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Teach-Repeat-Replan:
A Complete and Robust System for Aggressive
Flight in Complex Environments
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Abstract—In this paper, we propose a complete and robust
motion planning system for the aggressive flight of autonomous
quadrotors. The proposed method is built upon on a classical
teach-and-repeat framework, which is widely adopted in infras-
tructure inspection, aerial transportation, and search-and-rescue.
For these applications, human’s intention is essential to decide
the topological structure of the flight trajectory of the drone.
However, poor teaching trajectories and changing environments
prevent a simple teach-and-repeat system from being applied
flexibly and robustly. In this paper, instead of commanding the
drone to precisely follow a teaching trajectory, we propose a
method to automatically convert a human-piloted trajectory,
which can be arbitrarily jerky, to a topologically equivalent
one. The generated trajectory is guaranteed to be smooth,
safe, and kinodynamically feasible, with a human preferable
aggressiveness. Also, to avoid unmapped or dynamic obstacles
during flights, a sliding-windowed local perception and re-
planning method are introduced to our system, to generate
safe local trajectories onboard. We name our system as feach-
repeat-replan. It can capture users’ intention of a flight mission,
convert an arbitrarily jerky teaching path to a smooth repeating
trajectory, and generate safe local re-plans to avoid unmapped
or moving obstacles. The proposed planning system is integrated
into a complete autonomous quadrotor with global and local
perception and localization sub-modules. Our system is validated
by performing aggressive flights in challenging indoor/outdoor
environments. We release all components in our quadrotor system
as open-source ros-packages’.

Index Terms—Aerial Systems: Applications, Motion and Path
Planning, Collision Avoidance, Autonomous Vehicle Navigation.

I. INTRODUCTION

S the development of autonomy in aerial robots, Micro
Aerial Vehicle (MAV) has been more and more involved
in our daily life. Among all applications emerged in recent
years, quadrotor teach-and-repeat has shown significant poten-
tials in aerial videography, industrial inspection, and human-
robot interaction. In this paper, we investigate and answer the
problem of what is the best way to incorporate a human’s
intention in autonomous and aggressive flight, and what is a
flexible, robust and complete aerial teach-and-repeat system.
There is a massive market for consumer drones nowadays.
However, we observe that most of the operators of consumer
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(b) Snapshot of the outdoor quadrotor flight.
Fig. 1. Experiments in a challenging indoor drone racing site and an outdoor
forest. A high-resolution video is available at: https://youtu.be/urEC2AAGEDs
drones are not professional pilots and would struggle in
generating their ideal trajectory for a long time. In some sce-
narios, such as the drone racing or aerial filming, a beginner-
level pilot is impossible to control the drone to finish the
race safely or take an aerial video smoothly unless months
of training. Also, there is considerable demand in applying
drones to repetitive industrial inspections or search-and-rescue
missions, where human provides a preferable routine. In these
situations, demonstrating a desirable trajectory and letting the
drone to repeat it is a common wish. However, the taught
trajectory generated by an unskilled pilot is usually incredibly
hard or dynamically infeasible to repeat, especially in some
cluttered environments. Moreover, most of the vision-based
teach-and-repeat applications [1], [2], [3], such as our previous
work [1], are sensitive to changing environments. In [1], even
the environment changes very slightly, the global map has to
be rebuilt, and the teaching has to be redone.

Based on these observations, in this paper, instead of asking
the drone to follow the human-piloted trajectory exactly, we
only require the human operator to provide a rough trajectory
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with an expected topological structure. Such a human’s teach-
ing trajectory can be arbitrarily slow or jerky, but it captures
the rough route the drone is expected to fly. Our system
then autonomously converts this poor teaching trajectory to
a topological equivalent and energy-time efficient one with
an expected aggressiveness. Moreover, during the repeating
flight, our system locally observes environmental changes and
re-plans sliding-windowed safe trajectories to avoid unmapped
or moving obstacles. In this way, our system can deal with
changing environments. Our proposed system extends the
classical robotics teach-and-repeat framework and is named
as teach-repeat-replan. It is complete, flexible, and robust.

In our proposed system, the surrounding environment is re-

constructed by onboard sensors. Then the user’s demonstrated
trajectory is recorded by virtually controlling the drone in
the map with a joystick or remote controller. Afterward, we
find a flight corridor that preserves the topological structure
of the teaching trajectory. The global planning is decoupled
as spatial and temporal planning sub-problems. Having the
flight corridor, an energy-optimal spatial trajectory which is
guaranteed to be safe, and a time-optimal temporal trajectory
which is guaranteed to be physically feasible, are iteratively
generated. In repeating, while the quadrotor is tracking the
global spatial-temporal trajectory, a computationally efficient
local map [4] is fused onboard by stereo cameras. Based on
local observations, our proposed system uses a sliding-window
fast re-planning method [5] to avoid possible collisions. The
re-planning module utilizes gradient information to locally
wrap the global trajectory to generate safe and kinodynamic
feasible local plans against unmapped or moving obstacles.

The concept of generating optimal topology-equivalent tra-

jectories for quadrotor teach-and-repeat was first proposed in
our previous research [1]. In [1], once the repeating trajectory
is generated, the drone executes it without any other con-
siderations. In that work [1], the environment must remain
intact during the repeating, and the localization of the drone
is assumed to be perfect. These requirements are certainly
not guaranteed in practice, therefore, prevent the system from
being applied widely. In this paper, we extend the framework
of the classical teach-and-repeat and propose several new con-
tributions to make our system complete, robust, and flexible.
Contributions of this paper are listed as:

1) We advance our flight corridor generation method. The
flight corridor we use now provides much more opti-
mization freedom compared to our previous work [1].
The improvement of the flight corridor facilitates the
generation of more efficient and smooth global trajec-
tories. Moreover, we propose methods to accelerate the
corridor generation on both CPU and GPU.

2) We introduce our previous works on online mapping [4]
and re-planning [5] into our system, to improve the ro-
bustness against errors of global maps, drifts of localiza-
tion, and environmental changes and moving obstacles.

3) We present a whole set of experiments and comparisons
in various scenarios to validate our system.

4) We release all components in the system as open-
source packages, which include local/global planning,
perception, and localization, and onboard controller.

In what follows, we discuss related literature in Sect. II and
introduce our system in Sect. III. Our methods for finding
a flight corridor consisting of large convex polyhedrons, and
spatial-temporal trajectory optimization are detailed in Sect. IV
and Sect. V, respectively. The local re-planning is introduced
in Sect. VI. Experimental and benchmarked results are given
in Sect. VII. The paper is concluded in Sect. VIII.

II. RELATED WORKS

Robotics teach-and-repeat: Many robotics teach-and-
repeat works, especially for mobile robots, have been pub-
lished in recent years. Most of them focus on improving
the accuracy or robustness in repeating/following the path by
operators, which is fundamentally different from our motiva-
tion. A lidar-based teach-and-repeat system is proposed in [6],
where laser scans are used to localize the ground vehicle
against its taught path driven by the user. Furgale et al. [7] [8]
also develop a lidar-based ground robot, which is specially
designed for repeating long-term motions in highly dynamic
environments. This system equips a local motion planner
which samples local trajectory to avoid dynamic elements
during route following. A map maintenance module is used
to identify moving objects and estimate their velocities. An
iterative learning controller is proposed in [9], to reduce
the tracking error during the repeating of the robot. This
controller can compensate disturbances such as unmodelled
terrains and environmental changes by learning a feedforward
control policy. Vision-based teaching-and-repeat systems are
also proposed in several works, such as the visual localization
used by the rover in [3]. In this work, the authors build a
manifold map during the teaching and then use it for localiza-
tion in the repeating, In [10], a multi-experience localization
algorithm is proposed to address the issue of environmental
changes. The ground robot is localized robustly against several
past experiences. In [11] and [12], to further improve the ac-
curacy and robustness in localization, illumination and terrain
appearances are considered in their proposed visual navigation
system used for teach-and-repeat, Compared to ground teach-
and-repeat works, research on aerial teach-and-repeat is few.
In [2], a vision-based drone is used to inspect infrastructure
repetitively. In the teaching phase, the desired trajectory is
demonstrated by the operator, and some keyframes in the
visual SLAM are recorded as checkpoints. While repeating,
local trajectories are generated to connect those checkpoints
by using the minimum-snap polynomials [13]. To function
properly, in this work, the teaching trajectory itself must be
smooth, and the environments must have no changes during the
whole repeating. In contrast, our proposed method can convert
an arbitrarily poor path to a safe and efficient trajectory with
expected flying aggressiveness. Also, our system is flexible.
Since it records the teaching path by virtually controlling
the drone in simulation, a manually piloted teaching process
is not necessary. Finally, our proposed system is robust to
environmental changing and can even avoid moving obstacles.

Quadrotor trajectory planning: Trajectory optimization is
essential in generating safe and executable repeating trajecto-
ries from poor teaching ones. The minimum-snap trajectory
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Fig. 2. The software architecture of our quadrotor system. Global mapping, planning, and visualization are running on a ground station, while state estimation,

local sensing, and re-planning are running onboard.

Fig. 3. The hardware setting of our autonomous drone system.

optimization is proposed by Mellinger [13], where piecewise
polynomials are used to represent the quadrotor trajectory
and are optimized by quadratic programs (QP). A method
for solving a closed-form solution of the minimum snap is
proposed in [14]. In this work, a safe geometric path is firstly
found to guide the generation of the trajectory. By adding
intermediate waypoints to the path iteratively, a safe trajectory
is finally generated after solving the minimum-snap problem
several times. Our previous works [15] [16] [17] carve a flight
corridor consisting of simple convex shapes (sphere, cube) in
a complex environment. The flight corridor constructed by
a series of axis-aligned cubes or spheres can be extracted
very fast on occupancy map or Kd-tree. Then we use the
flight corridor and physical limits to constrain a piecewise
Bézier curve, to generate a guaranteed safe and kinodynamic
feasible trajectory, Other works are proposed to find general
convex polyhedrons for constraining the trajectory. In [18],
a piecewise linear path is used to guide and initialize the
polyhedron generation. In [19], by assuming all obstacles
are convex, SDP and QP are iteratively solved to find the
maximum polyhedron seeded at a random coordinate in 3-
D space. Gradient information in maps is also valuable for
local trajectory optimization. In CHOMP [20], the trajectory
optimization problem is formulated as a nonlinear optimization
over the penalty of safety and smoothness. In [21], [22]

and [23], gradient-based methods are combined with piecewise
polynomials for local planning of quadrotors. In this paper, we
also utilize gradient-based optimization for local re-planning.

Time optimization or so-called time parametrization is used
to optimize the time profile of a trajectory, given the physical
limits of a robot. Methods can be divided as direct meth-
ods [24] and indirect methods [25]. Direct methods generate an
optimal spatial-temporal trajectory directly in the configuration
space. For indirect methods, a trajectory independent of time
is firstly generated, the relationship between time and the
trajectory is optimized by an additional optimization process.
The method in [26] finds a mapping function between the time
and the trajectory, which is done by recursively adding key
points into the function, and squeeze out the infeasibility of
the time profile. This method obtains an optimal local solution
and is computationally expensive. [25] also proposes a map-
ping function, which maps time to a virtual parametrization
of the trajectory. The mapping function is then optimized
under a complicated nonlinear formulation. However, the
global optimality is not guaranteed, and a feasible initial
solution is necessary to bootstrap the optimization. Convex
optimization [27] and numerical integration [28] are two
typical methods of robotics time optimal path parametrization
(TOPP) problem. Although numerical integration [28] [29] has
shown superior performance in computing efficiency, convex
optimization [27] has the advantage of adding regularization
terms other than total time into its objective function. This
specialty suits well for our application where the user defines
the expected aggressiveness of the drone, and sometimes the
drone may not be expected to fly as fast as possible. As for the
efficiency, since we do temporal optimization off-line before
the repeating, computing time is not critical.

III. SYSTEM OVERVIEW

A. System Architecture

The overall software and hardware architecture of our
quadrotor system are shown in Fig. 2 and 3. The global



mapping, flight corridor generator, and global spatial-temporal
planner are done on an off-board computer. Other online
processings are running onboard on the drone during the
flight. Before teaching, the global map is built by onboard
sensors. During teaching, a flight corridor is generated by
inflating the teaching trajectory. Then the spatial and temporal
trajectories are optimized iteratively within the flight corridor
under a coordinate descent scheme [30]. The local planner
using gradient-based optimization is running onboard to avoid
unexpected obstacles observed in the repeating flights. For
trajectory tracking, we use a geometric controller [31]. And
the attitude is stabilized by the autopilot.

B. Globally Consistent Localization and Mapping

We use VINS [32], a robust visual-inertial odometry (VIO)
framework, to localize the drone. Moreover, the loop closure
detection and global pose graph optimization are used in
our system, to globally correct the pose estimation. The
global mapping is done by fusing depth measurements from
the stereo cameras with the pose estimation. By using our
previous research on deformable map [33], our global mapping
module maintains a series of sub-maps with each attached to
a keyframe. In this way, the map is attached to the pose graph
and is therefore globally driftless. During the mapping, when
a loop closure is detected, keyframes in the global pose graph
are corrected, and all sub-maps are deformed accordingly. The
global pose graph optimization is also activated during the
repeating. When loop closure is detected, the pose of the drone
is corrected accordingly to eliminate the drift.

C. Global Spatial-Temporal Planning

For an extremely poor teaching trajectory, both the geo-
metric shape and time profile of it is far from optimal and
therefore useless, or even harmful for conducting optimization.
However, the topological information of the teaching trajectory
is essential since it reflects the human’s intention. To preserve
the topological information, we group the free space around
the teaching trajectory to form a flight corridor (Sect. IV).
The corridor contains the teaching trajectory within it, shares
the same topological structure, and provides large freedom for
optimization. It’s hard to concurrently optimize a trajectory
spatially and temporally in the flight corridor. However, gen-
erating a safe spatial trajectory given a fixed time allocation
(Sect. V-A) and optimizing the time profile of a fixed spatial
trajectory (Sect. V-B) are both conquerable. Therefore, we iter-
atively optimize the trajectory in the space-time joint solution
space by designing a coordinate descent [30] framework. An
objective with weighting energy and time duration is defined
for optimization. We firstly generate a spatial trajectory whose
energy is minimized, then we use the temporal optimization to
obtain the optimal time profile of it. The optimal time profile is
used to parametrize a trajectory again for spatial optimization.
The spatial-temporal optimizations are done iteratively until
the total cost cannot be reduced any more.

D. Local Collision Avoidance

In practice, the accumulated drift of VIO is unavoidable,
and the recall rate of loop closure is unstable. Although we
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Fig. 4. An illustration of free space captured by an axis-aligned cube and
a general polyhedron. Obstacles are shown in dashed lines. The blue curve
is the teaching trajectory of humans. The red triangle is the seed for finding
local free space. The axis-aligned cube and a corresponding general convex
polyhedron are shown in yellow and green, respectively.

(b) Front view

(d) Front view

(c) General convex polyhedron, side view

Fig. 5. The comparison of an axis-aligned cube and a general convex
polyhedron. The cube and the polyhedron are generated to the largest volume
they may have, from the same seed coordinate. The way to inflate the cube
is stated in our previous paper [1]. The method to find the general free
polyhedron will be detailed later in Sect. IV-A.

have built a dense global map, when the drift is significant
and not corrected by loop detection in time, the quadrotor may
have collisions with obstacles. Moreover, the environment may
change or contain moving obstacles. Our previous work [1]
has to re-build the map when changes happen and can not
deal with dynamic obstacles. To resolve the above issues,
we integrate our previous local map fusion module [4] into
our system to detect collisions locally and serves the local
trajectory optimization. Also, we propose a sliding-window
local replanning method based on our previous research on
quadrotor local planning [5], to avoid collisions on the flight.

In the repeating phase, the drone controls its yaw angle
to face its flying direction and build a local map by stereo
cameras. We consistently check the local trajectory within a
replanning time horizon. If collisions along the local trajectory
are reported, replanning is triggered to wrap the trajectory out
of obstacles by gradient-based optimization [5].



IV. FLIGHT CORRIDOR GENERATION

As stated in Sect. III-C, the first step of our global planning
is to build a flight corridor around the teaching trajectory
for spatial-temporal trajectory optimization. In our previous
work [1], the flight corridor is constructed by finding a
series of axis-aligned cubes, which may sacrifice much space,
especially in a highly nonconvex environment, as is shown in
Fig 4. A more illustrative comparison is shown in Fig. 5, where
the convex polyhedron captures much more free space than
the simple cube. Using simple axis-aligned cubes significantly
limit the solution space of trajectory optimization, which may
result in a poor solution. What’s more, in situations where
the free space is very limited, such as flying through a very
narrow circle, a cube-based corridor [1] may even fail to cover
all teaching trajectory and result in no solutions existing in the
corridor. Therefore, to utilize the free space more sufficiently
and adapt to even extremely cluttered maps, we propose a
method to generate general, free, large convex polyhedrons.

Since the human’s teaching trajectory may be arbitrarily
jerky, we cannot assume there is a piecewise linear path to
initiate the polyhedron generation, as in [18]. Also, we make
no requirements on the convexity of obstacles in the map as
in [19]. Our method is based on convex set clustering, which
is similar to [34], but is different and advanced at:

1) We make no assumption on the growing directions of
convex clusters and generate completely collision-free
polyhedrons based on our dense occupancy map.

2) We introduce several careful engineering considerations
which significantly speed-up the clustering.

3) We fully utilize the parallel structure of this algorithm
and accelerate it over an order of magnitude in GPUs.

4) We introduce a complete pipeline from building the
convex polyhedron clusters to establishing constraints
in trajectory optimization.

A. Convex Cluster Inflation

The core algorithm for the construction of the flight corridor
is to find the largest convex free polyhedron at a given
coordinate. In this paper, we use an occupancy grid map
to represent the environment. Each polyhedron in the flight
corridor is the convex hull of a voxel set, which is convex and
contains only free voxels. The voxel set is found by clustering
as many free voxels as possible around an arbitrary seed voxel.
In this paper, we name the voxel set as convex cluster, and
the process of finding such a set as convex cluster inflation.
Our method for finding such a convex cluster is based on the
definition of the convex set:

Definition: A set S in a vector space over R is called a
convex set if the line segment joining any pair of points of S
lies entirely in S. [35].

The pipeline for iteratively inflating such a cluster while
preserving convexity is stated in Alg. 1. Our method operates
on a 3D occupancy map M where voxels are labeled as obsta-
cle or free. Three voxel sets are maintained in the algorithm. C
stands for the targeting convex voxel cluster. C* is the set of
voxels that are tentative to be added to C in this iteration. And
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Fig. 6. An illus(tr;tion of the convex cluster inﬂati(m(. in (a) and (b), all
qualified neighbor voxels are added to the convex cluster. In (c) and (d), since
an occupied voxel occludes a ray (the green arrow) to one of the clustered
voxels, the testing voxel (in yellow) is excluded to the convex cluster.

C* contains newly added voxels which preserve the convexity.
The cluster inflation starts by adding the seed voxel p to C, and
adding all neighboring voxels of p to C*. In an iteration, each
voxel p* in CT is checked whether it can preserve convexity
using the function CHECK_CONVEXITY(p™,C, M). This
function, as is shown in Alg. 2, casts rays from p* to each
existing voxels in C. According to the definition of the convex
set, M with p* is convex if and only if all rays are collision-
free. Based on this criteria, qualified voxels are considered
as active voxels and are added into C and C*. Neighboring
voxels of all active voxels p* are traversed and collected by
the function GET_NEIGHBORS(C*) for next iteration. The
inflation ends when C™ becomes empty, which implies no
additional voxels can be added into C. Fig. 6 also illustrates
the procedure of the convex cluster inflation.

Having a convex cluster consists of a number of voxels,
we convert it to the algebraic representation of a polyhedron
for following spatial trajectory optimization. Quick hull algo-
rithm [36] is adopted here for quickly finding the convex hull
of all clustered voxels. The convex hull is in vertex representa-
tion (V-representation) {Vj, V1, ..., V. }, and is then converted
to its equivalent hyperplane representation (H-representation)
by using double description method [37]. The H-representation
of a 3-D polyhedron is a set of affine functions:

af - x+af-y+af -z <k,
ai -x+a¥-y+ai-z<k,

(1
ay - x+a¥-y+a;-z<k,,

where {a?,a¥,aZ} is the normal vector of the 3-D hyperplane
and k,, is a constant.



Algorithm 1 Convex Cluster Inflation

1: Notation:

2: Seed Voxel: p®, Grid Map: M, Convex Cluster: C,
3: Candidate Voxel Set: CT, Active Voxel Set: C*

4: Input: p*, M

5. function CONVEX_INFLATION(p®, M)

6: C «+ {ps}

7 C* +— o

8: C*t + GET_NEIGHBORS(C)

9: while C™ # @ do

10: for each p™ € C™ do

11 if CHECK_CONVEXITY(p*,C, M) then
12: C «+C upt

13: C* «C*upt

14: end if

15: end for

16: Ct+ @

17: CT + CTU GET_NEIGHBORS(C*)

18: C"+ o

19: end while

20: Output: C
21: end function

Algorithm 2 Convexity Checking

1: Notation: Ray Cast: [
2: function CHECK_CONVEXITY (p™,C, M)
3: for each p € C do

4 l + CAST_RAY(pT, p)
5 if PASS_OBS(/, M) then
6: return False

7 end if

8 end for

9: return True

10: end function

B. CPU Acceleration

As is shown in Alg. 1, determining whether a voxel
preserves the convexity needs to conduct ray-casting to all
existing voxels in the convex cluster. Iterating with all voxels
and rays makes this algorithm impossible to run in real-
time, especially when the occupancy grid map has a fine
resolution. To make the polyhedron generated in real-time, we
take careful engineering considerations on the implementations
and propose some critical techniques to significantly increase
the overall efficiency.

1) Polyhedron Initialization: We initialize each convex
cluster as an axis-aligned cube using our previous method [15],
which can be done very fast since only index query (O(1))
operations are necessary. After inflating the cube to its maxi-
mum volume, as in Fig. 4, we switch to the convex clustering
to further group convex free space around the cube.

The proposed polyhedron initialization may result in a final
polyhedron different from the one which is clustered from
scratch. This is because an axis-aligned cube only inflates in
x,y, z directions while a convex cluster grows in all possi-
ble directions (26-connections in a 3D grid map). However,

this initialization process is reasonable. Our purpose is not
making each polyhedron optimal but capturing as much as
possible free space than a simple cube cannot. In practice, the
initialization provides a fast discovery of nearby space which
is easy to group, and does not prevent the following convex
cluster inflation to refine the polyhedron and find sizeable free
space. In Sect. VII-C1, we show that the initialization process
significantly improves the computing efficiency with only a
neglectable sacrifice on the volume of the final polyhedron.

2) Early Termination: We label all voxels in the cluster as
inner voxels which inside the convex cluster, and outer voxels
which on the boundary of the convex cluster. When traversing
a ray from a candidate voxel to a voxel in the convex cluster,
we early terminate the ray casting when it arrives at a voxel
labeled as inner.

Theorem I: The early termination at inner voxels is suffi-
cient for checking convexity.

Proof: According to the definition of convex set, a ray
connecting an inner voxel to any other voxel in the convex
cluster lies entirely in the convex cluster. Hence, the extension
line of an inner voxel must lie inside the convex cluster and
therefore it must pass the convexity check.

3) Voxel Selection: To further reduce the number of voxels
that need to be cast rays, given a candidate voxel, only outer
voxels are used to check its convexity.

Theorem 2: Using outer voxels of a convex cluster is
sufficient for checking convexity.

Proof: Obviously, the convex cluster is a closed set with
outer voxels at its boundary. The candidate voxel is outside
this set. Therefore, casting a ray from any inner voxel to the
candidate voxel must pass one of the outer voxels. According
to Theorem 1, checking convexity of this ray can terminate af-
ter the ray passes an outer voxels, which means for a candidate
voxel, checking rays cast to outer voxels is sufficient.

By introducing above techniques, the proposed convex
cluster inflation can work in real time for a mediate grid
resolution (0.2m) on CPUs. The efficacy of these techniques
is numerically validated in Sect. VII-CI.

C. GPU Acceleration

We propose a parallel computing scheme that significantly
speeds up the inflation by one order of magnitude where
a GPU is available. As is shown in Sec. IV-A, when the
convex cluster discovers a new neighboring voxel, sequentially
traversing and checking all rays is naturally parallelizable.
With the help of many core GPUs, we can cast rays and check
collisions parallelly. Moreover, to fully utilize the massively
parallel capability of a GPU, reduce the serialize operations,
and minimize the data transferring between CPU and GPU,
we examine all potential voxels of the cluster parallelly in one
iteration. Instead of discovering a new voxel and checking its
rays, we find all neighbors of the active set C* and check
their rays all in parallel. The detailed procedure is presented
in Alg. 3, where GET_NEIGHBORS(C) collects all neighbors
of a set of voxels, and PARA_CHECK_CONVEXITY(C*,C,
M) checks the convexity of all candidate voxels parallelly
in GPUs. Note that in the serialized version of the proposed



Algorithm 3 Parallel Convex Cluster Inflation

Algorithm 4 Parallel Convexity Checking

1: Notation:
2: Parallel Raycasting Result: r
3: function PARA_CONVEX_INFLATION(p®, M)

4 C +{p°}

5: C* «— o

6: Ct + GET_NEIGHBORS(C)

7: while C* # @ do

8: /* GPU data uploads */

9: r < PARA_CHECK_CONVEXITY(C*,C, M)
10: /* GPU data downloads */

11: C* < CHECK_RESULTS(r)
12: C +cucr

13: C* + GET_NEIGHBORS(C*)
14: end while

15: Output: C
16: end function

method, the voxel discovered earlier may prevent later ones
from being clustered, as is illustrated in Fig. 6. However, in the
parallel clustering, all voxels examined at the same time may
add conflicting voxels to the cluster. Therefore, we introduce
an additional variable, r to record sequential information of
voxels. As shown in Alg. 4, the kernel function is running
on the GPU per block. It checks the ray cast from every
candidate voxel in C* to a cluster voxel in C and to each
other candidate voxel which has a prior index. After that, the
function CHECK_RESULTS(r) selects all qualified voxels and
adds them into C. Firstly, candidate voxels that have collisions
with C are directly excluded. Then, candidate voxels having
collisions with other candidates that have already been added
into C are excluded. In this way, we finally get the same results
as in the serialized version of the clustering. The efficacy of
the parallel computing is shown in Sect. VII-C1.

D. Corridor Generation and Loop Elimination

Since the trajectory provided by a user may behave arbi-
trarily jerky and contain local loops, we introduce a specially
designed mechanism to elliminate unnecessary loops, i.e.,
repeatable polyhedrons. The exclusion of repeatable polyhe-
drons is essential since in following trajectory optimization
(Sect. V), each polyhedron is assigned with one piece of
the trajectory. Repeatable polyhedrons would result in an
optimized trajectory loops as the user does, which is obviously
not efficient. The pipeline of the corridor generation is shown
in Alg. 5 and Fig. 7. At the beginning of the teaching, the flight
corridor is initialized by finding the maximum polyhedron
around the position of the drone. Then as the human pilots
the drone to move, we keep checking the drone’s position. If
it goes outside the last polyhedron (G[-1]), we further check
whether the drone discovers new free space or not. If the
drone is contained within the second last polyhedron (G[-2]),
we can determine that the teaching trajectory has a loop, as
shown in Fig. 7(c). Then, the last polyhedron in the corridor

1: function PARA_CHECK_CONVEXITY(C*,C, M)
2. for each p; € C* do

3 ri].status < True

4 for each p € C do

5: /* Kernel function starts */

6 I + CAST_RAY(p;, p)

7 if PASS_OBS(/, M) then

8 r(i].status < False

9

: end if
10: /* Kernel function ends */
11: end for
12: for each p;” € C™ AND j < i do
13: /* Kernel function starts */
14: I < CAST_RAY(p;, p))
15: if PASS_OBS(/, M) then
16: r[i].status + Pending
17: r[i].list.push_back(j)
18: end if
19: /* Kernel function ends */
20: end for
21: end for
22: return r
23: end function
24:

25: function CHECK_RESULTS(r,C™)
2.  for each p € C* do

27: if r[i].status == True then
28: C* <+ C*upt

29: else if r[i].status == Pending then
30: for each j € r[i].list do
31 if pi” € C* then

32: go to 26

33: end if

34: end for

35: C* <+ C*upt

36: end if

37: end for

38: return C*

39: end function

is regarded as repeatable and is therefore popped out from
the corridor. Otherwise, as shown in Fig. 7(d), the drone is
piloted to discover new space. Then a new polyhedron P is
inflated and added to the tail of the corridor. The corridor
generation is terminated when the teaching finish. The final
flight corridor shares the same topological structure with the
teaching trajectory since no obstacles are included in the
corridor. And it has no unnecessary loops.

V. SPATIAL-TEMPORAL GLOBAL TRAJECOTRY
OPTIMIZATION

A. Spatial Trajecotry Optimization

For the spatial optimization, we use the Bernstein basis to
represent the trajectory as a piecewise Bézier curve, since it



Fig. 7. The flight corridor generation process. Red dots are coordinates along the teaching trajectory. (b), a new convex polyhedron is generated and added
to the flight corridor when the drone leaves the corridor enters undiscovered space. (c), the drone leaves the last polyhedron and returns back to the second

to last one, so the last polyhedron is deleted from the corridor.

Algorithm 5 Flight Corridor Generation

1: Notation: Flight Corridor G, Drone Position p, Convex
Polyhedron P

2: Initialize :

3: P < CONVEX_INFLATION(p, M)
4: G.push_back(P)

5: while Teaching do

6: p < UPDATE_POSE()

7. if OUTSIDE(p, G[-1]) then

8: if INSIDE(p, G[-2]) then
9: G.pop_back()

10 else

11: P = CONVEX_INFLATION(p, M)
12: G.push_back(P)

13: end if

14: end if

15: end while
16: return G

can be easily constrained in the flight corridor by enforcing
constraints on control points. An i*"-order Bernstein basis is:

b= (7)o @

7

where n is the degree of the basis, (T;) is the binomial
coefficient and ¢ is the variable parameterizing the trajectory.
An N-piece piecewise Bézier curve is written as:

Z?:O ci,lbil (t/Tl)v le [07 Tl]v

ol bl (t/Ty),  te (0,7,
f0— Zz-(}fu,? (t/Tz) [: ] )

Z?:() CL,NbiL(t/TNL te [07 TN]'
For the m!" piece of the curve, Cf},.m is the " control point,
and T, is the time duration. The spatial trajectory is generated
in z,y, z dimensions, and p € x,y, 2. p is omitted in following
derivation for brevity. In this equation, ¢ is scaled by 7T;,, since
a standard Bézier curve is defined on [0, 1].

Follow the formulation in minimum-snap [13], the squared
jerk is minimized in this paper. Since the 3" order derivative
of a curve corresponds to the angular velocity, the minimiza-
tion of jerks alleviates the rotation and therefore facilitates

visual tracking. The objective of the piecewise curve is:

z,y,2 N

J=> Y /OTm (dgfgg(t)f dt. (4)

n m=1

which is in a quadratic form denoted as ¢’ Qc. Here c is
composited by all control points in x, y, z dimensions. Q is a
semi-definite Hessian matrix.

For a Bézier curve, its higher order derivatives can be
represented by linear combinations of corresponding lower-
order control points. For the 1¢ and 2" order derivatives of
the m'" piece of the curve in Eq. 3, we have:

n—1
. S t
f;rz(t) = Z n(cﬁl - Cin) ;—1(T7)7 (5)
i=0 m
n-2 . , o t
£t = 3 mln = (e — 265+ )b o ().

=0

1) Boundary Constraints: The trajectory has the boundary
constraints on the initial state (p°,v°,a") and the final state
(%, v7,af) of the quadrotor. Since a Bézier curve always
passes the first and last control points, we enforce the boundary
constraints by directly setting equality constraints on corre-
sponding control points in each dimension:

co =1",

i =p',

n(cg —c§) =", (6)
n(ely — i) = o,

n(n —1)(c2 —2c} + ) = a°,
n(n —1)(cy — 25 + ) =al.

2) Continuity Constraints: For ensuring smoothness, the
minimum-jerk trajectory must be continuous for derivatives
up to 2"%-order at all connecting points on the piecewise
trajectory. The continuity constraints are enforced by setting
equality constraints between corresponding control points of
two consecutive curves. For the j*"* and (j + 1) pieces of
the curve, we can write the equation in each dimension as:

n_ 0

€ =G+

-1 _ 1 0
(C? - C? )/T; = (Cj+1 - Cj+1)/Tj+1v (7N
-1 -2\ /2 2 1 0 2
(cf =2¢]7" +c7)/T; = (¢541 — 26500 + ¢50) /T,



T — axis

t — axis

Fig. 8. The effect of the temporal optimization. ¢ and 7 are the time profile
of the spatial trajectory before and after optimization.

3) Safety Constraints: The safety of the trajectory is guar-
anteed by enforcing each piece of the curve to be inside the
corresponding polyhedron. Thanks to the convex hull property,
an entire Bézier curve is confined within the convex hull
formed by all its control points. Therefore we constrain control
points using hyperplane functlons obtained in Eq. 1. For the

it control point Ch 22 Cjy» € Of the 4" piece of the trajectory
in x,y, z dimensions, constraints are:

ag - ¢+ ag - ¢y + ag - ¢, < ko,
ai - Cjg +ay - Cy tay ey, <k,

®)

ay - ¢, +al - c —|—a . <k

s

Constraints in Equs. 6 and 7 are affine equality constraints
(A¢qc = bey) and Eq. 8 is in affine in-equality formulation
(Ajec < by.). Finally, the spatial trajectory optimization
problem is formulated as a QP as follows:

min ¢/ Qc
s.t.  AggCc = b, 9
Aiec S bie'

Unlike our previous works on corridor constrained trajec-
tory [15, 17], here the kinodynamic feasibility (velocity
and acceleration) is not guaranteed by adding higher-order
constraints into this program, but by temporal optimization
(Sect. V-B). For a rest-to-rest trajectory, the program in Eq. 9
is always mathematically feasible.

B. Temporal Trajectory Optimization

In spatial optimization, a corridor-constrained spatial trajec-
tory is generated given a fixed time allocation. To optimize
the trajectory temporally, we design a re-timing function
{t(7) : 7 — t} to map the original time variable ¢ to a variable
7. The relation between 7 and ¢ is shown in Fig. 8. In this
paper, the re-timing function ¢(7) is named as the temporal
trajectory, and finding the optimal ¢(7) is called the temporal
optimization. For the N-piece spatial curve defined in Equ. 3,
we write ¢(7) as a corresponding N-piece formulation:

tl(T), t1(0) :O,tl('Tl*) :Tl,t1 S [O,Tl]
t2(7)7 tQ(O) = Oa tQ(E*) = T2at2 € [OaTQ]
tr)=4q . .
tn (1), tn(0)=0,tn(Tx)=Tn,tn € [0,TN]
(10)
where 17,75, ... T'y are original time durations of the spa-

tial curve f,(t), and 7", .. Ty are time durations after

temporal optimization. Since physically time only increases,
t(7) is a monotonically increasing function. Therefore we have
(1) > 0. For clarity, in what follows, we use ¢’ = dec/dt to
denote taking derivatives with respect to ¢, and ¢ = de/dr
for taking derivatives with respect to 7. By substituting ¢ with
t(r) in f,(t) and taking derivatives with chain rule, we can
write the velocity as:

and acceleration as:

fa@) =1 i+ -

The velocity and acceleration are also piecewise functions.

Y

C. Minimum-Time Formulation

1) Objective: The total time T of the temporal trajectory
can be written as:

T = / 1d7—2/

m=1

m 1

—dt (12)

considering £ = dt/dr. We can introduce a regularization
term that penalizes the changing rate of ¢, to trade-off the
minimization of time and control extremeness, or so-called
motion aggressiveness, in our final temporal trajectory. The
objective function is then written as:

J = Z/ —+pt )dt,

where p is a weight of the aggressiveness. By setting a larger p
we can obtain more gentle motions in the temporal trajectory.
If p = 0, the temporal optimization is solved for generating
motions as fast as possible. The motions generated with a large
p can be viewed in our previous work [1].

Following the direct transcription method in [27], «(¢) and
B(t) are introduced as two additional piecewise functions:

(13)

() =tm, Bmt)=1%. m=1,2,. N. (14)

According to the relationship between #,, and £, we can have:

B (t) 20, B, (t) =2 am(t),

Then the objective function in Equ. 13 is re-formulated as:

Jzijl/om(

2) Constraints: The continuities of ¢(7) are enforced by
setting constraints between every two consecutive pieces of it.
In each dimension u € x,y, 2z, we have:

5)

ﬁ +p- am(t)Q)dt, (16)

Tn) - B (L) = frym11(0) - v/ Brmsa(0), (A7)
( m) - O (T) + fil (T - 5m( Tr)
*fu,m+1(0) Amy1(0 )JFfLm-H( ) Brm+1(0) (18)



Then, to satisfy the initial and the final velocity and acceler-
ation ag, vo, ayf, vy, we set boundary constraints:

F11(0) - V/B1(0) =, (19)

fun(IN) -/ Bn(Tw) =y, (20)

£7.1(0) - a1 (0) + f/1(0) - B1(0) =ap, (21)

fon(Tn) -an(Tn) + fii n(Tn) - BN (TNn)  =ap, (22)
Finally, kinodynamic feasibility constraints are set as:

— Vmaz < [y (@) - VB (t) < Vmaa, (23)

— Omax S fL,m<t) : am(t) + f:,m(t) : /Bm(t> S Omaz, (24)

where v,,q, and a4, are the physical limits of the drone.

3) SOCP Re-formulation: The above optimization problem
has convex objective and constraints and is, therefore, a
convex program. To make it easily solvable, for each piece
of the trajectory, t,, € [0,7,] is discretized to 0 ,tL .. .tEm
according to a given resolution 6t. K,, = [T,/dt] + 1. Then,
oy, (t) becomes piecewise constant at each discretization point.
According to Equ. 15, 3,,(t) is piecewise linear. In this way,
ay, (t) and B, (t) are modeled by a series of discrete variables
ok and BE, where BF is evaluated at t*, and o, is evaluated
at (th + k1) /2.

By applying the above discretization, the objective in Eq. 16
is derived as:

N K;—1
. 2
J = (+p- ozfn 2)-(51&, (25)
;kzzo VBT 4+ \/BE, (om)

which is mathematically equivalent to the affine formulation:
N K;-1

> (2~7§L+p~(a§“)2)~5t,

m=1 k=0

(26)

by introducing ¥, and

1 k
— <A k=0,..K;,—Lm=1,..N (27)
pEFt 4\ /B
as slack variables and additional constraints.
Eq. 27 is further derived to a quadratic form:

k=0,..K,—1;m=1,.N. (28

k
g ST

k<\/Bk k=0,.K; m=1,..N.

by introducing (¥ as slack variables .
Eq. 28 can be formulated as a standard rotated quadratic

(29)

cone: 9
20k, - (i k) 2 V2 (30)
which is denoted as
(vE, ChFt 4 b V2) € Q2 (1)

Also, Equ. 29 can be written as a standard (non-rotated)
quadratic cone:

(B + 1) > (8E —1)%+ (2-¢k)%,
and is denoted as

( fn + 17ﬂ7kn - 172Can) € QS'

(32)

(33)

Finally, a slack variable s is introduced to transform the
objective in Equ. 26 to an affine function:

N K;—1

DD 2 mtes) ot (34)
m=1 k=0
with a rotated quadratic cone:
N K;—1
2-5-1> ) (aF )2, (35)
m=1 k=0
ie. ~
(5,1, @) € @ =m= Y, (36)

where a contains o, in all pieces of the trajectory.

Also, the discretization is applied to «a,,(t) and 5,,(¢) in
constraints listed in Sect. V-C2. Details are omitted for brevity.
After that, we re-formulate these constraints as affine equality
and in-equality functions. Besides, although we assume ay
is piecewise constant, we bound the changing rate of ay
considering the response time of the actuators of our quadrotor.
We also write this changing rate constraint in an affine form:
k1) /6t < —da, 37

k
—da < (am - %m

where da (not jerk) is a pre-defined bound of the changing
rate of acceleration. Since the difference of 7 between ¢, and
t*=1 cannot be determined during the optimization, we only
bound the changing rate of oy, in ¢ domain.

The temporal optimization problem in Sect. V-C is formu-
lated as a standard Second Order Cone Program (SOCP):

min h¥~y+p-s,
st Agg-x = Dbgg,
Aic - x < by,

(s,1,ax) € Q?+Z%:1(K"),m =1,..N.
(Yr, Et ¢k V) e Q3 k=0,.., K; — 1,
(85 +1,85 —1,2¢5) €@ k=0,... K.

Here ~ and x consist of all v* and oF, B, ¥, +*. 6t is
the resolution of discretization of the problem. The effect
of different p and Jt¢ to the temporal trajectory and a more
detailed derivation of the SOCP can be viewed in [38].

In our teach-repeat-replan system, since the global re-
peating trajectory always has static initial and final states,
Equ. 38 is always mathematically feasible regardless of the
solution of spatial optimization. Because a feasible solution
of the optimization program can always be found by infinitely
enlarging the time. Combined with the fact that the spatial
optimization also always has a solution (Sect. V-A), once a
flight corridor is given, a spatial-temporal trajectory must exist.

(38)

VI. ONLINE LOCAL RE-PLANNING

In our previous work [1], once the global planning finished,
the drone would execute the trajectory without other consid-
erations. This strategy is based on assumptions that 1) the
map of the environment is perfectly built and remains intact;
2) globally consistent pose estimation is provided. We use
a VIO system with loop closure to correct local pose drifts,



Fig. 9. An illustration of colliding with obstacles when there are significant
pose drifts but no timely loop closure corrections. Obstacles are depicted in
the global frame. The flight path of the drone in the VIO frame is shown in
the red curve. But the actual trajectory in the global frame is the blue curve,
which collides with obstacles on the global map.

\

Fig. 10. The local occupancy map its corresponding ESDF map visualized
at a given height of 0.6m.

and our dense map is globally deformed according to the
global pose graph. However, the first assumption does not
always hold, especially when new obstacles suddenly appear
or the environment changes. As for the second assumption,
our global pose estimation relies on the loop closure detection,
which also does not guarantee an extremely high recall rate. In
situations where there are significant pose drifts but no timely
loop closure corrections, the drone may have collisions with
obstacles, as in Fig. 9.

A. Local Re-planning Framework

To address above issues fundamentally, we propose a local
re-planning framework which reactively wraps the global
trajectory to avoid unmodeled obstacles. A sliding local map is
maintained onboard, where obstacles are fused, and an ESDF
(Euclidean Signed Distance Field) [39] is updated accordingly.
Note that the dense global map is attached to the global pose
graph but the local map introduced here is associated with the
local VIO frame and sliding with the drone.

1) ESDF Mapping: We adopt our previous work FI-
ESTA [4], which is an advanced incremental ESDF [40]
mapping framework, to build the local map for online re-
planning. FIESTA fuses the depth information into a voxel-
hashed occupancy map [41] and updates the distance value
of voxels as few as possible using a breadth-first search
(BFS) framework. It is lightweight, efficient, and produces

near-optimal results. Details can be checked in [4]. The
ESDF is necessary for the following gradient-based trajectory
wrapping. An example of a local occupancy map and its
corresponding ESDF map are shown in Fig. 10. Note, in our
system the range of the local map is decided by the range of
current depth observation.

2) Sliding Window Re-planning: Due to the limited on-
board sensing range and computing resources, it is impossible
and unnecessary to conduct global re-planning. In this article,
we maintain a temporal sliding window over the global trajec-
tory and conduct local re-planning within it. As is shown in
Fig. 11, when obstacles are observed to block the trajectory
in the sliding window, a re-planed trajectory is generated to
avoid obstacles, and rejoin the global trajectory afterward.

B. Gradient-Based B-spline Optimization

1) B-spline Trajectory Formulation: A B-spline is a piece-
wise polynomial function defined by a series of control points
{Q0,Q1, -+, Qn} and knot vector [tg,t1,- -+ ,ty,]. For a p-
degree B-spline, we have m = N +p+-1. Following the matrix
representation of the De BoorCox formula [42], the value of
a B-spline can be evaluated as:

P(u) = [1’ Uy aup]'Mp-l-l'[Qi—py Qi—p+17 DI Ql]T (39)

here M, is a constant matrix depends only on p. And u =
(t — ti)/(ti+1 — ti), for t € [ti,ti+1)-

2) B-spline Initialization: We initialize the local trajectory
optimization by re-parameterizing the trajectory in the re-
planning horizon as a uniform B-spline. The reason we use
uniform B-spline is that it has a simple mathematical formula
that is easy to evaluate in the following optimization. For a
uniform B-splines, each knot span At; = ¢;,1—t; has identical
value At. The local trajectory is first discretized to a set of
points according to a given At. Then these points are fitted to
a uniform B-spline by solving a min-least square problem.

Note that, a p degree uniform B-spline is naturally p — 1
order continuous between consecutive spans. Therefore, there
is no need to enforce continuity constraints in the following
optimization explicitly. Besides, for a p degree B-spline tra-
jectory defined by N + 1 control points, the first and last p
control points are fixed due to the continuous requirement of
the starting and ending states of the local trajectory.

3) Elastic Band Optimization: The basic requirements of
the re-planed B-spline are three-folds: smoothness, safety, and
dynamical feasibility. We define the smoothness cost Js using
a jerk-penalized elastic band cost function [43, 44]:

Js =
N—-1
ST HQir2 = 2Qir1 + Qi) — (Qis1 —2Qi + Qi) |I?
=1

Fi 1

Fii14

N-1
= Z 1Qit2 —3Qis1 +3Qi — Qi s, (40)
i=1

which can be viewed as a sum of the squared jerk of control
points on the B-spline. Note here we use this formulation
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Fig. 11. An illustration of the online re-planning mechanism. The blue and green curves are the global trajectory and the actual flight path of the drone,
respectively. The purple curve and dots are the global trajectory in the sliding window and its corresponding control points. The red curve and dots are the
re-planned local trajectory and its control points. The yellow frustum shows the sensing horizon of the drone.

which is independent of the time parametrization of the
trajectory instead of the traditional time integrated cost func-
tion [13]. Because the time duration in each span of the B-
spline may be adjusted after the optimization (Sec. VI-B4),
Eq. 40 captures the geometric shape of the B-spline regardless
of the time parametrization. Besides, Eq. 40 bypasses the
costly evaluation of the integration and is, therefore, more nu-
merically robust and computationally efficient in optimization.

The safety and dynamical feasibility requirements of the B-
spline are enforced as soft constraints and added to the cost
function. Also, the collision cost .J., dynamical feasibility cost
Jy, and J, are evaluated at only control points. The collision
cost J, is formulated as the accumulated L2-penalized closest
distance to obstacles along the trajectory, which is written as

N-p
Je= Y Fe(dQ)), (41)
i=p

where d(Q);) is the distance between Q; to its closet obstacle
and is recorded in the ESDF. F, is defined as

{(d—%ﬁ d<do
- 0

d > dy
where d is the expected path clearance. J, and J, are applied
to velocities and accelerations, which exceed the physical
limits. The formulations of J, and J, are similar to Eq. 41
and are omitted here. The overall cost function is:

Fe(d) (42)

Jtotal :>\1Js+)\2Jc+A3(Jv+Ja)7 (43)

where A1, Ao, A3 are weighting coefficients. Ji:,; can be
minimized for a local optimal solution by general optimization
methods such as Gauss-Newton or Levenberg-Marquardt.

4) Iterative Refinement: In the above-unconstrained opti-
mization problem, although collisions and dynamical infeasi-
bilities are penalized, there is no hard guarantee on generating
a strictly feasible solution. To improve the success rate in
practice, we add a post-process to refine the trajectory iter-
atively. In each iteration, we check collisions and feasibilities
of all optimized control points. If collisions are detected, we
increase the collision term .J. by increasing Ao and solve the
optimization problem (Eq. 43) again.

Since we wrap the local trajectory to go around obstacles,
the trajectory is always lengthened after the optimization.
Consequently, using the original time parametrization will
unavoidably result in a higher aggressiveness, which means the
quadrotor tends to fly faster. Then its velocity and acceleration
would easily exceed the predefined limits. Therefore, we adjust
the time parameterization of the local trajectory to squeeze out
dynamical infeasibilities. We slightly enlarge infeasible knots
spans of the B-spline by the following heuristic.

()3 - At

where « is a constant slightly larger than 1. v,,, a,, are infea-
sible velocity and acceleration and vy, G are maximum
allowed acceleration and velocity of the drone. The time dura-
tion is iteratively enlarged until obtaining a feasible solution or
exceeding the maximum iteration limit. If no feasible solution
exists after the time adjustment, A3 is increased, and the
trajectory is optimized again.

Um

'Umaa:

(44)

At; = min{a, max{
amafr

VII. RESULTS
A. Implementation Details

The global planning method proposed in this paper is
implemented with a QP solver OOQP? and a SOCP solver
Mosek>. The local re-planning depends on a nonlinear op-
timization solver NLopt*. The source code of all modules
in our quadrotor system, including local/global localization,
mapping, and planning, are released as ros-packages’ for the
reference of community. Readers of this paper can easily
replicate all the presented results. The state estimation, pose
graph optimization, local mapping, local re-planning, and
the controller is running onboard on a Manifold-2C® mini-
computer. Other modules are running on an off-board laptop
which has a GTX 10807 graphics card.

Our global map is built to attach to a global pose graph.
Both the map and the pose graph are saved for repeating.

Zhttp://pages.cs.wisc.edu/~swright/ooqp/

3https://www.mosek.com

“https://nlopt.readthedocs.io

Shttps://github.com/HKUST- Aerial-Robotics/Teach-Repeat-Replan
Shttps://store.dji.com/product/manifold-2?vid=80932
7https://www.nvidia.com/en-us/geforce/20- series/
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Depth Image

(b) The local re-planning trajectory and current depth image.

Fig. 12. The trajectory generated in a complex simulated environment. The
flight corridor consists of large free convex polyhedrons are shown in (a), and
the optimized space-time trajectory is shown in (b).

Before the repeating, the drone is handheld to close the loop
of the current VIO frame with the saved global pose graph. The
relative transformation of these two frames is used to project
the control commands to the VIO frame. During the repeating,
pose graph optimization is also activated to calculate the pose
drift and compensate for the control command.

B. Simulated Flight Test

We first test our global and local planning methods in
simulations. The simulated environments are randomly de-
ployed with various types of obstacles and circles for drone
racing, as shown in Fig. 12. The simulating tool we use is a
light-weight simulator MockaFly®, which contains quadrotor
dynamics model, controller, and map generator. And the
simulator’s is also released as an open-source package with
this paper. In the simulation, a drone is controlled by a joystick
to demonstrate the teaching trajectory. The simulated drone
is equipped with a depth camera whose depth measurements
are real-time rendered in GPU by back-projecting the drone’s
surrounding obstacles. We randomly add noise on the depth

8https://github.com/HKUST- Aerial-Robotics/mockasimulator
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(2) (b)

Fig. 13.  The flight corridor generated with and without the initialization
process. Polyhedrons with bounding edges in white and red are found by
methods with and without the initialization, respectively.

TABLE I
COMPARISON OF COMPUTING TIME OF CORRIDOR GENERATION
Computing Time (s) | GPU | CPU++ CPU+ CPU_raw
Res. = 0.25m 0.031 0.111 0.162 0.359
Res. = 0.20m 0.055 0.310 0.503 1.309
Res. = 0.15m 0.169 1.423 2.803 9.583
Res. = 0.10m 0.942 13.940 30.747 141.659
Res. = 0.075m 3.660 | 71.862 157.181 927.131

measurements to mimic a real sensor. The re-planning module
is activated in the simulation and is triggered by the noise
added on the depth. The teaching trajectory and the flight
corridor is shown in Fig. 12(a). The global trajectory, local
re-planned trajectory, and depth measurement are shown in
Fig. 12(b). More details about the simulation are presented in
the attached video.

C. Benchmark Comparisons

1) Corridor Generation: We test the performance of the
flight corridor generation methods (Sect. IV), to show the
efficacy of the proposed techniques for CPU (Sect. IV-B)
and GPU (Sect. IV-C) accelerations. For convenience, we
denote the basic process for doing convex cluster inflation
as CPU_raw; CPU_raw added cube initialization as CPU+;
the one with cube initialization, vertex selection and early
termination as CPU++; and the parallel version of the convex
cluster inflation as GPU. We first compare the time consumed
for finding the largest flight corridor with these methods, to
validate the improvements of efficiency by using our proposed
CPU and GPU acceleration techniques. Then, we compare
the ratio of space capturing by methods with and without the
polyhedron initialization, and by our previous method [1]. The
motivation of the latter comparison is two-fold:

1) It serves to show superior performance by replacing

cubes with polyhedrons.

2) As discussed in Sect. IV-B, the initialization process
would result in different final clustering results com-
pared to the pure convex cluster inflation. This compar-
ison also validates that the initialization process only
makes neglectable harm to free space capturing.

We generate 10 random maps, with 10 ~ 20 random teaching
trajectories given in each map. The average length of teaching
trajectories is 20m. Results are given in Tabs. I and II.

As shown in Tab. I, as the resolution of the map being
finer, the computing time of the simple convex cluster infla-
tion quickly becomes unacceptable huge. In CPU, with the
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TABLE 11
COMPARISON OF SPACE CAPTURED OF CORRIDOR GENERATION
Space Ratio (%) | w/ Initialization w/o Initialization | Previous [1]
Res. = 0.25m 99.22 100.00 82.28
Res. = 0.20m 99.56 100.00 82.92
Res. = 0.15m 98.93 100.00 81.82
Res. = 0.10m 97.06 100.00 82.78
Res. = 0.075m 97.14 100.00 83.03
TABLE III
COMPARISON OF TRAJECTORY OPTIMIZATION
Method Length (m) | Time (s) | Energy ((m/s%)?)
Proposed Method 84.607 55.154 83.350
Previous Method 86.723 57.736 89.883
Gradient-based [45] 89.622 111.398 109.575
Waypoint-based [14] 97.045 94.895 204.267

help of polyhedron initialization, the computational efficiency
is improved several times. Moreover, according to Tab. I,
introducing the voxel selection and early termination can
increase the speed more than one order of magnitude in a fine
resolution. The efficacy of the GPU acceleration is even more
significant. As shown in Tab. I, the GPU version improves the
computing speed 30 times at a fine resolution (0.075m), and
10 times at a coarse resolution (0.25m). For a finer resolution,
more candidate voxels are discovered in one iteration of Alg. 3,
thus more computations are conducted parallelly to save time.

For the second comparison, we count the number of free
voxels included in the flight corridor found by each method.
At each resolution, we take the result of the method without
initialization as 100% and compare others against it. Tab. II
indicates two conclusions:

1) Using polyhedrons instead of axis-aligned cubes can
significantly increase the volume of the flight corridor.

2) Using initialization only slightly sacrifices the volume
of the flight corridor. And the sacrifice is neglectable in
a medium or coarse resolution (0.15 ~ 0.25m).

The first conclusion holds because a simple cube only discov-
ers free space in z,y, z directions and sacrifices much space
in a highly nonconvex environment, as in Fig. 4. The second
conclusion comes from the fact that in a highly nonconvex
environment, a regular shaped polyhedron (a cube) does not
prevent the following voxel clustering in its nearby space. It
shows that the initialization plus the clustering refinement does
not harm the volume of the final polyhedron, and is acceptable
in practice, especially for a resolution not very fine.

2) Global Planning: We compare the proposed global
planning method against our previous work [1] and other rep-
resentative optimization-based trajectory generation methods,
such as the waypoint-based method [14] and the gradient-
based method [45]. For the latter two benchmarked methods,
there is no explicit way to capture the topological structure
of the teaching trajectory. Therefore, we convert the teach-
ing trajectory to a piecewise path by recursively finding a
collision-free straight line path along with it. Then we use
this path to initialize the waypoint-based [14] method and the
gradient-based method [45]. Benchmarked methods are also
integrated into the coordinate descent framework with tempo-

Fig. 14.

The comparison of trajectories optimized by different methods.
The manual flight trajectory is shown as the purple curve. Blue, red, green,
and yellow trajectories are generated by our proposed method, our previous
method [1], gradient-based method [45] and waypoints-based method [14].

ral optimization. Some parameters dominate the performance
of these benchmarked methods, especially for the gradient-
based method [45] where the trade-off between collision and
smoothness is essential. For a fair comparison, parameters
are tuned to achieve the best performances before the test.
We randomly generate 10 simulated environments with dense
obstacles, as in Sect. VII-B, and conduct 10 teach-and-repeat
trials in each map. A sample result of generated trajectories
is shown in Fig. 14.

As shown in Tab. III, our proposed method outperforms
in all length, time, and energy aspects. The waypoint-
based [14] method and the gradient-based [45] method both
require a piecewise linear path as initialization. The waypoint-
based [14] method can only add intermediate waypoints on
the initial path. Therefore, it is mostly dominated by its
initialization and tends to output a solution with low quality.
The gradient-based [45] method has no such restriction and
can adjust the path automatically by utilizing gradient infor-
mation. However, its optimization formulation is underlying
non-convex, since the collision cost is defined on a non-convex
ESDF. Therefore, the gradient-based [45] method always finds
a locally optimal solution around its initial guess. Compared
to these two methods, our method is initialization-free. Both
the spatial and temporal optimization of our proposed method
enjoys the convexity in its formulation. They are guaranteed
to find the global energy-optimal and time-optimal solutions
in the flight corridor. Naturally, a smoother trajectory also
tends to generate a faster time profile. So finally, under
the same coordinate descent framework, our method always
outperforms [45] and [14]. Compared to [1], the advanced
corridor generation proposed in this paper (Sect. IV) can
always capture more free space than using our previous axis-
aligned corridor. Naturally, it provides much more freedom for
global planning and results in much better solutions.



(b) The global consistent dense map.

Fig. 15. The experimental set-up of the fast indoor drone racing flights. (a),
the obstacles deployment. (b), the pre-built globally consistent map.

Fig. 16. Snapshots of the fast autonomous flight in a static indoor environ-
ment. The maximum velocity and acceleration for the quadrotor are set as
3m/s and 3m/s2.

D. Indoor Flight Test

1) Fast Flight in a Static Environment: Firstly, we conduct
experiments in a cluttered drone racing scenario. This exper-
iment validates the robustness of our proposed system, and
also pushes the boundary of aggressive flight of quadrotors.
Several different types of obstacles, including circles, arches,
and tunnels, are deployed randomly to composite a complex
environment, as shown in Fig. 15(a). The smallest circle only
has a diameter of 0.6m, which is very narrow compared to
the 0.3m x 0.3m tip-to-tip size of our drone. The maximum
velocity and acceleration of the drone are set as 3m/s and
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(b) The spatial-temporal optimal repeating trajectory.

Fig. 17. An overview of the teaching trajectory, flight corridor, and repeating
trajectory in a pre-built dense map. The colored code indicates the height of
obstacles. The flight corridor is represented by transparent blue polyhedrons
in (a). The global trajectory, local trajectory, quadrotor flight path are shown
in blue, green, and purple curves, respectively.

(a) Side-view.

(b) Onboard first-person view.

Fig. 18. The local re-planning experiment against unmapped and moving
obstacles. The drone and unmapped obstacles are labeled by the red and blue
dashed rectangles, respectively, for clear visualization.

3m/s?, respectively. And the parameter p in Equ. 13 is set
as 0, which means the quadrotor is expected to fly as fast as
possible as long as it respects the kinodynamic limits. A dense
global consistent map is pre-built using the method stated
in Sect. III-B. During the teaching phase, the quadrotor is
virtually piloted by a human to move amid obstacles. Then
the quadrotor autonomously converts this teaching trajectory
to a global repeating trajectory and starts to track it. Snapshots
of the drone in the flight are shown in Fig. 16. The teaching
trajectory and the convex safe flight corridor are visualized in
Fig 17(a). And the global repeating trajectory is in Fig. 17(b).
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(a) Re-planning, unmapped obstacle.

(b) Re-planning, moving obstacle.

(c) Overview of all re-planning trajectories.

Fig. 19. Indoor flight in a dynamic environment. In (a) and (b), the unmapped
new obstacle and moving obstacles are labeled by red dashed rectangles, and
colored voxels represent local obstacle maps. In (c), colored voxels show the
global map. Other marks are interpreted as the same as in previous figures.

(a) Outdoor experimet, trial 1.

(b) Outdoor experimet, trial 2.

Fig. 20. Snapshots of the experiments in outdoor environments.

2) Local Re-planning Against Unknown Obstacles : Our
system can deal with changing environments and moving ob-
stacles. In this experiment, we test our system also in the drone
racing site to validate our local re-planning module. Several
obstacles are moved or added to change the drone racing
environment significantly, and some others are dynamically
added during the repeating flight, as shown in Fig. 18 In
this experiment, the maximum velocity and acceleration for
the quadrotor are set as 2m/s and 2m/s%. The local ESDF
map is sliding with the drone using a ring-buffered updating
mechanism [46]. The resolution of the local perception is
0.075m. The size of the map is decided by points observed
spreading in the current frame. The horizon and frequency
of the local re-planning are 3.5s and 15Hz, respectively.
Re-planning is triggered 8 times during the flight in this
experiment, and local safe and dynamical feasible splines are
generated on time accordingly. Local trajectories, local maps,
and the overview of this experiment are shown in Fig. 19. We
refer readers to the attached video for more details.
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Fig. 21. The repeating trajectory in outdoor experiments, trial 1. Marks are
interpreted as the same as in previous figures.
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(b) An overview of outdoor experiments, trial 2.

Fig. 22. Outdoor flight, trial 2. Marks are interpreted as the same as in
previous figures.

E. Outdoor Flight Test

Finally, we conduct quadrotor flight experiments with a
much higher aggressiveness in two different outdoor scenes,
as in Fig. 20, to show the robustness of our system in natu-
ral environments. Although these experiments are conducted
outdoor, GPS or other external positioning devices are not
used. The teach-repeat-replan pipeline is as the same as before
indoor experiments VII-D. The maximum allowed velocity
and acceleration limits for these two trials are set as 5m/s,
6m/s? and Tm/s, 6m/s?, respectively. The drone’s desired
and estimated positions and velocities in the second trial are
given in Fig. 23, which shows acceptable tracking errors. Since
the flight speed is significantly higher than indoor experiments,
we set a smaller re-planning horizon as 2.0s. Results such
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Fig. 23.  Profiles of the desired and estimated position and velocity. The

position and velocity are estimated by our localization module VINS [32].

as the global and local trajectory and the global map are
visualized in Figs. 21 and 22. More clearly visualizations of
outdoor experiments are given in the video.

VIII. CONCLUSION

In this paper, we propose a framework, feach-repeat-replan
for quadrotor aggressive flights in complex environments. The
main idea of this work is to find the topological equivalent free
space of the user’s teaching trajectory, use spatial-temporal
trajectory optimization to obtain an energy-efficient repeating
trajectory, and incorporate online perception and re-planning
to ensure the safety against environmental changes and moving
obstacles. The teaching process is conducted by virtually
controlling the drone in simulation. The generated repeating
trajectory captures users’ intention and respect an expected
flight aggressiveness, which enables autonomous flights much
more aggressive than human’s piloting in complex environ-
ments. The online re-planning guarantees the safety of the
flight and also respects the reference of the repeating trajectory.

To group large free space around the teaching trajectory,
we propose a GPU-accelerated convex polyhedron clustering
method to find a flight corridor. The optimal global trajectory
generation problem is decoupled as spatial and temporal
sub-problems. Then these two sub-problems are iteratively
optimized under the coordinate descent framework. Moreover,
we incorporate the local perception and local trajectory re-
planning modules into our framework to deal with environ-
mental changes, dynamic obstacles, and localization drifts.

The proposed system is complete and robust. Users of our
system do not have to pilot the drone carefully to give a
teaching trajectory. Instead, an arbitrarily jerky/poor trajectory
can be converted to an efficient and safe global trajectory.
Moreover, when the environment changes or the global local-
ization drifts, the local perception and re-planning modules
guarantee the safety of the drone while tracking the global
trajectory. Our system is also flexible and easily replicable,
as evidenced by various types of experiments presented in
this paper, and a third-party application’. We release all
components of our system for the reference of the community.

9Flight demonstration at the Electrical and Mechanical Services Department
(EMSD), Hong Kong government. Video: https://youtu.be/Ut8WTOBURrM
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