
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERPRETABLE REINFORCEMENT LEARNING WITH
SELF-ABSTRACTION AND REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose ReLIC, a reinforcement learning method with interactivity for com-
posite tasks. Traditional RL methods lack interpretability, so it is difficult to in-
tegrate expert knowledge and refine the trained model. ReLIC is composed of a
high-level logical model, low-level action policies, and a self-abstraction and re-
finement module. At its high level, it takes in predicates as its input so that we
can design a synthesis algorithm to illustrate our high-level model’s logical struc-
ture as an automaton, demonstrating our model’s interpretability. At its low level,
deep reinforcement learning is utilized for detailed action control to maintain high
performance. Furthermore, based on the structured information provided by the
automaton, ReLIC leverages GPT-4o to generate expert predicates and refine the
automaton by injecting expert predicates and performing joint training, thereby
enhancing RELIC’s performance. ReLIC outperforms state-of-the-art baselines in
several benchmarks with continuous state and action spaces. Additionally, ReLIC
does not require humans to hard-code logical structures, so it can solve logically
uncertain tasks.

1 INTRODUCTION

Although Reinforcement Learning (RL) has achieved tremendous success in a variety of control
tasks, it still faces a significant challenge: lack of interpretability (Milani et al., 2022a). This de-
ficiency manifests critically in two aspects: firstly, RL models often fail to provide transparent ex-
planations for their decisions, posing significant risks in high-stakes domains such as autonomous
driving (Song et al., 2022) and healthcare (Ahmad et al., 2018). Secondly, the absence of inter-
pretability hinders direct interaction with models, making it difficult to integrate expert knowledge
or intervene upon detecting biased or undesired behaviors (Rong et al., 2023).

To address the above challenges, researchers have proposed various interpretable RL methods. Early
efforts emphasize interpretability, including decision tree (Bastani et al., 2018; Charbuty & Abdu-
lazeez, 2021), programmatic policy (Trivedi et al., 2021), and Inductive Logic Programming (ILP)-
based approaches Lavrac & Dzeroski (1994) such as NUDGE (Delfosse et al., 2023). However,
these models prioritize transparency over interactivity and offer no interface for incorporating exter-
nal knowledge. More recent work provides interactivity by integrating experts or Large Language
Model (LLM), such as INTERPRETER (Kohler et al., 2024) and SCoBots (Delfosse et al., 2024).
Nevertheless, existing interactive methods introduce expert or LLM knowledge after training, which
means the final model is determined by human intuition, lacking dynamic integration of expert
knowledge during the learning process.

In this paper, we propose Reinforcement Learning with Interactivity for Composite tasks
(ReLIC) that integrates interpretability and lightweight, on-the-fly knowledge injection. ReLIC
consists of modules on two levels: a lower-level module that executes concrete actions and an upper-
level module that symbolically abstracts lower-level control logic. Specifically, the high-level logical
model captures key runtime states through logical combinations of predicates. It has two notable
advantages: unlike methods such as SCoBots (Delfosse et al., 2024), our logical model does not
require pre-defined logical structures. Another feature is its ability to incorporate additional expert
knowledge to guide training. To facilitate expert knowledge injection, we present a self-abstraction
and refinement pipeline. In contrast to prior interactive methods (Kohler et al., 2024; Delfosse et al.,
2024), our high-level logical model can condense a large predicate set into a compact set of salient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

predicates. Next, our pipeline synthesizes an automaton from key predicates, clearly explaining the
model’s current behavior. Based on the synthesized automaton, an LLM then provides supplemen-
tary expert knowledge for the logic model, which realizes interactivity between the LLM and the
logical model. As refinement alters the input predicates to the logical planner, we introduce joint
training to co-optimize the logical planner and action policies, ensuring that injected knowledge
seamlessly integrates into the policy execution.

Our contributions can be summarized as follows:

• ReLIC Framework. We propose a hierarchical RL framework that provides an interface to inject
expert knowledge and supports joint training of the logical model and action policies.

• Interpretability. We introduce a self-abstraction technique that synthesizes an automaton from
the logical model, providing a compact and transparent representation of learned behavior.

• Interactivity. We leverage an LLM to inject additional knowledge into the logical model based on
the automaton, enabling dynamic updates in the learning process.

2 PRELIMINARIES

Markov decision process (MDP): MDP (Puterman, 1990) formalizes sequential decision-making
under uncertainty as a tuple (S,A, T,R, γ), where S denotes state space, A is the action space, T
is the transition function, R is the reward function, and γ is the discount factor. Given the current
state st, the agent selects action at, transitions to st+1 ∼ T (·|st, at), and receives reward rt+1 =
R(st, at, st+1). The objective is to find a policy π that maximizes the expected cumulative reward
over time. It is typically realized via the value function V (s), which quantifies the expected return
from state s under policy π.

First-order logic (FOL): FOL (Barwise, 1977) is a formal language describing objects and their
relations. It comprises constants, variables, predicates, and clauses. Constants denote specific ob-
jects in the environment, while variables represent unspecified ones. Predicates can be written as
P , and an n-ary predicate is denoted as P (x1, x2, ..., xn), where x represents constants or variables.
Predicates capture properties or relations among objects, with truth values in true, false. A clause
is a rule of the form p1 ← p2, p3, ..., pn, where p1 is the head predicate and p2, p3, ..., pn are body
predicates. Predicates grounded with constants are extensional predicates and serve as input pred-
icates in our model; those defined via clauses are intensional predicates and correspond to target
predicates.

Differentiable Logic Machine (DLM): DLM (Zimmer et al., 2021) is a trainable architecture for
reasoning over predicates. It takes in a series of predicates as input and performs differentiable
logic operations including fuzzy and ∧, fuzzy or ∨, and fuzzy not ¬. DLM has a max depth of
D. In each layer, it has B computing units corresponding to predicates of different arities. The
b-ary predicates in the d-th layer are denoted by Pd,b(x1, x2, ...xb), where b ∈ {1, 2, ..., B}. Each
unit computes b-ary predicates and forwards them to the next layer. To enable computation across
predicates of different arities, DLM employs expansion and reduction operations. Each unit applies
binary operations over predicates from the previous layer with arities in b−1, b, b+1, using com-
positions such as: Pd,b = Pd−1,x ∧ Pd−1,y , Pd,b = Pd−1,x ∨ Pd−1,y , Pd,b = Pd−1,x ∧ ¬Pd−1,y ,
Pd,b = Pd−1,x ∨ ¬Pd−1,y , where x, y ∈ {b− 1, b, b+ 1}.

3 METHOD

Our framework is shown in Figure 1. This framework assumes that an integrated task can be divided
into many logically interdependent sub-tasks. Based on this assumption, the model comprises two
levels: a high-level logical model for sub-task identification and planning, and a pool of low-level
action policies, assumed to be pre-selected and pre-trained following previous work (Yang et al.,
2020; He et al., 2022), responsible for executing individual sub-tasks. We first introduce each mod-
ule of ReLIC in § 3.1. Next, we detail the joint training of logical planner and action policies in
§ 3.2. Finally, we present the self-abstraction and refinement process in § 3.3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The framework of ReLIC. (a) Joint Training (§ 3.2). The input module first maps
MDP states into input predicates, which, together with expert predicates (could be empty initially),
form the input of the logical planner. The planner then produces target predicates (TP), each
corresponding to an action policy, and samples an index δ (Eq. 2) to select the policy that acts in
the environment. During logical model training (blue arrows and boxes), the planner samples δ and
receives an environment reward r. Conversely, when training action policies (red elements), the
planner remains fixed and provides a reward Ru to guide policy updates. (b) Self-Abstraction and
Refinement (Green Arrows, § 3.3). After recording the predicates from the planner’s forward pass,
key predicate extraction is performed via backpropagation to identify the key predicate set P∗. Next,
using trajectories of key predicates, an automaton is synthesized and simplified through automaton
generation and reduction. This automaton is then refined by an LLM, producing expert predicates
that update the input module. This process can be iterated to improve model performance.

3.1 RELIC FRAMEWORK

Input module. The input module transforms the MDP observations st ∈ RK (at time t) into
logical predicates that serve as the inputs of the high-level DLM. In general, a b-ary logical pred-
icate P is defined based on a b-ary real transformation function f : Rb → R, a list of in-
dices i1, i2, . . . , ib ∈ [K], and an activation interval (u, v). The predicate is then generated by
P (st) ← f((st)i1 , (st)i2 , . . . , (st)ib) ∈ (u, v). The arity of a usual logical predicate used in our
model is at most 3, which is enough for our experiments. We adopt the transformation functions
in the simple forms of addition/subtraction so that they can be generally useful for most natu-
ral tasks. We list the adopted functions in the following table and note that functions such as
(x, y, z) 7→ x+ y − z can be substituted by (x, y, z) 7→ x− y + z via changing the order.

Arity Transformation functions
1 x 7→ x, x 7→ |x|
2 (x, y) 7→ x+ y, (x, y) 7→ x− y
3 (x, y, z) 7→ x+ y + z, (x, y, z) 7→ x+ y − z

Going through the combinations of the transformation functions, the indices, and the activation
intervals, the input module obtains a sequence of predicates and forms the set of input predicates:

P = {P1, P2, . . . , Pm}. (1)

For instance, the predicate P1 is generated by the transformation function |xobj − xgripper| ∈
(0, 0.002), where xobj and xgripper are elements of the MDP observation s, and (0, 0.002) denotes
the activation interval. P1 is true when the x-axis distance between the object and the gripper is less
than 0.002, and false otherwise. Full lists of predicates appear in Appendix I.

Beyond basic conversion, the input module provides an interface to inject expert knowledge. Based
on the understanding of a specific task, a human expert or LLM may introduce predicates with spe-
cial transformation functions on particular indices of the MDP state vector, substantially improving

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the planning performance. We define these predicates as expert predicates P e ∈ Pe, where Pe is
the set of expert predicates. Please refer to § 4.3 for detailed demonstrations.

High-level decision and the choice of an action policy. Suppose there are n low-level action
policies. After the final layer (layer d) of the high-level DLM, we append a fully connected layer
(layer (d + 1)) so that there are n special target predicates, TP1,TP2, . . . ,TPn, each of which
corresponds to an action policy. An index δt is sampled via

δt ∼ softmax{TP1,TP2, . . . ,TPn}. (2)

Deciding MDP actions. Finally, we invoke the low-level action policy πδ and take the MDP action:
at ← πδt(st). (3)

Key predicate extraction. We recorded the predicates during the forward propagation of DLM,
enabling the extraction of the key predicate. As outlined in § 2, DLM performs logical com-
putations through the equation Pd = (

∑
wPd−1

Pd−1) ⊡ (
∑

wP ′
d−1

P ′
d−1), where the operator

⊡ ∈ {∧,∨,∧¬,∨¬} denotes logical conjunction or disjunction with optional negation. We ex-
tract the predicate Pd−1 and P ′

d−1 with maximal weights wPd−1
and wP ′

d−1
. We propagate this

operation backward from the output layer to the input layer, decomposing the predicate in the ith

layer with two predicates of the largest weight in the (i − 1)th layer. Eventually, we define the
extracted input-layer predicates as the key predicate P ∗ ∈ P∗, where P∗ is the set of key predicates.

Automaton generation and refinement. The extracted key predicates are used for the automaton
synthesis algorithm in Appendix G. After getting an interpretable automaton, we refine it by inject-
ing expert knowledge through special predicates provided by LLM, and integrate these predicates
with input predicates and use them to train the high-level logical model. Details are in § 3.3.

3.2 JOINT TRAINING OF LOGICAL PLANNER AND ACTION POLICY

We propose a joint training framework (Figure 1(a)) that serves two key purposes. First, the
high-level logical model and the pre-trained low-level policies require training. Second, after
self-abstraction and refinement, the LLM injects additional expert knowledge, requiring further
co-optimization of both modules to ensure that the injected knowledge is effectively propagated
throughout the entire system. A highlight of our training algorithms is the surrogate rewards and
training objectives, which crucially rely on our model structure and help to achieve superior perfor-
mance.

Algorithm 1 Joint Training Algorithm
1: Input: high-level DLM policy π(·|θDLM) as described in Eq. (2), low-level action policies
{πi(·|θi)}, low-level critic {Qi(·|θQi)}, horizon H , volley size τvolley, learning rate for actor α,
learning rate for critic β

2: t← 0, observe the environment state s0
3: while task not completed and t < H do
4: calculate the input predicates P based on st
5: sample an index δt ∼ π(P (st)|θDLM)
6: for j ← 1 to τvolley do
7: obtain action at+j from πδt(st+j |θδt)
8: receive the reward rt+j from environment, observe the new environment state st+j+1

9: get the estimated value ωt+j from the critic network of DLM
10: compute Ru(rt+j , δt, δt+j , ωt+j−1, ωt+j)
11: θδt ← ∇(log πθδt

(at+j |st+j−1)Qδt(st+j−1, at+j−1)) + α · θδt
12: θQδt

← ∇(Ru + γQδt(st+j , at+j)−Qδt(st+j−1, at+j−1)) + β · θQδt

13: end for
14: θDLM ← ∇(log πθDLM

(δ
′

t|P (sv)))(
∑T/τvolley

v=0 γvr
′

v) + α · θDLM

15: t← t+ τvolley
16: end while

Training the high-level logical model. Here we illustrate how to train the high-level logical
model while fixing the low-level policies. Inspired by Bacon et al. (2017b), we adopt a volley-
based approach to address the common challenge of sparse environment rewards in RL algorithms

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(Mnih et al., 2013). Specifically, when the high-level model selects a low-level action policy πδ , the
chosen policy is executed for multiple consecutive steps (a volley), rather than a single step. The
environment rewards collected during this volley are aggregated into volley rewards, which are used
to train the high-level model. In Algorithm 1 line 3 to line 15, we roll-out the trajectory based on
volleys: {(s′v, δ′v, r′v)}v∈{0,1,2,... }. These shorter volley-based trajectories feature denser reward
signals, improving sample efficiency. We apply the standard PPO algorithm (Schulman et al., 2017)
to the volley-based trajectory to optimize the high-level policy π(·|θDLM). In PPO, we also train a
neural network fed by the input predicates as the critic to approximate the value function.

Training low-level action policies. With the high-level logical model fixed, low-level action poli-
cies are trained via policy gradient methods (e.g., DDPG (Lillicrap et al., 2015)). During training,
complete task trajectories are rolled out and segmented according to the selected low-level policy.
Each policy is then independently updated via gradient descent on its respective trajectory segments.
The (DDPG-based) roll-out algorithm is described in Algorithm 1 line 6 to line 13. A critical com-
ponent is the surrogate reward, defined as:

Ru(r, δ, δ
′, ω, ω′) = r + α · 1[δ ̸= δ′ ∧ ω > ω′], (4)

where α > 0 is a hyperparameter. The idea of the surrogate reward is to integrate the environmental
reward r, the instruction δ from the high-level model, and the estimated value ω from the DLM
critic. When the current sub-task is completed, the high-level model switches to a new action policy
(δ ̸= δ′) and the expected value increases (ω > ω′). Therefore, adding the term α·1[δ ̸= δ′∧ω > ω′]
incentivizes the current low-level action policy to learn to complete the sub-task requested by the
high-level model. We provide the proof for this reward function in Appendix B.

Joint training. During the actual training process, we alternate between optimizing the high-level
logical model and the low-level action policies, keeping one component’s parameters fixed while
updating the other. This alternating approach allows the two modules to progressively refine each
other, enhancing coordination and guiding the system toward a jointly optimal solution.

3.3 SELF-ABSTRACTION AND REFINEMENT

Figure 1(b) illustrates our self-abstraction and refinement pipeline. Compared to prior work (Kohler
et al., 2024; Delfosse et al., 2024), our pipeline offers two principal advantages. First, we employ
the automaton that condenses trajectories of key predicates into compact states, without relying on
predefined logical structures. Second, LLM can refine the automaton by injecting additional expert
knowledge. These properties make our pipeline more interpretable and more interactive than prior
methods. In the rest of this section, we describe how to perform self-abstraction through automaton
synthesis in § 3.3.1, followed by expert refinement via LLM in § 3.3.2.

3.3.1 AUTOMATON GENERATION AND REDUCTION

We perform self-abstraction by synthesizing a Deterministic Finite Automaton (DFA) that abstracts
the complex logical structures learned by the high-level model. We further evaluate the correctness
of the synthesized DFA. The detailed algorithm for automaton synthesis is depicted in Appendix G.

First of all, we extract the key predicate after joint training. This approach allows us to focus on
the input predicates that truly impact the decision-making process and groups the observations from
the environment into a limited number of automaton states. Secondly, we utilize the ReLIC to track
changes in the high-level model’s decision. We run the ReLIC and record the bool value of the key
predicate P ∗ and the new decision δ every time the high-level model’s output decision changes. The
q and δ are defined as the state and transition edge of the DFA:

q = P ∗
1 ⊡ P ∗

2 ⊡ ...⊡ P ∗
n , (5)

where P ∗
i ∈ P∗ and ⊡ ∈ {∧,∨,∧¬,∨¬}. With this approach, each run yields a path in the

automaton. We merge the nodes with the same P ∗ and the edges with the same δ and prior node to
get a complicated automaton. Finally, we apply the Hopcroft Algorithm (Gries, 1973) to reduce the
automaton.

3.3.2 EXPERT REFINEMENT VIA LLM

The input for the high-level model is composed of all the predicates in P (Eq. 1), while the syn-
thesized automaton in §3.3.1 keeps only key predicates P ∗ for representing abstract states. Thus, it

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

might miss some critical predicates. We aim to make the abstraction more fine-grained by integrat-
ing expert knowledge through LLM-based refinement. We employ OpenAI’s GPT-4o to perform
expert refinement on the automaton because of its strong ability to analyze structured information
and follow instructions.1 We input the synthesized automaton alongside two randomly sampled
failure trajectories from the environment, instructing the LLM to identify if any key predicates are
missing in the automaton’s state and then add missing predicates through prompting. Our prompt
enables the LLM to analyze the problem in a chain-of-thought manner (Wei et al., 2022). The analy-
sis proceeds in the following steps: (a) leverage expert knowledge while learning the analytical logic
based on the input automaton, (b) analyze the logical relations between key predicates of states, (c)
diagnose failure reasons for failed trajectories, (d) refine the automaton by proposing new expert
predicates P e ∈ Pe, and (e) examine the explanation and refined automaton to form a conclusion.
These steps allow the LLM to iteratively inspect its reasoning process and resulting outcomes. Then,
we expand the set of key predicates P∗ by P∗ ← P∗ ∪ Pe. We include the newly added predicates
Pe to the input of the high-level logic model and perform the joint training algorithm to further
fine-tune both the logical model and action policies. We repeat the process of joint training and
adding new expert predicates several times until the training process finishes. The complete prompt
template is provided in Appendix J.

4 EXPERIMENT

Our experiments aim to: (1) evaluate our method in comparison to baselines in challenging au-
tonomous control environments (§ 4.2), (2) showcase the interpretability and interactivity gained
through self-abstraction and refinement (§ 4.3), and (3) showcase the effectiveness of the automaton
representation and the self-abstraction and refinement module (§ 4.4).

4.1 EXPERIMENTAL SETUP

Highway environment. Highway is an autonomous driving simulator based on the OpenAI Gym
(Leurent, 2018). The objective is to control an ego vehicle to maintain high speed while avoiding
collisions. The state space is R25, representing the ego vehicle and its four nearest surrounding
vehicles. Each vehicle is characterized by five features: a binary existence flag, x and y positions,
and x and y velocities. The action space is R2, encoding the ego vehicle’s horizontal and angular
accelerations.

Fetch environment. Fetch-Pick-And-Place in OpenAI Gym consists of a robotic arm and an object
(Plappert et al., 2018). The task requires the robot to pick an object and place it at a specified
position. The state space is R25, comprising the information of gripper, object, and target. The
action space is R4: the first three dimensions encode the target gripper position and the fourth
controls the gripper width. The object’s initial position on the table is randomly generalized. We
design four tasks to evaluate our model. Pick&Place: Pick the object and move it to a target position.
Pick&PlaceCorner: Pick and lift the object, then move it to the top-right corner. PickLiftPlace: Pick
and lift the object, then move it to a designated target position. PickHighPlace: Pick and lift the
object to a high position, then place it at a target position, which may vary in height.

Implementation details. We train our model with 500 epochs and perform the expert refinement
every 50 epochs. In each epoch, we have 8 episodes with horizon H = 100. In joint training, we
set the volley length τvolley as 10. For testing, we conduct our experiments using 10 random seeds,
with each seed evaluated over 100 runs. Please check Appendix H for more implementation details.

Baselines. We compare ReLIC against representative baselines spanning four categories: standard
RLs, interpretable RLs, hierarchical RLs, and interactive RLs. TD3-HER (Balasubramanian,
2023) represents standard RL. DiRL (Jothimurugan et al., 2021b) is a hierarchical RL method.
Interpretable RL methods include NLM (Dong et al., 2019), DLM (Zimmer et al., 2021), NUDGE
(Delfosse et al., 2023), and INSIGHT (Luo et al., 2024), where INSIGHT is an end-to-end neural-
symbolic model, and NUDGE employs neural-guided symbolic abstraction. For interactive RL, we
evaluate against SCoBots(Delfosse et al., 2024) and INTERPRETER(Kohler et al., 2024). For all
discrete models (NLM, DLM, NUDGE, SCoBots, INTERPRETER), we provide the same low-level
policies as ReLIC to ensure a fair comparison.

1https://platform.openai.com/docs/models/gpt-4o

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on Highway. ReLIC surpasses all baselines across standard
RL (TD3-HER), hierarchical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT),
and interactive RL (SCoBots and INTERPRETER). Crash rate denotes the percentage of episodes
ending in failure (↓ is better); velocity is the agent’s average speed; and length measures how long
the agent remains active (↑ is better).

TD3-HER DiRL NLM DLM NUDGE INSIGHT SCoBots INTERP. ReLIC

length ↑ 28.5±0.1 45.6±0.2 55.8±0.3 56.8±0.2 93.3±0.1 34.6±0.3 93.4±0.3 95.5±0.2 97.1±0.1

velocity ↑ 15.3±0.2 26.5±0.2 25.2±0.2 26.4±0.3 24.9±0.2 20.1±0.3 22.2±0.3 25.7±0.1 27.9±0.1

crash rate (%) ↓ 73.3±2.0 76.1±1.0 56.4±0.8 54.3±1.0 4.7±1.0 70.7±2.9 7.2±0.9 5.4±1.4 4.0±0.8

Table 2: Performance comparison on Fetch. ReLIC outperforms standard RL (TD3-HER), hier-
archical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT), and interactive RL
(SCoBots and INTERPRETER) baselines.
Success rate (%) TD3-HER DiRL NLM DLM NUDGE INSIGHT SCoBots INTERP. ReLIC

Pick&Place 51.3±1.7 93.7±1.2 63.5±2.3 73.2±0.7 75.5±2.0 51.6±1.5 85.6±1.4 90.0±0.9 97.3±0.9

Pick&PlaceCorner 52.9±2.1 93.1±0.8 62.1±1.5 68.5±1.3 74.8±1.2 54.4±0.8 84.5±1.0 88.6±1.1 99.3±0.8

PickLiftPlace 50.0±1.2 91.8±1.2 59.7±0.9 67.9±0.8 73.2±1.2 49.1±1.9 84.7±1.3 87.1±1.1 99.0±0.9

PickHighPlace 21.5±0.9 42.5±0.7 30.3±1.5 29.1±0.5 40.9±0.8 32.1±0.8 76.8±1.1 75.3±1.5 90.5±1.1

4.2 MAIN RESULTS

Tables 1 and 2 present the performance of various methods on the Highway and Fetch environments,
respectively. Overall, ReLIC surpasses all baselines in all tasks. TD3-HER, as a purely neural base-
line, yields the weakest performance. Among interpretable RL methods, INSIGHT underperforms
due to its neural policy and the lack of training feedback from its explanations. NLM, DLM, and
NUDGE perform moderately well on Fetch, where the action space is small and task sub-structure
is clear, but struggle with execution precision–for instance, NUDGE learns the correct high-level
sequence in PickLiftPlace (approach then grab), but an incomplete approach may lead to grabbing
failures. On the more dynamic Highway task, these methods perform poorly, even with provided
neural low-level policies, as they lack joint training to coordinate high-level planning with low-level
execution. DiRL, as a hierarchical RL method, performs well on Fetch, but fails on Highway, where
the unpredictable behavior of other vehicles invalidates its fixed, predefined task hierarchy. Interac-
tive baselines such as SCoBots and INTERPRETER benefit from expert or LLM guidance but lack
mechanisms for iterative refinement and joint training, limiting further improvement. In contrast,
ReLIC achieves superior performance by dynamically integrating LLM-provided predicates through
expert refinement and joint training, effectively combining expert knowledge with model learning.

4.3 CASE STUDY: SELF-ABSTRACTION AND LLM REFINEMENT ON PickHighPlace

PickHighPlace is a challenging task because lifting the object to a high position increases the grip-
per’s travel distance and makes the coherent action between the reach and lift sub-tasks difficult to
learn. In this section, we select PickHighPlace as a case study to illustrate our self-abstraction and
refinement. Another case study on Highway is in Appendix E.

Automaton-based abstraction makes ReLIC interpretable. Figure 2(a) demonstrates sampled
trajectories of key predicates, where each environment state is mapped to a set of key predicates.
These trajectories are condensed into an automaton, with transitions aligned to the low-level action
policies approach, grab, and reach. The resulting automaton is depicted in Figure 2(b). To
simplify it, we apply Hopcroft’s algorithm to merge redundant or equivalent states; the reduced
automaton appears in Figure 2(c). In this reduced version, state q7 merges q3 and q4, representing the
gripper grabs the object directly or after approaching, while state q8 merges q5 and q6 to represent the
final state. The resulting automaton’s concise states and transitions offer an immediate interpretation
of the agent’s policy. For instance, state q1 indicates that the gripper is near or far from the object, so
only approach and grab are available. Choosing approach deterministically moves the agent
to q2, where the gripper is near the object and its opening exceeds the object’s width.

ReLIC agents are interactive via LLM refinement. The imperfect learning status of the high-
level logical model results in a decreased success rate when the lifting threshold is high. To ad-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Examples for self-abstraction and refinement for PickHighPlace. (a) Sampled trajec-
tories of key predicates. From environment state st, the key predicate set P∗

t is extracted, capturing
critical symbolic conditions. (b) Automaton generated from trajectories of key predicates. Tran-
sitions between states are derived based on trajectories of key predicates. (c) Automaton reduction.
Redundant or equivalent states are merged; blue edges and nodes represent updated transitions after
reduction. (d) LLM refinement. The language model proposes additional predicates that encode
expert knowledge. (e) Final refined automaton. Red edges and states are synthesized after another
round of the whole process. More details are provided in Appendix F.

dress this, the LLM analyzes the reduced automaton and the sampled trajectories to identify miss-
ing environmental cues in the existing set of key predicates. It then proposes additional expert
predicates to enrich the input. As shown in Figure 2(d), the LLM combines five original input
predicates P1: |xobj − xgripper| ∈ (0, 0.002), P2: |yobj − ygripper| ∈ (0, 0.002), P3: |zobj − zgripper| ∈
(0, 0.002), P19: |d0| ∈ (0.006, 0.008), P20: |d1| ∈ (0.006, 0.008) to generate two expert predicates:

P e
0 : P1 + P2 + P3 + |P19 + P20 − t| ∈ (0, err) and P e

1 : |zobj − 0.45| ∈ (0, err),

where t is a gripper-gap threshold, d0 and d1 are the respective displacements of the left and right
grippers, and err is a tolerance parameter. P e

0 indicates whether the gripper can successfully grasp
the object, while P e

1 checks whether the object has been lifted to the target height (0.45).

Injected knowledge yields a better final automaton. Figure 2(e) shows the automaton after in-
jecting expert knowledge into the logical model and re-running the full pipeline. Two new states,
q9 and q10, derived from state q8 of the reduced automaton by incorporating LLM-generated ex-
pert predicates P e

0 and P e
1 , respectively. These expert predicates make the automaton states more

fine-grained, enabling the model to identify if the lift action is finished and execute lift and
reach actions in proper sequence. As a result, ReLIC surpasses all baselines on PickHighPlace, as
reported in Table 2.

4.4 ABLATION STUDY

We conduct three ablations to highlight the benefits of our automaton-structured input and LLM
refinement. First, we compare ReLIC to a variant that removes the automaton and feeds trajectories
of key predicates directly to the LLM (w/o SA). Second, we retain the automaton but replace LLM-
generated expert predicates with manually crafted ones of the same logical form (w/ HR). Third, we
disable the self-abstraction and refinement pipeline entirely, and keep joint training with the original
predicate set (w/o SAR). Results for all variants are summarized in Table 3.

On the PickHighPlace task, ReLIC improves success rate by roughly 63% over the w/o SA variant.
This gain stems from the self-abstraction stage: raw trajectories of key predicates are condensed into
an automaton and further simplified, yielding a compact set of structured information. The resulting
representation makes it easier for the LLM to spot missing information and generate precise expert
predicates, thereby boosting performance. ReLIC is competitive with a human expert (w/ HR).
The input space is large–64 predicates in Fetch and 88 in Highway–so even a human expert finds
it difficult to identify the most relevant input predicates for constructing expert rules. When the
self-abstraction and refinement pipeline is removed (w/o SAR), performance drops sharply–e.g.,
from 90% to 40% on PickHighPlace. This verifies that iterative self-abstraction and refinement are
critical for uncovering missing state cues and guiding joint training toward task success.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Self-abstraction and refinement significantly enhance performance. w/o SA: Without
self-abstraction; w/o SAR: Without self-abstraction and refinement; w/ HR: With human refinement.

Task Metric ReLIC w/o SA w/o SAR w/ HR

Pick&Place

Success rate (%)

97.3±0.9 93.6±1.3 86.2±1.5 97.0±1.3

Pick&PlaceCorner 99.3±0.8 94.0±0.8 85.3±2.3 97.1±0.8

PickLiftPlace 99.0±0.9 93.1±1.4 83.5±1.3 96.2±1.2

PickHighPlace 90.5±1.1 55.2±1.7 40.0±1.8 88.6±0.8

Highway
Length (↑) 97.1±0.1 94.8±0.1 91.4±0.2 96.6±0.1

Velocity (↑) 27.9±0.1 26.7±0.2 27.0±0.1 26.3±0.1

Crash rate (%) (↓) 4.0±0.8 4.1±1.0 5.3±0.6 4.0±1.1

5 RELATED WORK

Hierarchical RL. Early frameworks like Hierarchical Abstract Machines (HAMs) (Parr & Russell,
1997) provided designer-specified state-machine subroutines, while the option-critic architecture
(Bacon et al., 2017a) learned temporally-extended actions end-to-end. Feudal Networks (Vezhnevets
et al., 2017) introduced an explicit manager-worker hierarchy, with a high-level module setting latent
subgoals for a low-level controller. More recently, DiRL (Jothimurugan et al., 2021a) used logical
task specifications to automatically construct task graphs and learn a policy for each edge (subtask)
with integrated high-level planning. ReLIC also leverages hierarchy, derives an automaton-based
task structure through self-abstraction and refines it during learning, rather than relying on fixed or
manually defined logical schemas.

Interpretable RL. Early work achieved interpretability by constraining the policy class to transpar-
ent structures such as decision trees (Bastani et al., 2018; Topin et al., 2021; Charbuty & Abdulazeez,
2021; Milani et al., 2022b; Kohler et al., 2024), graphs (Topin & Veloso, 2019), logical programs
(Verma et al., 2018; 2019; Silver et al., 2020; Inala et al., 2020b), or state machines (Inala et al.,
2020a). Post-processing interpretable models, such as Local Interpretable Model-agnostic Explana-
tions (LIME) (Ribeiro et al., 2016; Zhao et al., 2021), Shapley-based methods (Kumar et al., 2020),
and LLM-based methods (Luo et al., 2024), explain opaque agents after policy learning. Other
works focus on learning interpretable logic policies via Inductive Logic Programming (ILP) (Lavrac
& Dzeroski, 1994), which extracts rules from predefined templates. ILP struggles to scale up to
complex scenarios because its rule space grows exponentially with task complexity (Cropper et al.,
2022). Neural Logic Machines (NLM) (Dong et al., 2019) address this by introducing MLPs to
improve expressiveness at the cost of transparency; Differentiable Logic Machines (DLM) (Zimmer
et al., 2021) replace MLPs with fuzzy logic to restore readability. NUDGE (Delfosse et al., 2023)
leverages trained neural agents to guide the search for candidate-weighted logic rules, thus provid-
ing interpretable policies. ReLIC differs from these methods by utilizing the logic machine as a
high-level policy to facilitate expert knowledge injection.

Interactive RL. There is growing interest in interactive agents that can incorporate external knowl-
edge. SCoBots (Delfosse et al., 2024) employ a priori concept bottlenecks to train agents that allow
user inspection and intervention. INTERPRETER (Kohler et al., 2024) distills black-box policies
into an editable program, allowing post hoc expert modification. BlendRL (Shindo et al., 2025)
blends logic and neural policies using LLM to enhance performance. ReLIC distinguishes itself
by joint training with external knowledge, integrating LLMs’ feedback into the learning process to
dynamically align the agent’s behavior with expert intentions.

6 CONCLUSION

We introduce ReLIC, the Reinforcement Learning with Interactivity for Composite tasks. It inte-
grates a logical model for high-level decision-making and symbolic abstraction, along with low-level
action policies designed for the precise execution of sub-tasks. Notably, ReLIC excels in control
tasks due to its interpretability and interactivity. Based on the structured information provided
by the automaton, ReLIC utilizes LLM to provide interpretation, generate expert predicates, and
perform self-refinement by injecting expert predicates and joint training. Despite these strengths,
ReLIC still has the limitation of requiring pretrained low-level policies–a form of built-in expert
knowledge. For future work, we aim to construct an RL system with minimal expert knowledge,
which offers a promising avenue toward establishing a lifelong learning system.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation were involved. All environments used, including the Fetch and Highway, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of our
ReLIC framework to assist others in reproducing our experiments. We believe these measures will
enable other researchers to reproduce our work and further advance the field.

REFERENCES

Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learn-
ing in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics,
computational biology, and health informatics, pp. 559–560, 2018.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017a.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017b.

Sivasubramanian Balasubramanian. Intrinsically motivated multi-goal reinforcement learning using
robotics environment integrated with openai gym. Journal of Science & Technology, 4(5):46–60,
2023.

Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foundations of
Mathematics, volume 90, pp. 5–46. Elsevier, 1977.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in neural information processing systems, 31, 2018.

Bahzad Charbuty and Adnan Abdulazeez. Classification based on decision tree algorithm for ma-
chine learning. Journal of Applied Science and Technology Trends, 2(01):20–28, 2021.

Andrew Cropper, Sebastijan Dumančić, Richard Evans, and Stephen H Muggleton. Inductive logic
programming at 30. Machine Learning, pp. 1–26, 2022.

Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and ex-
plainable logical policies via neurally guided symbolic abstraction. Advances in Neural Informa-
tion Processing Systems, 36:50838–50858, 2023.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kerst-
ing. Interpretable concept bottlenecks to align reinforcement learning agents. Advances in Neural
Information Processing Systems, 37:66826–66855, 2024.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

David Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97–109, 1973.

Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
unsupervised reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 36, pp. 6884–6892, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, 2020a.

Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin
Rinard, and Armando Solar-Lezama. Neurosymbolic transformers for multi-agent communica-
tion. Advances in Neural Information Processing Systems, 33:13597–13608, 2020b.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026–10039, 2021a.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026–10039, 2021b.

Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Inter-
pretable and editable programmatic tree policies for reinforcement learning. arXiv preprint
arXiv:2405.14956, 2024.

I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler. Prob-
lems with shapley-value-based explanations as feature importance measures. In International
Conference on Machine Learning, pp. 5491–5500. PMLR, 2020.

Nada Lavrac and Saso Dzeroski. Inductive logic programming. In WLP, pp. 146–160. Springer,
1994.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end
neuro-symbolic reinforcement learning with textual explanations. In Forty-first International
Conference on Machine Learning, 2024.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
forcement learning. arXiv preprint arXiv:2202.08434, 2022a.

Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evan-
gelos E Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for interpretable
multi-agent reinforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 251–266. Springer, 2022b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, 10, 1997.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable ai: A
survey of user studies for model explanations. IEEE transactions on pattern analysis and machine
intelligence, 46(4):2104–2122, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. BlendRL: A
framework for merging symbolic and neural policy learning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=60i0ksMAhd.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 10251–10258, 2020.

Zhihao Song, Yunpeng Jiang, Jianyi Zhang, Paul Weng, Dong Li, Wulong Liu, and Jianye Hao. An
interpretable deep reinforcement learning approach to autonomous driving. In IJCAI Workshop
on Artificial Intelligence for Automous Driving, 2022.

Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2514–
2521, 2019.

Nicholay Topin, Stephanie Milani, Fei Fang, and Manuela Veloso. Iterative bounding mdps: Learn-
ing interpretable policies via non-interpretable methods. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 9923–9931, 2021.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. Advances in neural information processing systems, 34:
25146–25163, 2021.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime: Bayesian
local interpretable model-agnostic explanations. In Uncertainty in artificial intelligence, pp. 887–
896. PMLR, 2021.

Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui Jiang, Jianyi Zhang, Paul Weng, Li Dong,
Hao Jianye, and Liu Wulong. Differentiable logic machines. arXiv preprint arXiv:2102.11529,
2021.

12

https://openreview.net/forum?id=60i0ksMAhd
https://openreview.net/forum?id=60i0ksMAhd

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

B PROOF FOR THE REWARD FUNCTION Ru

Here we show that the learned policy π′(·|θ) under our transform of the reward function is included
in the original optimal policy. Our proof follows the idea of the work (Ng et al., 1999). Since we
use a method based on Q-learning for policy optimization, we have:

Q(s, a) = Es(R(s, a, s′) + γmaxa′∈AQ(s′, a′)). (6)

If we add a potential function Φ(s), which is only related to the states, to both sides of the equation,
then:

Q(s, a)− Φ(s) = Es(R(s, a, s′) + γΦ(s′)− Φ(s) + γ(maxa′∈AQ(s′, a′)− Φ(s′))). (7)

Here we do a transformation to both the Q function and the R,

Q′(s, a) = Q(s, a)− Φ(s), (8)

Ru(s, a, s
′) = R(s, a, s′) + γΦ(s′)− Φ(s). (9)

by substituting Eq. 7 with Q′ and Ru, we get the new formula

Q′(s, a) = Es(Ru(s, a, s
′) + γmaxa′∈AQ

′(s′, a′)), (10)

which keeps the form of Q-learning.

For our specific case, we let

Φ(s) =

{
1/γ if δ(s) ̸= δ(s′) ∧ ω(s) < ω(s′),

0 otherwise.
(11)

Notice that δ(s) is the decision made by the logical model, so it is only related to state s. ω is the
output of the high-level critic, though it is related to both the state s and action δ, in every volley,
the decision of the high-level logical model remains the same, which means δ is always the same.
So the ω is also just related to state s. Then the final form of our reward function is

Ru(r, δ, δ
′, ω, ω′) = r + α× 1[δ ̸= δ′ ∧ ω < ω′]. (12)

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADAPTIVENESS

To show the adaptiveness of our ReLIC in tasks that are conceptually analogous yet distinct in their
details, we fine-tune the model on the modified environment, whose side length of the cubic object is
reduced from 0.25cm to 0.15cm. It is worth noting that we only fine-tune a certain set of lower-
level action policies using Algorithm 3 while keeping the high-level logical model unchanged. The
main experiment results are in § 4.

Table 4: Performance comparison before and after fine-tuning after changing the object size.
Succ rate(%) Pre-Finetune Post-Finetune

Pick&Place 84.5±1.6 94.3±1.1

Pick&PlaceCorner 85.8±2.0 95.7±1.2

PickLiftPlace 84.0±1.5 93.1±0.7

Result. The experiment results are depicted in Table 4. After adjusting the size of the object, the
success rate of the model decreases by around 10%. However, by solely fine-tuning the lower-level
action policies, we can effectively recover the success rate lost. Additionally, since the lower-level
action policy is relatively simple and has a low training cost, it signifies that we can quickly fine-tune
our model to adapt to changes in the environment and task requirements.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D DETAILS OF JOINT TRAINING ALGORITHM

We provide the detailed algorithm for training the high-level logical model in Algorithm 2. Besides,
we provide the detailed algorithm for training low-level action policies in Algorithm 3.

Algorithm 2 Volley-based Roll-out for High-level Logical Model Training
1: Input: high-level DLM policy π(·|θDLM) as described in Eq. (2), low-level action policies
{πi(·|θi)}, horizon H , volley size τvolley

2: Volley count v ← 0
3: while v < H/τvolley do
4: observe the environment state sv·τvolley , let s′v ← sv·τvolley
5: calculate the input predicates P based on s′v , sample an index δ′v ∼ π(s′v|θDLM)
6: Volley reward r′v ← 0
7: for j ← 0 to τvolley do
8: if j ̸= 0 then observe the environment state sv·τvolley+j then
9: execute the environment action av·τvolley+j ← πδ′v (sv·τvolley+j |θδ′v), receive the en-

vironment reward rv·τvolley+j

10: r′v ← r′v + rv·τvolley+j

11: end if
12: end for
13: v ← v + 1
14: end while

Algorithm 3 DDPG-based Roll-out for Low-level Action Policy Training
1: Input: high-level DLM policy π(·|θDLM) as described in Eq. (2), low-level action policies
{πi(·|θi)}, low-level critic {Qi(·|θQi)}, horizon H , volley size τvolley, learning rate for actor α,
learning rate for critic β

2: t← 0, observe the environment state s0
3: while task not completed and t < H do
4: calculate input predicates P based on st
5: sample an index δt ∼ π(st|θDLM)
6: for j ← 1 to τvolley do
7: obtain action at+j from πδt(st+j |θδt)
8: receive the reward rt+j , observe the new environment state st+j+1

9: get estimated value ωt+j from the critic network of DLM , get δ′ from DLM
10: θδt ← ∇(log πθδt

(a
′

v|s
′

v)Qδt(st+j−1, at+j−1)) + α · θδt
11: θQδt

← ∇(R+ γQδt(st+j , at+j)−Qδt(st+j−1, at+j−1)) + β · θQδt

12: end for
13: t← t+ τvolley
14: end while

E AUTOMATON REPRESENTATION FOR HIGHWAY TASK

The automaton before simplification using the Hopcroft algorithm is presented in Figure 3. When
we compare this with the reduced version in Figure 4(a), several state reductions can be observed:

• The final states q6, q9, q14, q17, q21, q24 are grouped into q29.

• q10, q11 and q18 are grouped into q30.

• q2, q12 and q19 are grouped into q25.

• q7, q15 and q22 are grouped into q26.

• q4, q13 and q20 are grouped into q27.

• q8, q16 and q23 are grouped into q28.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We also detail the predicate representation for states qi. The predicate representations of the automa-
ton states can be seen in Eq. 13. The agent is regarded as in state qi when the logical expression for
qi holds.

q1 ←P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4

q25 ←¬P1 ∧ ¬P2 ∧ ¬P3 ∧ P4

q26 ←¬P1,∧¬P2 ∧ P3 ∧ ¬P4

q27 ←¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ P85

q28 ←¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ P87

q29 ←¬P1 ∧ ¬P3 ∧ ¬P4 ∧ P86

q30 ←P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ (P8 ∨ P9)

(13)

Figure 3: Automaton before reduced for Highway environment.

(a) (b)

Figure 4: Automaton representation and refinement in Highway. (a) The reduced automaton for
Highway. (b) The automaton after the expert refinement. The edge of the automaton represents the
low-level action policy.

Here we list the key predicates mentioned in Eq. 13, and they are all contained in Table 7.

P1: if there is a car ahead.
P2: if there is a car behind.
P3: if there is a car on the left.
P4: if there is a car on the right.
P85: if the ego car is on the left of the target lane.
P86: if the ego car is on the target lane.
P87: if the ego car is on the right of the target lane.
P8: if the x-axis relative distance of the car ahead and ego car is between 5 and 10.
P9: if the x-axis relative distance of the car ahead and ego car is larger than 10.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

From Figure 4 and Eq. 13, we can describe each automaton state in the overtaking task. We start
from q1, where there is a car in front of the ego agent. Then the ego agent can take three feasible
actions: decelerate, merge left, merge right. If the ego agent chooses to decelerate, it will reach q30.
q30 and q1 are almost the same except that the distances between the two cars become larger. If it
takes left (right) lane change action, we can find the value-focused predicate P4(P3) changes. Then
the agent accelerates until key predicates P4, P3 both become false, which means it is a proper time
to get to the origin lane. Finally, it takes a right (left) lane change to finish overtaking (reach q29).

The automaton after expert refinement is shown in Figure 4(b). The edge from q30 → q1 is elimi-
nated through extra expert knowledge Pexpert = last action is deceleration ∧ P1 to prevent the
car agent from repeating accelerate and decelerate. Since we include this more aggressive expert
predicate, we can see a significant increase in the average velocity in Table 3.

F AUTOMATON REPRESENTATION FOR FETCH TASK

Here we present more detailed information about the automaton generation and expert refinement
for PickLiftPlace Task. The automaton of PickLiftPlace task before reduction is presented in Figure
5, and several state reductions can be observed:

• The final states q5, q6 are grouped into q8.

• States q3, q4 are grouped into q7.

Figure 6(b) is the automaton after the expert refinement. It is decomposed into 5 states. q10 is a final
state, which represents that the whole Fetch task succeeds. The edges represent low-level action
policies. These policies can be concluded as approach, grab, lift, and reach the target
position. At q7, we have 2 paths that can lead to the final state. This is because when the target
state is above the horizon, lift and reach can be further combined into one policy, which is the
shortcut edge from q7 to q10. From this perspective, ReLIC can also generate its high-level policy
instead of executing low-level policy in a sequential arrangement.

We add additional expert knowledge P e
0 = |xobject − xgripper| + |yobject − ygripper| + |zobject −

zgripper| + |gleft + gright − t| ≤ err, P e
1 = |yobject − δz| ≤ err, where z represents the z-axis

position of the object, t represents simulation time, and δz represents the threshold height set for the
current task, err is a tolerable error range, to the high-level model and fine-tune it to get the refined
automaton (shown in Figure 6(b)).

Figure 5: Automaton before reduced for Fetch environment.

q1 ← P56 ∧ P57 ∧ P58 ∧ P59 ∧ P60 ∧ P61 ∧ P63

q2 ← P21 ∧ P17 ∧ P18 ∧ P59 ∧ P60 ∧ P61 ∧ P63

q7 ← P21 ∧ P17 ∧ P18 ∧ P9 ∧ P10 ∧ P61 ∧ P63

q9 ← P21 ∧ P17 ∧ P18 ∧ P9 ∧ P10 ∧ P62 ∧ P63 ∧ P e
1

q10 ← P21 ∧ P17 ∧ P18 ∧ P9 ∧ P10 ∧ P62 ∧ P64 ∧ P e
0

(14)

Here we list the key predicates mentioned in Eq. 14, and they are all contained in Table 8.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6: Automaton Representation and refinement in Fetch. (a) The reduced automaton for
Fetch. (b) The automaton after the expert refinement. Every edge of the automaton represents the
low-level action policy.

P61: the height of the object is lower than the target height 0.45
P62: the height of the object is lower than the target height 0.45
P63: the object has not reached the target point
P64: the object has reached the target point
P56: the x-axis relative distance of the gripper and the object is larger than 0.1
P21: the x-axis relative distance of the gripper and the object is between 0.008 and 0.01
P57: the y-axis relative distance of the gripper and the object is larger than 0.1
P17: the y-axis relative distance of the gripper and the object is between 0.006 and 0.008
P58: the z-axis relative distance of the gripper and the object is larger than 0.1
P18: the z-axis relative distance of the gripper and the object is between 0.006 and 0.008
P59: the displacement of the left claw is larger than 0.1
P9 : the displacement of the left claw is between 0.002 and 0.004
P60: the displacement of the right claw is larger than 0.1
P10: the displacement of the right claw is between 0.002 and 0.004

By abstracting our high-level policy into an automaton and extracting the corresponding predicates
for each key node, we show the capability of our logical model to learn more complex logic beyond
sequential logic, and the effectiveness and uniqueness of our predicate descriptions of the states.

G DFA SYNTHESIZE ALGORITHM

Here we provide a detailed description of our automaton synthesis program. The output of the
high-level logical model is a probability distribution for each low-level action policy. We select the
action policy πδ based on this probability distribution. We invoke the corresponding policy πδ also
for many consecutive periods. During this process, we track the value of the key predicate. We
define all the observations s with the same key predicate as a new state q for the automaton. We
group the state sautov with the same predecessor automaton state sautov−1

and transition δv−1 into
a collection, which is represented by a new state Si in the automaton. This process is repeated until
the end of the episode.

In the experiment, we collect a large amount of traces (specifically 100,000) and group the obser-
vations into different automaton states. Additionally, we employ a predicate for judging whether
the task is accomplished, so that we can easily figure out the terminating state for the automaton.
Finally, we apply the Hopcroft Algorithm to simplify the automaton.

The pseudo-code for this algorithm is Algorithm 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4 Synthesis Automaton Logic Representation for High-level Policy
Input: high-level DLM policy π(·|θDLM) as described in Eq. (2), low-level action policies
{πi(·|θi)}, horizon H , volley size τvolley, epoch N .
epoch count n← 0
automaton state node map M, the key of M is the state node of automaton, while the value is
another submap describing the decision and the corresponding next state
while n < N do

Volley count v ← 0
while task not completed and v < H/τvolley do

calculate the input predicates P based on sv
sample an index δv ∼ π(sv|θDLM)
if δv ̸= δv−1 then

extract key predicates P∗ from π(·|θDLM) for the output δv
calculate the true value of P∗ based on sv
automaton state Sautov ← P∗

if Sautov−1
inM then

if (δv−1 inM[Sautov−1
] then

Sexist ←M[Sautov−1
][δv−1]

merge Sexist and Sautov because they represent the same state in automaton;
else

add {δv−1 : Sautov} toM[Sautov−1
]

end if
else

add {Sautov−1 : {(δv−1 : Sautov)}} toM
end if

end if
for j ← 0 to τvolley do

if j ̸= 0 then observe the environment state sv·τvolley+j

execute the environment action av·τvolley+j ← πδv (sv·τvolley+j |θδv)
end for

end while
v ← v + 1

end while
Split all nodes into final state A and non-final state N
N ← {S\FinalState}
while True do

for each state set T in N do
for each δ in option set do

if δ can split T then
split T into T1 ... Tk
add T1 ... Tk to N

end if
end for

end for
if no split operation is done then

break
end if

end while

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters in Highway envi-
ronment.

Hyperparameter Value
Joint Training Epoch 500
expert Refinement Frequency 50
DLM Depth 7
DLM Breadth 3
DLM Discount Factor 0.99
DLM Policy Number 4
DDPG Discount Factor 0.99
DDPG Learning Rate 0.0005
DDPG Replay Buffer Size 50000

Table 6: Hyperparameters in Fetch-Pick-
And-Place environment.

Hyperparameter Value
Joint Training Epoch 500
expert Refinement Frequency 50
DLM Depth 3
DLM Breadth 3
DLM Discount Factor 0.99
DLM Policy Number 4
DDPG Discount Factor 0.95
DDPG Learning Rate 0.0001
DDPG Replay Buffer Size 200000

H INPLEMENTATION DETAILS

All experiments were conducted on a machine running Ubuntu 22, equipped with an Intel Xeon 2.5
GHz CPU, 32 GB RAM, and an NVIDIA A100 GPU.

H.1 HIGHWAY ENVIRONMENT

In the Highway environment, we have 4 low-level action policies corresponding to
acceleration, deceleration, merge left, merge right. We choose the Deep Deter-
ministic Policy Gradient (DDPG) algorithm for low-level action policies. We use Adam optimizer
to update the parameters in the DDPG model.

The Hyperparameters for the Highway environment are shown in Table 5.

H.2 FETCH ENVIRONMENT

In the Fetch environment, we conduct three experiments Pick&Place, Pick&PlaceCorner, and Pick-
LiftPlace. We have 4 low-level action policies corresponding to approach, grab, lift, reach.
We choose the DDPG algorithm for low-level action policies. We use Adam optimizer to update the
parameters in the DDPG model.

The Hyperparameters for the Fetch environment are shown in Table 6.

I PREDICATES SUMMARY

In this section, we provide a summary of all input predicates and their corresponding relationship
with the input states for our two experiments: Highway and Fetch-Pick-And-Place.

I.1 INPUT PREDICATES IN HIGHWAY ENVIRONMENT

Here we show the mathematical form of input predicates, which is derived from input states in
Highway Environment. The specific input states and predicates are listed in Table 7.

The meanings of the variables in the input states are as follows:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

dx0: the x-axis position of the ego agent. dx1: the x-axis position of the nearest car ahead.
dx2: the x-axis position of the nearest car behind. dx3: the x-axis position of the nearest car on the left.
dx4: the x-axis position of the nearest car on the right. dy0: the y-axis position of the ego agent.
dy1: the y-axis position of the nearest car ahead. dy2: the y-axis position of the nearest car behind.
dy2: the y-axis position of the nearest car behind. dy3: the y-axis position of the nearest car on the left.
dy4: the y-axis position of the nearest car on the right. vx0: the x-axis velocity of the ego agent.
vx1: the x-axis velocity of the car ahead. vx2: the x-axis velocity of the car behind.
vx3: the x-axis velocity of the car on the left. vx4: the x-axis velocity of the car on the right.
vy0: the y-axis velocity of the ego agent. vy1: the x-axis velocity of the car ahead.
vy2: the x-axis velocity of the car behind. vy3: the x-axis velocity of the car on the left.
vy4: the x-axis velocity of the car on the right. e0: if there exists a car ahead.
e1: if there exists a car behind. e2: if there exists a car on the left.
e3: if there exists a car on the right. l0: the lane in which the ego agent is located.
l1: the target lane.

I.2 INPUT PREDICATES IN FETCH-PICK-AND-PLACE ENVIRONMENT

Here we show the mathematical form of input predicates, which is derived from input states in
Fetch-Pick-And-Place environment.

We set the activating intervals as follows: {0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016,
0.018, 0.02, 0.026, 1}. They are used to divide the input states into discrete predicates as the input
of the high-level logical model. The specific input states and predicates are listed in Table 8. Except
for those predicates, P61 and P62 represent if the height of the object is higher than the target height
or not based on z1, while P63, P64 represent if the object has reached the target position or not based
on (x1, y1, z1).

The meanings of the variables in the Input States are as follows:

x0: The x-axis position of the gripper. x1: The x-axis position of the object.
y0: The y-axis position of the gripper. y1: The y-axis position of the object.
z0: The z-axis position of the gripper. z1: The z-axis position of the object.
d0: The displacement of the left claw. d1: The displacement of the right claw.

J PROMPT TEMPLATE OVERVIEW

We present the complete prompt template for expert refinement via LLM (§ 3.3.2). The prompt is
generally composed of several parts:

• Task description: Provide LLM with a description of the task and background information
of the environment.

• Input description: Describe the semantic meaning of each input variable in the form of an
interpretable sentence and the relation between input variables.

• Input: List all input variables in the sequence of the input description.

• Your Task: Input the reduced automaton and failure traces.

• Output: Instruct the LLM to generate the formatted result by employing the chain-of-
thought method.

Table 9 demonstrates the complete prompt template of the Fetch task. Table 10 demonstrates the
complete prompt template of the Highway task. Table 11 presents an example of the input format.

K THE USE OF LARGE LANGUAGE MODELS

In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
to enhance the quality and clarity of our written English. The primary application was to identify
and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
thereby improving the overall readability and professionalism of the manuscript.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Input predicates in Highway environment.
Activating Intervals Input States Predicates Description

{0, 1, 2.5, 5, 10,∞} |dx0 − dx1| P5, P6, P7, P8, P9

The x-axis relative distance be-
tween the ego agent and the car
ahead.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx2| P10, P11, P12, P13, P14

The x-axis relative distance be-
tween the ego agent and the car be-
hind.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx3| P15, P16, P17, P18, P19

The x-axis relative distance be-
tween the ego agent and the car on
the left.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx4| P20, P21, P22, P23, P24

The x-axis relative distance be-
tween the ego agent and the car on
the right.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy1| P25, P26, P27, P28, P29

The y-axis relative distance be-
tween the ego agent and the car
ahead.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy2| P30, P31, P32, P33, P34

The y-axis relative distance be-
tween the ego agent and the car be-
hind.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy3| P35, P36, P37, P38, P39

The y-axis relative distance be-
tween the ego agent and the car on
the left.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy4| P40, P41, P42, P43, P44

The y-axis relative distance be-
tween the ego agent and the car on
the right.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx1| P45, P46, P47, P48, P49

The x-axis relative velocity be-
tween the ego agent and the car
ahead.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx2| P50, P51, P52, P53, P54

The x-axis relative velocity be-
tween the ego agent and the car be-
hind.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx3| P55, P56, P57, P58, P59

The x-axis relative velocity be-
tween the ego agent and the car on
the left.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx4| P60, P61, P62, P63, P64

The x-axis relative velocity be-
tween the ego agent and the car on
the right.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy1| P65, P66, P67, P68, P69

The y-axis relative velocity be-
tween the ego agent and the car
ahead.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy2| P70, P71, P72, P73, P74

The y-axis relative velocity be-
tween the ego agent and the car be-
hind.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy3| P75, P76, P77, P78, P79

The y-axis relative velocity be-
tween the ego agent and the car on
the left.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy4| P80, P81, P82, P83, P84

The y-axis relative velocity be-
tween the ego agent and the car on
the right.

{} ei == 1, i =
{0, 1, 2, 3} P1, P2, P3, P4

If there exists a car ahead / behind /
on the left / on the right.

{-∞, -0.1, 0.1,∞} l0 − l1 P85, P86, P87

The relative direction between the
lane in which the ego agent is lo-
cated and the target lane.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Input predicates in Fetch-Pick-And-Place environment.
Input States Predicates Description

|x0 − x1|
P1, P6, P11, P16, P21, P26, P31,
P36, P41, P46, P51, P56

The x-axis relative distance be-
tween the gripper and the ob-
ject.

|y0 − y1|
P2, P7, P12, P17, P22, P27, P32,
P37, P42, P47, P52, P57

The y-axis relative distance be-
tween the gripper and the ob-
ject.

|z0 − z1|
P3, P8, P13, P18, P23, P28, P33,
P38, P43, P48, P53, P58

The z-axis relative distance be-
tween the gripper and the ob-
ject.

|d0|
P4, P9, P14, P19, P24, P29, P34,
P39, P44, P49, P54, P59

The displacement of the left
claw.

|d1|
P5, P10, P15, P20, P25, P30, P35,
P40, P45, P50, P55, P60

The displacement of the right
claw.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g.,
DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language check-
ing and polishing. The prompts were designed to request grammatical corrections, suggestions for
more concise or academically appropriate phrasing, and improvements in logical flow, without al-
tering the core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant.
All substantive intellectual contributions, including the core ideas, theoretical framework, experi-
mental design, data analysis, and result interpretation, remain entirely our own. The final decision
to adopt any suggestion provided by the LLM was always subject to our careful review and judg-
ment. We ensured that every change aligned with our intended meaning and adhered to the standards
of academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus
more effectively on the scientific rigor and conceptual depth of our work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Complete prompt template for the Fetch environment.
You are an expert in refining the automaton of a robot for the task Fetch available in the OpenAI Gym repository.
You need to first understand the task and the automaton of the robot.
Task Description
The task in the environment is for a manipulator to move a block to a target position on top of a table or
in mid-air. The robot is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper. The robot
is controlled by small displacements of the gripper in Cartesian coordinates, and the inverse kinematics are
computed internally by the MuJoCo framework. The gripper can be opened or closed in order to perform the
grasping operation of pick and place. The task is also continuing, which means that the robot has to maintain
the block in the target position for an indefinite period.
Total Predicates ID and Its Description
- total predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
1. The relative distance between the end effector and the object along the x, y, and z axes.
2. The displacement of the left gripper and the right gripper.
3. The height of the object from the table.
Key Predicates ID
- *key predicates id* is a list of predicate IDs that are important for the task.
State Predicates
- *state predicates* is a dictionary that maps the state ID in *states* to a list of tuples of predicates.
- The boolean values of each predicate tuple are in the order of the *key predicates id*. # Automaton
- *action* is a dictionary that maps the action letter to its description.
- *states* is a list of state IDs in the automaton.
- *start state* is the initial state of the automaton.
- *accept states* is a list of accepting states in the automaton.
- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action
letter, and the value is the next state ID.
Failure Trajectory
- *failure trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of
the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the
*key predicates id and the action letter.
Input
Total Predicates ID and Its Description
- total predicates = {TOTAL PREDICATES}
Key Predicates ID
- key predicates id = {KEY PREDICATES ID}
State Predicates
- state predicates = {STATE PREDICATES}
Automaton
- action = {ACTION}
- states = {STATES}
- start state = {START STATES}
- accept states = {ACCEPT STATES}
- transitions = {TRANSITIONS}
Failure Trajectory
- failure trajectory = {FAILURE TRAJECTORY}
Your Task
You need to analyze and refine the automaton of the robot. You must follow the following rules.
1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on
the Input.
2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates
of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by
proposing new key predicates.
3. When performing (a), you can first consider the relationship between predicate tuples in the list and then
consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.
4. When performing (c), you should reduce the number of states to four by removing counterintuitive transi-
tions.
5. When performing (c), the format of the new states and transitions must be consistent with the existing
automaton.
6. The state ID must be a unique integer, and the action letter must be a unique character.
Output
Now, analyze the logical relation between key predicates of states.
{ChatGPT response}
Analyze why failed trajectories failed to reach accepted states.
{ChatGPT response}
Refine the automaton by proposing new key predicates.
{ChatGPT response}

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Complete prompt template for the Highway environment.
You are an expert in refining the automaton of an ego vehicle for the task Highway available in the OpenAI
Gym repository. You need to first understand the task and the automaton of the ego vehicle.
Task Description
The task in the environment is to drive an ego vehicle as fast as possible. At the same time, the ego vehicle
should not hit any other cars. The vehicle is controlled by linear acceleration and angular acceleration in
Cartesian coordinates, and the inverse kinematics are computed internally by the Highway environment. There
are four lanes in the same direction in the environment. Other vehicles in the environment travel at a certain
speed on a specific lane and will not perform unconventional driving maneuvers. This task lasts for a fixed
duration, during which the vehicle must keep moving continuously.
Total Predicates ID and Its Description
- total predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
1. The relative distance between the ego vehicle and the car along the x and y axes.
2. The relative velocity between the ego vehicle and the car along the x-axis.
3. If there exists a car ahead, behind, on the left, or the right.
4. The relative direction between the lane in which the ego agent is located and the target lane.
Key Predicates ID
- *key predicates id* is a list of predicate IDs that are important for the task.
State Predicates
- *state predicates* is a dictionary that maps the state ID in *states* to a list of tuples of predicates.
- The boolean values of each predicate tuple are in the order of the *key predicates id*. # Automaton
- *action* is a dictionary that maps the action letter to its description.
- *states* is a list of state IDs in the automaton.
- *start state* is the initial state of the automaton.
- *accept states* is a list of accepting states in the automaton.
- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action
letter, and the value is the next state ID.
Failure Trajectory
- *failure trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of
the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the
*key predicates id and the action letter.
Input
Total Predicates ID and Its Description
- total predicates = {TOTAL PREDICATES}
Key Predicates ID
- key predicates id = {KEY PREDICATES ID}
State Predicates
- state predicates = {STATE PREDICATES}
Automaton
- action = {ACTION}
- states = {STATES}
- start state = {START STATES}
- accept states = {ACCEPT STATES}
- transitions = {TRANSITIONS}
Failure Trajectory
- failure trajectory = {FAILURE TRAJECTORY}
Your Task
You need to analyze and refine the automaton of the ego vehicle. You must follow the following rules.
1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on
the Input.
2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates
of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by
proposing new key predicates.
3. When performing (a), you can first consider the relationship between predicate tuples in the list and then
consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.
4. When performing (c), you should reduce the number of states to four by removing counterintuitive transi-
tions.
5. When performing (c), the format of the new states and transitions must be consistent with the existing
automaton.
6. The state ID must be a unique integer, and the action letter must be a unique character.
Output
Now, analyze the logical relation between key predicates of states.
{ChatGPT response}
Analyze why failed trajectories failed to reach accepted states.
{ChatGPT response}
Refine the automaton by proposing new key predicates.
{ChatGPT response} 24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: An example of variables that require the user to input.
Input
Total Predicates ID and Its Description
- total predicates = {’P0’ : ’The x-axis relative distance of the end effector and the object is between 0 and
0.002.’, . . . , ’P55’ : ’The x-axis relative distance of the end effector and the object is between 0.026 and 1.’,
’P1’ : ’The y-axis relative distance of the end effector and the object is between 0 and 0.002.’, . . . , ’P56’ : ’The
y-axis relative distance of the end effector and the object is between 0.026 and 1.’, ’P2’ : ’The z-axis relative
distance of the end effector and the object is between 0 and 0.002.’, . . . , ’P57’ : ’The z-axis relative distance of
the end effector and the object is between 0.026 and 1.’, ’P3’ : ’The displacement of the left gripper is between 0
and 0.002.’, . . . , ’P58’ : ’The displacement of the left gripper is between 0.026 and 1.’, ’P4’ : ’The displacement
of the right gripper is between 0 and 0.002.’, . . . , P59’ : ’The displacement of the right gripper is between 0.026
and 1.’, ’P60’ : ’The height of the object is lower than the target height 0.45.’, ’P61’ : ’The height of the object
is higher than the target height 0.45.’, }
Key Predicates ID
- key predicates id = [’P35’, ’P36’, ’P5’, ’P40’, ’P41’, ’P10’, ’P16’, ’P51’, ’P56’, ’P57’, ’P58’, ’P31’,]
State Predicates
- state predicates = {0 : [(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0), (0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0), (0, 0, 1,
0, 0, 0, 0, 1, 0, 1, 1, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1),], 1 : [(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0),], 2 : [(0, 0, 0, 1,
0, 0, 1, 0, 0, 1, 1, 0),], 3 : [(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),], }
Automaton
- action = {’A’: ’approach’, ’B’: ’grab’, ’D’: ’lift’}
- states = [0, 1, 2, 3]
- start state = 1
- accept states = 0
- transitions = (0, ’B’): 3, (0, ’D’): 3, (0, ’A’): 0, (1, ’B’): 0, (1, ’A’): 3, (2, ’A’): 1, (3, ’B’): 3
Failure Trajectory
- failure trajectory = [{((0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0), ’A’): (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), ((0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0), ’B’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0)}, {((0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0), ’A’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0), ’B’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
((0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0), ’A’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1), ’B’): (0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0), ((0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)}, {((0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0), ’A’): (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0), ((0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0), ’B’): (0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)}, {((0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 0), ’A’): (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1), ((0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1), ’B’): (0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0), ((0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)}, {((0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0), ’A’): (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0), ((0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0), ’B’): (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
((0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), ’D’): (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0), ((0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0), ’D’): (0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)},]

25

	Introduction
	Preliminaries
	Method
	ReLIC Framework
	Joint Training of Logical Planner and Action Policy
	Self-Abstraction and Refinement
	Automaton Generation and Reduction
	Expert Refinement via LLM

	Experiment
	Experimental Setup
	Main Results
	Case Study: Self-Abstraction and LLM Refinement on PickHighPlace
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Proof for the Reward Function Ru
	Additional Experiment Results
	Adaptiveness

	Details of Joint Training Algorithm
	Automaton Representation for Highway Task
	Automaton Representation for Fetch Task
	DFA Synthesize Algorithm
	Inplementation Details
	Highway Environment
	Fetch Environment

	Predicates Summary
	Input Predicates in Highway Environment
	Input Predicates in Fetch-Pick-And-Place Environment

	Prompt Template Overview
	The Use of Large Language Models

