
Refactoring Codebases through Library Design

Anonymous Author(s)
Affiliation
Address
email

Abstract

Maintainable and general software allows developers to build robust applications1

efficiently, yet achieving these qualities often requires refactoring specialized so-2

lutions into reusable components. This challenge becomes particularly relevant3

as code agents become increasingly accurate at solving isolated programming4

problems. We investigate code agents’ capacity to refactor code in ways supporting5

growth and reusability. We first investigate what makes a good refactoring, finding6

via a human study that an MDL (Minimum Description Length) objective best7

aligns with developer preferences for code refactoring quality. We then present8

both a method and a benchmark for refactoring: LIBRARIAN, a sample-and-rerank9

method for generating reusable libraries, built on this objective, and MINICODE, a10

benchmark where code agents must minimize and refactor multiple independent11

solutions into a joint library. Compared to state-of-the-art code agents, LIBRAR-12

IAN achieves strong results on both compression and correctness on MINICODE,13

obtaining compression rates 1.6-2x better than coding agents while also improving14

correctness.15

1 Introduction16

Writing code is mainly a matter of rewriting code: debugging, refactoring, optimizing, and other17

activities within the software engineering lifecycle. But poor rewrites incur technical debt, with such18

debt costing up to $2 trillion annually [1]. This problem will likely worsen as language models become19

increasingly responsible for generating code, because they excel at solving isolated programming20

problems, but their context length demands a myopic view of the codebase. It is therefore valuable to21

understand not just the ability of language models to solve programming problems, but also their22

ability to rewrite and refactor code in ways that support growth and reuse.23

Effective code refactoring at scale is a design problem. When refactoring codebases, developers must24

navigate design decisions around concerns such as generality, re-usability, and maintainability. A25

classic example illustrates this design challenge: Human programmers often create overly-specialized,26

redundant solutions to similar problems and would benefit from redesigning specialized solutions27

into a shared library. This consolidation requires careful design decisions about the right level of28

abstraction — neither too specific nor too general — and appropriate interfaces that balance flexibility29

with usability.30

Here we focus on refactoring multiple code sources into a reusable software library, and pose the31

following question: To what extent can code agents address this problem, both within human-written32

codebases, and also in language model-generated code? To answer that question, we develop a33

new method and a benchmark. This goes beyond past work [2, 3, 4, 5, 6, 7, 8] in library learning34

that synthesized subroutines across small programs in i.e. λ-calculus, instead tackling the more35

naturalistic problem of redesigning large bodies of code written in contemporary high-level languages,36

such as Python, producing classes, methods, and helper functions in the style of a human-written37

library. We develop a method, LIBRARIAN (Figure 1), which samples possible code rewrites then38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

LL
M LLM

LLM

LLM Refactorings

CODE SOURCES
Existing
Library

NEW Library

Source 1 Source 3Source 2

0% COMPRESSED 85% PASS RATE

SELECTED IGNORED

Library

Library

import ...

Source 3

Source 2

Source 1

40% COMPRESSED

90% PASS RATE

import ...

Source 3

Source 2
Library

Source 1

55% COMPRESSED

65% PASS RATE

REJECTED

Compression RankingMost Compressed Least Compressed

...
Source 3

Source 2
Library

Source 120% COMPRESSED

85% PASS RATE

+

Library

Figure 1: Overview of the refactoring problem and the general structure of its solutions. Given a
collection of different code sources, where a source is either program or repository,—and optionally
an existing library—we refactor the code sources by designing a new modular and reusable library.
Candidate refactorings are evaluated based on program simplicity (compression), and are expected to
maintain correctness of the original code sources (pass rate).

reranks those samples based on criteria designed to capture what it means to have a good refactoring.39

To generate potential rewrites, we develop methods for clustering pieces of code together that share40

common structure, so that a succinct prompt can rewrite them jointly into their refactored form.41

To find strong criteria for ranking potential rewrites, we study a variety of metrics across machine42

learning and software engineering, both on program synthesis benchmarks and via a human study.43

To evaluate our method and systematically assess the capability of current agents to perform such44

design-intensive refactorings, we introduce a new benchmark, MINICODE, which addresses three45

key desiderata missing from existing benchmarks. First, open-ended design: unlike SWE-Bench [9],46

Commit0 [10], and RefactorBench [11] which primarily focus on functional correctness, MINICODE47

presents an unconstrained library design problem. Agents must create a library that can be imported48

into multiple repositories, with complete freedom to design the interface and implementation from49

scratch—optimizing for software engineering objectives like reusability and maintainability. Second,50

verifiability: we ensure objective evaluation by retaining the unit tests from all repositories that will51

import the designed library, allowing us to verify that the solutions work correctly across multiple52

use cases. Third, large context: agents must understand and synthesize information from multiple53

repositories simultaneously to design a unified library that consolidates specialized code sources into54

a general interface. Prior benchmarks typically focus on single-repository tasks.55

Our results show that state-of-the-art code agents, based on Claude Sonnet 3.7, struggle to jointly56

preserve correctness and improve reusability across all domains of MINICODE. In the competition57

coding domain, our method LIBRARIAN improves refactoring quality by 1.89x while also enhancing58

correctness. However, on the repository-level refactoring, even the strongest agents fail to produce59

high-quality refactorings, highlighting a substantial gap between current capabilities and the demands60

2

of design-oriented code rewriting. Addressing this challenge remains an open and important direction61

for future research.62

2 Related work63

Library Learning. Systems which perform library learning research discover shared abstractions64

across a large number of small programs, which they use to automatically define new subroutines.65

Systems such as DreamCoder [4], Trove [12], LiLo [7], and REGAL [3] automatically construct such66

libraries with the goal of making future program synthesis tasks easier to solve, once the learned67

library is in hand. Our work is closest to REGAL [3], which clusters related code and refactors using68

language models. However, existing library learning approaches have primarily been demonstrated in69

small-scale, constrained domains, limiting their applicability to typical software engineering tasks,70

such as consolidating multiple repositories into cohesive libraries. By framing library learning within71

the context of realistic, large-scale code repository development, we expand the relevance of library72

learning to everyday software engineering practice.73

Repo-level coding benchmarks. Recent work has explored the application of language models to74

repository-level software engineering tasks. Existing benchmarks include SWE-bench [9], which75

evaluates models on their ability to resolve real-life GitHub issues, and Commit-0 [10], which requires76

agents to fill in function definitions. Such benchmarks primarily evaluate functional correctness77

via unit tests, without assessing the quality or maintainability of the resulting codebase. Refactor-78

Bench [11] takes a step in this direction by benchmarking the ability to follow specific refactoring79

instructions. Our work differs by requiring models to perform a more open-ended task: Redesigning80

code to be more modular and compact by discovering and drawing out reused abstractions, while81

retaining verifiability by re-using downstream unit tests. Additionally, libraries must be created82

without any scaffolding limitations such as preexisting function definitions affording more design83

freedom than Commit-0.84

Program optimization. While our goal is to optimize the quality of libraries, other works focus85

on improving execution speed through correctness-preserving transformations [13, 14, 15]. Both86

forms of program optimization, compression and speed, are more open-ended than optimizing only87

for correctness, as there does not exist a ground-truth answer. Prior work on program optimization88

benchmarks study code at the file level. We propose a benchmark that transforms programs at a larger89

scale, across multiple code repositories.90

3 Problem Statement91

In this section, we propose a refactoring task: Given multiple code sources that contain problem-92

specific implementations, the goal is to create a cohesive library that captures shared abstractions.93

This library must reduce the total code size while supporting all original use cases, potentially opening94

up new use cases as well by mining and formalizing latent shared abstractions. This is accomplished95

by searching for refactorings that are both correct and simple. Correctness is straightforward to define96

as the fraction of unit tests passed, but simplicity is more elusive.97

One potential measure of simplicity is counting the total number of tokens in the proposed library98

and refactored code [6, 16, 5, 17]. However, just minimizing program size has obvious failure modes:99

code should also be natural, elegant, and extensible, which can be in tension with merely finding the100

shortest program.1 Other work in program synthesis [18, 19, 4] defines simplicity as the minimum101

description length (MDL), or negative log probability under a reference distribution. In the software102

engineering community, other metrics such as cyclomatic complexity and maintainability index have103

been defined for similar purposes: These are more complex metrics that examine the syntax tree, call104

graph, and other statically-analyzable structures [20]. What metric should we use? The right choice105

of simplicity metric remains unclear. We return to this question in Section 6, where we empirically106

compare candidate metrics and human preferences before fixing our choice for the rest of the paper.107

1Perl Golf is a game where participants attempt to write the shortest Perl program accomplishing a given
task. The resulting code is famously incomprehensible, even by the standards of Perl.

3

https://wiki.c2.com/?PerlGolf

Without committing to a simplicity metric, let’s use a placeholder metric M ; assume we are given a108

collection of code sources {ρn}Nn=1, and output both a new library L, as well as rewritten refactorings109

of the original code sources, {ρ′n}
N
n=1. We define the pass rate τ(ρn) as the fraction of unit tests110

program ρn passes. In practice we are concerned both with the case where we are refactoring several111

code sources (N > 1) and also the case where there is only a single large code source we are112

refactoring (N = 1).113

We optimize the following objective, which rewards refactorings that pass at least as many tests as114

the original program and minimize the chosen metric M :115

ℓ (L, {ρ′n}) =
{
M(L, {ρ′n}) ∀ρn, τ(ρn) ≤ τ(ρ′n)

∞ otherwise
(1)

where M(L, {ρn′}) may be instantiated in different ways depending on the notion of simplicity under116

consideration.117

One example of M is minimum description length (MDL), given by MMDL(L, {ρ′n}) =118

− log pLM(L) +
∑

n− log pLM(ρ′n | L), where pLM (ρ′n|L) is concatenating the library and the119

program into one prompt, but only counting the perplexity of the later program tokens.120

4 MINICODE—Library Design and Refactoring Benchmark121

MINICODE evaluates a code agent’s capability to identify abstractions across implementations and122

design reusable libraries. In order to measure these capabilities, our benchmark presents agents with a123

collection of code sources, then asks agents to refactor the code sources into a unified library alongside124

refactorings of the original code sources. There are two key desiderata for collections of code sources:125

The collections must be compressible, in that there exists a latent shared library abstraction, and126

verifiable, so that we can measure how well refactored code sources preserve functional correctness.127

See Appendix C for details on our clustering. We source problems from three domains, both real128

world and synthetic: Competition coding (Code Contests), Huggingface Transformers model129

implementations, and synthesized repositories (Table 1).130

Agents are expected to interact with MINICODE via the terminal. We structure the benchmark as131

refactoring a multi-package Python repository, where each code source in a collection is a Python132

package in a subdirectory. This requires knowledge of basic bash commands for exploring repositories,133

editing code, and running tests, as well as how to manage complex, multi-package Python libraries.134

Table 1: MINICODE Statisics

Domain Sources Collections Avg LoC Avg Tests Gen by
Code Contests 300 30 87 10 Humans
Transformers 8 2 538 181 Humans
Synthetic Repositories 20 10 6,433 101 Claude-Sonnet 3.7

CodeContests. Competition problems are crafted with specific variations of algorithmic approaches135

in mind, resulting in both shared latent concepts and required test cases. As a result, competition136

coding is naturally both compressible and verifiable.137

Each collection consists of multiple code sources, each containing a solution to a competition138

programming prompt, with associated tests for verification. We take solutions, prompts, and tests139

from CODECONTESTS [21], a dataset consisting of competition coding problems. Each code source140

in the collection is structured as a subdirectory consisting of the task description in PROBLEM.md,141

the initial solution in main.py, and a script to run tests in run.sh. Agents are instructed to create a142

library.py file, which is imported into each code source. Since CODECONTESTS has no external143

dependencies on Python packages, this can be done without explicit structuring as a Python package.144

Huggingface Transformers Library. In this domain, we test whether agents can refactor across145

implementations of large language and vision–language models (modelling_<name>.py files)146

from the Huggingface transformers repository (e.g., Qwen2, LLaMA, DeepSeek-V3). Unlike147

4

competition coding, these sources are production-scale and Huggingface requires that all changes148

pass an extensive suite of integration tests before being accepted into the main branch. A refactoring149

is only deemed correct if it passes the unmodified Transformers test suite, making this a high-stakes150

setting that requires correctness and compatibility.151

Synthetic Repositories. We synthesize repositories by first generating project ideas and then152

specialized variations, allowing us to control both complexity and overlap between code sources in a153

collection. Each code source in the repositories domain consists of a task description, source code,154

and test cases for functionality and correctness. MINICODE includes repositories, approximately155

6.5k lines of source code each, which represent realistic settings where different people with different156

needs use language models to help them write software for their particular use cases. The refactoring157

agent is tasked with extracting re-usable functions from across code repositories, and re-writing the158

original code source repositories to use them.159

Concretely, we prompt coding agents to generate a list of ideas. For each idea, agents generate a160

collection consisting of two variations of that idea, targeting an imagined persona. Each variation is161

then instantiated in code as a Python repository with at least 100 tests. The prompts for each step162

are shared in Appendix F. Each collection is structured as a multi-package Python library: every163

synthetic repository becomes a subpackage with its source and tests. Agents are instructed to write a164

shared library in a shared subpackage named common. This common shared library must be imported165

and used to refactor each of the original subpackages.166

5 LIBRARIAN: Refactoring Code to Create Libraries167

This section details our method to compress collections of code sources into libraries, while migrating168

the code sources to use these shared building blocks. Figure 1 illustrates our method, LIBRARIAN.169

LIBRARIAN follows a simple sample-and-rerank framework to maximize our refactoring objective170

described in Section 3. It maintains and grows a library of useful functions as part of this objective.171

Concretely, our framework follows:172

L⋆, {ρ⋆n} = argmin
L,{ρ′

n}∈SAMPLE({ρn})
ℓ (L, {ρ′n}) , (2)

for a chosen metric M . The choice of M is analysed in Section 6.173

5.1 Sample with clustering174

Meaningful abstractions arise when programs share underlying functionality or structure. To surface175

these, we cluster input programs into small groups that are likely to share reusable structure. Most176

modern language models cannot be prompted with the entire collection of input programs– even long177

context models cannot process the entirety of e.g the Linux kernel, and even if they could, it is not178

clear that such a strategy is the most efficient way of focusing the language model’s attention.179

We consider clustering algorithms for discovering small groups of related code; we call these tuples.180

This extends REGAL [3], which clusters programs solving similar problems by assuming each181

program is paired with a natural language description of the problem it solves, and clustering182

embeddings of those descriptions. Since similar problems need not imply similar code structure, we183

instead prompt a model to summarize each code source and cluster by these summaries.184

Each tuple is refactored in two stages: (1) if a library has already been built from previous tuples,185

we prompt the model with the current tuple and the accumulated library, asking it to identify which186

existing functions can be reused. This lets abstractions discovered earlier carry forward across the187

collection; (2) the retrieved functions and the tuple of programs are then provided as context to the188

model, which proposes a sample budget of K candidate refactorings.189

5.2 Rank refactorings190

Once sampled, all K candidate refactorings are passed through a sort-and-filter evaluation harness191

to select the refactoring that (1) scores the highest on refactor quality (under metric M) and (2)192

maintains (or improves) test accuracy compared to the original. If no such candidate exists, the193

original code is preserved, maintaining existing functionality.194

5

New library functions in the selected refactor are saved into the LIBRARIAN library for potential use195

in downstream refactoring of other programs. We provide the full algorithm in Appendix A.196

6 What Makes a Good Refactoring?197

We evaluate candidate metrics along two complementary axes: (i) how they behave as optimization198

objectives when varying the sample budget K (Fig.3); and (ii) how well they align with human199

judgment of refactoring quality (Fig.4).200

6.1 Objective function comparison201

1 3 5 7 9 11 13
Sample Size (k)

5

0

5

10

B
es

t@
k

co
m

pr
es

si
on

 (%
)

Mean Best@k
±1 SE
Baseline

Figure 2: Best@k compression for LIBRAR-
IAN on the Transformers domain. Increasing
the sample budget (k) improves compression.

We run LIBRARIAN on 6 collections of CodeCon-202

tests using MDL, number of tokens, and cyclomatic203

complexity [20]2 as objective functions M (Figure 3).204

While minimizing MDL also minimizes the other205

two objectives, the converse is not true. This suggests206

that MDL is a pareto-optimal loss among the three207

objectives in this experiment.208

To confirm that the library does indeed expose shared209

abstractions, we calculate the average number of210

times that each library routine is used. Scaling the211

inference budget to K = 8 discovers better libraries,212

reusing each library function on average about 5213

times.214

This scaling benefit holds for complex, real-world215

code as well, as demonstrated by monotonic com-216

pression improvements on the Transformers codebase217

(Figure 2). This reinforces our choice of MDL as a218

robust search objective. We prove that our best@k metric provides an unbiased estimate of this219

performance in Appendix B.220

6.2 Human evaluation best aligns with the MDL objective function221

MDL CC Tok MI LLM-C
0.0

0.2

0.4

0.6

0.8

1.0

Ag
re

em
en

t S
co

re
(C

oh
en

's
 ±

1
SE

M
) 0.68

0.18

0.43

0.08

0.38

Figure 4: Human evaluation of different refac-
toring objectives. Judges compare pairs of
refactorings that both pass all test cases. MDL
aligns best with human preferences.

We complement the quantitative analysis with a small-222

scale human study: for 19 CodeContests tuples of 3223

problems and a pair of refactorings for each, 4 hu-224

man judges pick which refactoring they prefer. Each225

refactoring comprises three re-written programs, plus226

the library generated by LIBRARIAN. Each pair of227

refactorings passed all testcases, and were chosen to228

include both the highest and lowest MDL refactor-229

ings. Human judges are authors on this paper, but230

were ‘blinded’ to not know relative objective function231

scores for the candidate refactorings.232

An MDL objective aligns best with human prefer-233

ences (Figure 4), although number of tokens is also234

a reasonable proxy for human judgment. That token235

count and MDL yield different statistics furthermore236

implies that the lowest MDL program is not always the shortest program. LLM-as-judge (LLM-C)237

shows promising results, but currently underperforms MDL. Maintainability-Index3 and Cyclomatic-238

Complexity perform the worst on our test.239

2Cyclomatic complexity (CC) is a classic metric from the software engineering community that analyses the
number of paths through a program’s control flow, and unlike MDL is only loosely coupled with program size.

3Maintainability Index (MI) is a composite software engineering metric that combines lines of code, cy-
clomatic complexity, and Halstead volume into a single score. Higher MI values are intended to indicate
easier-to-maintain code.

6

30

20

10

0

10

20

30

M
ea

n
Ch

an
ge

 fr

om
 B

as
el

in
e

(%
) Lower Better

Optimizing MDLs Optimizing CC Optimizing Num Tokens
Token Ratio (Filt.)
 MDL Ratio (Filt.)
CC Ratio (Filt.)

20

10

0

10

20

M
ea

n
In

cr
ea

se
 in

 P
as

s R
at

e
(%

)

 Higher Better Filtered
Raw

2 4 6 8
Sample Budget (K)

0

2

4

6

8

10

Av
g

Ca
lls

 /
Lib

ra
ry

 Fu
nc

 Higher Better

2 4 6 8
Sample Budget (K)

2 4 6 8
Sample Budget (K)

Mean Val.

Figure 3: Comparing 3 different objective functions for refactoring (different columns) according to
different downstream success metrics (different rows), as a function of refactoring budget (horizontal
axes).The values are averaged over 6 collections of CodeContests problems. Row 1: Optimizing
perplexity also incidentally optimizes cyclomatic complexity and token count, but that the converse
is not true. Row 2: refactored programs pass more test cases, even more than the original code
itself. Row 3: increasing the refactoring budget results in more reusable library subroutines (such
subroutines are called more times on average). Filtered/Raw: Using/Not Using tests to filter samples.

Together, these experiments suggest that MDL is the most effective objective for guiding refactoring:240

it is Pareto-optimal among common complexity metrics, scales with inference budget to discover241

more reusable libraries, and best aligns with human judgments of quality. We adopt MMDL as the242

primary objective in the remainder of this paper.243

244

7 Experimental Setup245

Grouping Programs into Collections To facilitate parallel application of LIBRARIAN and manage246

the dataset scale, we assume that semantically distant code sources will have minimal overlap in247

their optimal library functions. Therefore, our overall approach partitions the dataset into disjoint248

collections through clustering.249

For CodeContests, these collections are constructed from an initial corpus of ∼9k problems with250

Python solutions: We first filter these code sources, removing those whose selected canonical251

solution is under 10 lines (minimal refactoring potential). For the remaining 4596 solutions we use252

a language model to generate textual descriptions of canonical solutions—emphasizing reusable253

components—which are embedded using OpenAI’s text-embedding-ada-002.254

Agglomerative Clustering [22] is subsequently applied to these embeddings to partition the code255

sources into a predefined number of initial clusters, in our case 120. To create uniformly sized256

experimental units, we subsample each such cluster to form collections of 30 code sources. This257

collection size was empirically chosen because it balanced between the runtime of LIBRARIAN258

without limiting compression. We select 10 collections that we then use to evaluate our methods.259

7

Code repositories are generated as disjoint collections through the generative process, which first260

samples project ideas then variations. We sample two code sources for each of the 10 collections.261

Repositories are setup as multi-package monorepositories. These monorepos are constructed by262

merging the dependencies and tests of the initial packages, and placing the source directories into the263

root directory of the monorepo.264

For Transformers, since the number of models is on the lower end, we manually chose a set of popular265

LLM / VLM models and passed them to the agent in collections of 5 code sources.266

REGAL Baselines. To evaluate the ability of our libraries to support reuse on new problems, we267

turn to the program synthesis tasks used in REGAL, where learned libraries are added to help the268

program synthesizer. We evaluate on the two domains published by the authors, Logo and Date.269

Because our clustering is inspired by REGAL but adds additional complexity, for fair comparison,270

we keep their setup the same and only augment the training using sample + MDL rerank procedure271

described in Section 5.1.272

Code Contests. To evaluate LIBRARIAN on refactoring Code Contests we select 6 collections of 30273

code sources (problems). In each collection we group the problems into tuples of size 3. We set the274

sample budget to be K = 8, since our ablations show that with larger K we discover better libraries 3.275

We use the MDL objective for rankings. The model used for sampling is OpenAI’s o4-mini [23]. To276

obtain MDL scores we use Qwen 2.5 7B Instruct [24] as a balance between quality, speed, and cost.277

Code Agents on Transformers and Synthetic Repositories. To fairly evaluate performance on278

the task by state-of-the-art systems, we use coding agents that advertise long-context ability to reason279

about, write, and refactor code repositories. Specifically, we use Claude Code (Cl) [25] which uses280

the Claude 3.7 Sonnet model.281

We test whether code agents can refactor collections of code sources autonomously, without hu-282

man intervention. Refactoring repositories with code agents involves planning and iterative (re-283

)implementation and testing. Code agents are prompted to perform each of these steps, with feedback284

from the unit tests. Agents must run and repair unit tests autonomously. We run coding agents285

multiple times per collection, logging their progress in checklists stored in text files.286

Due to context-length limitations in Qwen 2.5 7B, we instead use DeepSeek-V3 to compute MDL287

scores.288

8 Results289 Metric Value

Pass Rate 90.67% ±1.88
Pass Rate Improvement 6.33% ±1.41
MDL Ratio 0.53 ±0.03
Token Ratio 0.66 ±0.04
Library Functions 10.30 ±1.41
Avg Calls per Function 5.17 ±1.08
% Single Use Functions 38.03% ±4.88

Figure 5: Refactoring results for LIBRARIAN
(w/ K = 8) averaged over 10 Code Contests
collections.

In this section, we present the compression and cor-290

rectness results with LIBRARIAN and agent baselines291

on MINICODE.292

MINICODE-CodeContests. On CodeContests, LI-293

BRARIAN achieves a high final pass rate of 90.67%294

and significantly improves correctness, with pass295

rates increasing by 6.33% compared to the original296

code sources (Table 5). The method yields substan-297

tial compression: the refactored code, including the298

new library, shows an MDL ratio of 0.53 (a 47% re-299

duction in MDL relative to the original). On average, LIBRARIAN generates libraries containing300

approximately 11 functions. These functions demonstrate good reuse, being called by around 5.2301

programs on average, although 38.03% of them are used only once within their specific collection302

context.303

Code agents fail to achieve both high correctness and compression on MINICODE-CodeContests.304

Across collections, the Codex agent achieves an average MDL ratio of 0.83, but a pass rate of 74.16%,305

much lower than LIBRARIAN’s rate of 90.67%. Similarly, the Claude agent reaches a higher pass rate306

of 82.50%, which is still lower than LIBRARIAN, but an MDL ratio of 1.07 which is more complex307

than the original collection. We present the full results of the agents in Appendix E, along with results308

based on newer models such as Claude Sonnet 4 and codex-mini. With Claude Code and Sonnet 4,309

8

agents achieve an MDL ratio of 0.77 and pass rate of 84.4%, outperforming codex-mini at an MDL310

ratio of 86.8 and pass rate of 82.0%.311

MINICODE-Transformers. On Transformers refactoring task Claude Code achieved reasonable312

MDL ratio of 0.91 when using sampling budget of K = 8, while still passing the integration tests.313

The agent was able to extract repeated patterns such as MLP, Attention, Decoder classes, RoPE helper314

functions, etc. The main limitation of this was the computational cost of producing refactorings, since315

each refactoring took approximately 30 minutes to execute, limiting the number of samples we can316

reasonably do. This domain shows that sample-and-rerank method improves refactoring performance317

even on real world, larger scale repositories like Transformers.318

Collection MDL% Pass%

filesys_analyzer orig 100 100
claude 160 100

query_language orig 100 100
claude 140 100

knowledge_store orig 100 100
claude 140 100

vm_emulator orig 100 100
claude 160 100

finance_tracker orig 100 100
claude 180 60

in_memory_db orig 100 100
claude 150 100

text_editor orig 100 100
claude 120 100

Figure 6: Correctness (Pass %) and compression
(MDL ratio as %) of original and refactored code
sources for agent baselines on repository collec-
tions in MINICODE.

MINICODE-Repositories. Coding agent results319

on synthetic repositories, generated by Sonnet 3.7,320

are given in Table 6. A state-of-the-art coding321

agent, Claude Code with Sonnet 3.7, was unable322

to achieve compression. The generated refactor-323

ings are larger than the original repositories, and324

often contain duplicate implementations due to in-325

complete refactorings. This indicates weaknesses326

in long-horizon agency for Sonnet 3.7. We provide327

examples in Appendix H.328

REGAL Baseline Results. Beyond its success329

on our large-scale MINICODE benchmark, we330

sought to verify that our core sample-and-rerank331

method is general enough to benefit other state-332

of-the-art systems. To this end, we integrated our333

MDL-based reranking (using K = 5) into the RE-334

GAL framework for program synthesis. Despite335

the relative simplicity of the Logo and Date do-336

mains compared to our own, this augmentation337

yielded significant performance gains over the338

original REGAL baseline (Figure 7). This result339

demonstrates our method can be used to improve340

established methods in the classic library learning341

paradigm.342

9 Conclusion343

Figure 7: Solving downstream program synthesis
tasks using learned libraries

Dataset Model Pass Rate

Logo REGAL (gpt-3.5-turbo) 49.3% ±1.1
LIBRARIAN (3.5-turbo) 69.9% ±0.9

Date REGAL (gpt-3.5-turbo) 90.2% ±0.5
LIBRARIAN (3.5-turbo) 94.7% ±0.7

We introduce a new benchmark MINICODE344

and method LIBRARIAN for compressing code345

sources through reusable abstractions. We high-346

light the challenges that modern models face347

when producing modular and maintainable code,348

then present an effective method for using LLMs349

to do this task in small-scale programs. By fram-350

ing refactoring as both a design and compres-351

sion task, our work opens new directions for352

building more general and scalable code under-353

standing and generation systems. In particular,354

the structure of MINICODE lends itself well to355

reinforcement learning, where training would entail synthesizing collections of repositories to refactor356

then computing rewards based on compression.357

Limitations Limitations of this work include the evaluation of synthetic repositories, the poor358

performance of code agents on refactoring, and the fact that compression may not be correlated with359

reuse. While our experiments on downstream programming problems partly address the question of360

reuse, investigating how to measure and encourage reuse for large-scale multi-repo library creation361

remains an open problem.362

9

References363

[1] Shane Tews. Inside tech’s $2 trillion technical debt | american enterprise institute - aei.364

[2] Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum, and Jacob Andreas. Leveraging language to learn365

program abstractions and search heuristics. In International Conference on Machine Learning, 2021.366

[3] Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: refactoring programs to discover generaliz-367

able abstractions. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.368

JMLR.org, 2024.369

[4] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc370

Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Bootstrapping inductive program371

synthesis with wake-sleep library learning. In PLDI, 2021.372

[5] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and373

Armando Solar-Lezama. Top-down synthesis for library learning. Proc. ACM Program. Lang., 7(POPL),374

January 2023.375

[6] Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap learning via modular376

concept discovery. In IJCAI, 2013.377

[7] Gabriel Grand, Li Siang Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua B. Tenenbaum,378

and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code. ArXiv,379

abs/2310.19791, 2023.380

[8] Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach. In381

ICML, volume 10, pages 639–646, 2010.382

[9] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R383

Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth384

International Conference on Learning Representations, 2024.385

[10] Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M386

Rush. Commit0: Library generation from scratch. In The Thirteenth International Conference on Learning387

Representations, 2025.388

[11] Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam. Refac-389

torbench: Evaluating stateful reasoning in language agents through code. In The Thirteenth International390

Conference on Learning Representations, 2025.391

[12] Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient toolboxes for392

solving programmatic tasks, 2024.393

[13] Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. Ecco: Can we394

improve model-generated code efficiency without sacrificing functional correctness? arXiv preprint395

arXiv:2407.14044, 2024.396

[14] Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and Azalia397

Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025.398

[15] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of the399

Eighteenth International Conference on Architectural Support for Programming Languages and Operating400

Systems, ASPLOS ’13, page 305–316, New York, NY, USA, 2013. Association for Computing Machinery.401

[16] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthesis. ACM402

SIGPLAN Notices, 50(10):107–126, 2015.403

[17] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova.404

Babble: Learning better abstractions with e-graphs and anti-unification. POPL, 2023.405

[18] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach. In406

ICML, 2010.407

[19] Ray J Solomonoff. A formal theory of inductive inference. Information and control, 7(1):1–22, 1964.408

[20] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–320,409

1976.410

[21] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Ec-411

cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-412

son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey413

Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Fre-414

itas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode. arXiv415

preprint arXiv:2203.07814, 2022.416

[22] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical417

association, 58(301):236–244, 1963.418

10

[23] OpenAI. Introducing o3 and o4 mini. https://openai.com/index/419

introducing-o3-and-o4-mini/, 2024. Accessed: 2025-05-13.420

[24] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,421

Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,422

Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,423

Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang424

Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,425

and Zihan Qiu. Qwen2.5 technical report, 2025.426

[25] Anthropic. Claude code: An agentic coding tool that lives in your terminal. https://github.com/427

anthropics/claude-code, 2025. An agentic coding tool that lives in your terminal, understands your428

codebase, and helps you code faster by executing routine tasks, explaining complex code, and handling git429

workflows - all through natural language commands.430

11

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://github.com/anthropics/claude-code
https://github.com/anthropics/claude-code
https://github.com/anthropics/claude-code

A Algorithm431

Algorithm 1 Refactoring Specialized Programs into a Joint Library
Require: Set of independent, specialized programs Pinitial = {ρ1, ρ2, . . . , ρn}
Require: Sample Budget K
Ensure: Joint library Lfinal and set of refactored programs Pfinal

1: C ← Cluster(Pinitial)
2: Lfinal ← ∅, Pfinal ← ∅
3: for all cluster c ∈ C do ▷ Each cluster independently
4: TC ← GroupIntoTuples(c) ▷ Get tuples for each cluster
5: for all tuples τ ∈ TC do
6: {fretrieved} ← RetrieveRelevantFromLibrary(L, τ)
7: S ← ∅
8: for i = 1 to K do ▷ Sample k times
9: ({fnew,i}, {ρ′i}})← SAMPLE (fretrieved, τ)

10: S ← S ∪ {({fnew,i}, {ρ′i})}
11: end for
12: (fbest, {ρ′best})← RerankAndSelectBest(S, ℓ (·)) ▷ Rerank using objective
13: Lfinal ∪ {fbest}
14: Pfinal ∪ {ρ′best}
15: end for
16: end for
17: return Lfinal, Pfinal

12

The instruction provided to human evaluators is as follows:432

1
2
3 ## 1. Materials Provided
4
5 You will be given a set of files for each example case:
6
7 * **‘ original_programs.py ‘**: This file contains a set of 3 distinct Python programs , each presented

with its corresponding problem description/query. This represents the "before" state.
8 * **‘v1.py ‘**: This file presents the first refactoring approach. It includes:
9 * The 3 refactored versions of the original programs.

10 * A "library" section (e.g., ‘codebank.py ‘ or inline) containing helper functions. These helper
functions might be retrieved from an existing common library or newly created during this
refactoring.

11 * Either the retrieved or the new helper function sections may be _empty_ , in case no programs
existed in the codebank at the time or if no need helper functions were created by the LLM.

12 * **‘v2.py ‘**: This file presents the second , alternative refactoring approach. Similar to ‘
refactoring_v1.py‘, it includes:

13 * The 3 refactored versions of the original programs (using a different strategy than v1).
14 * A "library" section with its own set of helper functions.
15
16
17 **NOTE **: both refactorings had accuracy at least as good as the original programs.
18
19 ## 2. Your Task
20
21 Your primary task is to:
22
23 1. ** Review ** the ‘original_programs.py ‘ to understand the initial code and the problems being solved.
24 2. ** Analyze ** both ‘refactoring_v1.py‘ and ‘refactoring_v2.py ‘. Pay close attention to how the

original programs have been restructured and what functionalities have been extracted into their
respective libraries.

25 3. ** Decide which refactoring (Version 1 or Version 2) you believe is "better ,"** based on the
evaluation criteria provided below (or your own criteria !).

26
27 ## 3. Evaluation Criteria: What to Consider for Your Choice
28
29 When comparing ‘refactoring_v1.py‘ and ‘refactoring_v2.py ‘, please *consider* the following aspects to

inform your choice. The "better" refactoring should ideally excel in these areas:
30
31 > Most importantly , make sure that the extracted functions are ** actually reusable and not too specific

.** If the main programs are short , the refactoring is not immediately "better "! Try to think
whether the extracted functions could actually be used in a different program down the line.

32
33 * ** Reusability of Helper Functions :**
34 * ** Generality :** Are the new helper functions general -purpose and potentially useful for *other ,

different* programs and problems beyond the three presented?
35 * **Reuse :** How much were existing helper functions reused?
36 * ** Specificity :** Are the functions too specialized to the current set of problems , limiting their

broader applicability? _Avoid functions that are essentially just the original program broken out
into a "helper ."_

37 * Composability
38 * ** Maintainability :**
39 * Readability & Understandability
40 * Ease of Modification
41 * Separation of Concerns
42
43 ## 4. What NOT to Focus On:
44
45 * ** Comments :** Please disregard the presence or absence of comments in the code for this evaluation.

These are superficially generated by LLMs in some occasions and could be added manually after with
a single pass.

46 * ** Minor Stylistic Differences :** Do not focus on trivial differences in variable naming or formatting
, unless they significantly impact readability or understanding.

47
48 ## 5. How to Provide Your Feedback
49
50 For each example case , please provide:
51
52 1. **Your Preferred Version :** (e.g., "Version 1" or "Version 2")

Listing 1: Human Evaluation Instruction

B Best@k Compression is a U-Statistic433

We wish to estimate the expected compression ratio achieved by our sample + rerank method, which434

samples k candidate refactorings, discards any that do not pass the tests, and selects the one with the435

lowest score (total log-prob).436

13

Background on U-Statistics. Let Z1, . . . , Zn
i.i.d.∼ F . For a symmetric function h : Zk → R, the437

U-statistic of order k is defined as438

Un =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

h(Zi1 , . . . , Zik). (4)

By construction,439

E[Un] = E[h(Z1, . . . , Zk)], (5)
so Un is an unbiased estimator of the population quantity θ = E[h(Z1, . . . , Zk)].440

Application to Best@k Compression. Let each valid refactoring be a pair Z = (S,C), where S is441

the score and C is the compression ratio. Define the symmetric function442

hk(z1, . . . , zk) = Cj∗ , j∗ = arg min
1≤j≤k

Sj , (6)

the compression ratio of the lowest-score refactoring among k draws. The population target is then443

θk = E[hk(Z1, . . . , Zk)]. (7)

Given n valid samples, our estimator is444

θ̂k =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

hk(Zi1 , . . . , Zik). (8)

Proposition. θ̂k is a U-statistic of order k with function hk, and hence an unbiased estimator of θk.445

Proof. (1) Symmetry of the function hk. hk selects the compression associated with the lowest score446

among its k arguments. Permuting the inputs does not affect this outcome (ties can be resolved with447

a fixed, permutation-invariant rule). Thus hk is symmetric.448

(2) U-statistic form. By definition, a U-statistic of order k with kernel hk is449

Un =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

hk(Zi1 , . . . , Zik),

which matches θ̂k exactly.450

Therefore, θ̂k is a U-statistic of order k. By the unbiasedness property of U-statistics,451

E[θ̂k] = θk.

□452

Thus, our reported best@k compression curves provide unbiased estimates of the expected perfor-453

mance of the sample + rerank method.454

C Clustering Analysis: CodeContests455

We analyze the coherence of the clusters underlying collections in MINICODE-CodeContests. In456

particular, we compare clustering based on o4-mini generated code source descriptions against457

task descriptions. Since task descriptions in competition coding problems are designed to hide458

the algorithmic approach needed to solve problem, we expect that clusters based on code source459

descriptions are more coherent. We use Normalized Tag Instance Entropy and Herfindahl-Hirschman460

Index to evaluate clusterings. Figure 8 shows our clustering approach yields more thematically461

coherent clusters, evidenced by achieving lower entropy and higher HHI values across the entire462

tested range of N . We provide definitions of our measures below.463

C.1 Collection Coherence Measures464

We use two measures to evaluate the thematic coherence of collections: Good collections should465

group code sources with a (1) concentrated and (2) identifiable set of shared conceptual tags, which466

for CodeContests are provided as ground truth (trees, graphs, etc.).467

We provide the full definitions of the collection coherence measures below.468

14

50 75 100 125 150 175 200
Num Clusters (N)

0.800

0.825

0.850

0.875

Av
g.

 N
or

m
. E

nt
ro

py
(

 B
et

te
r)

Problem Query
LLM Descr.

50 75 100 125 150 175 200
Num Clusters (N)

0.8

0.9

1.0

1.1

Av
g.

 H
HI

(
 B

et
te

r)

Figure 8: Clustering analysis of 4,596 Code Contest problems, comparing the thematic coherence of
clusters formed using our proposed method versus REGAL-style clustering.

Normalized Tag Instance Entropy: This measures the concentration of tag instances within a469

collection C. Let pi be the proportion of the i-th unique tag type among all tag instances in C, and470

DC be the number of distinct tag types in C. If DC > 1, the normalized entropy HN is defined as:471

HN = −
∑DC

i=1 pi log2 pi
log2 DC

(9)

If DC ≤ 1, then HN = 0. Lower HN (closer to 0) indicates higher thematic purity, meaning fewer472

tag types dominate the bulk of tag mentions.473

Herfindahl-Hirschman Index (HHI) for Problem Presence: This measures tag concentration474

across distinct problems in a cluster C. Let st be the proportion of problems in C that include tag t (a475

problem contributes to st if t is one of its unique tags). A higher HHI signifies that the problems are476

collectively characterized by a smaller, more focused set of tags.477

HHI =
∑

t∈Tags(C)

s2t (10)

where Tags(C) represents the set of unique tags present in cluster C.478

D Benchmark Comparison479

We compare our benchmark, MINICODE, to similar benchmarks in Table 2. We define creativity and480

design as the need to explore diverse solutions in order to find the best solution possible. For example,481

optimizing for program correctness alone does not require exploring a large solutions space, whereas482

optimizing a program for speed would. In the case of compressing large code sources, we must483

explore the large space of shared abstractions afforded by libraries in order to maximize compression.484

Table 2: Comparison of Code Benchmarks

Benchmark Creativity/Design Scale
SWE-bench [9] Low Repository
Commit-0 [10] Medium Repository
RefactorBench [11] Low File
ECCO [13] High Function
KernelBench [14] High Function
MINICODE(Ours) High Multi-repository

E Full MINICODE Results485

We present the full agent scores for the CodeContests split in Table 3. The results are given both for486

each cluster of code sources, as well as averaged across clusters.487

15

Cluster Agent Tokens CC Pass % MDL MDL %

0

original 9088 95 80.3 11745.85 100.0
sonnet 3.7 18114 176 87.0 15005.18 127.7
sonnet 4 11121 138 80.3 9901.53 84.3
codex-mini 9321 95 80.3 9990.74 85.1

1

original 12531 255 89.7 13431.86 100.0
sonnet 3.7 10470 239 96.7 8933.65 66.5
sonnet 4 11325 298 96.7 8214.42 61.2
codex-mini 12762 255 89.7 11798.73 87.8

2

original 14087 376 89.0 15012.77 100.0
sonnet 3.7 17345 429 91.3 13145.02 87.6
sonnet 4 14270 356 93.0 10522.66 70.1
codex-mini 14318 376 89.0 13273.81 88.4

3

original 14261 246 90.3 13348.82 100.0
sonnet 3.7 20749 241 97.7 15859.02 118.8
sonnet 4 13433 197 80.7 11937.04 89.4
codex-mini 14495 246 90.3 11616.41 87.0

4

original 17693 336 80.7 14665.16 100.0
sonnet 3.7 29860 358 100.0 20666.52 141.0
sonnet 4 18684 352 82.0 12801.21 87.3
codex-mini 17923 336 80.7 12902.09 88.0

5

original 12588 286 92.0 12790.11 100.0
sonnet 3.7 10580 128 99.3 8435.12 65.9
sonnet 4 10416 155 99.3 9167.85 71.7
codex-mini 12819 286 92.0 11086.19 86.7

6

original 11020 131 54.3 13540.41 100.0
sonnet 3.7 21747 502 88.0 19446.07 143.6
sonnet 4 11177 143 57.3 10492.00 77.5
codex-mini 11251 131 54.3 11651.65 86.1

7

original 12301 180 80.0 12393.73 100.0
sonnet 3.7 16390 166 91.0 13371.59 107.9
sonnet 4 11625 150 85.7 9304.25 75.1
codex-mini 12534 180 80.0 10549.04 85.1

Avg

original 12946 238 82.0 13366.09 100.0
sonnet 3.7 18157 280 93.9 14357.77 107.4
sonnet 4 12756 224 84.4 10292.62 77.1
codex-mini 13178 238 82.0 11608.58 86.8

Table 3: Comparison of the pass rate and compression metrics of the original code sources, Claude
Sonnet 4 and codex-mini refactorings across CodeContests clusters.

We present the full repository-level results of MINICODE-repository in Tables 4 and 5, with o4-mini488

and Claude Sonnet 3.7 and 4.489

16

Collection Agent LLoC CC MDL ratio Pass rate

datapipe
original 474 116 1.0 1.0
Cl-Cl 1084 341 9.1 1.0
Cl-Cx 645 174 2.2 1.0

state_machine
original 619 222 1.0 1.0
Cl-Cl 2271 735 6.3 0.9
Cl-Cx 686 227 1.9 1.0

config_schema
original 949 284 1.0 1.0
Cl-Cl 922 339 2.5 failed
Cl-Cx 626 207 2.1 1.0

cli_tools
original 875 300 1.0 1.0
Cl-Cl 2925 909 4.0 1.0
Cl-Cx 5848 2378 3.1 failed

cli_form
original 352 174 1.0 1.0
Cl-Cl 855 342 3.8 1.0
Cl-Cx 1366 548 2.9 1.0

Table 4: Full results on MINICODE-repositories small, using Codex with o4-mini and Claude Code
with Claude Sonnet 3.7.

17

Collection Agent LLoC CC MDL % Pass %

command_line_task_manager

original 7964 2921 100 100
sonnet 3.7 10387 3899 130 100
sonnet 4 9515 3946 125 100

concurrent_task_scheduler

original 10350 3935 100 100
sonnet 3.7 18653 7165 190 80
sonnet 4 11491 4762 122 80

file_system_analyzer

original 3911 1338 100 100
sonnet 3.7 6495 2218 160 100
sonnet 4 5221 1793 130 100

in_memory_database

original 4565 1671 100 100
sonnet 3.7 6667 2556 150 100
sonnet 4 5617 2356 131 100

incremental_backup_system

original 4587 1482 100 100
sonnet 3.7 5365 1788 130 failed
sonnet 4 6620 2168 152 60

personal_finance_tracker

original 4306 1482 100 100
sonnet 3.7 7443 2512 180 63
sonnet 4 9212 3335 215 63

personal_knowledge_management

original 5341 1832 100 100
sonnet 3.7 6357 2364 140 100
sonnet 4 5575 2597 131 80

query_language_interpreter

original 5181 2105 100 100
sonnet 3.7 7193 2966 140 100
sonnet 4 7490 3076 142 100

text_editor

original 4324 1323 100 100
sonnet 3.7 5792 1822 140 100
sonnet 4 6017 2308 148 100

virtual_machine_emulator

original 6841 2283 100 100
sonnet 3.7 10108 3580 160 100
sonnet 4 9220 3303 137 100

Table 5: Full results on MINICODE-repositories large, comparing the original code sources with
Claude Sonnet 3.7 and Sonnet 4.

F Data Generating Prompts490

We provide the prompts for Librarian here.491

18

1 I need ideas for Python libraries that can be implemented by language models. These libraries should:
2
3 1. Be implementable using only Python ’s standard library - no external dependencies
4 2. Have enough complexity to demonstrate sophisticated code design (10-20 functions/methods)
5 3. Include room for interpretation , so that different implementations can be unique while sharing core

functionality
6 4. Have clear , practical utility that solves a real programming need
7 5. Be realistically implementable by an intelligent language model
8 6. Be testable with pytest
9 7. Include opportunities for different design approaches (functional vs OOP , etc.)

10
11 For each library , provide a description that outlines:
12 - The problem domain and core purpose
13 - Key required functionality (without being too prescriptive about implementation details)
14 - Potential use cases that demonstrate practical applications
15 - Suggested extension points where implementers could add their creative spin
16
17 Please generate several proposals in markdown , following this format:
18
19 ‘‘‘file:<library_name >/ DESCRIPTION.md
20 # <Library Name >
21
22 ## Purpose and Motivation
23 <3-5 sentences on what problem this library solves and why it ’s useful >
24
25 ## Core Functionality
26 <Description of 4-6 high -level key features/capabilities without specifying exact implementation >
27 ‘‘‘
28
29 Be creative! Focus on domains where standard Python libraries provide enough building blocks but where

a well -designed abstraction layer would add significant value.

Listing 2: Prompt to generate library descriptions

1
2 Consider a code repository designed to support the following task description:
3 ‘‘‘
4 {task_content}
5 ‘‘‘
6
7 Please list a couple dozen features that would be useful for the repository. Include the specified

features as well as several others.
8
9 List the suggested feature names and descriptions in the following format:

10
11 1: <feature_1_name >: <feature_1_description >
12 2: <feature_2_name >: <feature_2_description >
13 3: <feature_3_name >: <feature_3_description >
14 ...
15 30: <feature_30_name >: <feature_30_description >
16 """
17
18 persona_prompt_template = """ Consider the following features of a code repository:
19 {listed_features}
20
21 Think about several possibilities for what kind of person might use this code repository and what they

might use it for. Please write several brief descriptions for the code repository in first person ,
formatted in markdown as follows:

22 ‘‘‘file:{ library_name }/<persona_name >/TASK.md
23 # The Task
24
25 I am a <...> I want to be able to <...> This code repository <...>
26
27 # The Requirements
28
29 * ‘<function_name >‘ : <feature description >
30 * ...
31 ‘‘‘
32
33 Be creative! Write the task description in the style of the proposed persona. Be as exhaustive as

possible in including the listed features in the task description ’s requirements.

Listing 3: Prompt to generate potential uses and features given a library description

19

1
2
3 I need you to implement a Python solution and COMPREHENSIVE suite of tests based on the following task

files.
4 Your code must pass the tests provided.
5
6 {task_content}
7
8 CRITICAL FORMATTING INSTRUCTIONS:
9 1. You MUST format ALL code files exactly as shown below - no exceptions

10 2. Start each file with the markdown codeblock marker , followed by "file:" and the relative path
11 3. End each file with the closing markdown codeblock marker
12 4. Do not use any other format or markdown variations
13 5. For test files , do not put them in a subdirectory -- keep them in the outermost level.
14
15 For each source code file:
16
17 ‘‘‘file:<relative_file_path >
18 <file_content >
19 ‘‘‘
20
21 For each test file:
22
23 ‘‘‘file:<relative_file_path starting with test_ >
24 <test_file_content >
25 ‘‘‘
26
27 IMPORTANT:
28 - The opening format must be exactly: ‘‘‘file:path/to/file.py
29 - Do not add language indicators like ‘‘‘python
30 - Do not add explanations between files
31 - Each file must be contained within its own codeblock with the precise format shown above
32 - The system parsing your response requires this exact format to function properly
33
34 EXAMPLE OUTPUT FORMAT:
35 ‘‘‘file:mymodule/mymodule.py
36 def example_function ():
37 return "This is a sample function"
38 ‘‘‘
39
40 ‘‘‘file:test_utils.py
41 import pytest
42 from mymodule.mymodule import example_function
43
44 def test_example_function ():
45 assert example_function () == "This is a sample function"
46 ‘‘‘
47
48 Begin your implementation now , following these formatting rules precisely.

Listing 4: Prompt to generate initial implementation

20

1
2 I need you to fix the implementation of the following code that is failing tests.
3
4 # Current Implementation:
5 {src_code_content}
6
7 # Test Files:
8 {test_content}
9

10 # Failed Tests:
11 {failed_test_details}
12
13 # Test Output (if available):
14 {test_output}
15
16 Please carefully analyze the errors and test failures. Pay special attention to:
17 1. The exact assertion failures or error messages
18 2. What the tests expect vs. what your current implementation provides
19 3. Any edge cases or special conditions you might have missed
20
21 Your task is to fix the implementation to make all tests pass. For each file that needs to be modified ,
22 provide the content in the following format:
23
24 ‘‘‘file:<relative_file_path >
25 <file_content >
26 ‘‘‘
27
28 Where <relative_file_path > is the relative path to the file and <file_content > is the updated content

of the file.
29 Focus on fixing the specific issues identified in the errors and failed tests while maintaining the

overall structure of the code.
30
31 IMPORTANT: Make targeted changes to address the specific failing test cases. Make sure your

implementation passes all test cases ,
32 including any edge cases or special conditions mentioned in the tests. Be sure to output code in the

specified format.

Listing 5: Prompt to fix code implementation, given pytest output.

21

G Refactoring examples of LIBRARIAN on Code Contests492

G.1 Example 1493

In code snippets 7, 6, 9, 8 one example of 2 refactoring versions. Specifically, the versions are494

both passing at least as many test cases as the original and they have the biggest difference in495

MDL among all the sample refactorings for that tuple. Sample + rerank filtering selected refac-496

toring V2. You can observe that refactoring V1 introduces some problem specific functions like497

build_max_beauty_perm(), while refactoring V2 sticks to more generally useful functions.498

1 # ==== NEW HELPER FUNCTIONS ====
2 def compute_full_mask(i):
3 """ Return mask of all 1s of the bit -length of i."""
4 return (1 << i.bit_length ()) - 1
5
6 def build_max_beauty_perm(n):
7 """ Build permutation of 0..n maximizing sum of i^p[i]."""
8 ans = [0] * (n + 1)
9 used = set()

10 for i in range(n, -1, -1):
11 if i in used:
12 continue
13 mask = compute_full_mask(i)
14 j = i ^ mask
15 ans[i], ans[j] = j, i
16 used.add(i)
17 used.add(j)
18 beauty = sum(i ^ ans[i] for i in range(n + 1))
19 return ans , beauty
20
21 def solve_xor_sum(u, v):
22 """
23 Find shortest array whose xor is u and sum is v.
24 Return list or None if impossible.
25 """
26 if u > v or (v - u) % 2:
27 return None
28 if u == v:
29 return [] if u == 0 else [u]
30 x = (v - u) // 2
31 # try two elements
32 if ((u + x) ^ x) == u:
33 return [u + x, x]
34 # fallback to three elements
35 return [u, x, x]
36
37 def build_trie(keys):
38 """
39 Build a binary trie with counts for 30-bit numbers.
40 Each node: [left_index , right_index , count].
41 """
42 tree = [[0, 0, 0]]
43 for x in keys:
44 now = 0
45 tree[now][2] += 1
46 for i in range (29, -1, -1):
47 b = (x >> i) & 1
48 if tree[now][b] == 0:
49 tree[now][b] = len(tree)
50 tree.append ([0, 0, 0])
51 now = tree[now][b]
52 tree[now][2] += 1
53 return tree
54
55 def trie_pop_min_xor(tree , x):
56 """
57 Pop one key from trie to minimize x^key and return that minimal xor.
58 Decrements counts along the path.
59 """
60 now = 0
61 res = 0
62 for i in range(29, -1, -1):
63 b = (x >> i) & 1
64 nxt = tree[now][b]
65 if nxt and tree[nxt][2] > 0:
66 now = nxt
67 else:
68 now = tree[now][b ^ 1]
69 res |= (1 << i)
70 tree[now][2] -= 1
71 return res

Listing 6: Version 1, New Helpers

22

1
2 # ########## PROGRAM: node_16:cc_python_16 ##########
3
4 from codebank import *
5
6 def main():
7 import sys
8 data = sys.stdin.readline ()
9 if not data:

10 return
11 n = int(data)
12 perm , beauty = build_max_beauty_perm(n)
13 print(beauty)
14 print (*perm)
15
16 if __name__ == "__main__ ":
17 main()
18
19 # ########## PROGRAM: node_19:cc_python_19 ##########
20
21 from codebank import *
22
23 def main():
24 import sys
25 data = sys.stdin.readline
26 n = int(data())
27 A = list(map(int , data().split()))
28 P = list(map(int , data().split()))
29 trie = build_trie(P)
30 O = [trie_pop_min_xor(trie , a) for a in A]
31 print (*O)
32
33 if __name__ == "__main__ ":
34 main()
35
36 # ########## PROGRAM: node_25:cc_python_25 ##########
37
38 from codebank import *
39
40 def main():
41 import sys
42 u, v = map(int , sys.stdin.readline ().split())
43 res = solve_xor_sum(u, v)
44 if res is None:
45 print(-1)
46 else:
47 print(len(res))
48 if res:
49 print (*res)
50
51 if __name__ == "__main__ ":
52 main()

Listing 7: Version 1, Refactored Programs

1 # ==== NEW HELPER FUNCTIONS ====
2 def compute_complement(i):
3 return i ^ ((1 << i.bit_length ()) - 1)
4
5 def trie_add(trie , x, max_bit):
6 trie [0][2] += 1
7 now = 0
8 for i in range(max_bit , -1, -1):
9 bit = (x >> i) & 1

10 if trie[now][bit] == 0:
11 trie[now][bit] = len(trie)
12 trie.append ([0, 0, 0])
13 now = trie[now][bit]
14 trie[now][2] += 1
15
16 def trie_find_min_xor(trie , x, max_bit):
17 now = 0
18 ans = 0
19 for i in range(max_bit , -1, -1):
20 bit = (x >> i) & 1
21 if trie[now][bit] and trie[trie[now][bit]][2] > 0:
22 now = trie[now][bit]
23 else:
24 now = trie[now][bit ^ 1]
25 ans |= (1 << i)
26 trie[now][2] -= 1
27 return ans

Listing 8: Version 2, New Helpers

23

1 # ########## PROGRAM: node_16:cc_python_16 ##########
2
3 from codebank import *
4
5 def main():
6 import sys
7 input = sys.stdin.readline
8 n = int(input())
9 ans = [-1] * (n + 1)

10 for i in range(n, -1, -1):
11 if ans[i] == -1:
12 z = compute_complement(i)
13 ans[i] = z
14 ans[z] = i
15 m = sum(i ^ ans[i] for i in range(n + 1))
16 print(m)
17 print (*ans)
18
19 if __name__ == "__main__ ":
20 main()
21
22 # ########## PROGRAM: node_19:cc_python_19 ##########
23
24 from codebank import *
25
26 def main():
27 import sys
28 input = sys.stdin.readline
29 n = int(input())
30 A = list(map(int , input ().split ()))
31 P = list(map(int , input ().split ()))
32 max_bit = max(max(A, default =0), max(P, default =0)).bit_length () - 1
33 trie = [[0, 0, 0]]
34 for x in P:
35 trie_add(trie , x, max_bit)
36 res = [trie_find_min_xor(trie , x, max_bit) for x in A]
37 print (*res)
38
39 if __name__ == "__main__ ":
40 main()
41
42 # ########## PROGRAM: node_25:cc_python_25 ##########
43
44 from codebank import *
45
46 def main():
47 u, v = map(int , input().split())
48 if u > v or ((v - u) & 1):
49 print(-1)
50 elif u == 0 and v == 0:
51 print (0)
52 elif u == v:
53 print (1)
54 print(u)
55 else:
56 w = (v - u) // 2
57 if (w & u) == 0:
58 d = u + w
59 print (2)
60 print(d, w)
61 else:
62 print (3)
63 print(u, w, w)
64
65 if __name__ == "__main__ ":
66 main()

Listing 9: Version 2, Refactored Programs

G.2 Example 2499

In code snippets 11, 10, 13, 12 is another example of 2 refactorings where V1 was better according to500

LIBRARIAN. We can observe that V2 creates helper functions that are overly specific to the problem.501

You can see that refactoring V2 introduces overly specialized functions like dijkstra_special() or502

compute_min_moves_opposite_parity(). In comparison, refactoring V1 generates only general503

versions of these functions (e.g. dijkstra()).504

24

1
2 # ==== NEW HELPER FUNCTIONS ====
3 def read_ints ():
4 return list(map(int , input().split()))
5
6 def build_adj_undirected(n, edges):
7 adj = [[] for _ in range(n)]
8 for u, v, w in edges:
9 adj[u]. append ((v, w))

10 adj[v]. append ((u, w))
11 return adj
12
13 def dijkstra(adj , src):
14 from heapq import heappush , heappop
15 INF = 10**18
16 n = len(adj)
17 dist = [INF]*n
18 parent = [-1]*n
19 dist[src] = 0
20 heap = [(0, src)]
21 while heap:
22 d, u = heappop(heap)
23 if d > dist[u]:
24 continue
25 for v, w in adj[u]:
26 nd = d + w
27 if nd < dist[v]:
28 dist[v] = nd
29 parent[v] = u
30 heappush(heap , (nd, v))
31 return dist , parent
32
33 def reconstruct_path(parent , dest):
34 path = []
35 u = dest
36 while u != -1:
37 path.append(u+1)
38 u = parent[u]
39 return path [::-1]
40
41 def multi_source_bfs(neighbors , sources):
42 from collections import deque
43 n = len(neighbors)
44 dist = [-1]*n
45 dq = deque ()
46 for u in sources:
47 if dist[u] == -1:
48 dist[u] = 0
49 dq.append(u)
50 while dq:
51 u = dq.popleft ()
52 for v in neighbors[u]:
53 if dist[v] == -1:
54 dist[v] = dist[u] + 1
55 dq.append(v)
56 return dist

Listing 10: Version 1, New Helpers

25

1 # ########## PROGRAM: node_16:cc_python_16 ##########
2
3 from codebank import *
4
5 def main():
6 import heapq
7 n, m = read_ints ()
8 edges = [(u-1, v-1, w) for u, v, w in (read_ints () for _ in range(m))]
9 adj = build_adj_undirected(n, edges)

10 INF = 10**20
11 dist = [INF]*n
12 dist [0] = 0
13 last_w = [0]*n
14 heap = [(0, 0)]
15 while heap:
16 d, u = heapq.heappop(heap)
17 if d > dist[u]:
18 continue
19 # record last edges
20 for v, w in adj[u]:
21 last_w[v] = w
22 # expand two -edge moves
23 for v, w1 in adj[u]:
24 tw = last_w[v]
25 for x, w2 in adj[v]:
26 nd = d + (tw + w2)**2
27 if nd < dist[x]:
28 dist[x] = nd
29 heapq.heappush(heap , (nd , x))
30 out = []
31 for x in dist:
32 out.append(str(x if x < INF else -1))
33 print (" ".join(out))
34
35 if __name__ == "__main__ ":
36 main()
37
38 # ########## PROGRAM: node_17:cc_python_17 ##########
39
40 from codebank import *
41
42 def main():
43 n, m = read_ints ()
44 edges = [(u-1, v-1, w) for u, v, w in (read_ints () for _ in range(m))]
45 adj = build_adj_undirected(n, edges)
46 dist , parent = dijkstra(adj , 0)
47 if dist[n-1] >= 10**18:
48 print(-1)
49 else:
50 path = reconstruct_path(parent , n-1)
51 print(*path)
52
53 if __name__ == "__main__ ":
54 main()
55
56 # ########## PROGRAM: node_19:cc_python_19 ##########
57
58 from codebank import *
59
60 def main():
61 n = int(input())
62 a = read_ints ()
63 # build reversed graph: for each move i->j, add edge j->i
64 neighbors = [[] for _ in range(n)]
65 for i, val in enumerate(a):
66 for j in (i - val , i + val):
67 if 0 <= j < n:
68 neighbors[j]. append(i)
69 # BFS from all even and all odd positions separately
70 even_sources = [i for i, val in enumerate(a) if val % 2 == 0]
71 odd_sources = [i for i, val in enumerate(a) if val % 2 == 1]
72 dist_even = multi_source_bfs(neighbors , even_sources)
73 dist_odd = multi_source_bfs(neighbors , odd_sources)
74 # for odd a[i], answer is dist to nearest even => dist_even; else dist_odd
75 ans = [dist_even[i] if a[i] % 2 == 1 else dist_odd[i] for i in range(n)]
76 print (*ans)
77
78 if __name__ == "__main__ ":
79 main()

Listing 11: Version 1, Refactored Programs

26

1 #
2 # ==== NEW HELPER FUNCTIONS ====
3 def read_ints ():
4 return list(map(int , input().split()))
5
6 def build_undirected_weighted_graph(n, m):
7 from collections import defaultdict
8 adj = defaultdict(list)
9 for _ in range(m):

10 u, v, w = read_ints ()
11 u -= 1; v -= 1
12 adj[u]. append ((v, w))
13 adj[v]. append ((u, w))
14 return adj
15
16 def dijkstra(adj , src , n):
17 import heapq
18 INF = 10**18
19 dist = [INF]*n
20 parent = [-1]*n
21 visited = [False]*n
22 dist[src] = 0
23 heap = [(0, src)]
24 while heap:
25 d, u = heapq.heappop(heap)
26 if visited[u]:
27 continue
28 visited[u] = True
29 for v, w in adj.get(u, ()):
30 nd = d + w
31 if nd < dist[v]:
32 dist[v] = nd
33 parent[v] = u
34 heapq.heappush(heap , (nd , v))
35 return dist , parent
36
37 def reconstruct_path(parent , dest):
38 path = []
39 while dest != -1:
40 path.append(dest +1)
41 dest = parent[dest]
42 return path [::-1]
43
44 def dijkstra_special(e, n, src):
45 import heapq
46 INF = 10**18
47 d = [INF]*n
48 d[src] = 0
49 heap = [(0, src)]
50 while heap:
51 cd, v = heapq.heappop(heap)
52 if cd > d[v]:
53 continue
54 td = {}
55 for u, w in e.get(v, ()):
56 td[u] = w
57 for u, w1 in td.items ():
58 for x, w2 in e.get(u, ()):
59 cost = cd + (w1 + w2)**2
60 if cost < d[x]:
61 d[x] = cost
62 heapq.heappush(heap , (cost , x))
63 return d
64
65 def compute_min_moves_opposite_parity(a):
66 from collections import deque
67 n = len(a)
68 go = [[] for _ in range(n)]
69 ans = [-1]*n
70 q = deque()
71 for i, val in enumerate(a):
72 for j in (i - val , i + val):
73 if 0 <= j < n:
74 if (a[j] % 2) != (val % 2):
75 ans[i] = 1
76 q.append(i)
77 break
78 else:
79 go[j]. append(i)
80 while q:
81 u = q.popleft ()
82 for v in go[u]:
83 if ans[v] == -1:
84 ans[v] = ans[u] + 1
85 q.append(v)
86 return ans

Listing 12: Version 2, New Helpers

27

1 #
2 # ########## PROGRAM: node_16:cc_python_16 ##########
3
4 from codebank import *
5
6 def main():
7 n, m = read_ints ()
8 e = {}
9 for _ in range(m):

10 u, v, w = read_ints ()
11 u -= 1; v -= 1
12 e.setdefault(u, []).append ((v, w))
13 e.setdefault(v, []).append ((u, w))
14 d = dijkstra_special(e, n, 0)
15 print (" ".join(str(-1 if x >= 10**18 else int(x)) for x in d))
16
17 if __name__ == "__main__ ":
18 main()
19
20 # ########## PROGRAM: node_17:cc_python_17 ##########
21
22 from codebank import *
23
24 def main():
25 n, m = read_ints ()
26 adj = build_undirected_weighted_graph(n, m)
27 dist , parent = dijkstra(adj , 0, n)
28 if dist[n-1] >= 10**18:
29 print(-1)
30 else:
31 path = reconstruct_path(parent , n-1)
32 print(" ".join(map(str , path)))
33
34 if __name__ == "__main__ ":
35 main()
36
37 # ########## PROGRAM: node_19:cc_python_19 ##########
38
39 from codebank import *
40
41 def main():
42 n = int(input())
43 a = read_ints ()
44 ans = compute_min_moves_opposite_parity(a)
45 print (" ".join(map(str , ans)))
46
47 if __name__ == "__main__ ":
48 main()

Listing 13: Version 2, Refactored Programs

28

H Code Agent Failure Modes505

1
2 from datapipe.core import (
3 tumbling_window ,
4 sliding_window as _sliding_window ,
5 add_serializer ,
6 throttle_upstream as _throttle_upstream ,
7 watermark_event_time as _watermark_event_time ,
8 ...
9)

10 ...
11
12 def throttle_upstream(max_size):
13 """
14 Apply backpressure to slow data ingestion if downstream stages are overloaded.
15
16 Args:
17 max_size: maximum queue size or rate limit
18
19 Returns:
20 Decorator function
21 """
22 def decorator(func):
23 from functools import wraps
24
25 @wraps(func)
26 def queue_wrapper(q, *args , ** kwargs):
27 try:
28 size = q.qsize()
29 if size > max_size:
30 import time
31 time.sleep (0.01)
32 except Exception:
33 pass
34 return func(q, *args , ** kwargs)
35
36 return queue_wrapper
37
38 return decorator
39
40 def watermark_event_time(events , allowed_lateness):
41 """
42 Assign event -time watermarks to handle late data correctly.
43
44 Args:
45 events: list of dicts with timestamp
46 allowed_lateness: seconds of allowed lateness
47
48 Returns:
49 Events with watermark annotations
50 """
51 # Ensure we return the appropriate format with is_late field
52 result = []
53 for e in events:
54 tagged = dict(e)
55 max_ts = max(ev[’timestamp ’] for ev in events)
56 watermark = max_ts - allowed_lateness
57 tagged[’watermark ’] = watermark
58 tagged[’is_late ’] = e[’timestamp ’] < watermark
59 result.append(tagged)
60 return result
61 ...

Listing 14: Claude fails to use imports and instead re-implements the function.

29

	Introduction
	Related work
	Problem Statement
	MiniCode—Library Design and Refactoring Benchmark
	Librarian: Refactoring Code to Create Libraries
	Sample with clustering
	Rank refactorings

	What Makes a Good Refactoring?
	Objective function comparison
	Human evaluation best aligns with the MDL objective function

	Experimental Setup
	Results
	Conclusion
	Algorithm
	Best@k Compression is a U-Statistic
	Clustering Analysis: CodeContests
	Collection Coherence Measures

	Benchmark Comparison
	Full MiniCode Results
	Data Generating Prompts
	Refactoring examples of Librarian on Code Contests
	Example 1
	Example 2

	Code Agent Failure Modes

