CodeContests problems. Row 1: Optimizing
perplexity also incidentally optimizes cyclomatic complexity and token count, but that the converse
is not true. Row 2: refactored programs pass more test cases, even more than the original code
itself. Row 3: increasing the refactoring budget results in more reusable library subroutines (such
subroutines are called more times on average). Filtered/Raw: Using/Not Using tests to filter samples.

Together, these experiments suggest that MDL is the most effective objective for guiding refactoring:
it is Pareto-optimal among common complexity metrics, scales with inference budget to discover
more reusable libraries, and best aligns with human judgments of quality. We adopt M, p;, as the
primary objective in the remainder of this paper.

7 Experimental Setup

Grouping Programs into Collections To facilitate parallel application of LIBRARIAN and manage
the dataset scale, we assume that semantically distant code sources will have minimal overlap in
their optimal library functions. Therefore, our overall approach partitions the dataset into disjoint
collections through clustering.

For CodeContests, these collections are constructed from an initial corpus of ~9k problems with
Python solutions: We first filter these code sources, removing those whose selected canonical
solution is under 10 lines (minimal refactoring potential). For the remaining 4596 solutions we use
a language model to generate textual descriptions of canonical solutions—emphasizing reusable
components—which are embedded using OpenAI’s text-embedding-ada-002.

Agglomerative Clustering [22] is subsequently applied to these embeddings to partition the code
sources into a predefined number of initial clusters, in our case 120. To create uniformly sized
experimental units, we subsample each such cluster to form collections of 30 code sources. This
collection size was empirically chosen because it balanced between the runtime of LIBRARIAN
without limiting compression. We select 10 collections that we then use to evaluate our methods.
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Code repositories are generated as disjoint collections through the generative process, which first
samples project ideas then variations. We sample two code sources for each of the 10 collections.
Repositories are setup as multi-package monorepositories. These monorepos are constructed by
merging the dependencies and tests of the initial packages, and placing the source directories into the
root directory of the monorepo.

For Transformers, since the number of models is on the lower end, we manually chose a set of popular
LLM / VLM models and passed them to the agent in collections of 5 code sources.

REGAL Baselines. To evaluate the ability of our libraries to support reuse on new problems, we
turn to the program synthesis tasks used in REGAL, where learned libraries are added to help the
program synthesizer. We evaluate on the two domains published by the authors, Logo and Date.
Because our clustering is inspired by REGAL but adds additional complexity, for fair comparison,
we keep their setup the same and only augment the training using sample + MDL rerank procedure
described in Section[5.11

Code Contests. To evaluate LIBRARIAN on refactoring Code Contests we select 6 collections of 30
code sources (problems). In each collection we group the problems into tuples of size 3. We set the
sample budget to be K = 8, since our ablations show that with larger K we discover better libraries 3]
We use the MDL objective for rankings. The model used for sampling is OpenAI’s 04-mini [23]. To
obtain MDL scores we use Qwen 2.5 7B Instruct [24] as a balance between quality, speed, and cost.

Code Agents on Transformers and Synthetic Repositories. To fairly evaluate performance on
the task by state-of-the-art systems, we use coding agents that advertise long-context ability to reason
about, write, and refactor code repositories. Specifically, we use Claude Code (Cl) [25] which uses
the Claude 3.7 Sonnet model.

We test whether code agents can refactor collections of code sources autonomously, without hu-
man intervention. Refactoring repositories with code agents involves planning and iterative (re-
)implementation and testing. Code agents are prompted to perform each of these steps, with feedback
from the unit tests. Agents must run and repair unit tests autonomously. We run coding agents
multiple times per collection, logging their progress in checklists stored in text files.

Due to context-length limitations in Qwen 2.5 7B, we instead use DeepSeek-V3 to compute MDL
scores.

8 Results Metric Value
. . . Pass Rate 90.67% +1.88

In this section, we present the compression and cor- Pass Rate Improvement 6.33% +1.41
rectness results with LIBRARIAN and agent baselines MDL Ratio 0.53 +0.03
on MINICODE. Token Ratio 0.66 £0.04
Library Functions 10.30 £1.41

MINICODE-CodeContests. On CodeContests, LI- Avg Calls per Function 517 +1.08

BRARIAN achieves a high final pass rate of 90.67% % Single Use Functions ~ 38.03% +4.88
and significantly improves correctness, with pass
rates increasing by 6.33% compared to the original Figure 5: Refactoring results for LIBRARIAN
code sources (Table [5). The method yields substan- (w/ K = 8) averaged over 10 Code Contests
tial compression: the refactored code, including the collections.

new library, shows an MDL ratio of 0.53 (a 47% re-

duction in MDL relative to the original). On average, LIBRARIAN generates libraries containing
approximately 11 functions. These functions demonstrate good reuse, being called by around 5.2
programs on average, although 38.03% of them are used only once within their specific collection
context.

Code agents fail to achieve both high correctness and compression on MINICODE-CodeContests.
Across collections, the Codex agent achieves an average MDL ratio of 0.83, but a pass rate of 74.16%,
much lower than LIBRARIAN’s rate of 90.67%. Similarly, the Claude agent reaches a higher pass rate
of 82.50%, which is still lower than LIBRARTAN, but an MDL ratio of 1.07 which is more complex
than the original collection. We present the full results of the agents in Appendix [E] along with results
based on newer models such as Claude Sonnet 4 and codex-mini. With Claude Code and Sonnet 4,



310
311

312
313
314
315
316
317

319
320
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335
336
337
338
339
340
341
342

343

344
345
346
347
348
349
350

352
353
354
355
356

358
359
360
361
362

agents achieve an MDL ratio of 0.77 and pass rate of 84.4%, outperforming codex-mini at an MDL
ratio of 86.8 and pass rate of 82.0%.

MINICODE-Transformers. On Transformers refactoring task Claude Code achieved reasonable
MDL ratio of 0.91 when using sampling budget of K = 8, while still passing the integration tests.
The agent was able to extract repeated patterns such as MLP, Attention, Decoder classes, RoPE helper
functions, etc. The main limitation of this was the computational cost of producing refactorings, since
each refactoring took approximately 30 minutes to execute, limiting the number of samples we can
reasonably do. This domain shows that sample-and-rerank method improves refactoring performance
even on real world, larger scale repositories like Transformers.

MINICODE-Repositories. Coding agent results
on synthetic repositories, generated by Sonnet 3.7,
are given in Table [ A state-of-the-art coding
agent, Claude Code with Sonnet 3.7, was unable

Collection MDL% Pass%
orig 100 100

filesys_analyzer

to achieve compression. The generated refactor- claude 160 100
ings are larger than the original repositories, and ori 100 100
often contain duplicate implementations due to in- query_language g
. S claude 140 100
complete refactorings. This indicates weaknesses
in long-horizon agency for Sonnet 3.7. We provide Kknowledee store orig 100 100
examples in Appendix [H] e~ claude 140 100
REGAL Baseline Results. Beyond its success vm emulator orig 100 100
on our large-scale MINICODE benchmark, we - claude 160 100
sought to verify that our core sample-and-rerank ot 100 100
method is general enough to benefit other state- finance_tracker g
- . claude 180 60
of-the-art systems. To this end, we integrated our
MDL-based reranking (using K = 5) into the RE- . orig 100 100
GAL framework for program synthesis. Despite in_memory_db claude 150 100

the relative simplicity of the Logo and Date do- ori 100 100
. ; . . g

mains compared to our own, this augmentation text_editor

. S X claude 120 100
yielded significant performance gains over the
original REGAL baseline (Figure[7). This result
demonstrates our method can be used to improve
established methods in the classic library learning
paradigm.

Figure 6: Correctness (Pass %) and compression
(MDL ratio as %) of original and refactored code
sources for agent baselines on repository collec-
tions in MINICODE.

9 Conclusion

We introduce a new benchmark MINICODE

and method LIBRARIAN for compressing code ) )
sources through reusable abstractions. We high- Figure 7: Solving downstream program synthesis
light the challenges that modern models face tasks using learned libraries

when producing modular and maintainable code, Dataset Model Pass Rate

then present an effective method for using LLMs
: . ) _ REGAL (gpt-3.5-turbo) 49.3% +1.1
to do this task in small-scale programs. By fram-  Logo LIBRARIAN (3.5-turbo)  69.9% +0.9

ing refactoring as both a design and compres-
sion task, our work opens new directions for REGAL (gpt-3.5-turbo)  90.2% +0.5
LIBRARIAN (3.5-turbo) 94.7% +0.7

building more general and scalable code under- Date

standing and generation systems. In particular,
the structure of MINICODE lends itself well to
reinforcement learning, where training would entail synthesizing collections of repositories to refactor
then computing rewards based on compression.

Limitations Limitations of this work include the evaluation of synthetic repositories, the poor
performance of code agents on refactoring, and the fact that compression may not be correlated with
reuse. While our experiments on downstream programming problems partly address the question of
reuse, investigating how to measure and encourage reuse for large-scale multi-repo library creation
remains an open problem.
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A Algorithm

Algorithm 1 Refactoring Specialized Programs into a Joint Library

Require: Set of independent, specialized programs P;,itiar = {01, 02, -« -5 Pn}
Require: Sample Budget K
Ensure: Joint library £y;,4; and set of refactored programs Pfyq;

1: C «+ C]U.Stel‘(Pmitml)

2: Lfinal — @, Pfinal «—0

3: for all cluster c € C do > Each cluster independently
4: T¢ + GrouplntoTuples(c) > Get tuples for each cluster
5: for all tuples 7 € T do
6: {fretrieved} < RetrieveRelevantFromLibrary(L, 7)
7: S« 0
8: fori =1to K do > Sample k times
9: ({fnew,i}: {pg}}) < SAMPLE (fretrie’uedv T)
10: 8 SO Fnewih 4011}
11: end for
12: (fvest> {Ppest}) < RerankAndSelectBest(S, £ (-)) > Rerank using objective
13: Efinal U {fbest}
14: Pfinal U {pi)est}
15: end for
16: end for

17: return Linal, Prinal

12
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The instruction provided to human evaluators is as follows:
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## 1. Materials Provided
You will be given a set of files for each example case:

* *%x‘original_programs.py ‘**: This file contains a set of 3 distinct Python programs, each presented
with its corresponding problem description/query. This represents the "before" state.
* **x‘yl.py‘*x: This file presents the first refactoring approach. It includes:

* The 3 refactored versions of the original programs.

* A "library" section (e.g., ‘codebank.py‘ or inline) containing helper functions. These helper
functions might be retrieved from an existing common library or newly created during this
refactoring.

* Either the retrieved or the new helper function sections may be _empty_, in case no programs
existed in the codebank at the time or if no need helper functions were created by the LLM.

* **‘y2.py ‘xx: This file presents the second, alternative refactoring approach. Similar to ¢
refactoring_v1l.py‘¢, it includes:

* The 3 refactored versions of the original programs (using a different strategy than vi1).

* A "library" section with its own set of helper functions.

**NOTE**: both refactorings had accuracy at least as good as the original programs.
## 2. Your Task
Your primary task is to:

1. **Review** the ‘original_programs.py‘ to understand the initial code and the problems being solved.

2. x*xAnalyze** both ‘refactoring_vl.py‘ and ‘refactoring_v2.py‘. Pay close attention to how the
original programs have been restructured and what functionalities have been extracted into their
respective libraries.

3. *xDecide which refactoring (Version 1 or Version 2) you believe is "better ,"** based on the
evaluation criteria provided below (or your own criterial).

## 3. Evaluation Criteria: What to Consider for Your Choice

When comparing ‘refactoring_vl.py‘ and ‘refactoring_v2.py‘, please *considerx* the following aspects to
inform your choice. The "better" refactoring should ideally excel in these areas:

> Most importantly, make sure that the extracted functions are **actually reusable and not too specific
.*%* If the main programs are short, the refactoring is not immediately "better"! Try to think
whether the extracted functions could actually be used in a different program down the line.

* **Reusability of Helper Functions :*x*

* **xGenerality:** Are the new helper functions general-purpose and potentially useful for *other,

different* programs and problems beyond the three presented?

* *xReuse:** How much were existing helper functions reused?

* *xSpecificity:**x Are the functions too specialized to the current set of problems, limiting their
broader applicability? _Avoid functions that are essentially just the original program broken out
into a "helper."_

* Composability

* *xMaintainability :**

* Readability & Understandability

* Ease of Modification

* Separation of Concerns

## 4. What NOT to Focus On:

* **xComments:** Please disregard the presence or absence of comments in the code for this evaluation.
These are superficially generated by LLMs in some occasions and could be added manually after with
a single pass.

* **Minor Stylistic Differences:** Do not focus on trivial differences in variable naming or formatting

unless they significantly impact readability or understanding.

## 5. How to Provide Your Feedback
For each example case, please provide:

1. **Your Preferred Version:** (e.g., "Version 1" or "Version 2")

Listing 1: Human Evaluation Instruction

B Best@k Compression is a U-Statistic

We wish to estimate the expected compression ratio achieved by our sample + rerank method, which
samples k candidate refactorings, discards any that do not pass the tests, and selects the one with the
lowest score (total log-prob).

13




437
438

439

440

441
442

443

444

445

446
447
448

449

450

451

452

453
454

455

456
457
458
459

461
462
463

464

465
466
467

468

Background on U-Statistics. Let Z1,..., 2, " F. Fora symmetric function h : Z¥ — R, the

U-statistic of order k is defined as

1
n

1<i; < <ipg<n

By construction,
so U, is an unbiased estimator of the population quantity 0 = E[h(Z1,. .., Zy)].

Application to Best@k Compression. Let each valid refactoring be a pair Z = (.5, C), where S is
the score and C' is the compression ratio. Define the symmetric function

hi(z1, ... 25) = Cjs, j* = arg 11Snj12k S;, 6)

the compression ratio of the lowest-score refactoring among k draws. The population target is then

Given n valid samples, our estimator is

-1
0, — (Z) S hlZiye. o Z). ®)

1<i1 << <n
Proposition. 6y, is a U-statistic of order k£ with function Ay, and hence an unbiased estimator of 6.

Proof. (1) Symmetry of the function hy. hj selects the compression associated with the lowest score
among its k arguments. Permuting the inputs does not affect this outcome (ties can be resolved with
a fixed, permutation-invariant rule). Thus hy, is symmetric.

(2) U-statistic form. By definition, a U-statistic of order k with kernel Ay, is
-1
n
U, = <k) S hlZi,. . 2,
1<iy << <n
which matches §k exactly.

Therefore, (3k is a U-statistic of order k. By the unbiasedness property of U-statistics,
E[0] = 0.
O

Thus, our reported best@k compression curves provide unbiased estimates of the expected perfor-
mance of the sample + rerank method.

C Clustering Analysis: CodeContests

We analyze the coherence of the clusters underlying collections in MINICODE-CodeContests. In
particular, we compare clustering based on o4-mini generated code source descriptions against
task descriptions. Since task descriptions in competition coding problems are designed to hide
the algorithmic approach needed to solve problem, we expect that clusters based on code source
descriptions are more coherent. We use Normalized Tag Instance Entropy and Herfindahl-Hirschman
Index to evaluate clusterings. Figure [§] shows our clustering approach yields more thematically
coherent clusters, evidenced by achieving lower entropy and higher HHI values across the entire
tested range of IN. We provide definitions of our measures below.

C.1 Collection Coherence Measures

We use two measures to evaluate the thematic coherence of collections: Good collections should
group code sources with a (1) concentrated and (2) identifiable set of shared conceptual tags, which
for CodeContests are provided as ground truth (trees, graphs, etc.).

We provide the full definitions of the collection coherence measures below.
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Figure 8: Clustering analysis of 4,596 Code Contest problems, comparing the thematic coherence of
clusters formed using our proposed method versus REGAL-style clustering.

Normalized Tag Instance Entropy: This measures the concentration of tag instances within a
collection C. Let p; be the proportion of the i-th unique tag type among all tag instances in C', and
D¢ be the number of distinct tag types in C. If D¢ > 1, the normalized entropy Hy is defined as:

D¢
; i 1 i
Zz:l i logo P ©)

Hy =—
N logy De

If Do <1, then Hy = 0. Lower H (closer to 0) indicates higher thematic purity, meaning fewer
tag types dominate the bulk of tag mentions.

Herfindahl-Hirschman Index (HHI) for Problem Presence: This measures tag concentration
across distinct problems in a cluster C'. Let s; be the proportion of problems in C that include tag ¢ (a
problem contributes to s, if ¢ is one of its unique tags). A higher HHI signifies that the problems are
collectively characterized by a smaller, more focused set of tags.

HHI= Y s} (10)
t€Tags(C)

where Tags(C) represents the set of unique tags present in cluster C'.

D Benchmark Comparison

We compare our benchmark, MINICODE, to similar benchmarks in Table |Zl We define creativity and
design as the need to explore diverse solutions in order to find the best solution possible. For example,
optimizing for program correctness alone does not require exploring a large solutions space, whereas
optimizing a program for speed would. In the case of compressing large code sources, we must
explore the large space of shared abstractions afforded by libraries in order to maximize compression.

Table 2: Comparison of Code Benchmarks

Benchmark Creativity/Design Scale
SWE-bench [9] Low Repository
Commit-0 [[10] Medium Repository
RefactorBench [11]] Low File
ECCO [13] High Function
KernelBench [14] High Function
MINICODE(Ours) High Multi-repository

E Full MINICODE Results

We present the full agent scores for the CodeContests split in Table 3] The results are given both for
each cluster of code sources, as well as averaged across clusters.
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Cluster Agent Tokens CC Pass % MDL MDL %

original 9088 95 80.3 11745.85 100.0

0 sonnet 3.7 18114 176 87.0 15005.18 127.7
sonnet 4 11121 138 80.3  9901.53 84.3
codex-mini 9321 95 80.3  9990.74 85.1

original 12531 255 89.7 13431.86 100.0

1 sonnet 3.7 10470 239 96.7  8933.65 66.5
sonnet 4 11325 298 96.7  8214.42 61.2
codex-mini 12762 255 89.7 11798.73 87.8

original 14087 376 89.0 15012.77 100.0

2 sonnet 3.7 17345 429 91.3 13145.02 87.6
sonnet 4 14270 356 93.0 10522.66 70.1
codex-mini 14318 376 89.0 13273.81 88.4
original 14261 246 90.3 13348.82 100.0

3 sonnet 3.7 20749 241 97.7 15859.02 118.8
sonnet 4 13433 197 80.7 11937.04 89.4
codex-mini 14495 246 90.3 11616.41 87.0
original 17693 336 80.7 14665.16 100.0

4 sonnet 3.7 29860 358 100.0  20666.52 141.0
sonnet 4 18684 352 82.0 12801.21 87.3
codex-mini 17923 336 80.7 12902.09 88.0
original 12588 286 92.0 12790.11 100.0

5 sonnet 3.7 10580 128 99.3  8435.12 65.9
sonnet 4 10416 155 993  9167.85 71.7
codex-mini 12819 286 92.0 11086.19 86.7
original 11020 131 54.3 13540.41 100.0

6 sonnet 3.7 21747 502 88.0 19446.07 143.6
sonnet 4 11177 143 57.3 10492.00 77.5
codex-mini 11251 131 543 11651.65 86.1

original 12301 180 80.0 12393.73 100.0

7 sonnet 3.7 16390 166 91.0 13371.59 107.9
sonnet 4 11625 150 85.7  9304.25 75.1
codex-mini 12534 180 80.0 10549.04 85.1

original 12946 238 82.0 13366.09 100.0

Avg sonnet 3.7 18157 280 93.9 14357.77 107.4
sonnet 4 12756 224 84.4 10292.62 77.1
codex-mini 13178 238 82.0 11608.58 86.8

Table 3: Comparison of the pass rate and compression metrics of the original code sources, Claude
Sonnet 4 and codex-mini refactorings across CodeContests clusters.

a8 We present the full repository-level results of MINICODE-repository in Tablesdand[5] with 04-mini
489 and Claude Sonnet 3.7 and 4.
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Collection Agent LLoC CC MDLratio Passrate

original 474 116 1.0 1.0
datapipe CI-Cl 1084 341 9.1 1.0
CI-Cx 645 174 2.2 1.0
original 619 222 1.0 1.0
state_machine  CI-Cl 2271 735 6.3 0.9
CI-Cx 686 227 1.9 1.0
original 949 284 1.0 1.0
config_schema CI-Cl 922 339 2.5 failed
CI-Cx 626 207 2.1 1.0
original 875 300 1.0 1.0
cli_tools Cl-Cl 2925 909 4.0 1.0
CI-Cx 5848 2378 3.1 failed
original 352 174 1.0 1.0
cli_form CI-Cl 855 342 3.8 1.0
CI-Cx 1366 548 29 1.0

Table 4: Full results on MINTCODE-repositories small, using Codex with o4-mini and Claude Code
with Claude Sonnet 3.7.
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Collection Agent LLoC CC MDL % Pass %

original 7964 2921 100 100
command line task manacer sonnet 3.7 10387 3899 130 100
—/ine_task_manag sonnet4 9515 3946 125 100
original 10350 3935 100 100
concurrent task scheduler sonnet 3.7 18653 7165 190 80
— sonnet 4 11491 4762 122 80
original 3911 1338 100 100
file svstem analvzer sonnet 3.7 6495 2218 160 100
—system_analy sonnet4 5221 1793 130 100
original 4565 1671 100 100
in memory database sonnet 3.7 6667 2556 150 100
- Y- sonnet4 5617 2356 131 100
original 4587 1482 100 100

incremental backup svstem sonnet 3.7 5365 1788 130 failed
—backup_sy sonnet4 6620 2168 152 60
original 4306 1482 100 100
ersonal finance tracker sonnet 3.7 7443 2512 180 63
P - = sonnet4 9212 3335 215 63
original 5341 1832 100 100
personal_knowledge_management somnet 3.7 6357 2364 140 100
sonnet 4 5575 2597 131 80
original 5181 2105 100 100
query_language_interpreter sonnet 3.7 7193 2966 140 100
sonnet 4 7490 3076 142 100
original 4324 1323 100 100
text editor sonnet 3.7 5792 1822 140 100
- sonnet 4 6017 2308 148 100
original 6841 2283 100 100
virtual machine emulator sonnet 3.7 10108 3580 160 100
- - sonnet 4 9220 3303 137 100

Table 5: Full results on MINICODE-repositories large, comparing the original code sources with
Claude Sonnet 3.7 and Sonnet 4.

w0 F Data Generating Prompts

491 We provide the prompts for Librarian here.
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I need ideas for Python libraries that can be implemented by language models. These libraries should:

1
2
3] 1. Be implementable using only Python’s standard library - no external dependencies
4| 2. Have enough complexity to demonstrate sophisticated code design (10-20 functions/methods)
5] 3. Include room for interpretation, so that different implementations can be unique while sharing core
functionality
6] 4. Have clear, practical utility that solves a real programming need
7] 5. Be realistically implementable by an intelligent language model
8] 6. Be testable with pytest
9] 7. Include opportunities for different design approaches (functional vs 00P, etc.)
10
11| For each library, provide a description that outlines:
12| - The problem domain and core purpose
13| - Key required functionality (without being too prescriptive about implementation details)
14| - Potential use cases that demonstrate practical applications
15| - Suggested extension points where implementers could add their creative spin
16
17| Please generate several proposals in markdown, following this format:
18
19 ¢¢¢file:<library_name>/DESCRIPTION.md
20| # <Library Name>
21
22| ## Purpose and Motivation
23| <3-5 sentences on what problem this library solves and why it’s useful>
2
25| ## Core Functionality
20| <Description of 4-6 high-level key features/capabilities without specifying exact implementation>
27| e
28
29| Be creative! Focus on domains where standard Python libraries provide enough building blocks but where
a well-designed abstraction layer would add significant value.
Listing 2: Prompt to generate library descriptions
1
2| Consider a code repository designed to support the following task description:
3| e
4| {task_content}
5| cec
6
7| Please list a couple dozen features that would be useful for the repository. Include the specified
features as well as several others.
8
9] List the suggested feature names and descriptions in the following format:
10
11| 1: <feature_1_name>: <feature_1_description>
12] 2: <feature_2_name>: <feature_2_description>
13| 3: <feature_3_name>: <feature_3_description>
141 ...
15| 30: <feature_30_name>: <feature_30_description>
16] mon
17
18| persona_prompt_template = """Consider the following features of a code repository:
19] {1listed_features}
20
21| Think about several possibilities for what kind of person might use this code repository and what they
might use it for. Please write several brief descriptions for the code repository in first person,
formatted in markdown as follows:
22| ¢¢¢file:{library_namel}/<persona_name >/TASK.md
23| # The Task
24
25| I am a <...> I want to be able to <...> This code repository <...>
26
27| # The Requirements
28

* ‘<function_name>‘ : <feature description>
*

Be creative! Write the task description in the style of the proposed persona. Be as exhaustive as
possible in including the listed features in the task description’s requirements.

Listing 3: Prompt to generate potential uses and features given a library description
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I need you to implement a Python solution and COMPREHENSIVE suite of tests based on the following task

files.
Your code must pass the tests provided.

{task_content}

CRITICAL FORMATTING INSTRUCTIONS:

You MUST format ALL code files exactly as shown below - no exceptions

Start each file with the markdown codeblock marker, followed by "file:" and the relative path
End each file with the closing markdown codeblock marker

Do not use any other format or markdown variations

For test files, do not put them in a subdirectory-- keep them in the outermost level.

[ SRR

For each source code file:

¢¢¢file:<relative_file_path>

<file_content >
e

For each test file:

¢¢¢file:<relative_file_path starting with test_>

<test_file_content>
e

IMPORTANT:

- The opening format must be exactly: ‘‘‘file:path/to/file.py

- Do not add language indicators like ‘‘‘python

- Do not add explanations between files

- Each file must be contained within its own codeblock with the precise format shown above
- The system parsing your response requires this exact format to function properly

EXAMPLE OUTPUT FORMAT:
¢‘‘file:mymodule/mymodule.py
def example_function():

return "This is a sample function"
e

¢¢¢file:test_utils.py
import pytest
from mymodule.mymodule import example_function

def test_example_function():
assert example_function ()

"This is a sample function"
ccc

Begin your implementation now, following these formatting rules precisely.

Listing 4: Prompt to generate initial implementation

20
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I need you to fix the implementation of the following code that is failing tests.

# Current Implementation:
{src_code_content}

# Test Files:
{test_content}

# Failed Tests:
{failed_test_details}

# Test Output (if available):
{test_output}

Please carefully analyze the errors and test failures. Pay special attention to:
1. The exact assertion failures or error messages

2. What the tests expect vs. what your current implementation provides

3. Any edge cases or special conditions you might have missed

Your task is to fix the implementation to make all tests pass. For each file that needs to be modified,
provide the content in the following format:

¢¢¢file:<relative_file_path>

<file_content>
e

Where <relative_file_path> is the relative path to the file and <file_content> is the updated content
of the file.

Focus on fixing the specific issues identified in the errors and failed tests while maintaining the
overall structure of the code.

IMPORTANT: Make targeted changes to address the specific failing test cases. Make sure your
implementation passes all test cases,

including any edge cases or special conditions mentioned in the tests. Be sure to output code in the
specified format.

Listing 5: Prompt to fix code implementation, given pytest output.
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G Refactoring examples of LIBRARIAN on Code Contests

G.1 Example 1

In code snippets [7] [6} Ol [§] one example of 2 refactoring versions. Specifically, the versions are
both passing at least as many test cases as the original and they have the biggest difference in
MDL among all the sample refactorings for that tuple. Sample + rerank filtering selected refac-
toring V2. You can observe that refactoring V1 introduces some problem specific functions like

build_max_beauty_perm(), while refactoring V2 sticks to more generally useful functions.

B —

# ==== NEW HELPER FUNCTIONS ====

def compute_full_mask(i):
"""Return mask of all 1s of the bit-length of i."""
return (1 << i.bit_length()) - 1

def build_max_beauty_perm(n):
"""Build permutation of O0..n maximizing sum of i~p[i]."""
ans = [0] * (n + 1)

used = set()
for i in range(n, -1, -1):
if i in used:
continue
mask = compute_full_mask (i)
j = i ~ mask
ans[i], ans[j] = j, i

used.add (i)

used.add (j)
beauty = sum(i -~ ans[i] for i in range(n + 1))
return ans, beauty

def solve_xor_sum(u, v):
wan
Find shortest array whose xor is u and sum is v.
Return list or None if impossible.
wun
if u > v or (v - u) % 2:
return None
if u == v:
return [] if u == 0 else [u]
x = (v -u) // 2
# try two elements
if ((u + x) = x) == u:
return [u + x, x]
# fallback to three elements
return [u, x, x]

def build_trie(keys):
Build a binary trie with counts for 30-bit numbers.
Each node: [left_index, right_index, count].
tree = [[0, O, 0]]
for x in keys:
now = 0
tree[now] [2] += 1
for i in range(29, -1, -1):
b= (x> 1i) &1
if treel[now][b] == 0:
tree [now] [b] len(tree)
tree.append ([0, O, 0])
now = tree[now][b]
tree[now] [2] += 1
return tree

def trie_pop_min_xor (tree, x):
wan

Pop one key from trie to minimize x"key and return that minimal xor.

Decrements counts along the path.
win
now = 0
res = 0
for i in range(29, -1, -1):
b

= (x> i) & 1
nxt = tree[now][b]
if nxt and treel[nxt][2] > 0:
now = nxt
else:
now = tree[now][b ~ 1]
res |= (1 << i)
tree[now] [2] -= 1
return res

Listing 6: Version 1, New Helpers

22




# ########## PROGRAM: node_16:cc_python_16 ##########

BwW—

from codebank import *

[

6| def main():
import sys

8 data = sys.stdin.readline()

9 if not data:

0 return

1 n = int(data)

2 perm, beauty = build_max_beauty_perm(n)
3 print (beauty)

print (*perm)
6 if __name__ == "__main__":
7 main ()

SSsoEooCSs

©

19| # ########## PROGRAM: node_19:cc_python_19 ##########
21| from codebank import x*

23| def main():

24 import sys
25 data = sys.stdin.readline
26 n = int(data())

27 A = list(map(int, data().split()))
28 P = list(map(int, data().split()))
29 trie = build_trie(P)

30 0 = [trie_pop_min_xor(trie, a) for a in A]
1 print (x0)

2

3| if __name__ == "__main__":

4 main ()

6| # ########## PROGRAM: node_25:cc_python_25 ##########
8| from codebank import *

40| def main():

41 import sys
42 u, v = map(int, sys.stdin.readline().split())
43 res = solve_xor_sum(u, v)
44 if res is None:
45 print (-1)
46 else:
47 print (len(res))
48 if res:
49 print (xres)
50
51| if __name__ == "__main__":
52 main ()
Listing 7: Version 1, Refactored Programs
|| # ==== NEW HELPER FUNCTIONS ====
2| def compute_complement (i):
3 return i ~ ((1 << i.bit_length()) - 1)
4
5| def trie_add(trie, x, max_bit):
6 trie[0]1[2] += 1
7 now = 0
8 for i in range(max_bit, -1, -1):
9 bit = (x >> i) & 1
10 if triel[now][bit] == 0:
11 trie[now][bit] = len(trie)
12 trie.append ([0, 0, 0])
13 now = triel[now][bit]
14 trie[now][2] += 1
15
16| def trie_find_min_xor (trie, x, max_bit):
17 now = 0
18 ans = 0
19 for i in range(max_bit, -1, -1):
20 bit = (x >> i) & 1
21 if triel[now][bit] and triel[triel[now]l[bitl][2] > O0:
22 now = trie[now][bit]
23 else:
24 now = triel[nowl]l[bit ~ 1]
25 ans |= (1 << i)
26 trie[now][2] -= 1
27 return ans

Listing 8: Version 2, New Helpers
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# ########4#4 PROGRAM: node_16:cc_python_16 ##########
from codebank import *

def main():
import sys
input = sys.stdin.readline
n = int (input ())
ans = [-1] * (n + 1)

for i in range(n, -1, -1):
if ans[i] == -1:
z = compute_complement (i)
ans[i] = z
ans[z] = i
m = sum(i ~ ans[i] for i in range(n + 1))
print (m)

print (xans)

if __name__ == "__main__":
main ()

# ########## PROGRAM: node_19:cc_python_19 ##########
from codebank import *

def main():
import sys
input = sys.stdin.readline
n = int (input ())
A = list(map(int, input().split()))
P = list(map(int, input().split()))
max_bit = max(max(A, default=0), max(P, default=0)).bit_length() - 1
trie = [[0, 0, 0]]
for x in P:
trie_add(trie, x, max_bit)
res = [trie_find_min_xor(trie, x, max_bit) for x in A]
print (xres)

if __name__ == "__main__":
main ()

# ########4## PROGRAM: node_25:cc_python_25 ##########
from codebank import *

def main():
u, v = map(int, input().split())
if u > v or ((v - u) & 1):
print (-1)
elif u == 0 and v ==
print (0)
elif u == v:
print (1)
print (u)
else:
w= (v -u // 2
if (v & u) == 0:
d =u+w
print (2)
print(d, w)
else:
print (3)
print(u, w, w)

if name = "

main ()

_main_

Listing 9: Version 2, Refactored Programs

G.2 Example 2

In code snippets [12]is another example of 2 refactorings where V1 was better according to
LIBRARIAN. We can observe that V2 creates helper functions that are overly specific to the problem.
You can see that refactoring V2 introduces overly specialized functions like di jkstra_special() or
compute_min_moves_opposite_parity(). In comparison, refactoring V1 generates only general
versions of these functions (e.g. dijkstra()).

24




DA LN —

W —

N )

#
def

def

def

==== NEW HELPER FUNCTIONS ====

read_ints () :
return list(map(int, input().split()))

build_adj_undirected(n, edges):
adj = [[] for _ in range(n)]
for u, v, w in edges:
adj[ul.append ((v, w))
adj[v].append((u, w))
return adj

dijkstra(adj, src):
from heapq import heappush, heappop
INF = 10%x%*18
n = len(adj)
dist = [INFl*n
parent = [-1]*n
dist[src]l = 0
heap = [(0, src)]
while heap:
d, u = heappop (heap)
if d > dist[ul:
continue
for v, w in adj[ul:
nd = d + w
if nd < distl[v]:
dist[v] = nd
parent [v] = u
heappush (heap, (nd, v))
return dist, parent

reconstruct_path(parent, dest):
path = []
u = dest
while u != -1:
path.append (u+1)
u = parent [u]
return path[::-1]

multi_source_bfs(neighbors, sources):
from collections import deque
n = len(neighbors)
dist = [-1]l*n
dq = deque ()
for u in sources:
if dist[u]l == -1:
dist[ul = 0
dq.append (u)
while dq:
u = dq.popleft ()
for v in neighbors[ul:
if dist([v] == -1:
dist[v] = dist[u] + 1
dq.append (v)
return dist

Listing 10: Version 1, New Helpers
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# ########4#4 PROGRAM: node_16:cc_python_16 ##########
from codebank import *

def main():
import heapq
n, m = read_ints ()
edges = [(u-1, v-1, w) for u, v, w in (read_ints() for _ in range(m))]
adj = build_adj_undirected(n, edges)
INF = 10x**20
dist = [INFl*n
dist [0] = O
last_w = [0]*n
heap = [(0, 0)]
while heap:
d, u = heapq.heappop (heap)
if d > dist[ul:
continue
# record last edges
for v, w in adj[ul:
last_wlv] = w
# expand two-edge moves
for v, wi in adj[ul:
tw = last_wlv]
for x, w2 in adjlvl:
nd = d + (tw + w2)**2
if nd < dist[x]:
dist[x] = nd
heapq.heappush (heap, (nd, x))
out = []
for x in dist:
out.append (str(x if x < INF else -1))

print (" ".join(out))
if __name__ == "__main__":
main ()

# #######444 PROGRAM: node_17:cc_python_17 #########4
from codebank import *

def main():
n, m = read_ints ()
edges = [(u-1, v-1, w) for u, v, w in (read_ints() for _ in range(m))]
adj = build_adj_undirected(n, edges)
dist, parent = dijkstra(adj, 0)
if dist[n-1] >= 10x*18:
print (-1)
else:
path = reconstruct_path(parent, n-1)
print (*path)

if __name__ == "__main__":
main ()

# ########44 PROGRAM: node_19:cc_python_19 #########4
from codebank import *
def main():

n = int (input ())

a = read_ints ()
# build reversed graph: for each move i->j, add edge j->i

neighbors = [[] for _ in range(n)]
for i, val in enumerate(a):
for j in (i - val, i + val):

if 0 <= j < n:
neighbors[j].append (i)
# BFS from all even and all odd positions separately
even_sources = [i for i, val in enumerate(a) if val % 2 == 0]
odd_sources = [i for i, val in enumerate(a) if val % 2 == 1]
dist_even = multi_source_bfs(neighbors, even_sources)
dist_odd = multi_source_bfs(neighbors, odd_sources)
# for odd al[il], answer is dist to nearest even => dist_even; else dist_odd
ans = [dist_even[i] if al[il % 2 == 1 else dist_odd[i] for i in range(n)]
print (xans)

if __name__ == "__main__":
main ()

Listing 11: Version 1, Refactored Programs
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def

def

#
# ==== NEW HELPER FUNCTIONS ====
de

read_ints () :
return list(map(int, input().split()))

build_undirected_weighted_graph(n, m):
from collections import defaultdict
adj = defaultdict(list)
for _ in range(m):
u, v, w = read_ints ()
u -=1; v -= 1
adj [ul.append ((v, w))
adj[v].append((u, w))
return adj

dijkstra(adj, src, n):
import heapq
INF = 10*%*18
dist = [INFl*n
parent = [-1]l*n
visited = [Falsel#*n
dist[src]l = 0
heap = [(0, src)]
while heap:
d, u = heapq.heappop (heap)
if visited([ul:
continue
visited[u] = True
for v, w in adj.get(u, ()):
nd = d + w
if nd < distl([v]:
dist[v] = nd
parent[v] = u
heapq.heappush (heap, (nd, v))
return dist, parent

reconstruct_path(parent, dest):
path = []
while dest != -1:
path.append (dest+1)
dest = parent [dest]
return path([::-1]

dijkstra_special(e, n, src):

import heapq

INF = 10x**18

d = [INF]*n

d[src] = 0

heap = [(0, src)]

while heap:
cd, v = heapq.heappop (heap)
if cd > dlv]:

continue

td = {}

for u, w in e.get(v, ():
td[ul = w

for u, wi in td.items():
for x, w2 in e.get(u, ()):
cost = cd + (Wl + w2)*%2
if cost < dl[x]:
d[x] = cost
heapq.heappush (heap, (cost, x))
return d

compute_min_moves_opposite_parity(a):
from collections import deque

n = len(a)

go = [[] for _ in range(n)]

ans = [-1]*n

q = deque ()

for i, val in enumerate(a):

for j in (i - val, i + val):
if 0 <= j < n:
if (aljl % 2) '= (val % 2):
ans[i] = 1
q.append (i)
break
else:

go[j].append (i)
while q:
u = q.popleft ()
for v in gol[ul:
if ans[v] == -1:
ans[v] = ans[u] + 1
q.append (v)
return ans

Listing 12: Version 2, New Helpers
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1
2| # #######4#4## PROGRAM: node_16:cc_python_16 ##########
4| from codebank import x*
5
6| def main():
7 n, m = read_ints ()
8 e = {}
9 for in range(m):
10 u, v, w = read_ints ()
11 u -=1; v -= 1
12 e.setdefault (u, []).append((v, w))
13 e.setdefault (v, []).append((u, w))
14 d = dijkstra_special(e, n, 0)
15 print (" ".join(str(-1 if x >= 10x*18 else int(x)) for x in d))
16
17| if __name__ == "__main__":
18 main ()
1

20| # ########## PROGRAM: node_17:cc_python_17 ##########
22| from codebank import x*

24| def main():

25 n, m = read_ints ()

26 adj = build_undirected_weighted_graph(n, m)
27 dist, parent = dijkstra(adj, 0, n)

28 if dist[n-1] >= 10%%18:

29 print (-1)

30 else:

31 path = reconstruct_path(parent, n-1)
32 print (" ".join(map(str, path)))

33

341 if __name__ == "__main__":

35 main ()

6

3

37| # ########## PROGRAM: node_19:cc_python_19 ##########
3

3

39| from codebank import *

40

41| def main():

42 n = int(input ())

43 a = read_ints ()

44 ans = compute_min_moves_opposite_parity(a)
45 print (" ".join(map(str, ans)))

46

47 if __name__ == "__main__":

48 main ()

Listing 13: Version 2, Refactored Programs
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from datapipe.core import (

3 tumbling_window,

4 sliding_window as _sliding_window,

5 add_serializer,

6 throttle_upstream as _throttle_upstream,

7 watermark_event_time as _watermark_event_time,
8

9]

10

11

12| def throttle_upstream(max_size):

13 Wi

14 Apply backpressure to slow data ingestion if downstream stages are overloaded.
15

16 Args:

17 max_size: maximum queue size or rate limit
18

19 Returns:

20 Decorator function

21 nn

22 def decorator (func):

23 from functools import wraps

24

25 @uraps (func)

26 def queue_wrapper(q, *args, **kwargs):
27 try:

28 size = q.qgsize()

29 if size > max_size:

30 import time

31 time.sleep (0.01)

32 except Exception:

33 pass

34 return func(q, *args, **kwargs)

35

36 return queue_wrapper

37

38 return decorator

40| def watermark_event_time (events, allowed_lateness):

41 non

42 Assign event-time watermarks to handle late data correctly.
43

44 Args:

45 events: list of dicts with timestamp

46 allowed_lateness: seconds of allowed lateness

47

48 Returns:

49 Events with watermark annotations

50 wan

51 # Ensure we return the appropriate format with is_late field
52 result = []

53 for e in events:

54 tagged = dict(e)

55 max_ts = max(ev[’timestamp’] for ev in events)

56 watermark = max_ts - allowed_lateness

57 tagged[’watermark’] = watermark

58 tagged[’is_late’] = e[’timestamp’] < watermark

59 result.append (tagged)

return result

Listing 14: Claude fails to use imports and instead re-implements the function.
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