Under review as a conference paper at ICLR 2026

INTERPRETABLE REINFORCEMENT LEARNING WITH
SELF-ABSTRACTION AND REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose ReLIC, a reinforcement learning method with interactivity for com-
posite tasks. Traditional RL methods lack interpretability, so it is difficult to in-
tegrate expert knowledge and refine the trained model. ReLIC is composed of a
high-level logical model, low-level action policies, and a self-abstraction and re-
finement module. At its high level, it takes in predicates as its input so that we
can design a synthesis algorithm to illustrate our high-level model’s logical struc-
ture as an automaton, demonstrating our model’s interpretability. At its low level,
deep reinforcement learning is utilized for detailed action control to maintain high
performance. Furthermore, based on the structured information provided by the
automaton, ReLIC leverages GPT-40 to generate expert predicates and refine the
automaton by injecting expert predicates and performing joint training, thereby
enhancing RELIC’s performance. ReLIC outperforms state-of-the-art baselines in
several benchmarks with continuous state and action spaces. Additionally, ReLIC
does not require humans to hard-code logical structures, so it can solve logically
uncertain tasks.

1 INTRODUCTION

Although Reinforcement Learning (RL) has achieved tremendous success in a variety of control
tasks, it still faces a significant challenge: lack of interpretability (Milani et al.l |2022a). This de-
ficiency manifests critically in two aspects: firstly, RL models often fail to provide transparent ex-
planations for their decisions, posing significant risks in high-stakes domains such as autonomous
driving (Song et al., [2022) and healthcare (Ahmad et al., [2018). Secondly, the absence of inter-
pretability hinders direct interaction with models, making it difficult to integrate expert knowledge
or intervene upon detecting biased or undesired behaviors (Rong et al.,2023)).

To address the above challenges, researchers have proposed various interpretable RL methods. Early
efforts emphasize interpretability, including decision tree (Bastani et al., |2018}; |(Charbuty & Abdu-
lazeez, |2021)), programmatic policy (Irivedi et al., 2021)), and Inductive Logic Programming (ILP)-
based approaches |[Lavrac & Dzeroski| (1994) such as NUDGE (Delfosse et al., [2023). However,
these models prioritize transparency over interactivity and offer no interface for incorporating exter-
nal knowledge. More recent work provides interactivity by integrating experts or Large Language
Model (LLM), such as INTERPRETER (Kohler et al., 2024)) and SCoBots (Delfosse et al., 2024)).
Nevertheless, existing interactive methods introduce expert or LLM knowledge after training, which
means the final model is determined by human intuition, lacking dynamic integration of expert
knowledge during the learning process.

In this paper, we propose Reinforcement Learning with Interactivity for Composite tasks
(ReLIC) that integrates interpretability and lightweight, on-the-fly knowledge injection. ReLIC
consists of modules on two levels: a lower-level module that executes concrete actions and an upper-
level module that symbolically abstracts lower-level control logic. Specifically, the high-level logical
model captures key runtime states through logical combinations of predicates. It has two notable
advantages: unlike methods such as SCoBots (Delfosse et al., |2024), our logical model does not
require pre-defined logical structures. Another feature is its ability to incorporate additional expert
knowledge to guide training. To facilitate expert knowledge injection, we present a self-abstraction
and refinement pipeline. In contrast to prior interactive methods (Kohler et al.,| 2024} |Delfosse et al.}
2024]), our high-level logical model can condense a large predicate set into a compact set of salient

Under review as a conference paper at ICLR 2026

predicates. Next, our pipeline synthesizes an automaton from key predicates, clearly explaining the
model’s current behavior. Based on the synthesized automaton, an LLM then provides supplemen-
tary expert knowledge for the logic model, which realizes interactivity between the LLM and the
logical model. As refinement alters the input predicates to the logical planner, we introduce joint
training to co-optimize the logical planner and action policies, ensuring that injected knowledge
seamlessly integrates into the policy execution.

Our contributions can be summarized as follows:

* ReLIC Framework. We propose a hierarchical RL framework that provides an interface to inject
expert knowledge and supports joint training of the logical model and action policies.

* Interpretability. We introduce a self-abstraction technique that synthesizes an automaton from
the logical model, providing a compact and transparent representation of learned behavior.

* Interactivity. We leverage an LLM to inject additional knowledge into the logical model based on
the automaton, enabling dynamic updates in the learning process.

2 PRELIMINARIES

Markov decision process (MDP): MDP (Puterman) |1990) formalizes sequential decision-making
under uncertainty as a tuple (S, A, T, R,), where S denotes state space, A is the action space, T
is the transition function, R is the reward function, and + is the discount factor. Given the current
state s, the agent selects action ay, transitions to s;11 ~ T'(+|s¢, at), and receives reward 7141 =
R(st, at, s¢1+1). The objective is to find a policy 7 that maximizes the expected cumulative reward
over time. It is typically realized via the value function V'(s), which quantifies the expected return
from state s under policy 7.

First-order logic (FOL): FOL (Barwise, [1977) is a formal language describing objects and their
relations. It comprises constants, variables, predicates, and clauses. Constants denote specific ob-
jects in the environment, while variables represent unspecified ones. Predicates can be written as
P, and an n-ary predicate is denoted as P(z1, zo, ..., T,), Where x represents constants or variables.
Predicates capture properties or relations among objects, with truth values in true, false. A clause
is a rule of the form p; < pa, p3, ..., Pn, Where p; is the head predicate and ps, ps, ..., p,, are body
predicates. Predicates grounded with constants are extensional predicates and serve as input pred-
icates in our model; those defined via clauses are intensional predicates and correspond to target
predicates.

Differentiable Logic Machine (DLM): DLM (Zimmer et al., 2021) is a trainable architecture for
reasoning over predicates. It takes in a series of predicates as input and performs differentiable
logic operations including fuzzy and A, fuzzy or V, and fuzzy not —=. DLM has a max depth of
D. In each layer, it has B computing units corresponding to predicates of different arities. The
b-ary predicates in the d-th layer are denoted by Py (21, z2,...xp), where b € {1,2,..., B}. Each
unit computes b-ary predicates and forwards them to the next layer. To enable computation across
predicates of different arities, DLM employs expansion and reduction operations. Each unit applies
binary operations over predicates from the previous layer with arities in b—1, b, b+1, using com-
positions such as: Pd,b = Pdflym A Pdfl_’y, Pd,b = Pdfl’x \Y Pdflyy, Pd,b = .Pdfl,:C A —|Pd,17y,
Pd7b = Pd_1)$ V _‘Pd—l,y7 where x,y € {b —1,b,b+ 1}.

3 METHOD

Our framework is shown in Figure|l| This framework assumes that an integrated task can be divided
into many logically interdependent sub-tasks. Based on this assumption, the model comprises two
levels: a high-level logical model for sub-task identification and planning, and a pool of low-level
action policies, assumed to be pre-selected and pre-trained following previous work (Yang et al.,
2020; He et al., [2022), responsible for executing individual sub-tasks. We first introduce each mod-
ule of ReLIC in § [3.1] Next, we detail the joint training of logical planner and action policies in
§ Finally, we present the self-abstraction and refinement process in §

Under review as a conference paper at ICLR 2026

(a) Joint Training (b) Self-Abstraction and Expert Refinement
) | 1
Expert Predicates ~ Input Predicates
Input 5 Expert Refinement with LLM
Module PE, . BE Py P Input Expert Predicates Input Predicates
Module T Povoon P P{: The object is grabbed by the gripper.
o= P§: The object’s height has reached the target’s
Logical Planner height.
(High) Logical i
Input p P P | Planner | ppy
Lager P01 Poz 0B © o Layer Po1 | Poz Pos]
= e 1 s
Piy Py v P 1 Py Py v P . Self-Abstraction
. . 1 :
: i : | H H H
Py | Paz v Pap 1 T P P2 | Pas Extract
—e——— ! e e
TP, TP, TP, ! TP, TP, TP,
¥ X . x Extract] :
. roies ! ' Ry ! rs
Action Policies | i l l u | ! o B
(Low) v 2 2 1! Key Predicate Extraction
1!1 7 = CIB === > Py
1
a=ms(s) 1 « >
: 1 Pa-1 Piy state: q = P} 1 P; [~ [By
st |a ~ ~
! £ N £ N IAulum:lon Generation
o< Forward Environment |
N — —=|=== P P - P W Collect trajectories of key predicates:
Backward " L Bhe
— ¥ PS5 P; . 2Py,
rozen “ — where P; = (Po(50), Po(s¢), ., Py (50)s
= Key Predicate Set: P* = {(Po, P, .., P/, Pg"} > P{""(s)} = {P{, P, ., i} € P".

& Trainable

Figure 1: The framework of ReLIC. (a) Joint Training (§ 3.2). The input module first maps
MDP states into input predicates, which, together with expert predicates (could be empty initially),
form the input of the logical planner. The planner then produces target predicates (TP), each
corresponding to an action policy, and samples an index § (Eq.[2) to select the policy that acts in
the environment. During logical model training (blue arrows and boxes), the planner samples ¢ and
receives an environment reward r. Conversely, when training action policies (red elements), the
planner remains fixed and provides a reward R,, to guide policy updates. (b) Self-Abstraction and
Refinement (Green Arrows, §[3.3). After recording the predicates from the planner’s forward pass,
key predicate extraction is performed via backpropagation to identify the key predicate set P*. Next,
using trajectories of key predicates, an automaton is synthesized and simplified through automaton
generation and reduction. This automaton is then refined by an LLM, producing expert predicates
that update the input module. This process can be iterated to improve model performance.

3.1 RELIC FRAMEWORK

Input module. The input module transforms the MDP observations s; € R¥ (at time ¢) into
logical predicates that serve as the inputs of the high-level DLM. In general, a b-ary logical pred-
icate P is defined based on a b-ary real transformation function f : R’ — R, a list of in-
dices i1,42,...,% € [K], and an activation interval (u,v). The predicate is then generated by
P(sy) < f((st)iys (St)igs---5(St)i,) € (u,v). The arity of a usual logical predicate used in our
model is at most 3, which is enough for our experiments. We adopt the transformation functions
in the simple forms of addition/subtraction so that they can be generally useful for most natu-
ral tasks. We list the adopted functions in the following table and note that functions such as
(x,y,2) — x + y — z can be substituted by (z,y, z) — x — y + z via changing the order.

Arity Transformation functions
1 Tz, |2
2 (r,y) »x+y, (z,y) mz—y
3 (x,y,z)r—>x+y+z,(m,y,z)+—>x+y7z

Going through the combinations of the transformation functions, the indices, and the activation
intervals, the input module obtains a sequence of predicates and forms the set of input predicates:

P={P,Ps,...,P,}. (1)

For instance, the predicate P; is generated by the transformation function |Zenj — Zgripper| €
(0,0.002), where xobj and Zgripper are elements of the MDP observation s, and (0,0.002) denotes
the activation interval. P is true when the x-axis distance between the object and the gripper is less
than 0.002, and false otherwise. Full lists of predicates appear in Appendix [I]

Beyond basic conversion, the input module provides an interface to inject expert knowledge. Based
on the understanding of a specific task, a human expert or LLM may introduce predicates with spe-
cial transformation functions on particular indices of the MDP state vector, substantially improving

Under review as a conference paper at ICLR 2026

the planning performance. We define these predicates as expert predicates P¢ € P€¢, where P°€ is
the set of expert predicates. Please refer to § [4.3]for detailed demonstrations.

High-level decision and the choice of an action policy. Suppose there are n low-level action
policies. After the final layer (layer d) of the high-level DLM, we append a fully connected layer
(layer (d + 1)) so that there are n special target predicates, TP1, TPy, ..., TP, each of which
corresponds to an action policy. An index ¢, is sampled via

d¢ ~ softmax{TPy, TPs,..., TP, }.)

Deciding MDP actions. Finally, we invoke the low-level action policy 7s and take the MDP action:
ay < 7T§t(8t). (3)

Key predicate extraction. We recorded the predicates during the forward propagation of DLM,
enabling the extraction of the key predicate. As outlined in § 2] DLM performs logical com-
putations through the equation Py = (3 wp, ,Pi—1) 8 O wp, Pj_), where the operator
O € {A,V, A, V—} denotes logical conjunction or disjunction with optional negation. We ex-
tract the predicate P;_q and P, with maximal weights wp, , and w p;_,- We propagate this

operation backward from the output layer to the input layer, decomposing the predicate in the i*"
layer with two predicates of the largest weight in the (i — 1)*" layer. Eventually, we define the
extracted input-layer predicates as the key predicate P* € P*, where P* is the set of key predicates.

Automaton generation and refinement. The extracted key predicates are used for the automaton
synthesis algorithm in Appendix [G] After getting an interpretable automaton, we refine it by inject-
ing expert knowledge through special predicates provided by LLM, and integrate these predicates
with input predicates and use them to train the high-level logical model. Details are in § [3.3]

3.2 JOINT TRAINING OF LOGICAL PLANNER AND ACTION POLICY

We propose a joint training framework (Figure [I(a)) that serves two key purposes. First, the
high-level logical model and the pre-trained low-level policies require training. Second, after
self-abstraction and refinement, the LLM injects additional expert knowledge, requiring further
co-optimization of both modules to ensure that the injected knowledge is effectively propagated
throughout the entire system. A highlight of our training algorithms is the surrogate rewards and
training objectives, which crucially rely on our model structure and help to achieve superior perfor-
mance.

Algorithm 1 Joint Training Algorithm

1: Input: high-level DLM policy m(-|fprm) as described in Eq. (2), low-level action policies
{mi(:16;)}, low-level critic {Q;(:|6¢,) }. horizon H, volley size Tiey, learning rate for actor «,
learning rate for critic 3

2: t <+ 0, observe the environment state sg

3: while task not completed and t < H do

4: calculate the input predicates P based on s

5 sample an index §; ~ w(P(s¢)|0pLMm)

6: for j < 1 to Tyolicy do

7.

8

obtain action a4 ; from s, (s44;(6s,)
receive the reward r; ; from environment, observe the new environment state s ;41

9: get the estimated value w; ; from the critic network of DLM
10: compute Ru(7't+j; 5t7 §t+j,wt+j,1,wt+j)
11 05, < V(logmo,, (ar+j|st+j-1)Qs, (St4j-1,a145-1)) + - 05,
12: 0q;, + V(Ru +7Qs,(St45, ar+j) — Qs (St45-1,at45-1)) + B - g,
13: end for T/

4 Tvolle: ’

14: fprm ¢ V(log T,y (0P (50))) (3,20 7'7ry) + @ foru

15: t <1+ Tyolley

16: end while

Training the high-level logical model. Here we illustrate how to train the high-level logical
model while fixing the low-level policies. Inspired by [Bacon et al.| (2017b), we adopt a volley-
based approach to address the common challenge of sparse environment rewards in RL algorithms

Under review as a conference paper at ICLR 2026

(Mnih et al.; 2013)). Specifically, when the high-level model selects a low-level action policy 75, the
chosen policy is executed for multiple consecutive steps (a volley), rather than a single step. The
environment rewards collected during this volley are aggregated into volley rewards, which are used
to train the high-level model. In Algorithm [I]line [3to line [T5] we roll-out the trajectory based on
volleys: {(s;,,0,,7,) }vef0,1,2,...}- These shorter volley-based trajectories feature denser reward
signals, improving sample efficiency. We apply the standard PPO algorithm (Schulman et al.| [2017)
to the volley-based trajectory to optimize the high-level policy 7(-|#prm). In PPO, we also train a

neural network fed by the input predicates as the critic to approximate the value function.

Training low-level action policies. With the high-level logical model fixed, low-level action poli-
cies are trained via policy gradient methods (e.g., DDPG (Lillicrap et al.|2015))). During training,
complete task trajectories are rolled out and segmented according to the selected low-level policy.
Each policy is then independently updated via gradient descent on its respective trajectory segments.
The (DDPG-based) roll-out algorithm is described in Algorithm I]line [6]to line[I3] A critical com-
ponent is the surrogate reward, defined as:

Ry(r, 0,8 ,w,) =r+a-1[0 #6 Aw > W], 4)
where a > 0 is a hyperparameter. The idea of the surrogate reward is to integrate the environmental
reward r, the instruction ¢ from the high-level model, and the estimated value w from the DLM
critic. When the current sub-task is completed, the high-level model switches to a new action policy
(0 # ¢") and the expected value increases (w > w’). Therefore, adding the term a-1[§ # §' Aw > W]
incentivizes the current low-level action policy to learn to complete the sub-task requested by the
high-level model. We provide the proof for this reward function in Appendix

Joint training. During the actual training process, we alternate between optimizing the high-level
logical model and the low-level action policies, keeping one component’s parameters fixed while
updating the other. This alternating approach allows the two modules to progressively refine each
other, enhancing coordination and guiding the system toward a jointly optimal solution.

3.3 SELF-ABSTRACTION AND REFINEMENT

Figure[I[(b) illustrates our self-abstraction and refinement pipeline. Compared to prior work (Kohler
et al.| 2024} Delfosse et al., [2024)), our pipeline offers two principal advantages. First, we employ
the automaton that condenses trajectories of key predicates into compact states, without relying on
predefined logical structures. Second, LLM can refine the automaton by injecting additional expert
knowledge. These properties make our pipeline more interpretable and more interactive than prior
methods. In the rest of this section, we describe how to perform self-abstraction through automaton
synthesis in § [3.3.1] followed by expert refinement via LLM in §[3.3.2]

3.3.1 AUTOMATON GENERATION AND REDUCTION

We perform self-abstraction by synthesizing a Deterministic Finite Automaton (DFA) that abstracts
the complex logical structures learned by the high-level model. We further evaluate the correctness
of the synthesized DFA. The detailed algorithm for automaton synthesis is depicted in Appendix

First of all, we extract the key predicate after joint training. This approach allows us to focus on
the input predicates that truly impact the decision-making process and groups the observations from
the environment into a limited number of automaton states. Secondly, we utilize the ReLIC to track
changes in the high-level model’s decision. We run the ReLIC and record the bool value of the key
predicate P* and the new decision § every time the high-level model’s output decision changes. The
q and § are defined as the state and transition edge of the DFA:

g=P'OP;O..OP;, 5)
where P € P* and 0 € {A,V,A—,V—-}. With this approach, each run yields a path in the
automaton. We merge the nodes with the same P* and the edges with the same § and prior node to

get a complicated automaton. Finally, we apply the Hopcroft Algorithm (Gries, [1973)) to reduce the
automaton.

3.3.2 EXPERT REFINEMENT VIA LLM

The input for the high-level model is composed of all the predicates in P (Eq. [T), while the syn-
thesized automaton in §3.3.1|keeps only key predicates P* for representing abstract states. Thus, it

Under review as a conference paper at ICLR 2026

might miss some critical predicates. We aim to make the abstraction more fine-grained by integrat-
ing expert knowledge through LLM-based refinement. We employ OpenAl’s GPT-40 to perform
expert refinement on the automaton because of its strong ability to analyze structured information
and follow instructions We input the synthesized automaton alongside two randomly sampled
failure trajectories from the environment, instructing the LLM to identify if any key predicates are
missing in the automaton’s state and then add missing predicates through prompting. Our prompt
enables the LLM to analyze the problem in a chain-of-thought manner (Wei et al.,|[2022). The analy-
sis proceeds in the following steps: (a) leverage expert knowledge while learning the analytical logic
based on the input automaton, (b) analyze the logical relations between key predicates of states, (c)
diagnose failure reasons for failed trajectories, (d) refine the automaton by proposing new expert
predicates P¢ € P¢, and (e) examine the explanation and refined automaton to form a conclusion.
These steps allow the LLM to iteratively inspect its reasoning process and resulting outcomes. Then,
we expand the set of key predicates P* by P* <— P* U P°. We include the newly added predicates
P¢ to the input of the high-level logic model and perform the joint training algorithm to further
fine-tune both the logical model and action policies. We repeat the process of joint training and
adding new expert predicates several times until the training process finishes. The complete prompt
template is provided in Appendix

4 EXPERIMENT

Our experiments aim to: (1) evaluate our method in comparison to baselines in challenging au-
tonomous control environments (§ {.2)), (2) showcase the interpretability and interactivity gained
through self-abstraction and refinement (§ 4.3)), and (3) showcase the effectiveness of the automaton
representation and the self-abstraction and refinement module (§ .4).

4.1 EXPERIMENTAL SETUP

Highway environment. Highway is an autonomous driving simulator based on the OpenAl Gym
(Leurent, 2018). The objective is to control an ego vehicle to maintain high speed while avoiding
collisions. The state space is R?°, representing the ego vehicle and its four nearest surrounding
vehicles. Each vehicle is characterized by five features: a binary existence flag, x and y positions,
and x and y velocities. The action space is R?, encoding the ego vehicle’s horizontal and angular
accelerations.

Fetch environment. Fetch-Pick-And-Place in OpenAl Gym consists of a robotic arm and an object
(Plappert et al., 2018). The task requires the robot to pick an object and place it at a specified
position. The state space is R?®, comprising the information of gripper, object, and target. The
action space is R*: the first three dimensions encode the target gripper position and the fourth
controls the gripper width. The object’s initial position on the table is randomly generalized. We
design four tasks to evaluate our model. Pick&Place: Pick the object and move it to a target position.
Pick&PlaceCorner: Pick and lift the object, then move it to the top-right corner. PickLiftPlace: Pick
and lift the object, then move it to a designated target position. PickHighPlace: Pick and lift the
object to a high position, then place it at a target position, which may vary in height.

Implementation details. We train our model with 500 epochs and perform the expert refinement
every 50 epochs. In each epoch, we have 8 episodes with horizon H = 100. In joint training, we
set the volley length 7,;;¢, as 10. For testing, we conduct our experiments using 10 random seeds,
with each seed evaluated over 100 runs. Please check Appendix [H|for more implementation details.

Baselines. We compare ReLIC against representative baselines spanning four categories: standard
RLs, interpretable RLs, hierarchical RLs, and interactive RLs. TD3-HER (Balasubramanian)
2023) represents standard RL. DiRL (Jothimurugan et al., 2021b) is a hierarchical RL method.
Interpretable RL methods include NLM (Dong et al., 2019), DLM (Zimmer et al.,|2021), NUDGE
(Delfosse et al., [2023)), and INSIGHT (Luo et al., |2024), where INSIGHT is an end-to-end neural-
symbolic model, and NUDGE employs neural-guided symbolic abstraction. For interactive RL, we
evaluate against SCoBots(Delfosse et al.| |2024) and INTERPRETER(Kohler et al.| [2024). For all
discrete models (NLM, DLM, NUDGE, SCoBots, INTERPRETER), we provide the same low-level
policies as ReLIC to ensure a fair comparison.

"https://platform.openai.com/docs/models/gpt-4o

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on Highway. ReLIC surpasses all baselines across standard
RL (TD3-HER), hierarchical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT),
and interactive RL (SCoBots and INTERPRETER). Crash rate denotes the percentage of episodes
ending in failure (| is better); velocity is the agent’s average speed; and length measures how long
the agent remains active (1 is better).

TD3-HER DiRL NLM DLM NUDGE INSIGHT SCoBots INTERP. ReLIC
length 1 28.5+0.1 45.6+0.2 55.8+40.3 56.81+0.2 93.3+0.1 34.6+0.3 93.4+03 95.5+02 97.11+0.1

velocityT 15.3i02 26.5i0,2 25.2i0,2 26.4io_3 24.9i02 20.1i0A3 22.2i0,3 25.7i0A1 27.9i()‘1
crash rate (%) | 73.342.0 76.1+1.0 56.4+0.8 54.3+1.0 4.7+10 70.7429 7.2109 5.4+t14 4.010s

Table 2: Performance comparison on Fetch. ReLIC outperforms standard RL (TD3-HER), hier-
archical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT), and interactive RL
(SCoBots and INTERPRETER) baselines.

Success rate (%) TD3-HER DiRL NLM DLM NUDGE INSIGHT SCoBots INTERP. ReLIC

Pick&Place 51.3:|:1,7 93.7i1,2 63.5i2,3 73.2:{:0,7 75.5:{:2,0 51.6:{:1‘5 85.6i1,4 90.0:{:0‘9 97.3i0,9
Pick&PlaceCorner 52.912,1 93~1i0.8 62.1i1_5 68.5i1,3 74-8i1,2 54.4i0‘3 84.5i1,0 88.6i141 99~3i0.8
PickLiftPlace 50~0:I:1.2 91.8i1,2 59.7i0,9 67.9:{:0,8 73.2:{:1,2 49.].:{:1‘9 84.7j:1,3 87.1:{:1‘1 99.0i0,9

PickHighPlace 21.540.9 42.540.730.341.5 29.140.5 40.940.8 32.1408 76.841.1 75.3+1.5 90.541.1

4.2 MAIN RESULTS

Tables[T]and 2] present the performance of various methods on the Highway and Fetch environments,
respectively. Overall, ReLIC surpasses all baselines in all tasks. TD3-HER, as a purely neural base-
line, yields the weakest performance. Among interpretable RL methods, INSIGHT underperforms
due to its neural policy and the lack of training feedback from its explanations. NLM, DLM, and
NUDGE perform moderately well on Ferch, where the action space is small and task sub-structure
is clear, but struggle with execution precision—for instance, NUDGE learns the correct high-level
sequence in PickLiftPlace (approach then grab), but an incomplete approach may lead to grabbing
failures. On the more dynamic Highway task, these methods perform poorly, even with provided
neural low-level policies, as they lack joint training to coordinate high-level planning with low-level
execution. DiRL, as a hierarchical RL method, performs well on Fetch, but fails on Highway, where
the unpredictable behavior of other vehicles invalidates its fixed, predefined task hierarchy. Interac-
tive baselines such as SCoBots and INTERPRETER benefit from expert or LLM guidance but lack
mechanisms for iterative refinement and joint training, limiting further improvement. In contrast,
ReLIC achieves superior performance by dynamically integrating LLM-provided predicates through
expert refinement and joint training, effectively combining expert knowledge with model learning.

4.3 CASE STUDY: SELF-ABSTRACTION AND LLM REFINEMENT ON PickHighPlace

PickHighPlace is a challenging task because lifting the object to a high position increases the grip-
per’s travel distance and makes the coherent action between the reach and lift sub-tasks difficult to
learn. In this section, we select PickHighPlace as a case study to illustrate our self-abstraction and
refinement. Another case study on Highway is in Appendix [E]

Automaton-based abstraction makes ReLIC interpretable. Figure [2(a) demonstrates sampled
trajectories of key predicates, where each environment state is mapped to a set of key predicates.
These trajectories are condensed into an automaton, with transitions aligned to the low-level action
policies approach, grab, and reach. The resulting automaton is depicted in Figure 2b). To
simplify it, we apply Hopcroft’s algorithm to merge redundant or equivalent states; the reduced
automaton appears in Figure[2(c). In this reduced version, state g7 merges g and ¢u, representing the
gripper grabs the object directly or after approaching, while state gs merges g5 and gg to represent the
final state. The resulting automaton’s concise states and transitions offer an immediate interpretation
of the agent’s policy. For instance, state ¢; indicates that the gripper is near or far from the object, so
only approach and grab are available. Choosing approach deterministically moves the agent
to g2, where the gripper is near the object and its opening exceeds the object’s width.

ReLIC agents are interactive via LLM refinement. The imperfect learning status of the high-
level logical model results in a decreased success rate when the lifting threshold is high. To ad-

Under review as a conference paper at ICLR 2026

q1 = Pss A Psg A Ps7 A Psg A Psg A Pgo A
Pg, (near the object or far away from the
object)

(a) C Sampling Trajectories

P; *S'f';:fx]-(aj()i]s]:zﬁli‘\:rfisisjt’;nce d2 = Poo A Prg A Pry A Pg A Pso A Peo A
P*(s,) bléw th 4 the object Pg; (near the object and gripper length
Env State St etween the arm anc 11e 0bjee larger than object size)

————— is between 0 and 0.002.
St:(xubj'yabjtzubj:) -) -
Go = P2 A P1g A Py7 A Pg A Py A Pgy A Py A P§ (lifted to a high position)

os gl coniceubasicachodii G10 = Pag A Py A Pyy A Py A Py A Py A Pgg A P (at the lower target position or at the

target position. high target position)
A
lAutomaton Generation ! Final Result
1

LLM (d)
Refinement Expert Predicates
—_— P§: The object is grabbed by the gripper.
Pf: The object’s height has reached the
target’s height.

Figure 2: Examples for self-abstraction and refinement for PickHighPlace. (a) Sampled trajec-
tories of key predicates. From environment state s;, the key predicate set P/ is extracted, capturing
critical symbolic conditions. (b) Automaton generated from trajectories of key predicates. Tran-
sitions between states are derived based on trajectories of key predicates. (¢c) Automaton reduction.
Redundant or equivalent states are merged; blue edges and nodes represent updated transitions after
reduction. (d) LLM refinement. The language model proposes additional predicates that encode
expert knowledge. (e) Final refined automaton. Red edges and states are synthesized after another
round of the whole process. More details are provided in Appendix [F}

dress this, the LLM analyzes the reduced automaton and the sampled trajectories to identify miss-
ing environmental cues in the existing set of key predicates. It then proposes additional expert
predicates to enrich the input. As shown in Figure [2(d), the LLM combines five original input
predicates Pi: |Zobj — Tripper| € (0,0.002), Pa: |Yobj — Yeripper] € (0,0.002), P3: |Zobj — Zeripper| €
(0,0.002), Prg: |do| € (0.006,0.008), Pa: |d1| € (0.006,0.008) to generate two expert predicates:

P5: Py + Py + P3 + |Pig + Pyy — t| € (0, err) and Py: |zoj — 0.45] € (0, err),

where ¢ is a gripper-gap threshold, dy and d; are the respective displacements of the left and right
grippers, and err is a tolerance parameter. P indicates whether the gripper can successfully grasp
the object, while P checks whether the object has been lifted to the target height (0.45).

Injected knowledge yields a better final automaton. Figure [2Je) shows the automaton after in-
jecting expert knowledge into the logical model and re-running the full pipeline. Two new states,
g9 and q19, derived from state gg of the reduced automaton by incorporating LLM-generated ex-
pert predicates F§ and Py, respectively. These expert predicates make the automaton states more
fine-grained, enabling the model to identify if the 1ift action is finished and execute 1ift and
reach actions in proper sequence. As a result, ReLIC surpasses all baselines on PickHighPlace, as
reported in Table 2]

4.4 ABLATION STUDY

We conduct three ablations to highlight the benefits of our automaton-structured input and LLM
refinement. First, we compare ReLIC to a variant that removes the automaton and feeds trajectories
of key predicates directly to the LLM (w/o SA). Second, we retain the automaton but replace LLM-
generated expert predicates with manually crafted ones of the same logical form (w/ HR). Third, we
disable the self-abstraction and refinement pipeline entirely, and keep joint training with the original
predicate set (w/o SAR). Results for all variants are summarized in Table

On the PickHighPlace task, ReLIC improves success rate by roughly 63% over the w/o SA variant.
This gain stems from the self-abstraction stage: raw trajectories of key predicates are condensed into
an automaton and further simplified, yielding a compact set of structured information. The resulting
representation makes it easier for the LLM to spot missing information and generate precise expert
predicates, thereby boosting performance. ReLIC is competitive with a human expert (w/ HR).
The input space is large—64 predicates in Fetch and 88 in Highway—so even a human expert finds
it difficult to identify the most relevant input predicates for constructing expert rules. When the
self-abstraction and refinement pipeline is removed (w/o SAR), performance drops sharply—e.g.,
from 90% to 40% on PickHighPlace. This verifies that iterative self-abstraction and refinement are
critical for uncovering missing state cues and guiding joint training toward task success.

Under review as a conference paper at ICLR 2026

Table 3: Self-abstraction and refinement significantly enhance performance. w/o SA: Without
self-abstraction; w/o SAR: Without self-abstraction and refinement; w/ HR: With human refinement.

Task Metric ReLIC w/o SA w/o SAR w/ HR
Pick&Place 97~3i09 93.6i13 86.2i1A5 97.0i13
Pick&PlaceCorner 993108 94.0+08 853423 97.140s
PickLiftPlace Successrate (%) g9 0,00 931114 835115 96.2+10
PickHighPlace 90.5+11 552117 40.0118 88.610s
Length (1) 971401 948401 914402 96.6+0.1
Highway Velocity (1) 2794101 26.7402 27.0401 26.3401

Crash rate (%) (\L) 4~0i0.8 4.1i1‘0 5-3i0.6 4.0i1,1

5 RELATED WORK

Hierarchical RL. Early frameworks like Hierarchical Abstract Machines (HAMs) (Parr & Russell,
1997) provided designer-specified state-machine subroutines, while the option-critic architecture
(Bacon et al.,[2017a) learned temporally-extended actions end-to-end. Feudal Networks (Vezhnevets
et al.,|2017) introduced an explicit manager-worker hierarchy, with a high-level module setting latent
subgoals for a low-level controller. More recently, DiRL (Jothimurugan et al.,[2021a) used logical
task specifications to automatically construct task graphs and learn a policy for each edge (subtask)
with integrated high-level planning. ReLIC also leverages hierarchy, derives an automaton-based
task structure through self-abstraction and refines it during learning, rather than relying on fixed or
manually defined logical schemas.

Interpretable RL. Early work achieved interpretability by constraining the policy class to transpar-
ent structures such as decision trees (Bastani et al.,[2018;|Topin et al.| 2021} |Charbuty & Abdulazeez,
20215 Milani et al., |2022b; [Kohler et al., [2024), graphs (Topin & Velosol [2019), logical programs
(Verma et al., 2018; 2019; [Silver et al., [2020; [Inala et al., [2020b)), or state machines (Inala et al.,
2020a)). Post-processing interpretable models, such as Local Interpretable Model-agnostic Explana-
tions (LIME) (Ribeiro et al.,[2016} [Zhao et al.| 2021), Shapley-based methods (Kumar et al.,|2020),
and LLM-based methods (Luo et al.| 2024), explain opaque agents after policy learning. Other
works focus on learning interpretable logic policies via Inductive Logic Programming (ILP) (Lavrac
& Dzeroskil [1994), which extracts rules from predefined templates. ILP struggles to scale up to
complex scenarios because its rule space grows exponentially with task complexity (Cropper et al.,
2022). Neural Logic Machines (NLM) (Dong et al., [2019) address this by introducing MLPs to
improve expressiveness at the cost of transparency; Differentiable Logic Machines (DLM) (Zimmer,
et al., 2021) replace MLPs with fuzzy logic to restore readability. NUDGE (Delfosse et al., [2023)
leverages trained neural agents to guide the search for candidate-weighted logic rules, thus provid-
ing interpretable policies. ReLIC differs from these methods by utilizing the logic machine as a
high-level policy to facilitate expert knowledge injection.

Interactive RL. There is growing interest in interactive agents that can incorporate external knowl-
edge. SCoBots (Delfosse et al.,|2024) employ a priori concept bottlenecks to train agents that allow
user inspection and intervention. INTERPRETER (Kohler et al., [2024) distills black-box policies
into an editable program, allowing post hoc expert modification. BlendRL (Shindo et all 2025)
blends logic and neural policies using LLM to enhance performance. ReLIC distinguishes itself
by joint training with external knowledge, integrating LLMs’ feedback into the learning process to
dynamically align the agent’s behavior with expert intentions.

6 CONCLUSION

We introduce ReLIC, the Reinforcement Learning with Interactivity for Composite tasks. It inte-
grates a logical model for high-level decision-making and symbolic abstraction, along with low-level
action policies designed for the precise execution of sub-tasks. Notably, ReLIC excels in control
tasks due to its interpretability and interactivity. Based on the structured information provided
by the automaton, ReLIC utilizes LLM to provide interpretation, generate expert predicates, and
perform self-refinement by injecting expert predicates and joint training. Despite these strengths,
ReLIC still has the limitation of requiring pretrained low-level policies—a form of built-in expert
knowledge. For future work, we aim to construct an RL system with minimal expert knowledge,
which offers a promising avenue toward establishing a lifelong learning system.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation were involved. All environments used, including the Fetch and Highway, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of our
ReLIC framework to assist others in reproducing our experiments. We believe these measures will
enable other researchers to reproduce our work and further advance the field.

REFERENCES

Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learn-
ing in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics,
computational biology, and health informatics, pp. 559-560, 2018.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017a.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017b.

Sivasubramanian Balasubramanian. Intrinsically motivated multi-goal reinforcement learning using
robotics environment integrated with openai gym. Journal of Science & Technology, 4(5):46—60,
2023.

Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foundations of
Mathematics, volume 90, pp. 5—46. Elsevier, 1977.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in neural information processing systems, 31, 2018.

Bahzad Charbuty and Adnan Abdulazeez. Classification based on decision tree algorithm for ma-
chine learning. Journal of Applied Science and Technology Trends, 2(01):20-28, 2021.

Andrew Cropper, Sebastijan Dumancié, Richard Evans, and Stephen H Muggleton. Inductive logic
programming at 30. Machine Learning, pp. 1-26, 2022.

Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and ex-
plainable logical policies via neurally guided symbolic abstraction. Advances in Neural Informa-
tion Processing Systems, 36:50838-50858, 2023.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kerst-
ing. Interpretable concept bottlenecks to align reinforcement learning agents. Advances in Neural
Information Processing Systems, 37:66826-66855, 2024.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

David Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97-109, 1973.

Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
unsupervised reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 36, pp. 6884-6892, 2022.

10

Under review as a conference paper at ICLR 2026

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, 2020a.

Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin
Rinard, and Armando Solar-Lezama. Neurosymbolic transformers for multi-agent communica-
tion. Advances in Neural Information Processing Systems, 33:13597-13608, 2020b.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026-10039, 2021a.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026-10039, 2021b.

Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Inter-
pretable and editable programmatic tree policies for reinforcement learning. arXiv preprint
arXiv:2405.14956, 2024.

I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler. Prob-
lems with shapley-value-based explanations as feature importance measures. In Infernational
Conference on Machine Learning, pp. 5491-5500. PMLR, 2020.

Nada Lavrac and Saso Dzeroski. Inductive logic programming. In WLP, pp. 146-160. Springer,
1994.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway—-env, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end
neuro-symbolic reinforcement learning with textual explanations. In Forty-first International
Conference on Machine Learning, 2024.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
forcement learning. arXiv preprint arXiv:2202.08434, 2022a.

Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evan-
gelos E Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for interpretable
multi-agent reinforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 251-266. Springer, 2022b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278-287, 1999.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, 10, 1997.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331-434, 1990.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Under review as a conference paper at ICLR 2026

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135-1144, 2016.

Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable ai: A
survey of user studies for model explanations. IEEE transactions on pattern analysis and machine
intelligence, 46(4):2104-2122, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. BlendRL: A
framework for merging symbolic and neural policy learning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=6010ksMAhd.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 10251-10258, 2020.

Zhihao Song, Yunpeng Jiang, Jianyi Zhang, Paul Weng, Dong Li, Wulong Liu, and Jianye Hao. An
interpretable deep reinforcement learning approach to autonomous driving. In IJCAI Workshop
on Artificial Intelligence for Automous Driving, 2022.

Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2514—
2521, 2019.

Nicholay Topin, Stephanie Milani, Fei Fang, and Manuela Veloso. Iterative bounding mdps: Learn-
ing interpretable policies via non-interpretable methods. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 9923-9931, 2021.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. Advances in neural information processing systems, 34:
25146-25163, 2021.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045-5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540-3549. PMLR, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767-4777, 2020.

Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime: Bayesian
local interpretable model-agnostic explanations. In Uncertainty in artificial intelligence, pp. 887—
896. PMLR, 2021.

Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui Jiang, Jianyi Zhang, Paul Weng, Li Dong,
Hao Jianye, and Liu Wulong. Differentiable logic machines. arXiv preprint arXiv:2102.11529,
2021.

12

https://openreview.net/forum?id=60i0ksMAhd
https://openreview.net/forum?id=60i0ksMAhd

Under review as a conference paper at ICLR 2026

A APPENDIX

B PROOF FOR THE REWARD FUNCTION R,

Here we show that the learned policy 7’(+|6) under our transform of the reward function is included
in the original optimal policy. Our proof follows the idea of the work (Ng et al., [1999). Since we
use a method based on Q-learning for policy optimization, we have:

Q(s,a) = Eg(R(s,a,8") + ymazacaQ(s',a’)). (6)

If we add a potential function ®(s), which is only related to the states, to both sides of the equation,
then:

Q(s,a) — ®(s) = Es(R(s,a,s") +7P(s') — D(s) + y(mazyecaQ(s',a') — ®(s'))). (7)

Here we do a transformation to both the () function and the R,

Q/(Sv CL) = Q(Sv a) - (I)(S)v (3
Ru(s,a,8") = R(s,a,s") + y®(s") — ®(s).)

by substituting Eq. [7]with @’ and R,,, we get the new formula

Q' (s,a) = Eg(Ry(s,a,s") + ymaxacaQ'(s',a’)), (10)
which keeps the form of Q-learning.
For our specific case, we let

B(s) = {1/7 if 3(s) # 3(s') Aw(s) < w(s),)

0 otherwise.

Notice that §(s) is the decision made by the logical model, so it is only related to state s. w is the
output of the high-level critic, though it is related to both the state s and action 4, in every volley,
the decision of the high-level logical model remains the same, which means ¢ is always the same.
So the w is also just related to state s. Then the final form of our reward function is

Ry(r, 0,8 ,w,) =r+ax1[§ #d Aw <. (12)

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADAPTIVENESS

To show the adaptiveness of our ReLIC in tasks that are conceptually analogous yet distinct in their
details, we fine-tune the model on the modified environment, whose side length of the cubic object is
reduced from 0.25cm to 0.15cm. It is worth noting that we only fine-tune a certain set of lower-
level action policies using Algorithm [3| while keeping the high-level logical model unchanged. The
main experiment results are in § 4]

Table 4: Performance comparison before and after fine-tuning after changing the object size.

Succ rate(%) Pre-Finetune Post-Finetune
Pick&Place 84.5+1.6 94.34111
Pick&PlaceCorner 85.8+2.0 95.741.2
PickLiftPlace 84.0+1.5 93.140.7

Result. The experiment results are depicted in Table [f] After adjusting the size of the object, the
success rate of the model decreases by around 10%. However, by solely fine-tuning the lower-level
action policies, we can effectively recover the success rate lost. Additionally, since the lower-level
action policy is relatively simple and has a low training cost, it signifies that we can quickly fine-tune
our model to adapt to changes in the environment and task requirements.

13

Under review as a conference paper at ICLR 2026

D DETAILS OF JOINT TRAINING ALGORITHM

We provide the detailed algorithm for training the high-level logical model in Algorithm[2] Besides,
we provide the detailed algorithm for training low-level action policies in Algorithm [3]

Algorithm 2 Volley-based Roll-out for High-level Logical Model Training

1: Input: high-level DLM policy 7 (-|fprm) as described in Eq. (2), low-level action policies
{m;(-|6;)}, horizon H, volley size Tyoliey

2: Volley count v < 0

3: while v < H/Tvollcy do
4: observe the environment state S,,.7, ;.. » 1€t 8, <= Sy.7 1.,
5: calculate the input predicates P based on s), sample an index 8., ~ 7 (s} |0pLm)
6: Volley reward 7, <— 0
7: for j < 0 to Tyolcy do

8: if j # 0 then observe the environment state ;.1 +; then
9: execute the environment action a7, .., +5 < 76! (Sv-ryone, +1057), TECEIVE the en-
vironment reward 7.7, o +;

10: T:; — T:; + T'v-Tyolley +3
11: end if

12: end for
13: veov+1
14: end while

Algorithm 3 DDPG-based Roll-out for Low-level Action Policy Training

1: Input: high-level DLM policy 7(-|fprm) as described in Eq. (2), low-level action policies
{m;(:16;)}, low-level critic {Q; (:|60,) }, horizon H, volley size Tyo1iey, learning rate for actor o,
learning rate for critic 3

2: t + 0, observe the environment state s

3: while task not completed and ¢t < H do

4: calculate input predicates P based on s;

5 sample an index d; ~ 7(s¢|0prwm)

6 for j < 1 to Tyocy do

7: obtain action a4 ; from 7s, (s¢45|0s,)

8

9

receive the reward 7, ;, observe the new environment state s, ;11
get estimated value w; ; from the critic network of DLM , get ¢’ from DLM

10: 95t — V(log o5, (a;|5;))Q5t, (St-‘rj—h at+j—1)) ta- 95f,

11: 0qs, < V(R +7Qs, (st+5, ar+j) = Q. (St4j-1, atej-1)) + - o,
12: end for

13: t <1+ Tyolley

14: end while

E AUTOMATON REPRESENTATION FOR HIGHWAY TASK

The automaton before simplification using the Hopcroft algorithm is presented in Figure [3} When
we compare this with the reduced version in Figure[d[a), several state reductions can be observed:

* The final states qg, 99, q14, q17, ¢21, G24 are grouped into gag.

* q10, q11 and g5 are grouped into g3p.

* g2, q12 and q19 are grouped into qo5.

* g7, q15 and goo are grouped into gog.

* q4, q13 and goq are grouped into go7.

* gs, q1¢ and go3 are grouped into gog.

14

Under review as a conference paper at ICLR 2026

We also detail the predicate representation for states ¢;. The predicate representations of the automa-
ton states can be seen in Eq. [13] The agent is regarded as in state ¢; when the logical expression for
q; holds.

q <—P1 NPy NP3 AN—Py
qos <Py NPy NP3 APy
qog <P, AmPy AN Ps A - Py
qo7 <Py A=Py AN —=P3 AN =Py N\ Pgs (13)
qog <Py A=Py NP3 APy N\ Pgy
qog <Py A=P3 N =Py A Pgg
q30 < P1 A—Po A—=Ps A—Py A (Pg V Py)

accelerate fq\ merge right ‘®
4 6
N4

accelerate merge right
@ ‘4 '1145

accelerate merge left
r@ & '3 '117»

start

21

accelerate m merge right @

accelerate merge left O
@ g >(q24

accelerate merge left
@@

Figure 3: Automaton before reduced for Highway environment.

Figure 4: Automaton representation and refinement in Highway. (a) The reduced automaton for
Highway. (b) The automaton after the expert refinement. The edge of the automaton represents the
low-level action policy.

Here we list the key predicates mentioned in Eq. [I3] and they are all contained in Table[7]

Pi: if there is a car ahead.

Py: if there is a car behind.

Ps: if there is a car on the left.

P,: if there is a car on the right.

Pg5: if the ego car is on the left of the target lane.

Pgg: if the ego car is on the target lane.

Pg7: if the ego car is on the right of the target lane.

Ps: if the x-axis relative distance of the car ahead and ego car is between 5 and 10.
Py: if the x-axis relative distance of the car ahead and ego car is larger than 10.

15

Under review as a conference paper at ICLR 2026

From Figure] and Eq. [13] we can describe each automaton state in the overtaking task. We start
from ¢q;, where there is a car in front of the ego agent. Then the ego agent can take three feasible
actions: decelerate, merge left, merge right. If the ego agent chooses to decelerate, it will reach gsg.
q3o and ¢ are almost the same except that the distances between the two cars become larger. If it
takes left (right) lane change action, we can find the value-focused predicate P4(P3) changes. Then
the agent accelerates until key predicates Py, P; both become false, which means it is a proper time
to get to the origin lane. Finally, it takes a right (left) lane change to finish overtaking (reach gag).

The automaton after expert refinement is shown in Figure f{b). The edge from g3o — ¢ is elimi-
nated through extra expert knowledge P.ppert = last action is deceleration A Py to prevent the
car agent from repeating accelerate and decelerate. Since we include this more aggressive expert
predicate, we can see a significant increase in the average velocity in Table 3]

F AUTOMATON REPRESENTATION FOR FETCH TASK

Here we present more detailed information about the automaton generation and expert refinement
for PickLiftPlace Task. The automaton of PickLiftPlace task before reduction is presented in Figure
[l and several state reductions can be observed:

* The final states g5, g¢ are grouped into gs.
* States g3, g4 are grouped into g7.

Figure[f[b) is the automaton after the expert refinement. It is decomposed into 5 states. g1 is a final
state, which represents that the whole Fetch task succeeds. The edges represent low-level action
policies. These policies can be concluded as approach, grab, 1ift, and reach the target
position. At g7, we have 2 paths that can lead to the final state. This is because when the target
state is above the horizon, 1ift and reach can be further combined into one policy, which is the
shortcut edge from g7 to ¢19. From this perspective, ReLIC can also generate its high-level policy
instead of executing low-level policy in a sequential arrangement.

We add additional expert knowledge P§ = |Zopject — Tgripper| T |Yobject — Ygripper| + |Zobject —
Zgripper| + |Gieft + Gright — t| < err, PP = |Yobject — 92| < err, where z represents the z-axis
position of the object, ¢ represents simulation time, and §, represents the threshold height set for the
current task, err is a tolerable error range, to the high-level model and fine-tune it to get the refined
automaton (shown in Figure @b)).

Figure 5: Automaton before reduced for Fetch environment.

q1 < Psg A\ Ps7 A Psg A\ Psg A Poo N\ Ps1 A Pes

G2 < Po1 N Pr7 A Pig A\ Psg A Poo A\ Ps1 A Pes

q7 < Po1r AN Pr7 A Pig AN Py N Pro A\ Ps1 A Pss (14)
Q9 < Po1 N Pi7 N\ Pig A\ Py A\ Pig A\ Psa N\ Pss N\ Py

q1o < Pa1 A Pyy A Pig APy A Pig A Pea A Psy N F§

Here we list the key predicates mentioned in Eq. and they are all contained in Table

16

Under review as a conference paper at ICLR 2026

start start

(@)

Figure 6: Automaton Representation and refinement in Fetch. (a) The reduced automaton for
Fetch. (b) The automaton after the expert refinement. Every edge of the automaton represents the
low-level action policy.

Fs1: the height of the object is lower than the target height 0.45

Pso: the height of the object is lower than the target height 0.45

Pss: the object has not reached the target point

Psy: the object has reached the target point

Psg: the x-axis relative distance of the gripper and the object is larger than 0.1

P>1: the x-axis relative distance of the gripper and the object is between 0.008 and 0.01
P57: the y-axis relative distance of the gripper and the object is larger than 0.1

Py7: the y-axis relative distance of the gripper and the object is between 0.006 and 0.008
Psg: the z-axis relative distance of the gripper and the object is larger than 0.1

Pyg: the z-axis relative distance of the gripper and the object is between 0.006 and 0.008
Psg9: the displacement of the left claw is larger than 0.1

Py : the displacement of the left claw is between 0.002 and 0.004

Psp: the displacement of the right claw is larger than 0.1

Pjy: the displacement of the right claw is between 0.002 and 0.004

By abstracting our high-level policy into an automaton and extracting the corresponding predicates
for each key node, we show the capability of our logical model to learn more complex logic beyond
sequential logic, and the effectiveness and uniqueness of our predicate descriptions of the states.

G DFA SYNTHESIZE ALGORITHM

Here we provide a detailed description of our automaton synthesis program. The output of the
high-level logical model is a probability distribution for each low-level action policy. We select the
action policy 75 based on this probability distribution. We invoke the corresponding policy 75 also
for many consecutive periods. During this process, we track the value of the key predicate. We
define all the observations s with the same key predicate as a new state g for the automaton. We
group the state squt0, With the same predecessor automaton state Sqq10,_, and transition d,_ into
a collection, which is represented by a new state .S; in the automaton. This process is repeated until
the end of the episode.

In the experiment, we collect a large amount of traces (specifically 100,000) and group the obser-
vations into different automaton states. Additionally, we employ a predicate for judging whether
the task is accomplished, so that we can easily figure out the terminating state for the automaton.
Finally, we apply the Hopcroft Algorithm to simplify the automaton.

The pseudo-code for this algorithm is Algorithm [}

17

Under review as a conference paper at ICLR 2026

Algorithm 4 Synthesis Automaton Logic Representation for High-level Policy

Input: high-level DLM policy 7(:|fpLm) as described in Eq. (2), low-level action policies
{m;(:|6;)}, horizon H, volley size Tyoliey, €poch N.
epoch count n <— 0
automaton state node map M, the key of M is the state node of automaton, while the value is
another submap describing the decision and the corresponding next state
while n < N do
Volley count v < 0
while task not completed and v < H/Tyolley do
calculate the input predicates P based on s,
sample an index &, ~ 7(s,|0prMm)
if 9, # 0,_1 then
extract key predicates P* from 7 (-|fprn) for the output 6,
calculate the true value of P* based on s,
automaton state S0, — P*
if Squto,_, in M then
if (8,—1 in M[Sauto,_,| then
Semist — M[Sautou,l][(sv—l]
merge Sezist and Sqq10, because they represent the same state in automaton;

else
add {51)_1 . Sautov} to M[SGUtO'u—l}
end if
else
add {Sauto,_, : {(0v—1: Sauto,)}} to M
end if

end if
for j < 0 to Tyol1cy do
if j # 0 then observe the environment state .7, +;
execute the environment action @+, 45 < 75, (Sv-ryoney +4105,)
end for
end while
v—v+1
end while
Split all nodes into final state A and non-final state N
N + {S\FinalState}
while True do
for each state set 7 in N do
for each ¢ in option set do
if ¢ can split 7 then
split 7 into 77 ... T
add 71 ... T toN
end if
end for
end for
if no split operation is done then
break
end if
end while

18

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters in Highway envi- Table 6: Hyperparameters in Fetch-Pick-

ronment. And-Place environment.
Hyperparameter Value Hyperparameter Value

Joint Training Epoch 500 Joint Training Epoch 500
expert Refinement Frequency 50 expert Refinement Frequency 50
DLM Depth 7 DLM Depth 3
DLM Breadth 3 DLM Breadth 3
DLM Discount Factor 0.99 DLM Discount Factor 0.99
DLM Policy Number 4 DLM Policy Number 4
DDPG Discount Factor 0.99 DDPG Discount Factor 0.95
DDPG Learning Rate 0.0005 DDPG Learning Rate 0.0001
DDPG Replay Buffer Size 50000 DDPG Replay Buffer Size 200000

H INPLEMENTATION DETAILS

All experiments were conducted on a machine running Ubuntu 22, equipped with an Intel Xeon 2.5
GHz CPU, 32 GB RAM, and an NVIDIA A100 GPU.

H.1 HIGHWAY ENVIRONMENT

In the Highway environment, we have 4 low-level action policies corresponding to
acceleration,deceleration,merge left,merge right. We choose the Deep Deter-
ministic Policy Gradient (DDPG) algorithm for low-level action policies. We use Adam optimizer
to update the parameters in the DDPG model.

The Hyperparameters for the Highway environment are shown in Table 3]

H.2 FETCH ENVIRONMENT

In the Fetch environment, we conduct three experiments Pick&Place, Pick&PlaceCorner, and Pick-
LiftPlace. We have 4 low-level action policies corresponding to approach, grab, 1ift, reach.
We choose the DDPG algorithm for low-level action policies. We use Adam optimizer to update the
parameters in the DDPG model.

The Hyperparameters for the Ferch environment are shown in Table[6]

I PREDICATES SUMMARY

In this section, we provide a summary of all input predicates and their corresponding relationship
with the input states for our two experiments: Highway and Fetch-Pick-And-Place.

I.1 INPUT PREDICATES IN HIGHWAY ENVIRONMENT
Here we show the mathematical form of input predicates, which is derived from input states in

Highway Environment. The specific input states and predicates are listed in Table[7]

The meanings of the variables in the input states are as follows:

19

Under review as a conference paper at ICLR 2026

do: the x-axis position of the ego agent. d,1: the x-axis position of the nearest car ahead.
do: the x-axis position of the nearest car behind. d,3: the x-axis position of the nearest car on the left.
d4: the x-axis position of the nearest car on the right. do: the y-axis position of the ego agent.

d,1: the y-axis position of the nearest car ahead. dy2: the y-axis position of the nearest car behind.
dy2: the y-axis position of the nearest car behind. dy3: the y-axis position of the nearest car on the left.
dy4: the y-axis position of the nearest car on the right. v.q: the x-axis velocity of the ego agent.

vz1: the x-axis velocity of the car ahead. V2! the x-axis velocity of the car behind.

vy3: the x-axis velocity of the car on the left. vz4: the x-axis velocity of the car on the right.

vy0: the y-axis velocity of the ego agent. vy1: the x-axis velocity of the car ahead.

vy2: the x-axis velocity of the car behind. vy3: the x-axis velocity of the car on the left.

vy4: the x-axis velocity of the car on the right. eo: if there exists a car ahead.

e1: if there exists a car behind. eo: if there exists a car on the left.
es: if there exists a car on the right.

l1: the target lane.

1.2 INPUT PREDICATES IN FETCH-PICK-AND-PLACE ENVIRONMENT

Here we show the mathematical form of input predicates, which is derived from input states in
Fetch-Pick-And-Place environment.

We set the activating intervals as follows: {0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016,
0.018, 0.02, 0.026, 1}. They are used to divide the input states into discrete predicates as the input
of the high-level logical model. The specific input states and predicates are listed in Table[§] Except
for those predicates, Py; and Pso represent if the height of the object is higher than the target height
or not based on z1, while Fg3, Pg4 represent if the object has reached the target position or not based

on (21, Y1, 21).

The meanings of the variables in the Input States are as follows:

x1: The x-axis position of the object.
y1: The y-axis position of the object.

z1: The z-axis position of the object.
dy: The displacement of the right claw.

xo: The x-axis position of the gripper.
yo: The y-axis position of the gripper.
zo: The z-axis position of the gripper.
do: The displacement of the left claw.

J PROMPT TEMPLATE OVERVIEW

We present the complete prompt template for expert refinement via LLM (§[3.3.2). The prompt is
generally composed of several parts:

* Task description: Provide LLM with a description of the task and background information
of the environment.

* Input description: Describe the semantic meaning of each input variable in the form of an
interpretable sentence and the relation between input variables.

* Input: List all input variables in the sequence of the input description.

* Your Task: Input the reduced automaton and failure traces.

* Output: Instruct the LLM to generate the formatted result by employing the chain-of-
thought method.

Table [9] demonstrates the complete prompt template of the Fetch task. Table [I0] demonstrates the
complete prompt template of the Highway task. Table[TT|presents an example of the input format.

K THE USE OF LARGE LANGUAGE MODELS

In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
to enhance the quality and clarity of our written English. The primary application was to identify
and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
thereby improving the overall readability and professionalism of the manuscript.

20

lp: the lane in which the ego agent is located.

Under review as a conference paper at ICLR 2026

Table 7: Input predicates in Highway environment.

Activating Intervals

Input States

Predicates

Description

{0.1,2.5,5,10, 00}

|d$0 - dw1|

Ps, P, Pr, Pg, Py

The x-axis relative distance be-
tween the ego agent and the car
ahead.

{0,1,25,5, 10, 00}

|d320 - dx2|

Pyig, P11, P12, P13, Py

The x-axis relative distance be-
tween the ego agent and the car be-
hind.

{0,1,2.5,5, 10, 00}

|dm0 - dac3|

Pis, Pis, P17, Pig, Pig

The x-axis relative distance be-
tween the ego agent and the car on
the left.

{0,1,2.5,5, 10, 00}

|dx0 - da:4|

Psy, Po1, Pay, Pe3, Poy

The x-axis relative distance be-
tween the ego agent and the car on
the right.

{0.1,2.5,5,10, o0}

|dy0 - dy1|

Pss, Pog, Por, Pag, Pag

The y-axis relative distance be-
tween the ego agent and the car
ahead.

{0.1,2.5,5,10, 00}

|dy0 - dy2|

Psg, P31, P33, P33, P34

The y-axis relative distance be-
tween the ego agent and the car be-
hind.

{0.1,2.5,5,10, 00}

|dy0 - dy3|

P35, P3g, P37, P3g, P39

The y-axis relative distance be-
tween the ego agent and the car on
the left.

{0,1,2.5,5, 10, 00}

|dyo — dy

Pyo, Pa1, Pao, Py3, Py

The y-axis relative distance be-
tween the ego agent and the car on
the right.

{0,05,1,3,6, 00}

|Uz0 - dzl|

Pys, Pys, Paz, Pag, Py

The x-axis relative velocity be-
tween the ego agent and the car
ahead.

{0,05,1,3,6, 00}

|va - d12|

Psg, Ps1, P52, Ps3, Ps4

The x-axis relative velocity be-
tween the ego agent and the car be-
hind.

{0,0.5,1,3,6, 00}

|U:c0 - d13|

Pss, Psg, P57, Psg, Psg

The x-axis relative velocity be-
tween the ego agent and the car on
the left.

{0,0.5,1,3,6, 00}

|Uw0 - dm4|

Pso, Ps1, Ps2, Ps3, Psa

The x-axis relative velocity be-
tween the ego agent and the car on
the right.

{0.0.5.1,3,6, 00}

[0y — dy

Pss, Pss, Por, Pss, oo

The y-axis relative velocity be-
tween the ego agent and the car
ahead.

{0,0.5,1,3,6, 00}

vy — dye|

Pro, P71, Pra, Pr3, Py

The y-axis relative velocity be-
tween the ego agent and the car be-
hind.

{0,05,1,3,6, 00}

[vyo — dys]

Pr5, Prg, Pr7, Prg, Prg

The y-axis relative velocity be-
tween the ego agent and the car on
the left.

{0,05,1,3,6, 00}

[vyo — dya]

P807P817P827P837P84

The y-axis relative velocity be-
tween the ego agent and the car on
the right.

{

e ==1,i=

{0317)

P17P27P3aP4

If there exists a car ahead / behind /
on the left / on the right.

{-00,-0.1, 0.1, 00}

lo—10

21
P857P867P87

The relative direction between the
lane in which the ego agent is lo-
cated and the target lane.

Under review as a conference paper at ICLR 2026

Table 8: Input predicates in Fetch-Pick-And-Place environment.

Input States Predicates Description
The x-axis relative distance be-
|zo — 1] ?’P}%’ Pll%,’ PIIE"; P2]137 Pas, P51, tween the gripper and the ob-
3651441, 446, 4L 51,1456 :
ject.
The y-axis relative distance be-
lyo — y1l %’PZD’ Plfj’ Pl;’ PQJ%’ Por, Psa, tween the gripper and the ob-
37y 4742, 747, '52, 1757 :
ject.
The z-axis relative distance be-
|20 — 21| ?”P]i’ Pl;_’j’ Pl;;’ PZI‘?,’ Pas, Py, tween the gripper and the ob-
38,4743, 14748, 453,158 :
ject.
\do| Py, Py, P14, Prg, Poy, Pag, P34, The displacement of the left
0 Psg, Pya, Pyg, Ps4, Psg claw.
\dy| Ps, Pro, P15, Pag, Pos, Psg, Pss, The displacement of the right

Py, Pys, Pso, Pss, Pso

claw.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g.,
DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language check-
ing and polishing. The prompts were designed to request grammatical corrections, suggestions for
more concise or academically appropriate phrasing, and improvements in logical flow, without al-
tering the core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant.
All substantive intellectual contributions, including the core ideas, theoretical framework, experi-
mental design, data analysis, and result interpretation, remain entirely our own. The final decision
to adopt any suggestion provided by the LLM was always subject to our careful review and judg-
ment. We ensured that every change aligned with our intended meaning and adhered to the standards
of academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus
more effectively on the scientific rigor and conceptual depth of our work.

22

Under review as a conference paper at ICLR 2026

Table 9: Complete prompt template for the Fefch environment.

You are an expert in refining the automaton of a robot for the task Fetch available in the OpenAI Gym repository.
You need to first understand the task and the automaton of the robot.

Task Description

The task in the environment is for a manipulator to move a block to a target position on top of a table or
in mid-air. The robot is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper. The robot
is controlled by small displacements of the gripper in Cartesian coordinates, and the inverse kinematics are
computed internally by the MuJoCo framework. The gripper can be opened or closed in order to perform the
grasping operation of pick and place. The task is also continuing, which means that the robot has to maintain
the block in the target position for an indefinite period.

Total Predicates ID and Its Description

- total_predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
1. The relative distance between the end effector and the object along the x, y, and z axes.

2. The displacement of the left gripper and the right gripper.

3. The height of the object from the table.

Key Predicates ID

- *key_predicates_id* is a list of predicate IDs that are important for the task.

State Predicates

- *state_predicates™ is a dictionary that maps the state ID in *states* to a list of tuples of predicates.

- The boolean values of each predicate tuple are in the order of the *key_predicates_id*. # Automaton

- *action* is a dictionary that maps the action letter to its description.

- *states™ is a list of state IDs in the automaton.

- *start_state™ is the initial state of the automaton.

- *accept_states* is a list of accepting states in the automaton.

- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action
letter, and the value is the next state ID.

Failure Trajectory

- *failure_trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of
the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the
*key_predicates_id and the action letter.

Input

Total Predicates ID and Its Description

- total_predicates = {TOTAL_PREDICATES }

Key Predicates ID

- key_predicates_id = {KEY_PREDICATES_ID}

State Predicates

- state_predicates = { STATE_PREDICATES }

Automaton

- action = {ACTION}

- states = { STATES}

- start_state = {START_STATES}

- accept.states = { ACCEPT_STATES}

- transitions = { TRANSITIONS }

Failure Trajectory

- failure_trajectory = {FAILURE_TRAJECTORY }

Your Task

You need to analyze and refine the automaton of the robot. You must follow the following rules.

1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on
the Input.

2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates
of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by
proposing new key predicates.

3. When performing (a), you can first consider the relationship between predicate tuples in the list and then
consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.

4. When performing (c), you should reduce the number of states to four by removing counterintuitive transi-
tions.

5. When performing (c), the format of the new states and transitions must be consistent with the existing
automaton.

6. The state ID must be a unique integer, and the action letter must be a unique character.

Output

Now, analyze the logical relation between key predicates of states.

{ChatGPT response}

Analyze why failed trajectories failed to reach accepted states.

{ChatGPT response}

Refine the automaton by proposing new key predicates.

{ChatGPT response}

23

Under review as a conference paper at ICLR 2026

Table 10: Complete prompt template for the Highway environment.

You are an expert in refining the automaton of an ego vehicle for the task Highway available in the OpenAl
Gym repository. You need to first understand the task and the automaton of the ego vehicle.

Task Description

The task in the environment is to drive an ego vehicle as fast as possible. At the same time, the ego vehicle
should not hit any other cars. The vehicle is controlled by linear acceleration and angular acceleration in
Cartesian coordinates, and the inverse kinematics are computed internally by the Highway environment. There
are four lanes in the same direction in the environment. Other vehicles in the environment travel at a certain
speed on a specific lane and will not perform unconventional driving maneuvers. This task lasts for a fixed
duration, during which the vehicle must keep moving continuously.

Total Predicates ID and Its Description

- total_predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
1. The relative distance between the ego vehicle and the car along the x and y axes.

2. The relative velocity between the ego vehicle and the car along the x-axis.

3. If there exists a car ahead, behind, on the left, or the right.

4. The relative direction between the lane in which the ego agent is located and the target lane.

Key Predicates ID

- *key_predicates_id* is a list of predicate IDs that are important for the task.

State Predicates

- *state_predicates™* is a dictionary that maps the state ID in *states™* to a list of tuples of predicates.

- The boolean values of each predicate tuple are in the order of the *key_predicates_id*. # Automaton

- *action* is a dictionary that maps the action letter to its description.

- *states™ is a list of state IDs in the automaton.

- *start_state* is the initial state of the automaton.

- *accept_states* is a list of accepting states in the automaton.

- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action
letter, and the value is the next state ID.

Failure Trajectory

- *failure_trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of
the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the
*key_predicates_id and the action letter.

Input

Total Predicates ID and Its Description

- total_predicates = { TOTAL_PREDICATES }

Key Predicates ID

- key_predicates_id = {KEY_PREDICATES_ID }

State Predicates

- state_predicates = {STATE_PREDICATES }

Automaton

- action = {ACTION}

- states = {STATES}

- start_state = { START-STATES }

- accept_states = { ACCEPT_STATES}

- transitions = { TRANSITIONS }

Failure Trajectory

- failure_trajectory = {FAILURE_TRAJECTORY }

Your Task

You need to analyze and refine the automaton of the ego vehicle. You must follow the following rules.

1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on
the Input.

2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates
of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by
proposing new key predicates.

3. When performing (a), you can first consider the relationship between predicate tuples in the list and then
consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.

4. When performing (c), you should reduce the number of states to four by removing counterintuitive transi-
tions.

5. When performing (c), the format of the new states and transitions must be consistent with the existing
automaton.

6. The state ID must be a unique integer, and the action letter must be a unique character.

Output

Now, analyze the logical relation between key predicates of states.

{ChatGPT response}

Analyze why failed trajectories failed to reach accepted states.

{ChatGPT response}

Refine the automaton by proposing new key predicates.

{ChatGPT response}

Under review as a conference paper at ICLR 2026

Table 11: An example of variables that require the user to input.

Input

Total Predicates ID and Its Description

- total_predicates = {"P0’ : ’The x-axis relative distance of the end effector and the object is between 0 and
0.002., ..., ’P55’ : *The x-axis relative distance of the end effector and the object is between 0.026 and 1.’,
"P1° : "The y-axis relative distance of the end effector and the object is between 0 and 0.002.’, ..., ’P56’ : "The
y-axis relative distance of the end effector and the object is between 0.026 and 1., *P2’ : *The z-axis relative
distance of the end effector and the object is between 0 and 0.002.’, ..., ’P57’ : *The z-axis relative distance of
the end effector and the object is between 0.026 and 1., ’P3’ : *The displacement of the left gripper is between 0
and 0.002., ..., P58’ : "The displacement of the left gripper is between 0.026 and 1.”, P4’ : *The displacement
of the right gripper is between 0 and 0.002.’, ..., P59’ : *The displacement of the right gripper is between 0.026
and 1., ’P60’ : *The height of the object is lower than the target height 0.45.”, ’P61” : *The height of the object
is higher than the target height 0.45.", }

Key Predicates ID

- key_predicates_id = ['P35°, ’P36’, ’P5’, 'P40’, P41, ’P10’, "P16’, ’P51°, °P56’, ’P57°, ’P58’, "P31°, |

State Predicates

- state_predicates = {0 : [(0, 0, 0, 0, 0, 0,0, 1,0,0, 1, 0), (0,0,1,0,1,0,0,0,0, 1, 1, 0), (0,0, 1, 0,0, 0, 0,0, 1,
0,1,0),(,0,0,0,0,0,0,0,0, 1,1, 1),(0,0,0,0,0,1,0,0, 1,0, 1, 0), (0, 0,0, 0,0, 0,0, 0,0, 0, 1, 0), (1, 0, O,
0,0,0,0,0,1,0,1,0),(0,0,0,1,0,0,0,0,0,1, 1, 0), (0,0, 1,0,0,0, 1,0, 0, 1, 1, 0), (0, 0, 0,0, 0, 1, 0, 1, O,
0,1,0),(0,0,1,0,0,0,0,0,0,1,1,0), (0,0,0,0,0,0,0, 1,0, 1, 1, 0), (0, 0,0, 0,0, 1, 0,0, 0, 1, 1, 0), (0, 0, 1,
0,0,0,0,1,0,1,1,0),(1,0,0,0,0,0,0,0,0, 1, 1, 0), (0,0,0,0,0,0, 1,0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, O,
0,1, 1,],1:[0,0,1,0,0,0,0,0,0,0, 1, 0), (0,0, 1,0,0,0,0,0,0, 1, 1, 1), (0, 0,0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
0,0,0,0,0,0,0,0,1,1,1,0),(0,0,0,1,0,0,0,0,0,0, 1, 0), (,0,0,0,0,0,0,1, ,1,0),1,2:[(0,0,0,1,
0,0,1,0,0,1,1,0),1,3:[(0,0,0,0,0,0,1,0,0,0, 1, 0), (0, 0,0,0,0,0,0,0,0, 1, ,0),(0,0 0,0,0,1,0,0,
0,0,1,0),(1,0,0,0,0,0,0,0,0,0,1,0),1, }

Automaton

- action = {"A’: "approach’, "B’: "grab’, 'D’: "lift’ }

- states = [0, 1, 2, 3]

- start_state = 1

- accept_states = 0

- transitions = (0, ’B’): 3, (0, ’D’): 3, (0, ’A’): 0, (1, ’B’): 0, (1, ’A’): 3, (2,’A’): 1, (3,’B’): 3

Failure Trajectory

- failure_trajectory = [{((0, 0, 0,0, 0,0, 0,0, 1, 1, 1, 0), "A’): (0,0, 0, 0,0, 1, 0,0, 0, 0, 1, 0), ((0,0,0,0,0, 1, 0,
0,0,0,1,0),’B’):(0,0,0,0,0,0,0,0,0, 1, 1, 0), ((0, 0,0, 0,0, 0,0,0,0, 1, 1, 0), 'D’): (0, 0, 0, 0, 0, 0, 0, 0, O,
1, 1,0)},{((0,0,0,0,0,0,0,0, 1,1, 1,0), ’A’) 0,0,0,0,0,0,0,0,0,0, 1, 0), ((0,0,0,0,0,0,0,0,0,0, 1,
0),’B’): (0,0,0,0,0,0,0,0,0, 1, 1, 0), ((0, 0,0,0,0,0,0,0,0, 1, 1, 0), 'D*): (0,0,0,0,0,0,0,0,0, 1, 1, 0),
((0,0,0,1,0,0,0,0,0,1,1,0),A’): (0,0,0,0,0,0,0,0,0,0, 1, 1), ((0,0,0,0,0,0,0,0,0,0, 1, 1), B’): (0,
0,1,0,0,0,0,0,0,1, 1,0),(0,0,1,0,0,0,0,0,0, 1, 1, 0), 'D*): (0,0, 0,0,0,0,0,0,0, 1, 1, 0) }, {((0, 0, 0,
0,0,0,0,0,1,1,1,0),’A’:(0,0,0,0,0, 1, 1,0,0,0, 1, 0), ((0,0,0,0,0, 1, 1, 0,0, 0, 1, 0), ’B*): (0, 0, 0, 0, O,
0,0,0,0,1, 1,0),((0,0,0,0, ,0,0,0,0,1,1,0),°D’):(0,0,0,0,0,0,0,0,0, 1, 1, 0)}, {((0, 0, 0, 0, 0, 0, 0,
0,1,1,1,0),’A): (0,0, 1,0,0,0,0,0,0,0, 1, 1), ((0,0, 1, 0,0, 0,0,0, 0,0, 1, 1), 'B*): (0,0, 0,0, 0,0, 0,0, 0,
1, 1, 0), ((0, 0, 0, O, ,0,0,0,0 1, 1,0),’D’):(0,0,0,0,0,0,0,0,0,1,1,0)}, {((0,0,0,0,0,0,0,0, 1, 1, 1,
0),’A’): (0,0,0,0,1,0,0,0,0,0, 1, 0), ((0,0,0,0, 1, 0, 0, O 0 , 1,0), B) (0,0,0,0,0,0,0,0,0,1, 1, 0),
((0,0,0,0,0,0,0,0,0,1,1,0),’D’): (0,0,0,0,0,1,0,0,0, 1, 1, 0), ((0, 0, 0,0, 0, 1,0, 0, 0, 1, 1, 0), ’D’): (O,
0,0,0,0,1,0,0,0,1,1,0)},1]

25

	Introduction
	Preliminaries
	Method
	ReLIC Framework
	Joint Training of Logical Planner and Action Policy
	Self-Abstraction and Refinement
	Automaton Generation and Reduction
	Expert Refinement via LLM

	Experiment
	Experimental Setup
	Main Results
	Case Study: Self-Abstraction and LLM Refinement on PickHighPlace
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Proof for the Reward Function Ru
	Additional Experiment Results
	Adaptiveness

	Details of Joint Training Algorithm
	Automaton Representation for Highway Task
	Automaton Representation for Fetch Task
	DFA Synthesize Algorithm
	Inplementation Details
	Highway Environment
	Fetch Environment

	Predicates Summary
	Input Predicates in Highway Environment
	Input Predicates in Fetch-Pick-And-Place Environment

	Prompt Template Overview
	The Use of Large Language Models

