
VideoDex: Learning Dexterity from Internet Videos

Kenneth Shaw∗ Shikhar Bahl∗ Deepak Pathak

Carnegie Mellon University

Abstract: To build general robotic agents that can operate in many environments,
it is often imperative for the robot to collect experience in the real world. However,
this is often not feasible due to safety, time, and hardware restrictions. We thus
propose leveraging the next best thing as real-world experience: internet videos of
humans using their hands. Visual priors, such as visual features, are often learned
from videos, but we believe that more information from videos can be utilized as
a stronger prior. We build a learning algorithm, VideoDex, that leverages visual,
action, and physical priors from human video datasets to guide robot behavior.
These actions and physical priors in the neural network dictate the typical human
behavior for a particular robot task. We test our approach on a robot arm and
dexterous hand-based system and show strong results on various manipulation
tasks, outperforming various state-of-the-art methods. For videos and supplemental
material visit our website at https://video-dex.github.io
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1 Introduction
The long-standing dream of many roboticists is to see robots autonomously perform diverse tasks in
diverse environments. To build a robot that can operate anywhere, many methods rely on successful
robotic interaction data to train on. However, deploying inexperienced, real-world robots to collect
experience may require constant supervision which is infeasible. This poses a chicken-and-egg
problem for robot learning because to collect experience safely, the robot already needs to be
experienced. How do we get around this deadlock?

Fortunately, there is plenty of real-world human interaction videos on the internet. This data can
potentially help bootstrap robot learning by side-stepping the data collection-training loop. This
insight of leveraging human videos to aid robotics is not new and has seen immense attention from
the community at large [1, 2, 3]. However, most of the prior work tends to use human data as a
mechanism for pretraining just the visual representation [4, 5, 6, 7, 8], much like how deep learning
has been used as a pretraining tool in related areas of computer vision [9, 10] and natural language
processing [11, 12]. Although pretraining visual representations can aid in efficiency, we believe
that a large part of the inefficiency stems from very large action spaces. For continuous control,
learning this is exponential in the number of actions and timesteps, and even more difficult for high
degree-of-freedom robots (shown in Figure 1). Dexterous hands are one such class of high degree of
freedom robots that have the possibility to provide great contact for the grasping and manipulation of
different objects. Their similarity to human hands makes learning from human video advantageous.

In this work, we study how to go beyond using internet human videos merely as a source of visual
pretraining (i.e. visual priors), and leverage the information of how humans move their limbs to guide
train robots on how they should move (i.e. action priors). However, guiding robot motions using
human videos requires understanding the scene in 3D, figuring out human intent, and transferring
from human to robot embodiment. First, 3D human estimation works decently well in general human
videos which we can leverage to gather 3D understanding. Second, there have been large-scale
datasets that break down the human intent via crowdsourcing labels [2, 1]. Finally, to handle the
embodiment transfer, we use human hand to robot hand retargeting as an energy function to pretrain
the robot action policy. Our key insight is to combine these visual and action priors from human
videos with a prior on how robot should move in the world [13, 14] (i.e., physical prior, using a
second order dynamical system) to obtain dexterous robot policies that can act in the real world. We
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Figure 1: We re-target human videos as an action prior, use pretrainined embeddings as a visual prior, and use
Neural Dynamical Policies (NDPs) [13] as a physical prior to complete many different tasks on a robotic hand.

call this approach, VideoDex. To enhance real-world performance, we mix the experience obtained
from massive internet data with a few in-domain demonstrations.

In summary, VideoDex is a robot learning algorithm that incorporates visual, action, and physical
priors into a single open-loop policy by learning from passive videos contained in human activity
datasets from the internet. VideoDex then only needs to adapt to real world tasks using a few in-
domain examples. We find that VideoDex outperforms many state-of-the-art robot learning methods
on seven different real-world manipulation tasks on a high DOF multi-fingered robotic arm-hand
system as well as on a 1-DOf gripper robotic arm system.

2 Related Work
Learning for Dexterity Reinforcement learning (RL) with an engineered reward function can
show dexterous simulation results [15, 16] but requires lots of data, especially in high DOF dexterous
manipulation. This requires simulators [17, 18], which cannot model physics properly, making real-
world transfer difficult. Behavior cloning is an approach [19, 20] that can work safely. DIME [21]
involves using nearest neighbor matching of image representations with demonstrations to determine
actions. Qin et al. [22] teleoperates and learns policies in simulation, followed by Sim2Real transfer.
DexMV[23] uses collected human hand videos for robot hand imitation learning. DexVIP [24] learns
hand-object affordances and priors for RL initialization using curated video datasets.

Learning from Videos and Large-Scale Datasets There are many curated datasets from internet
human videos, for example, FreiHand [25] for hand poses, 100 Days of Hands [26] for hand-object
interactions, Something-Something [3] for semantically similar interactions, Human3.6M [27] and
the CMU Mocap Database [28] for Human pose estimation. Epic Kitchens [2], ActivityNet datasets
[29], or YouCook [30] are action-driven datasets we focus on for dexterous manipulation.

Learning Action from Videos Detecting humans, estimating poses of different body parts, or
understanding the dynamics and interactions related to human motion is a commonly studied problem.
One can model human hands using the MANO [31] model and the human body using SMPL, SMPL-
X [32, 33] models. There are many efforts in human pose estimation such as [34, 35, 36]. We focus
on FrankMocap [36] for our project as it is robust for online videos. Traditionally, teleoperation
approaches have employed hand markers with gloves for motion capture [37] or VR settings [38].
Without gloves, Li et. al. [39] used depth images and a paired human-robot dataset for teleoperation,
and Handa et. al. [40] designed a system that mimics the functional intent of the human operator to
perform object manipulation tasks.

Robot Learning by Watching Humans Recent works have leveraged human datasets to learn
cost functions [41, 42, 43], learn action correspondences [44] both in a paired [45] and unpaired
manner [46]. This data can also be used to extract explicit actions by leveraging structure in the
collection (such as reacher-grabber tools [47]) or prediction of future hand and object locations [48],
as well as keypoint detectors [49]. This can also be used to build representations for robot learning
[6, 50]. R3M [6] trains on the Ego4D [1] dataset using a temporal alignment loss between language
labels and video frames. We build on top of previous efforts in this area, where we combine visual
representations trained on human activity data, with action driven representations.
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Figure 2: The collection of train objects (left) and test objects (right) used for experimentation.

3 Background
3.1 Neural Dynamic Policies
Neural Dynamic Policies (NDPs) [13, 14, 51], produce smooth and safe open-loop trajectories. When
using them as a network backbone, they can be rolled out to trajectories of arbitrary lengths which
enables the use of varying-length human videos. NDPs can be described with the Dynamic Movement
Primitive equation [52, 53, 54, 55]:

ÿ = α(β(g − y)− ẏ) + fw(x, g), (1)
where y is the coordinate frame of the robot, g is the desired goal in the given coordinate frame, fw is
a radial basis forcing function, x is a time variable, and α, β are global constants. NDPs use the robot
state, scene, and a NN to output the goal g and shape parameters w of the forcing function fw.
3.2 Learning from Watching Humans
Recently, Sivakumar et al. [56] introduced Robotic Telekinesis, a pipeline that teleoperates the Allegro
Hand [57] using a single RGB camera. Leveraging work in monocular human hand and body pose
estimation [36], hand and body modeling [31, 32, 33], and human internet data, Robotic Telekinesis
real-time re-targets the human hand and body to the robot hand and arm. Due to its efficiency and
ease of use, we leverage Sivakumar et al. [56]’s approach for demonstration collection.

We borrow the human hand to robot hand retargeting method from Robotic Telekinesis [56] that
manually defines key vectors vhi and vri between palms and fingertips on both the human and robot
hand. They build an energy function Eπ which minimizes the distance between human hand poses
(β, θ) and robot hand poses q. ci is a scale parameter. Therefore, the energy function is defined as:

Eπ( (βh, θh), q ) =

10∑
i=1

||vhi − (ci · vri )||22 (2)

Sivakumar et al. [56] train an MLPHR(.) to implicitly minimize this energy function in 2, conditioned
on knowing human poses (β, θ). For more details, we refer the readers to Sivakumar et al. [56].

4 Learning Dexterity from Human Videos

We learn general-purpose manipulation by utilizing large-scale human hand action data as prior robot
experience. We leverage not only visual priors of the scene’s appearance but also leverage important
aspects of the human hand’s motion, intent, and interaction. To do this, we re-target the human video
data to trajectories from the robot’s embodiment and point of view. By pretraining policies with
these human hand trajectories, we learn action priors on how the robot should behave. However, it’s
notoriously difficult to leverage these noisy human video detections. Therefore, we must also employ
a policy with physical priors to learn smooth and robust policies that do not overfit to noise. We
explain insights and our method used to leverage action priors in the sections below.

4.1 Visual Priors from Human Activity Data
Many previous works [6, 7, 8] have tackled visual priors and representations for robot learning. These
networks often encode some form of semantic visual priors into the pretrained network from human
video internet datasets. We use the encoder from Nair et al. [6] as a useful visual initialization for our
policy. Nair et al. [6] is trained on a visual-language alignment as well as a temporal consistency loss.
Our network takes human video frames and processes them using the publicly released ResNet18
[58] encoder, Eφ from R3M [6]. The output of this network is our visual representation for learning.
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Figure 3: To use internet videos as pseudo-robot experience, we re-target human hand detections from the 3D
MANO model [31] to 16 DoF robotic hand (LEAP) embodiment and we retarget the wrist from the moving
camera to the xArm6 [59] embodiment. Videos at https://video-dex.github.io

4.2 Action Priors from Human Activity Data
While visual pretraining aids in semantic understanding, human data contains a lot more information
about how to interact with the world. VideoDex uses action information to pretrain an action prior, a
network initialization that encodes information about the typical actions for a particular task.

However, training robot policies on human actions are difficult, as there is a large embodiment gap
between humans and robots as described in Handa et al. [40] and Sivakumar et al. [56] Thus, we
must re-target the motion of the human to the robot embodiment to use it in training. This problem is
solved using three main components. First, we detect human hands in videos. Second, we project
hand poses H to robot finger joints Hr. Finally, we convert human wrist pose P to robot arm pose
Pr. Hr and Pr define the trajectory of the human in the robot’s frame, from which we can extract
actions to pretrain our policy network with the action prior. See Figure 4 for a summary of the stages.
Action and Hand Detections First, we must detect the right actions the human is completing. To
expedite development, we use the action annotations from the EpicKitchens dataset [2] but an action
detection network such as [60] can be used. Now, we must detect the hand. VideoDex first computes
a crop c around the operator’s hand using OpenPose [61] and the result is passed to FrankMocap [36]
to obtain hand shape (β) and pose parameters (θ) of the 3D MANO model [31]. These parameters
are passed through a low pass filter and subsequently used in re-targeting to the robot.

Re-targeting Wrist Pose In this section, we show how to compute the transformation that describes
the wrist pose in the robot frame denoted as MWrist

Robot . First, to calculate MWrist
Ct

, where Ct is the
camera frame at timestep twe leverage the Perspective-n-point algorithm [62]. This takes 2D keypoint
outputs (ui, vi) by the hand detection model and 3D keypoints from the hand model (xi, yi, zi) and
computes MWrist

Ct
. To accurately obtain camera intrinsics for PnP, COLMAP is used [63].

In human egocentric video datasets, the position of the camera is not fixed and we must compensate
for this movement. Specifically, we compute the transformation between the camera pose in the first
frame C1 and all other frames in the trajectory, Ct. We call this transform MCt

C1
. To estimate this, we

run monocular SLAM, specifically ORBSLAM3 [64].

Computing wrist poses in the first camera coordinate frame is important but this is still not in the
robot frame because the robot is always upright. To be able to transform the human trajectory in
the robot’s frame, we must find the vector that is parallel to gravity in the camera’s frame, αp. Thus
recover object segmentations for surfaces that are parallel to the floor such as tables, floors, counters,
and similar synonyms using a state-of-the-art object detector (Detic [65]). Then an estimated depth
map from RGB frames only using Adabins [66] is computed. This way, the method does not rely on
the long-term contiguity of a video like most SLAM approaches. We then use depth map portions
that correspond to the relevant objects and calculate a surface normal vector. We estimate αp using
this normal vector and the following equations:

pitch = tan−1(xAcc/
√
y2Acc + z2Acc) (3)

roll = tan−1(yAcc/
√
x2Acc + z2Acc) (4)

Detailed ablations on the parameterization of the initial pitch of the predicted trajectory ( α) are
provided in Section 6. In SLAM, we also remove the dependency on gyroscope data by assuming
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Figure 4: To use human videos as an action prior for training policies, we re-target them to the robot embodiment.
The detected human fingers are converted to the robot fingers using a learned energy function. The wrist is
re-targeted using the detections and camera trajectory and transformed to the robot arm.

that the scaling factor is 1.0. This is acceptable because the trajectory is rescaled to the robot frame
later. Therefore, this wrist re-targeting approach uses only 2D images from human videos.

Since the robot has workspace limits, and we would also like to center the starting pose of the robot,
we heuristically compute TWorld

Robot which rescales and rotates the human trajectory in the world frame
τwrist
W into the robot trajectory τwrist

R . The final function to obtain MWrist
Robot can be described as:

MWrist
Robot = TWorld

Robot ·M
C1

World ·M
Ct

C1
·Mwrist

Ct
(5)

Algorithm 1 Procedure for VideoDex

Require: Human videos V H1:K (length T ), policy
πθ , demonstrations D1:N . Human detection
fhuman [36].
for k = 1...K do

for t = 1...T do
Pose parameters θt, βt = fhuman(It)
Get wrist pose wt from 3, 4 and 5,
Hand pose ht = H(θt, βt)

end for
Store all ht, wt into robot trajectory τkR
τ̂kR = πθ(I

k
1 , h

k
1 , w

k
1 )

Optimize Lθ = ||τkR − τ̂kR||1
end for
Store policy weights θh to initialize πθ
while not converged do

for n = 1...N do
τn, In1:T = Dn
τ̂n = πθ(I

n
1 , h

n
1 , w

n
1 )

Optimize Lθ = ||τn − τ̂n||1
end for

end while

Re-targeting Hand Pose Human hands are also in
a different embodiment compared to that of robot
hands, like our 16 DOF LEAP Hand [67] . Similarly,
to Sivakumar et al. [56], we use H(.) to map hand
poses to robot hand poses. Given human detected
pose xh, we obtain xr = H(xh) using a similar re-
targeting network to Sivakumar et al. [56], and get
human hand trajectories: τ hand

R in the robot’s embod-
iment. We use τR to denote the combined hand and
wrist trajectories: τ hand

R , τwrist
R . See Figure 3 for a

visualization.

4.3 Learning with Human Videos
We must design an open-loop policy π that learns first
from the re-targeted human trajectories (the action
prior) and then from real robot trajectories collected
in teleoperation. Naively, training a neural network
policy on τR will lead to overfitting to noisy hand
detections. To circumvent this, we first use visual
priors from the visual ResNet-based [58] encoder
provided by Nair et al. [6], Eφ. Then, we introduce a
physical prior to the network, the physically-inspired

Neural Dynamic Policies [13, 14].

We construct π with the following setup. We first process the first scene image I with the visual
encoder Eφ. Then the extracted features Eφ(I) are used to condition an NDP for the wrist and hand
separately, fwrist and fhand. Concretely, each NDP operates by processing the input features with a
small MLP which outputs w, g which are the trajectory shape and goal parameters. The forward
integrator of the NDP outputs an open-loop trajectory for the hand and the wrist, τ̂R. We use the
following loss function:

L =
∑
k

LossL1(τR − [fhand(Eφ(Ik)), fwrist(Eφ(Ik))])

Training Methodology: We use between 500-3000 video clips of humans completing the same
task category as the robot will from the Epic Kitchens dataset [2]. For example, in pick, there are
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Figure 5: Tasks used in experiments. From left to right: pick, rotate, open, cover, uncover, place and push. See
https://video-dex.github.io for videos of these tasks.

close to 3000 video clips of humans picking items. These are retargeted to the robot domain and used
to pretrain the network with the human action prior of the pick task. Then, the final policy π is trained
on a few teleoperated demonstrations of pick on the real robot. The full training takes about 10 hours
on a single 2080Ti GPU. More training details can be found in the appendix and in Algorithm 1. Our
network consists of the R3M [6] initialized ResNet-18 [58]. We process these features with a 3-layer
MLP with a hidden layer size of 512, which are then processed by 2 NDP [13] networks.

5 Experimental Setup
We perform thorough real world experiments on manipulation tasks, specifically many tasks that
require dexterity. See our webpage for result videos. We aim to answer the following questions. (1)
Is VideoDex able to perform general purpose open-loop manipulation? (2) How much does the action
prior of VideoDex help? (3) How much does the physical prior of the NDPs in VideoDex help? (4)
What important design choices are there (visual priors, physical priors, or training setup)?

Task Setup We pretrain action priors on retargeted Epic Kitchens data for seven robot tasks. Then,
we collect about 120-175 demonstrations for each of these tasks on our setup to train the policy. In
pick, the goal is to pickup an object. In rotate, the agent grasps and rotates the object in place.
In cover and uncover, the goal is to cover or uncover a pan/plate with a soft cloth object. Push
involves flicking/poking an object with the fingers. In place, the robot has to pick up an object and
place it into a plate, pan or pot. In open we open three different drawers. Our testing procedure
consists of unseen locations and objects. Details on the tasks and objects are in the supplemental.

While robot hands can provide great dexterity, we also investigate whether 2-finger grippers can
benefit from action priors. The internet data is converted to where the closed human hand is a
closed 2-finger gripper, and the open human hand is an open 2-finger gripper. We collect separate
demonstrations on the real-robot using the 2-finger gripper from xArm [59]. Separate action priors
are trained for the 16 DoF LEAP Hand and the 2-finger gripper.

6 Results

Figure 6: Networks initialized using action priors on human
data without further training are closer to ground truth robot
trajectories than networks only initialized using visual priors.

First, we evaluate the need for initial-
ization with the action priors obtained
from the human internet videos. θh The
baseline without internet pre-training is
called BC-NDP. It uses the same physi-
cal prior and visual network initializa-
tion, without the initialization from θh.
We also compare the effect of the action
prior on 2-finger gripper policies. Sec-
ond, we compare against two standard
open-loop behavior cloning approaches
introduced in recent benchmarks [51].
BC-open uses a 2 layer MLP instead
of the NDP network. BC-RNN, uses an
RNN to pre-process the visual features
and then a two-stream, 2 layer MLP for
wrist and hand trajectories. We try an
offline RL ablation CQL [68], where we
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Pick Rotate Open Cover Uncover Place Push
train test train test train test train test train test train test train test

BC-NDP [14] 0.64 0.38 0.94 0.56 0.90 0.60 0.78 0.58 0.88 0.82 0.70 0.35 1.00 0.71
BC-Open[51] 0.50 0.44 0.72 0.38 0.80 0.40 0.44 0.58 1.00 0.91 0.40 0.25 1.00 0.93
BC-RNN [51] 0.56 0.31 0.78 0.50 0.90 0.50 0.56 0.42 0.88 0.75 0.70 0.50 1.00 1.00
VideoDex 0.83 0.77 0.85 0.71 0.80 0.80 0.75 0.63 0.96 0.92 0.89 0.80 1.00 1.00

Table 1: We present the results of train objects and test objects for Videodex and baselines as described above.

use the demonstrations as a sparse reward. We train a behavior cloning policy with the action prior
from human videos without the physical prior of the NDP. We call this VideoDex-BC-Open. We
ablate the type of visual representation and prior use by trying an initialization using the VGG16
network [69] (VideoDex-VGG) and the MVP network [7] [70] (VideoDex-MVP) based representation
trained for robot learning. We ablate the need for a two stream policy, instead training a single NDP
for both hand and wrist. (VideoDex-Single) To see if VideoDex works with fewer demonstrations
(around 50 demonstrations, 5-7 per variant only), we train a policy called VideoDex-Constrained.

We analyze the results of our experiments and the guiding questions discussed in Section 5. We
present the results of our findings as a 0-1 success rate in Table 1 and the result of the ablations we
ran on the place task in Table 4.

Effect of Action Priors We firstly compare VideoDex against methods that do not employ
an action prior trained on human data, as explained in Section 5. For almost all of the tasks,
VideoDex either outperforms baselines or has a similar performance, especially for held out ob-
jects/instances. We believe that one of the key aspects of VideoDex generalizing to test objects is
the action prior pretraining on human videos. This can be seen in Figure 6. Without ever training
on the robot demonstrations, the trajectories initialized using the action prior pretrained network
θh (left) are much closer to the ground truth trajectories of a network that is initialized using
only a visual prior such as the encoder from Nair et al. [6] (right). From the results, we see that
VideoDex-BC-Open with action priors (Table 4) outperforms BC-Open. Having a physical prior
added (BC-NDP) tends to help, but it is not the case for every task. We suspect that some tasks
require smoother behavior than others. Additionally, in Table 4 our offline RL baseline, CQL [68]
does not perform as well as the rest of the approaches, even under-performing the Behavior Cloning
setup. Qualitatively, we see a much less smooth and less safe execution with this method, thus
we only perform it on one task (place). Note that we use the same visual prior for this as well.

Place Open Pick
1-DOF BC-Open[51] 0.62 0.69 0.71

1-DOF VideoDex 0.69 0.82 0.77

Table 2: We compare how the 1-DOF xArm
gripper performs using Videodex. [59] Separate
demonstrations were collected using this gripper.

Hand vs 2-Finger Gripper We compare whether
the action priors from VideoDex also help in the more
general 1-DOF gripper setting. In Table 2, we find
that in the 1-DOF setting, VideoDex still improves
performance on these tasks. This is because the pri-
ors from human internet videos still encode typical
wrist trajectory behaviors as well as when the gripper
should close for each task.

Place Cover Uncover
VideoDex-Fixed 0.55 0.50 0.77
VideoDex-Random 0.45 0.63 0.85
VideoDex-IMU 0.70 0.67 0.90

VideoDex 0.80 0.63 0.92

Table 3: Ablations that compare the different
ways of calculating the initial pitch of the cam-
era with respect to gravity, on test objects. This
enables us to transform human trajectories to be
upright like the robot is.

Initial Pose Computation Comparison We com-
pare three different ways to estimate αp or MC1

World,
the vector that points parallel to gravity. These
methods contrast with VideoDex which uses the sur-
face normal of objects that are typically parallel
with the floor to calculate the direction of gravity.
VideoDex-Fixed, assumes that αp is [0,0]. This
is reasonable as we are not relying on robots to ex-
actly mimic the human but get a general action prior.
VideoDex-Random, randomizesαp in the range of
15-45 degrees, which is the typical egocentric camera

angle. VideoDex-IMU uses the internal image stabilization sensor data to estimate the upright vector.
None of these approaches use gyroscope data in SLAM, as we assume that the scaling factor is 1.0.
In Table 3, we present the results of these experiments. The performance degrades when randomizing
or setting MC1

World to a fixed value, in all three of the tasks, but it is still comparable to or better
than our baselines that do not use any human action data. A possible explanation for the fact that
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VideoDex-Surface performed better than our VideoDex-IMU is that the sensor data may be noisy
and estimating surface normals from visual features is more robust.

Effect of Physical Priors and Architectural Choices We compare different types of physical
priors in Table 1 and in Table 4. In general (BC-NDP) tends to outperform baselines without a physical
prior, except for BC-RNN in a couple of tasks. BC-RNN performs less aggressive behavior, which
allowed it to efficiently grasp more objects. In Table 4 it’s shown that an important physical prior is to
treat the wrist and the hand in a more disentangled manner, as the performance for VideoDex-Single
tends to drop compared to BC-NDP and VideoDex-BC-Open (Behavior Cloning with our action prior
pretraining). The two stream architecture aids in learning, as it allows the policy to disentangle the
actions of the wrist and the hand. This is important as the same grasp might be used for picking
objects in many different locations, and similarly, it is possible to localize many objects and perform
completely different types of interactions.

Train Test
Baselines:
BC-NDP [14] 0.70 0.35
BC-Open [51] 0.40 0.25
BC-RNN [51] 0.70 0.50
CQL [68] 0.40 0.20

No Physical Prior:
VideoDex-BC-Open 0.50 0.50
VideoDex-Single 0.50 0.30

Visual Prior Ablation:
VideoDex-VGG 0.20 0.20
VideoDex-MVP 0.40 0.20

Constrained Data:
VideoDex-Const-5 0.80 0.60
VideoDex-Const-10 0.50 0.30

VideoDex (ours) 0.90 0.70

Table 4: We present the results of the
ablations discussed in Section 5. These
are all performed on the place task.

Generalization with Less Data We limit VideoDex to a max-
imum of 5 and 10 teleoperated demonstrations per variant (we
have 12-15 variants in our setup). As shown in Table 1, even
with 5 instances per variant, we still see a 30% success rate for
unseen objects. Empirically, the policies generally go to the
right area but are not able to grasp objects properly. With less
robot experience, VideoDex outperforms which demonstrates
that action priors also boosts sample efficiency.

Effect of Visual Priors We compared using our approach
with MVP (VideoDex-MVP) [7] and VGG (VideoDex-VGG)
[69] and their performance was below VideoDex using Nair
et al. [6]. This is likely because both encoders are much larger
than the ResNet18 [58] we use and require a lot more training
time than feasible on human videos. However, VideoDex-MVP
still performs better than VideoDex-VGG, which indicates that
using a visual prior trained on human data does in fact help,
as Xiao et al. [7] trained the representation in self-supervised
fashion on videos and use the embeddings to perform robotics
tasks in simulation. We see in Table 1, that while visual priors
are important, action priors are more impactful.

Choice of Robotic Hand In our experiments, we also tried
using the Allegro Hand [57]. We found that the Allegro had higher inaccuracy in control and more
hardware failures as compared to LEAP Hand. LEAP Hand outperformed the Allegro Hand 7− 12%
on average in all experiments, thus we use it for our setup [67] .

7 Discussion and Limitations
Although we see strong results on the held-out objects, VideoDex has several limitations and scope
for future work. First, we focus on curated human video datasets, such as EpicKitchens [2], but
only use these as a convenience to expedite our process. It is possible to filter internet videos of
humans according to tasks using action detectors and then processing them with VideoDex. We
also use camera data in VideoDex but show that with a heuristic driven approach it is possible to
obtain similar or better results. Second, we rely on off-the-shelf human hand detection modules that
very often have erroneous 6D pose detections, especially when the hand is interacting with objects.
Second, the action priors rely on the arm trajectory as well as the hand trajectory retargeting which
must be recomputed for each different set of robot parameters and embodiment. Finally, our method
of behavior cloning in the real world is currently open-loop, so it cannot react to changes in the
environment. This is because closed-loop behavior cloning is difficult to keep safe in the real world.
Similarly, when running closed-loop RL it is difficult to guarantee the safety of the system. We leave
this to future work, to train policies that can react to changes in the real world.
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