

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERPRETABLE REINFORCEMENT LEARNING WITH SELF-ABSTRACTION AND REFINEMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose ReLIC, a reinforcement learning method with interactivity for composite tasks. Traditional RL methods lack interpretability, so it is difficult to integrate expert knowledge and refine the trained model. ReLIC is composed of a high-level logical model, low-level action policies, and a self-abstraction and refinement module. At its high level, it takes in predicates as its input so that we can design a synthesis algorithm to illustrate our high-level model’s logical structure as an automaton, demonstrating our model’s interpretability. At its low level, deep reinforcement learning is utilized for detailed action control to maintain high performance. Furthermore, based on the structured information provided by the automaton, ReLIC leverages GPT-4o to generate expert predicates and refine the automaton by injecting expert predicates and performing joint training, thereby enhancing ReLIC’s performance. ReLIC outperforms state-of-the-art baselines in several benchmarks with continuous state and action spaces. Additionally, ReLIC does not require humans to hard-code logical structures, so it can solve logically uncertain tasks.

1 INTRODUCTION

Although Reinforcement Learning (RL) has achieved tremendous success in a variety of control tasks, it still faces a significant challenge: lack of interpretability (Milani et al., 2022a). This deficiency manifests critically in two aspects: firstly, RL models often fail to provide transparent explanations for their decisions, posing significant risks in high-stakes domains such as autonomous driving (Song et al., 2022) and healthcare (Ahmad et al., 2018). Secondly, the absence of interpretability hinders direct interaction with models, making it difficult to integrate expert knowledge or intervene upon detecting biased or undesired behaviors (Rong et al., 2023).

To address the above challenges, researchers have proposed various interpretable RL methods. Early efforts emphasize *interpretability*, including decision tree (Bastani et al., 2018; Charbuty & Abdulazeez, 2021), programmatic policy (Trivedi et al., 2021), and Inductive Logic Programming (ILP)-based approaches Lavrac & Dzeroski (1994) such as NUDGE (Delfosse et al., 2023). However, these models prioritize transparency over interactivity and offer no interface for incorporating external knowledge. More recent work provides *interactivity* by integrating experts or Large Language Model (LLM), such as INTERPRETER (Kohler et al., 2024) and SCoBots (Delfosse et al., 2024). Nevertheless, existing interactive methods introduce expert or LLM knowledge after training, which means the final model is determined by human intuition, lacking dynamic integration of expert knowledge during the learning process.

In this paper, we propose **Reinforcement Learning with Interactivity for Composite tasks (ReLIC)** that integrates interpretability and lightweight, on-the-fly knowledge injection. ReLIC consists of modules on two levels: a lower-level module that executes concrete actions and an upper-level module that symbolically abstracts lower-level control logic. Specifically, the high-level logical model captures key runtime states through logical combinations of predicates. It has two notable advantages: unlike methods such as SCoBots (Delfosse et al., 2024), our logical model does not require pre-defined logical structures. Another feature is its ability to *incorporate additional expert knowledge* to guide training. To facilitate expert knowledge injection, we present a **self-abstraction and refinement** pipeline. In contrast to prior interactive methods (Kohler et al., 2024; Delfosse et al., 2024), our high-level logical model can condense a large predicate set into a compact set of salient

054 predicates. Next, our pipeline synthesizes an automaton from key predicates, clearly explaining the
 055 model’s current behavior. Based on the synthesized automaton, an LLM then provides supple-
 056 mentary expert knowledge for the logic model, which realizes interactivity between the LLM and the
 057 logical model. As refinement alters the input predicates to the logical planner, we introduce **joint**
 058 **training** to co-optimize the logical planner and action policies, ensuring that injected knowledge
 059 seamlessly integrates into the policy execution.

060 Our contributions can be summarized as follows:
 061

- 062 • **ReLIC Framework.** We propose a hierarchical RL framework that provides an interface to inject
 063 expert knowledge and supports joint training of the logical model and action policies.
- 064 • **Interpretability.** We introduce a self-abstraction technique that synthesizes an automaton from
 065 the logical model, providing a compact and transparent representation of learned behavior.
- 066 • **Interactivity.** We leverage an LLM to inject additional knowledge into the logical model based on
 067 the automaton, enabling dynamic updates in the learning process.

070 2 PRELIMINARIES

071 **Markov decision process (MDP):** MDP (Puterman, 1990) formalizes sequential decision-making
 072 under uncertainty as a tuple (S, A, T, R, γ) , where S denotes state space, A is the action space, T
 073 is the transition function, R is the reward function, and γ is the discount factor. Given the current
 074 state s_t , the agent selects action a_t , transitions to $s_{t+1} \sim T(\cdot|s_t, a_t)$, and receives reward $r_{t+1} =$
 075 $R(s_t, a_t, s_{t+1})$. The objective is to find a policy π that maximizes the expected cumulative reward
 076 over time. It is typically realized via the value function $V(s)$, which quantifies the expected return
 077 from state s under policy π .
 078

079 **First-order logic (FOL):** FOL (Barwise, 1977) is a formal language describing objects and their
 080 relations. It comprises constants, variables, predicates, and clauses. Constants denote specific ob-
 081 jects in the environment, while variables represent unspecified ones. Predicates can be written as
 082 P , and an n -ary predicate is denoted as $P(x_1, x_2, \dots, x_n)$, where x represents constants or variables.
 083 Predicates capture properties or relations among objects, with truth values in true, false. A clause
 084 is a rule of the form $p_1 \leftarrow p_2, p_3, \dots, p_n$, where p_1 is the head predicate and p_2, p_3, \dots, p_n are body
 085 predicates. Predicates grounded with constants are *extensional predicates* and serve as input predi-
 086 cates in our model; those defined via clauses are *intensional predicates* and correspond to target
 087 predicates.

088 **Differentiable Logic Machine (DLM):** DLM (Zimmer et al., 2021) is a trainable architecture for
 089 reasoning over predicates. It takes in a series of predicates as input and performs differentiable
 090 logic operations including *fuzzy and* \wedge , *fuzzy or* \vee , and *fuzzy not* \neg . DLM has a max depth of
 091 D . In each layer, it has B computing units corresponding to predicates of different arities. The
 092 b -ary predicates in the d -th layer are denoted by $P_{d,b}(x_1, x_2, \dots, x_b)$, where $b \in \{1, 2, \dots, B\}$. Each
 093 unit computes b -ary predicates and forwards them to the next layer. To enable computation across
 094 predicates of different arities, DLM employs *expansion* and *reduction* operations. Each unit applies
 095 binary operations over predicates from the previous layer with arities in $b-1, b, b+1$, using com-
 096 positions such as: $P_{d,b} = P_{d-1,x} \wedge P_{d-1,y}$, $P_{d,b} = P_{d-1,x} \vee P_{d-1,y}$, $P_{d,b} = P_{d-1,x} \wedge \neg P_{d-1,y}$,
 097 $P_{d,b} = P_{d-1,x} \vee \neg P_{d-1,y}$, where $x, y \in \{b-1, b, b+1\}$.
 098

099 3 METHOD

100 Our framework is shown in Figure 1. This framework assumes that an integrated task can be divided
 101 into many logically interdependent sub-tasks. Based on this assumption, the model comprises two
 102 levels: a *high-level logical model* for sub-task identification and planning, and a pool of *low-level*
 103 *action policies*, assumed to be pre-selected and pre-trained following previous work (Yang et al.,
 104 2020; He et al., 2022), responsible for executing individual sub-tasks. We first introduce each mod-
 105 *ule of ReLIC in § 3.1. Next, we detail the joint training of logical planner and action policies in
 106 § 3.2. Finally, we present the self-abstraction and refinement process in § 3.3.*
 107

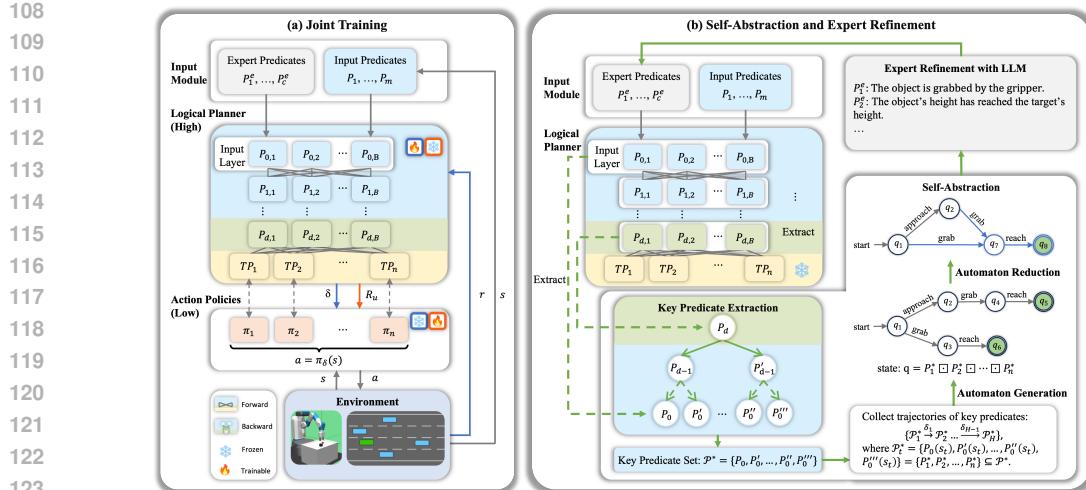


Figure 1: **The framework of ReLIC.** (a) **Joint Training** (§ 3.2). The *input module* first maps MDP states into input predicates, which, together with expert predicates (could be empty initially), form the *input* of the *logical planner*. The planner then produces target predicates (TP), each corresponding to an *action policy*, and samples an index δ (Eq. 2) to select the policy that acts in the environment. During logical model training (blue arrows and boxes), the planner samples δ and receives an environment reward r . Conversely, when training action policies (red elements), the planner remains fixed and provides a reward R_u to guide policy updates. (b) **Self-Abstraction and Refinement** (Green Arrows, § 3.3). After recording the predicates from the planner’s forward pass, *key predicate extraction* is performed via backpropagation to identify the *key predicate set* \mathcal{P}^* . Next, using trajectories of key predicates, an automaton is synthesized and simplified through *automaton generation* and *reduction*. This automaton is then *refined* by an LLM, producing expert predicates that update the input module. This process can be iterated to improve model performance.

3.1 RELIC FRAMEWORK

Input module. The input module transforms the MDP observations $s_t \in \mathbb{R}^K$ (at time t) into logical predicates that serve as the inputs of the high-level DLM. In general, a b -ary logical predicate P is defined based on a b -ary real *transformation function* $f : \mathbb{R}^b \rightarrow \mathbb{R}$, a list of indices $i_1, i_2, \dots, i_b \in [K]$, and an *activation interval* (u, v) . The predicate is then generated by $P(s_t) \leftarrow f((s_t)_{i_1}, (s_t)_{i_2}, \dots, (s_t)_{i_b}) \in (u, v)$. The arity of a usual logical predicate used in our model is at most 3, which is enough for our experiments. We adopt the transformation functions in the simple forms of addition/subtraction so that they can be generally useful for most natural tasks. We list the adopted functions in the following table and note that functions such as $(x, y, z) \mapsto x + y - z$ can be substituted by $(x, y, z) \mapsto x - y + z$ via changing the order.

Arity	Transformation functions
1	$x \mapsto x, x \mapsto x $
2	$(x, y) \mapsto x + y, (x, y) \mapsto x - y$
3	$(x, y, z) \mapsto x + y + z, (x, y, z) \mapsto x + y - z$

Going through the combinations of the transformation functions, the indices, and the activation intervals, the input module obtains a sequence of predicates and forms the set of *input predicates*:

$$\mathcal{P} = \{P_1, P_2, \dots, P_m\}. \quad (1)$$

For instance, the predicate P_1 is generated by the transformation function $|x_{\text{obj}} - x_{\text{gripper}}| \in (0, 0.002)$, where x_{obj} and x_{gripper} are elements of the MDP observation s , and $(0, 0.002)$ denotes the activation interval. P_1 is true when the x-axis distance between the object and the gripper is less than 0.002, and false otherwise. Full lists of predicates appear in Appendix I.

Beyond basic conversion, the input module provides an interface to *inject expert knowledge*. Based on the understanding of a specific task, a human expert or LLM may introduce predicates with special transformation functions on particular indices of the MDP state vector, substantially improving

162 the planning performance. We define these predicates as *expert predicates* $P^e \in \mathcal{P}^e$, where \mathcal{P}^e is
 163 the set of expert predicates. Please refer to § 4.3 for detailed demonstrations.

164 **High-level decision and the choice of an action policy.** Suppose there are n low-level action
 165 policies. After the final layer (layer d) of the high-level DLM, we append a fully connected layer
 166 (layer $(d + 1)$) so that there are n special *target predicates*, TP_1, TP_2, \dots, TP_n , each of which
 167 corresponds to an action policy. An index δ_t is sampled via

$$\delta_t \sim \text{softmax}\{TP_1, TP_2, \dots, TP_n\}. \quad (2)$$

170 **Deciding MDP actions.** Finally, we invoke the low-level action policy π_δ and take the MDP action:

$$a_t \leftarrow \pi_{\delta_t}(s_t). \quad (3)$$

173 **Key predicate extraction.** We recorded the predicates during the forward propagation of DLM,
 174 enabling the extraction of the key predicate. As outlined in § 2, DLM performs logical
 175 computations through the equation $P_d = (\sum w_{P_{d-1}} P_{d-1}) \square (\sum w_{P'_{d-1}} P'_{d-1})$, where the operator
 176 $\square \in \{\wedge, \vee, \wedge\neg, \vee\neg\}$ denotes logical conjunction or disjunction with optional negation. We ex-
 177 tract the predicate P_{d-1} and P'_{d-1} with maximal weights $w_{P_{d-1}}$ and $w_{P'_{d-1}}$. We propagate this
 178 operation backward from the output layer to the input layer, decomposing the predicate in the i^{th}
 179 layer with two predicates of the largest weight in the $(i - 1)^{th}$ layer. Eventually, we define the
 180 extracted input-layer predicates as the *key predicate* $P^* \in \mathcal{P}^*$, where \mathcal{P}^* is the set of key predicates.

181 **Automaton generation and refinement.** The extracted key predicates are used for the automaton
 182 synthesis algorithm in Appendix G. After getting an interpretable automaton, we refine it by inject-
 183 ing expert knowledge through special predicates provided by LLM, and integrate these predicates
 184 with input predicates and use them to train the high-level logical model. Details are in § 3.3.

186 3.2 JOINT TRAINING OF LOGICAL PLANNER AND ACTION POLICY

188 We propose a joint training framework (Figure 1(a)) that serves two key purposes. First, the
 189 high-level logical model and the pre-trained low-level policies require training. Second, after
 190 self-abstraction and refinement, the LLM injects additional expert knowledge, requiring further
 191 co-optimization of both modules to ensure that the injected knowledge is effectively propagated
 192 throughout the entire system. A highlight of our training algorithms is the surrogate rewards and
 193 training objectives, which crucially rely on our model structure and help to achieve superior perfor-
 194 mance.

195 **Algorithm 1** Joint Training Algorithm

196 1: **Input:** high-level DLM policy $\pi(\cdot|\theta_{\text{DLM}})$ as described in Eq. (2), low-level action policies
 197 $\{\pi_i(\cdot|\theta_i)\}$, low-level critic $\{Q_i(\cdot|\theta_{Q_i})\}$, horizon H , volley size τ_{volley} , learning rate for actor α ,
 198 learning rate for critic β
 199 2: $t \leftarrow 0$, observe the environment state s_0
 200 3: **while** task not completed and $t < H$ **do**
 201 4: calculate the input predicates \mathcal{P} based on s_t
 202 5: sample an index $\delta_t \sim \pi(P(s_t)|\theta_{\text{DLM}})$
 203 6: **for** $j \leftarrow 1$ **to** τ_{volley} **do**
 204 7: obtain action a_{t+j} from $\pi_{\delta_t}(s_{t+j}|\theta_{\delta_t})$
 205 8: receive the reward r_{t+j} from environment, observe the new environment state s_{t+j+1}
 206 9: get the estimated value ω_{t+j} from the critic network of DLM
 207 10: compute $R_u(r_{t+j}, \delta_t, \delta_{t+j}, \omega_{t+j-1}, \omega_{t+j})$
 208 11: $\theta_{\delta_t} \leftarrow \nabla(\log \pi_{\theta_{\delta_t}}(a_{t+j}|s_{t+j-1})Q_{\delta_t}(s_{t+j-1}, a_{t+j-1})) + \alpha \cdot \theta_{\delta_t}$
 209 12: $\theta_{Q_{\delta_t}} \leftarrow \nabla(R_u + \gamma Q_{\delta_t}(s_{t+j}, a_{t+j}) - Q_{\delta_t}(s_{t+j-1}, a_{t+j-1})) + \beta \cdot \theta_{Q_{\delta_t}}$
 210 13: **end for**
 211 14: $\theta_{\text{DLM}} \leftarrow \nabla(\log \pi_{\theta_{\text{DLM}}}(\delta'_t|P(s_v)))(\sum_{v=0}^{T/\tau_{\text{volley}}} \gamma^v r'_v) + \alpha \cdot \theta_{\text{DLM}}$
 212 15: $t \leftarrow t + \tau_{\text{volley}}$
 213 16: **end while**

214 **Training the high-level logical model.** Here we illustrate how to train the high-level logical
 215 model while fixing the low-level policies. Inspired by Bacon et al. (2017b), we adopt a *volley*-
 based approach to address the common challenge of sparse environment rewards in RL algorithms

(Mnih et al., 2013). Specifically, when the high-level model selects a low-level action policy π_δ , the chosen policy is executed for multiple consecutive steps (a *volley*), rather than a single step. The environment rewards collected during this volley are aggregated into *volley rewards*, which are used to train the high-level model. In Algorithm 1 line 3 to line 15, we roll-out the trajectory based on volleys: $\{(s'_v, \delta'_v, r'_v)\}_{v \in \{0, 1, 2, \dots\}}$. *These shorter volley-based trajectories feature denser reward signals*, improving sample efficiency. We apply the standard PPO algorithm (Schulman et al., 2017) to the volley-based trajectory to optimize the high-level policy $\pi(\cdot | \theta_{\text{DLM}})$. In PPO, we also train a neural network fed by the input predicates as the critic to approximate the value function.

Training low-level action policies. With the high-level logical model fixed, low-level action policies are trained via policy gradient methods (e.g., DDPG (Lillicrap et al., 2015)). During training, complete task trajectories are rolled out and segmented according to the selected low-level policy. Each policy is then independently updated via gradient descent on its respective trajectory segments. The (DDPG-based) roll-out algorithm is described in Algorithm 1 line 6 to line 13. A critical component is the surrogate reward, defined as:

$$R_u(r, \delta, \delta', \omega, \omega') = r + \alpha \cdot 1[\delta \neq \delta' \wedge \omega > \omega'], \quad (4)$$

where $\alpha > 0$ is a hyperparameter. The idea of the surrogate reward is to integrate the environmental reward r , the instruction δ from the high-level model, and the estimated value ω from the DLM critic. When the current sub-task is completed, the high-level model switches to a new action policy ($\delta \neq \delta'$) and the expected value increases ($\omega > \omega'$). Therefore, adding the term $\alpha \cdot 1[\delta \neq \delta' \wedge \omega > \omega']$ incentivizes the current low-level action policy to learn to complete the sub-task requested by the high-level model. We provide the proof for this reward function in Appendix B.

Joint training. During the actual training process, we alternate between optimizing the high-level logical model and the low-level action policies, keeping one component’s parameters fixed while updating the other. This alternating approach allows the two modules to progressively refine each other, enhancing coordination and guiding the system toward a jointly optimal solution.

3.3 SELF-ABSTRACTION AND REFINEMENT

Figure 1(b) illustrates our self-abstraction and refinement pipeline. Compared to prior work (Kohler et al., 2024; Delfosse et al., 2024), our pipeline offers two principal advantages. First, we employ the automaton that condenses trajectories of key predicates into compact states, without relying on predefined logical structures. Second, LLM can refine the automaton by injecting additional expert knowledge. These properties make our pipeline more interpretable and more interactive than prior methods. In the rest of this section, we describe how to perform self-abstraction through automaton synthesis in § 3.3.1, followed by expert refinement via LLM in § 3.3.2.

3.3.1 AUTOMATON GENERATION AND REDUCTION

We perform self-abstraction by synthesizing a Deterministic Finite Automaton (DFA) that abstracts the complex logical structures learned by the high-level model. We further evaluate the correctness of the synthesized DFA. The detailed algorithm for automaton synthesis is depicted in Appendix G.

First of all, we extract the *key predicate* after joint training. This approach allows us to focus on the input predicates that truly impact the decision-making process and groups the observations from the environment into a limited number of automaton states. Secondly, we utilize the ReLIC to track changes in the high-level model’s decision. We run the ReLIC and record the bool value of the key predicate P^* and the new decision δ every time the high-level model’s output decision changes. The q and δ are defined as the state and transition edge of the DFA:

$$q = P_1^* \sqcup P_2^* \sqcup \dots \sqcup P_n^*, \quad (5)$$

where $P_i^* \in \mathcal{P}^*$ and $\sqcup \in \{\wedge, \vee, \wedge\neg, \vee\neg\}$. With this approach, each run yields a path in the automaton. We merge the nodes with the same P^* and the edges with the same δ and prior node to get a complicated automaton. Finally, we apply the Hopcroft Algorithm (Gries, 1973) to reduce the automaton.

3.3.2 EXPERT REFINEMENT VIA LLM

The input for the high-level model is composed of all the predicates in \mathcal{P} (Eq. 1), while the synthesized automaton in § 3.3.1 keeps only key predicates P^* for representing abstract states. Thus, it

270 might miss some critical predicates. We aim to make the abstraction more fine-grained by *integrating*
 271 *expert knowledge* through LLM-based refinement. We employ OpenAI’s GPT-4o to perform
 272 expert refinement on the automaton because of its strong ability to analyze structured information
 273 and follow instructions.¹ We *input* the synthesized automaton alongside two randomly sampled
 274 failure trajectories from the environment, instructing the LLM to identify if any key predicates are
 275 missing in the automaton’s state and then add missing predicates through prompting. Our prompt
 276 enables the LLM to analyze the problem in a chain-of-thought manner (Wei et al., 2022). The analy-
 277 sis proceeds in the following steps: (a) leverage expert knowledge while learning the analytical logic
 278 based on the input automaton, (b) analyze the logical relations between key predicates of states, (c)
 279 diagnose failure reasons for failed trajectories, (d) refine the automaton by proposing new expert
 280 predicates $P^e \in \mathcal{P}^e$, and (e) examine the explanation and refined automaton to form a conclusion.
 281 These steps allow the LLM to iteratively inspect its reasoning process and resulting outcomes. Then,
 282 we expand the set of key predicates \mathcal{P}^* by $\mathcal{P}^* \leftarrow \mathcal{P}^* \cup \mathcal{P}^e$. We include the newly added predicates
 283 \mathcal{P}^e to the input of the high-level logic model and perform the joint training algorithm to further
 284 fine-tune both the logical model and action policies. We repeat the process of joint training and
 285 adding new expert predicates several times until the training process finishes. The complete prompt
 286 template is provided in Appendix J.

287 4 EXPERIMENT

288 Our experiments aim to: (1) evaluate our method in comparison to baselines in challenging au-
 289 tonomous control environments (§ 4.2), (2) showcase the **interpretability** and **interactivity** gained
 290 through self-abstraction and refinement (§ 4.3), and (3) showcase the effectiveness of the automaton
 291 representation and the self-abstraction and refinement module (§ 4.4).

294 4.1 EXPERIMENTAL SETUP

295 **Highway environment.** *Highway* is an autonomous driving simulator based on the OpenAI Gym
 296 (Leurent, 2018). The objective is to control an ego vehicle to maintain high speed while avoiding
 297 collisions. The state space is \mathbb{R}^{25} , representing the ego vehicle and its four nearest surrounding
 298 vehicles. Each vehicle is characterized by five features: a binary existence flag, x and y positions,
 299 and x and y velocities. The action space is \mathbb{R}^2 , encoding the ego vehicle’s horizontal and angular
 300 accelerations.

301 **Fetch environment.** *Fetch-Pick-And-Place* in OpenAI Gym consists of a robotic arm and an object
 302 (Plappert et al., 2018). The task requires the robot to pick an object and place it at a specified
 303 position. The state space is \mathbb{R}^{25} , comprising the information of gripper, object, and target. The
 304 action space is \mathbb{R}^4 : the first three dimensions encode the target gripper position and the fourth
 305 controls the gripper width. The object’s initial position on the table is randomly generalized. We
 306 design four tasks to evaluate our model. *Pick&Place*: Pick the object and move it to a target position.
 307 *Pick&PlaceCorner*: Pick and lift the object, then move it to the top-right corner. *PickLiftPlace*: Pick
 308 and lift the object, then move it to a designated target position. *PickHighPlace*: Pick and lift the
 309 object to a high position, then place it at a target position, which may vary in height.

310 **Implementation details.** We train our model with 500 epochs and perform the expert refinement
 311 every 50 epochs. In each epoch, we have 8 episodes with horizon $H = 100$. In joint training, we
 312 set the volley length τ_{volley} as 10. For testing, we conduct our experiments using 10 random seeds,
 313 with each seed evaluated over 100 runs. Please check Appendix H for more implementation details.

314 **Baselines.** We compare ReLIC against representative baselines spanning four categories: **standard**
 315 **RLs**, **interpretable RLs**, **hierarchical RLs**, and **interactive RLs**. TD3-HER (Balasubramanian,
 316 2023) represents standard RL. DiRL (Jothimurugan et al., 2021b) is a hierarchical RL method.
 317 Interpretable RL methods include NLM (Dong et al., 2019), DLM (Zimmer et al., 2021), NUDGE
 318 (Delfosse et al., 2023), and INSIGHT (Luo et al., 2024), where INSIGHT is an end-to-end neural-
 319 symbolic model, and NUDGE employs neural-guided symbolic abstraction. For interactive RL, we
 320 evaluate against SCoBots(Delfosse et al., 2024) and INTERPRETER(Kohler et al., 2024). For all
 321 discrete models (NLM, DLM, NUDGE, SCoBots, INTERPRETER), we provide the same low-level
 322 policies as ReLIC to ensure a fair comparison.

323 ¹<https://platform.openai.com/docs/models/gpt-4o>

324
 325 Table 1: **Performance comparison on *Highway*.** ReLIC surpasses all baselines across standard
 326 RL (TD3-HER), hierarchical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT),
 327 and interactive RL (SCoBots and INTERPRETER). *Crash rate* denotes the percentage of episodes
 328 ending in failure (\downarrow is better); *velocity* is the agent’s average speed; and *length* measures how long
 329 the agent remains active (\uparrow is better).

	TD3-HER	DiRL	NLM	DLM	NUUDGE	INSIGHT	SCoBots	INTERP.	ReLIC
length \uparrow	28.5 ± 0.1	45.6 ± 0.2	55.8 ± 0.3	56.8 ± 0.2	93.3 ± 0.1	34.6 ± 0.3	93.4 ± 0.3	95.5 ± 0.2	97.1 ± 0.1
velocity \uparrow	15.3 ± 0.2	26.5 ± 0.2	25.2 ± 0.2	26.4 ± 0.3	24.9 ± 0.2	20.1 ± 0.3	22.2 ± 0.3	25.7 ± 0.1	27.9 ± 0.1
crash rate (%) \downarrow	73.3 ± 2.0	76.1 ± 1.0	56.4 ± 0.8	54.3 ± 1.0	4.7 ± 1.0	70.7 ± 2.9	7.2 ± 0.9	5.4 ± 1.4	4.0 ± 0.8

330
 331
 332
 333 Table 2: **Performance comparison on *Fetch*.** ReLIC outperforms standard RL (TD3-HER), hier-
 334 archical RL (DiRL), interpretable RL (NLM, DLM, NUDGE, and INSIGHT), and interactive RL
 335 (SCoBots and INTERPRETER) baselines.

	Success rate (%)	TD3-HER	DiRL	NLM	DLM	NUUDGE	INSIGHT	SCoBots	INTERP.	ReLIC
Pick&Place		51.3 ± 1.7	93.7 ± 1.2	63.5 ± 2.3	73.2 ± 0.7	75.5 ± 2.0	51.6 ± 1.5	85.6 ± 1.4	90.0 ± 0.9	97.3 ± 0.9
Pick&PlaceCorner		52.9 ± 2.1	93.1 ± 0.8	62.1 ± 1.5	68.5 ± 1.3	74.8 ± 1.2	54.4 ± 0.8	84.5 ± 1.0	88.6 ± 1.1	99.3 ± 0.8
PickLiftPlace		50.0 ± 1.2	91.8 ± 1.2	59.7 ± 0.9	67.9 ± 0.8	73.2 ± 1.2	49.1 ± 1.9	84.7 ± 1.3	87.1 ± 1.1	99.0 ± 0.9
PickHighPlace		21.5 ± 0.9	42.5 ± 0.7	30.3 ± 1.5	29.1 ± 0.5	40.9 ± 0.8	32.1 ± 0.8	76.8 ± 1.1	75.3 ± 1.5	90.5 ± 1.1

344 4.2 MAIN RESULTS

345 Tables 1 and 2 present the performance of various methods on the *Highway* and *Fetch* environments,
 346 respectively. *Overall, ReLIC surpasses all baselines in all tasks.* TD3-HER, as a purely neural base-
 347 line, yields the weakest performance. Among interpretable RL methods, INSIGHT underperforms
 348 due to its neural policy and the lack of training feedback from its explanations. NLM, DLM, and
 349 NUDGE perform moderately well on *Fetch*, where the action space is small and task sub-structure
 350 is clear, but struggle with execution precision—for instance, NUDGE learns the correct high-level
 351 sequence in *PickLiftPlace* (approach then grab), but an incomplete approach may lead to grabbing
 352 failures. On the more dynamic *Highway* task, these methods perform poorly, even with provided
 353 neural low-level policies, as they lack *joint training* to coordinate high-level planning with low-level
 354 execution. DiRL, as a hierarchical RL method, performs well on *Fetch*, but fails on *Highway*, where
 355 the unpredictable behavior of other vehicles invalidates its fixed, predefined task hierarchy. Interac-
 356 tive baselines such as SCoBots and INTERPRETER benefit from expert or LLM guidance but lack
 357 mechanisms for iterative refinement and joint training, limiting further improvement. In contrast,
 358 ReLIC achieves superior performance by dynamically integrating LLM-provided predicates through
 359 *expert refinement* and *joint training*, effectively combining expert knowledge with model learning.

360 4.3 CASE STUDY: SELF-ABSTRACTION AND LLM REFINEMENT ON *PickHighPlace*

361
 362 *PickHighPlace* is a challenging task because lifting the object to a high position increases the gripper’s travel distance and makes the coherent action between the reach and lift sub-tasks difficult to
 363 learn. In this section, we select *PickHighPlace* as a case study to illustrate our self-abstraction and
 364 refinement. Another case study on *Highway* is in Appendix E.

365
 366 **Automaton-based abstraction makes ReLIC interpretable.** Figure 2(a) demonstrates sampled
 367 trajectories of key predicates, where each environment state is mapped to a set of key predicates.
 368 These trajectories are condensed into an automaton, with transitions aligned to the low-level action
 369 policies approach, grab, and reach. The resulting automaton is depicted in Figure 2(b). To
 370 simplify it, we apply Hopcroft’s algorithm to merge redundant or equivalent states; the reduced
 371 automaton appears in Figure 2(c). In this reduced version, state q_7 merges q_3 and q_4 , representing the
 372 gripper grabs the object directly or after approaching, while state q_8 merges q_5 and q_6 to represent the
 373 final state. The resulting automaton’s concise states and transitions offer an immediate interpretation
 374 of the agent’s policy. For instance, state q_1 indicates that the gripper is near or far from the object, so
 375 only approach and grab are available. Choosing approach deterministically moves the agent
 376 to q_2 , where the gripper is near the object and its opening exceeds the object’s width.

377 **ReLIC agents are interactive via LLM refinement.** The imperfect learning status of the high-
 378 level logical model results in a decreased success rate when the lifting threshold is high. To ad-

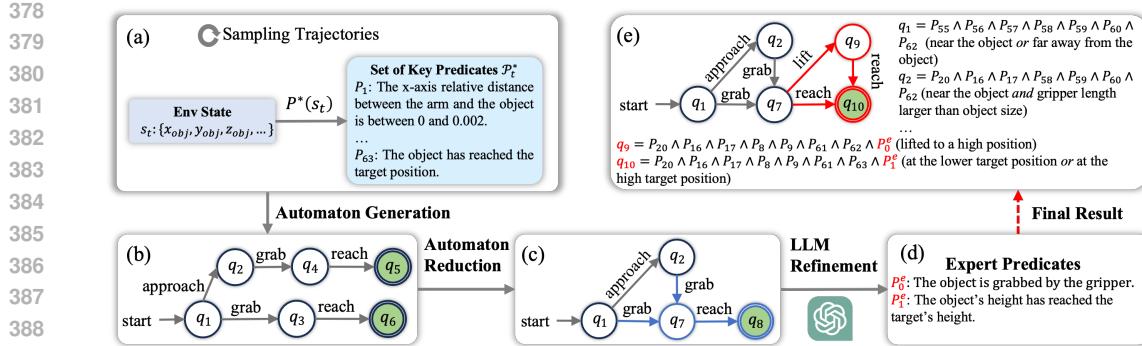


Figure 2: Examples for self-abstraction and refinement for *PickHighPlace*. (a) Sampled trajectories of key predicates. From environment state s_t , the key predicate set \mathcal{P}_t^* is extracted, capturing critical symbolic conditions. (b) Automaton generated from trajectories of key predicates. Transitions between states are derived based on trajectories of key predicates. (c) Automaton reduction. Redundant or equivalent states are merged; blue edges and nodes represent updated transitions after reduction. (d) LLM refinement. The language model proposes additional predicates that encode expert knowledge. (e) Final refined automaton. Red edges and states are synthesized after another round of the whole process. More details are provided in Appendix F.

dress this, the LLM analyzes the reduced automaton and the sampled trajectories to identify missing environmental cues in the existing set of key predicates. It then proposes additional expert predicates to enrich the input. As shown in Figure 2(d), the LLM combines five original input predicates $P_1: |x_{\text{obj}} - x_{\text{gripper}}| \in (0, 0.002)$, $P_2: |y_{\text{obj}} - y_{\text{gripper}}| \in (0, 0.002)$, $P_3: |z_{\text{obj}} - z_{\text{gripper}}| \in (0, 0.002)$, $P_{19}: |d_0| \in (0.006, 0.008)$, $P_{20}: |d_1| \in (0.006, 0.008)$ to generate two expert predicates:

$$P_0^e: P_1 + P_2 + P_3 + |P_{19} + P_{20} - t| \in (0, \text{err}) \text{ and } P_1^e: |z_{\text{obj}} - 0.45| \in (0, \text{err}),$$

where t is a gripper-gap threshold, d_0 and d_1 are the respective displacements of the left and right grippers, and err is a tolerance parameter. P_0^e indicates whether the gripper can successfully grasp the object, while P_1^e checks whether the object has been lifted to the target height (0.45).

Injected knowledge yields a better final automaton. Figure 2(e) shows the automaton after injecting expert knowledge into the logical model and re-running the full pipeline. Two new states, q_9 and q_{10} , derived from state q_8 of the reduced automaton by incorporating LLM-generated expert predicates P_0^e and P_1^e , respectively. These expert predicates make the automaton states more fine-grained, enabling the model to identify if the `lift` action is finished and execute `lift` and `reach` actions in proper sequence. As a result, ReLIC surpasses all baselines on *PickHighPlace*, as reported in Table 2.

4.4 ABLATION STUDY

We conduct three ablations to highlight the benefits of our automaton-structured input and LLM refinement. First, we compare ReLIC to a variant that removes the automaton and feeds trajectories of key predicates directly to the LLM (**w/o SA**). Second, we retain the automaton but replace LLM-generated expert predicates with manually crafted ones of the same logical form (**w/ HR**). Third, we disable the self-abstraction and refinement pipeline entirely, and keep joint training with the original predicate set (**w/o SAR**). Results for all variants are summarized in Table 3.

On the *PickHighPlace* task, ReLIC improves success rate by roughly 63% over the **w/o SA** variant. This gain stems from the self-abstraction stage: raw trajectories of key predicates are condensed into an automaton and further simplified, yielding a compact set of structured information. The resulting representation makes it easier for the LLM to spot missing information and generate precise expert predicates, thereby boosting performance. **ReLIC is competitive with a human expert (w/ HR)**. The input space is large—64 predicates in *Fetch* and 88 in *Highway*—so even a human expert finds it difficult to identify the most relevant input predicates for constructing expert rules. When the self-abstraction and refinement pipeline is removed (**w/o SAR**), performance drops sharply—e.g., from 90% to 40% on *PickHighPlace*. This verifies that iterative self-abstraction and refinement are critical for uncovering missing state cues and guiding joint training toward task success.

432 **Table 3: Self-abstraction and refinement significantly enhance performance.** *w/o SA*: Without
 433 self-abstraction; *w/o SAR*: Without self-abstraction and refinement; *w/ HR*: With human refinement.

Task	Metric	ReLIC	w/o SA	w/o SAR	w/ HR
Pick&Place	Success rate (%)	97.3\pm0.9	93.6 \pm 1.3	86.2 \pm 1.5	97.0 \pm 1.3
		99.3\pm0.8	94.0 \pm 0.8	85.3 \pm 2.3	97.1 \pm 0.8
		99.0\pm0.9	93.1 \pm 1.4	83.5 \pm 1.3	96.2 \pm 1.2
		90.5\pm1.1	55.2 \pm 1.7	40.0 \pm 1.8	88.6 \pm 0.8
Highway	Length (\uparrow)	97.1\pm0.1	94.8 \pm 0.1	91.4 \pm 0.2	96.6 \pm 0.1
	Velocity (\uparrow)	27.9\pm0.1	26.7 \pm 0.2	27.0 \pm 0.1	26.3 \pm 0.1
	Crash rate (%) (\downarrow)	4.0\pm0.8	4.1 \pm 1.0	5.3 \pm 0.6	4.0 \pm 1.1

5 RELATED WORK

444 **Hierarchical RL.** Early frameworks like Hierarchical Abstract Machines (HAMs) (Parr & Russell,
 445 1997) provided designer-specified state-machine subroutines, while the option-critic architecture
 446 (Bacon et al., 2017a) learned temporally-extended actions end-to-end. Feudal Networks (Vezhnevets
 447 et al., 2017) introduced an explicit manager-worker hierarchy, with a high-level module setting latent
 448 subgoals for a low-level controller. More recently, DiRL (Jothimurugan et al., 2021a) used logical
 449 task specifications to automatically construct task graphs and learn a policy for each edge (subtask)
 450 with integrated high-level planning. ReLIC also leverages hierarchy, derives an automaton-based
 451 task structure through self-abstraction and refines it during learning, rather than relying on fixed or
 452 manually defined logical schemas.

453 **Interpretable RL.** Early work achieved interpretability by constraining the policy class to transparent
 454 structures such as decision trees (Bastani et al., 2018; Topin et al., 2021; Charbuty & Abdulazeez,
 455 2021; Milani et al., 2022b; Kohler et al., 2024), graphs (Topin & Veloso, 2019), logical programs
 456 (Verma et al., 2018; 2019; Silver et al., 2020; Inala et al., 2020b), or state machines (Inala et al.,
 457 2020a). Post-processing interpretable models, such as Local Interpretable Model-agnostic Explanations
 458 (LIME) (Ribeiro et al., 2016; Zhao et al., 2021), Shapley-based methods (Kumar et al., 2020),
 459 and LLM-based methods (Luo et al., 2024), explain opaque agents after policy learning. Other
 460 works focus on learning interpretable logic policies via Inductive Logic Programming (ILP) (Lavrac
 461 & Dzeroski, 1994), which extracts rules from predefined templates. ILP struggles to scale up to
 462 complex scenarios because its rule space grows exponentially with task complexity (Cropper et al.,
 463 2022). Neural Logic Machines (NLM) (Dong et al., 2019) address this by introducing MLPs to
 464 improve expressiveness at the cost of transparency; Differentiable Logic Machines (DLM) (Zimmer
 465 et al., 2021) replace MLPs with fuzzy logic to restore readability. NUDGE (Delfosse et al., 2023)
 466 leverages trained neural agents to guide the search for candidate-weighted logic rules, thus providing
 467 interpretable policies. ReLIC differs from these methods by utilizing the logic machine as a
 468 high-level policy to facilitate expert knowledge injection.

469 **Interactive RL.** There is growing interest in interactive agents that can incorporate external knowl-
 470 edge. SCoBots (Delfosse et al., 2024) employ a priori concept bottlenecks to train agents that allow
 471 user inspection and intervention. INTERPRETER (Kohler et al., 2024) distills black-box policies
 472 into an editable program, allowing post hoc expert modification. BlendRL (Shindo et al., 2025)
 473 blends logic and neural policies using LLM to enhance performance. ReLIC distinguishes itself
 474 by joint training with external knowledge, integrating LLMs’ feedback into the learning process to
 475 dynamically align the agent’s behavior with expert intentions.

6 CONCLUSION

476 We introduce **ReLIC**, the Reinforcement Learning with Interactivity for Composite tasks. It in-
 477 tegrates a logical model for high-level decision-making and symbolic abstraction, along with low-level
 478 action policies designed for the precise execution of sub-tasks. Notably, ReLIC excels in control
 479 tasks due to its **interpretability** and **interactivity**. Based on the structured information provided
 480 by the automaton, ReLIC utilizes LLM to provide interpretation, generate expert predicates, and
 481 perform self-refinement by injecting expert predicates and joint training. Despite these strengths,
 482 ReLIC still has the limitation of requiring pretrained low-level policies—a form of built-in expert
 483 knowledge. For future work, we aim to construct an RL system with minimal expert knowledge,
 484 which offers a promising avenue toward establishing a lifelong learning system.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
489 imentation were involved. All environments used, including the Fetch and Highway, were sourced
490 in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
491 to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
492 information was used, and no experiments were conducted that could raise privacy or security con-
493 cerns. We are committed to maintaining transparency and integrity throughout the research process.
494495 REPRODUCIBILITY STATEMENT
496497 We have made every effort to ensure that the results presented in this paper are reproducible. All
498 code and datasets have been made publicly available in an anonymous repository to facilitate repli-
499 cation and verification. The experimental setup, including training steps, model configurations, and
500 hardware details, is described in detail in the paper. We have also provided a full description of our
501 ReLIC framework to assist others in reproducing our experiments. We believe these measures will
502 enable other researchers to reproduce our work and further advance the field.
503504 REFERENCES
505506 Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learn-
507 ing in healthcare. In *Proceedings of the 2018 ACM international conference on bioinformatics,*
508 *computational biology, and health informatics*, pp. 559–560, 2018.509 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In *Proceedings of*
510 *the AAAI conference on artificial intelligence*, volume 31, 2017a.511 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In *Proceedings of*
512 *the AAAI conference on artificial intelligence*, volume 31, 2017b.
513514 Sivasubramanian Balasubramanian. Intrinsically motivated multi-goal reinforcement learning using
515 robotics environment integrated with openai gym. *Journal of Science & Technology*, 4(5):46–60,
516 2023.517 Jon Barwise. An introduction to first-order logic. In *Studies in Logic and the Foundations of*
518 *Mathematics*, volume 90, pp. 5–46. Elsevier, 1977.
519520 Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
521 extraction. *Advances in neural information processing systems*, 31, 2018.522 Bahzad Charbuty and Adnan Abdulazeez. Classification based on decision tree algorithm for ma-
523 chine learning. *Journal of Applied Science and Technology Trends*, 2(01):20–28, 2021.
524525 Andrew Cropper, Sebastijan Dumančić, Richard Evans, and Stephen H Muggleton. Inductive logic
526 programming at 30. *Machine Learning*, pp. 1–26, 2022.
527528 Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and ex-
529 plainable logical policies via neurally guided symbolic abstraction. *Advances in Neural Infor-
530 mation Processing Systems*, 36:50838–50858, 2023.
531532 Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kerst-
533 ing. Interpretable concept bottlenecks to align reinforcement learning agents. *Advances in Neural*
534 *Information Processing Systems*, 37:66826–66855, 2024.
535536 Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
537 machines. *arXiv preprint arXiv:1904.11694*, 2019.
538539 David Gries. Describing an algorithm by hopcroft. *Acta Informatica*, 2:97–109, 1973.
540541 Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
542 unsupervised reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intel-
543 ligence*, volume 36, pp. 6884–6892, 2022.
544

540 Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
 541 programmatic policies that inductively generalize. In *8th International Conference on Learning*
 542 *Representations*, 2020a.

543 Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin
 544 Rinard, and Armando Solar-Lezama. Neurosymbolic transformers for multi-agent communica-
 545 tion. *Advances in Neural Information Processing Systems*, 33:13597–13608, 2020b.

546 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
 547 ment learning from logical specifications. *Advances in Neural Information Processing Systems*,
 548 34:10026–10039, 2021a.

549 Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
 550 ment learning from logical specifications. *Advances in Neural Information Processing Systems*,
 551 34:10026–10039, 2021b.

552 Hector Kohler, Quentin Delfosse, Riad Akrou, Kristian Kersting, and Philippe Preux. Inter-
 553 pretable and editable programmatic tree policies for reinforcement learning. *arXiv preprint*
 554 *arXiv:2405.14956*, 2024.

555 I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler. Prob-
 556 lems with shapley-value-based explanations as feature importance measures. In *International*
 557 *Conference on Machine Learning*, pp. 5491–5500. PMLR, 2020.

558 Nada Lavrac and Saso Dzeroski. Inductive logic programming. In *WLP*, pp. 146–160. Springer,
 559 1994.

560 Edouard Leurent. An environment for autonomous driving decision-making. <https://github.com/eleurent/highway-env>, 2018.

561 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 562 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 563 *preprint arXiv:1509.02971*, 2015.

564 Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end
 565 neuro-symbolic reinforcement learning with textual explanations. In *Forty-first International*
 566 *Conference on Machine Learning*, 2024.

567 Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
 568 forcement learning. *arXiv preprint arXiv:2202.08434*, 2022a.

569 Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evan-
 570 gelos E Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for interpretable
 571 multi-agent reinforcement learning. In *Joint European Conference on Machine Learning and*
 572 *Knowledge Discovery in Databases*, pp. 251–266. Springer, 2022b.

573 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 574 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 575 *arXiv:1312.5602*, 2013.

576 Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 577 Theory and application to reward shaping. In *Icml*, volume 99, pp. 278–287, 1999.

578 Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. *Advances in*
 579 *neural information processing systems*, 10, 1997.

580 Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
 581 ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinfor-
 582 cement learning: Challenging robotics environments and request for research. *arXiv preprint*
 583 *arXiv:1802.09464*, 2018.

584 Martin L Puterman. Markov decision processes. *Handbooks in operations research and management*
 585 *science*, 2:331–434, 1990.

594 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the
 595 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 596 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

597

598 Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
 599 Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable ai: A
 600 survey of user studies for model explanations. *IEEE transactions on pattern analysis and machine*
 601 *intelligence*, 46(4):2104–2122, 2023.

602 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 603 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

604

605 Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. BlendRL: A
 606 framework for merging symbolic and neural policy learning. In *The Thirteenth International*
 607 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=60i0ksMAhd>.

608

609 Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
 610 bayesian imitation learning with logical program policies. In *Proceedings of the AAAI Conference*
 611 *on Artificial Intelligence*, volume 34, pp. 10251–10258, 2020.

612

613 Zhihao Song, Yunpeng Jiang, Jianyi Zhang, Paul Weng, Dong Li, Wulong Liu, and Jianye Hao. An
 614 interpretable deep reinforcement learning approach to autonomous driving. In *IJCAI Workshop*
 615 *on Artificial Intelligence for Autonomous Driving*, 2022.

616

617 Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement
 618 learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 2514–
 2521, 2019.

619

620 Nicholay Topin, Stephanie Milani, Fei Fang, and Manuela Veloso. Iterative bounding mdps: Learning
 621 interpretable policies via non-interpretable methods. In *Proceedings of the AAAI Conference*
 622 *on Artificial Intelligence*, volume 35, pp. 9923–9931, 2021.

623

624 Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
 625 interpretable and generalizable policies. *Advances in neural information processing systems*, 34:
 25146–25163, 2021.

626

627 Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
 628 Programmatically interpretable reinforcement learning. In *International Conference on Machine*
 629 *Learning*, pp. 5045–5054. PMLR, 2018.

630

631 Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
 632 reinforcement learning. *Advances in Neural Information Processing Systems*, 32, 2019.

633

634 Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
 635 Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
 636 *International conference on machine learning*, pp. 3540–3549. PMLR, 2017.

637

638 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 639 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 640 *neural information processing systems*, 35:24824–24837, 2022.

641

642 Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
 643 modularization. *Advances in Neural Information Processing Systems*, 33:4767–4777, 2020.

644

645 Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. Baylime: Bayesian
 646 local interpretable model-agnostic explanations. In *Uncertainty in artificial intelligence*, pp. 887–
 647 896. PMLR, 2021.

648

649 Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaojun Jiang, Jianyi Zhang, Paul Weng, Li Dong,
 650 Hao Jianye, and Liu Wulong. Differentiable logic machines. *arXiv preprint arXiv:2102.11529*,
 651 2021.

A APPENDIX

B PROOF FOR THE REWARD FUNCTION R_{μ}

Here we show that the learned policy $\pi'(\cdot|\theta)$ under our transform of the reward function is included in the original optimal policy. Our proof follows the idea of the work (Ng et al., 1999). Since we use a method based on Q-learning for policy optimization, we have:

$$Q(s, a) = \mathbb{E}_s(R(s, a, s') + \gamma \max_{a' \in A} Q(s', a')). \quad (6)$$

If we add a potential function $\Phi(s)$, which is only related to the states, to both sides of the equation, then:

$$Q(s, a) - \Phi(s) = \mathbb{E}_s(R(s, a, s') + \gamma \Phi(s') - \Phi(s) + \gamma(\max_{a' \in A} Q(s', a') - \Phi(s'))). \quad (7)$$

Here we do a transformation to both the Q function and the R ,

$$Q'(s, a) = Q(s, a) - \Phi(s), \quad (8)$$

$$R_u(s, a, s') = R(s, a, s') + \gamma \Phi(s') - \Phi(s). \quad (9)$$

by substituting Eq. 7 with Q' and R_u , we get the new formula

$$Q'(s, a) = \mathbb{E}_s(R_{\text{ul}}(s, a, s') + \gamma \max_{a' \in A} Q'(s', a')), \quad (10)$$

which keeps the form of Q-learning.

For our specific case, we let

$$\Phi(s) = \begin{cases} 1/\gamma & \text{if } \delta(s) \neq \delta(s') \wedge \omega(s) < \omega(s'), \\ 0 & \text{otherwise.} \end{cases} \quad (11)$$

Notice that $\delta(s)$ is the decision made by the logical model, so it is only related to state s . ω is the output of the high-level critic, though it is related to both the state s and action δ , in every volley, the decision of the high-level logical model remains the same, which means δ is always the same. So the ω is also just related to state s . Then the final form of our reward function is

$$R_u(r, \delta, \delta', \omega, \omega') = r + \alpha \times 1[\delta \neq \delta' \wedge \omega < \omega']. \quad (12)$$

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADAPTIVENESS

To show the adaptiveness of our ReLIC in tasks that are conceptually analogous yet distinct in their details, we fine-tune the model on the modified environment, whose side length of the cubic object is reduced from 0.25cm to 0.15cm. **It is worth noting that we only fine-tune a certain set of lower-level action policies** using Algorithm 3 while keeping the high-level logical model unchanged. The main experiment results are in § 4.

Table 4: Performance comparison before and after fine-tuning after changing the object size.

Succ rate(%)	Pre-Finetune	Post-Finetune
Pick&Place	84.5 ± 1.6	94.3 ± 1.1
Pick&PlaceCorner	85.8 ± 2.0	95.7 ± 1.2
PickLiftPlace	84.0 ± 1.5	93.1 ± 0.7

Result. The experiment results are depicted in Table 4. After adjusting the size of the object, the success rate of the model decreases by around 10%. However, by solely fine-tuning the lower-level action policies, we can effectively recover the success rate lost. Additionally, since the lower-level action policy is relatively simple and has a low training cost, it signifies that we can quickly fine-tune our model to adapt to changes in the environment and task requirements.

702 D DETAILS OF JOINT TRAINING ALGORITHM
703704 We provide the detailed algorithm for training the high-level logical model in Algorithm 2. Besides,
705 we provide the detailed algorithm for training low-level action policies in Algorithm 3.
706707 **Algorithm 2** Volley-based Roll-out for High-level Logical Model Training
708

 709 1: **Input:** high-level DLM policy $\pi(\cdot|\theta_{\text{DLM}})$ as described in Eq. (2), low-level action policies
 710 $\{\pi_i(\cdot|\theta_i)\}$, horizon H , volley size τ_{volley}
 711 2: Volley count $v \leftarrow 0$
 712 3: **while** $v < H/\tau_{\text{volley}}$ **do**
 713 4: observe the environment state $s_{v \cdot \tau_{\text{volley}}}$, let $s'_v \leftarrow s_{v \cdot \tau_{\text{volley}}}$
 714 5: calculate the input predicates \mathcal{P} based on s'_v , sample an index $\delta'_v \sim \pi(s'_v|\theta_{\text{DLM}})$
 715 6: Volley reward $r'_v \leftarrow 0$
 716 7: **for** $j \leftarrow 0$ **to** τ_{volley} **do**
 717 8: **if** $j \neq 0$ then observe the environment state $s_{v \cdot \tau_{\text{volley}} + j}$ **then**
 718 9: execute the environment action $a_{v \cdot \tau_{\text{volley}} + j} \leftarrow \pi_{\delta'_v}(s_{v \cdot \tau_{\text{volley}} + j}|\theta_{\delta'_v})$, receive the en-
 719 10: environment reward $r_{v \cdot \tau_{\text{volley}} + j}$
 720 11: $r'_v \leftarrow r'_v + r_{v \cdot \tau_{\text{volley}} + j}$
 721 12: **end if**
 722 13: **end for**
 723 14: $v \leftarrow v + 1$
 724 **end while**

 725
726 **Algorithm 3** DDPG-based Roll-out for Low-level Action Policy Training
727

 728 1: **Input:** high-level DLM policy $\pi(\cdot|\theta_{\text{DLM}})$ as described in Eq. (2), low-level action policies
 729 $\{\pi_i(\cdot|\theta_i)\}$, low-level critic $\{Q_i(\cdot|\theta_{Q_i})\}$, horizon H , volley size τ_{volley} , learning rate for actor α ,
 730 learning rate for critic β
 731 2: $t \leftarrow 0$, observe the environment state s_0
 732 3: **while** task not completed and $t < H$ **do**
 733 4: calculate input predicates \mathcal{P} based on s_t
 734 5: sample an index $\delta_t \sim \pi(s_t|\theta_{\text{DLM}})$
 735 6: **for** $j \leftarrow 1$ **to** τ_{volley} **do**
 736 7: obtain action a_{t+j} from $\pi_{\delta_t}(s_{t+j}|\theta_{\delta_t})$
 737 8: receive the reward r_{t+j} , observe the new environment state s_{t+j+1}
 738 9: get estimated value ω_{t+j} from the critic network of DLM, get δ' from DLM
 739 10: $\theta_{\delta_t} \leftarrow \nabla(\log \pi_{\theta_{\delta_t}}(a'_v|s_v)Q_{\delta_t}(s_{t+j-1}, a_{t+j-1})) + \alpha \cdot \theta_{\delta_t}$
 740 11: $\theta_{Q_{\delta_t}} \leftarrow \nabla(R + \gamma Q_{\delta_t}(s_{t+j}, a_{t+j}) - Q_{\delta_t}(s_{t+j-1}, a_{t+j-1})) + \beta \cdot \theta_{Q_{\delta_t}}$
 741 12: **end for**
 742 13: $t \leftarrow t + \tau_{\text{volley}}$
 743 14: **end while**

 744
745 E AUTOMATON REPRESENTATION FOR HIGHWAY TASK
746747 The automaton before simplification using the Hopcroft algorithm is presented in Figure 3. When
748 we compare this with the reduced version in Figure 4(a), several state reductions can be observed:
749

- The final states $q_6, q_9, q_{14}, q_{17}, q_{21}, q_{24}$ are grouped into q_{29} .
- q_{10}, q_{11} and q_{18} are grouped into q_{30} .
- q_2, q_{12} and q_{19} are grouped into q_{25} .
- q_7, q_{15} and q_{22} are grouped into q_{26} .
- q_4, q_{13} and q_{20} are grouped into q_{27} .
- q_8, q_{16} and q_{23} are grouped into q_{28} .

We also detail the predicate representation for states q_i . The predicate representations of the automaton states can be seen in Eq. 13. The agent is regarded as in state q_i when the logical expression for q_i holds.

$$\begin{aligned}
 q_1 &\leftarrow P_1 \wedge \neg P_2 \wedge \neg P_3 \wedge \neg P_4 \\
 q_{25} &\leftarrow \neg P_1 \wedge \neg P_2 \wedge \neg P_3 \wedge P_4 \\
 q_{26} &\leftarrow \neg P_1 \wedge \neg P_2 \wedge P_3 \wedge \neg P_4 \\
 q_{27} &\leftarrow \neg P_1 \wedge \neg P_2 \wedge \neg P_3 \wedge \neg P_4 \wedge P_{85} \\
 q_{28} &\leftarrow \neg P_1 \wedge \neg P_2 \wedge \neg P_3 \wedge \neg P_4 \wedge P_{87} \\
 q_{29} &\leftarrow \neg P_1 \wedge \neg P_3 \wedge \neg P_4 \wedge P_{86} \\
 q_{30} &\leftarrow P_1 \wedge \neg P_2 \wedge \neg P_3 \wedge \neg P_4 \wedge (P_8 \vee P_9)
 \end{aligned} \tag{13}$$

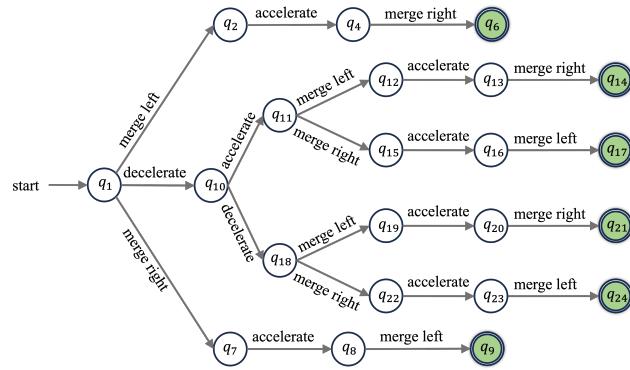


Figure 3: Automaton before reduced for **Highway** environment.

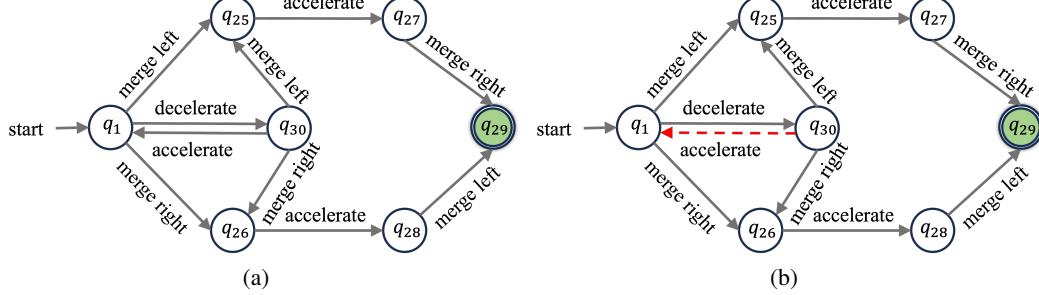


Figure 4: Automaton representation and refinement in **Highway**. (a) The reduced automaton for **Highway**. (b) The automaton after the expert refinement. The edge of the automaton represents the low-level action policy.

Here we list the key predicates mentioned in Eq. 13, and they are all contained in Table 7.

- 801 P_1 : if there is a car ahead.
- 802 P_2 : if there is a car behind.
- 803 P_3 : if there is a car on the left.
- 804 P_4 : if there is a car on the right.
- 805 P_{85} : if the ego car is on the left of the target lane.
- 806 P_{86} : if the ego car is on the target lane.
- 807 P_{87} : if the ego car is on the right of the target lane.
- 808 P_8 : if the x-axis relative distance of the car ahead and ego car is between 5 and 10.
- 809 P_9 : if the x-axis relative distance of the car ahead and ego car is larger than 10.

810 From Figure 4 and Eq. 13, we can describe each automaton state in the overtaking task. We start
 811 from q_1 , where there is a car in front of the ego agent. Then the ego agent can take three feasible
 812 actions: *decelerate*, *merge left*, *merge right*. If the ego agent chooses to decelerate, it will reach q_{30} .
 813 q_{30} and q_1 are almost the same except that the distances between the two cars become larger. If it
 814 takes left (right) lane change action, we can find the value-focused predicate $P_4(P_3)$ changes. Then
 815 the agent accelerates until key predicates P_4, P_3 both become false, which means it is a proper time
 816 to get to the origin lane. Finally, it takes a right (left) lane change to finish overtaking (reach q_{29}).

817 The automaton after *expert refinement* is shown in Figure 4(b). The edge from $q_{30} \rightarrow q_1$ is elimi-
 818 nated through extra expert knowledge $P_{expert} = \text{last action is deceleration} \wedge P_1$ to prevent the
 819 car agent from repeating *accelerate* and *decelerate*. Since we include this more aggressive expert
 820 predicate, we can see a significant increase in the average velocity in Table 3.

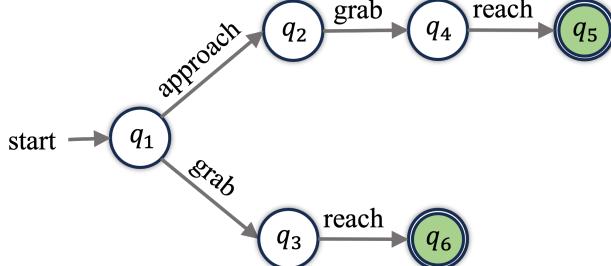
822 F AUTOMATON REPRESENTATION FOR FETCH TASK

824 Here we present more detailed information about the automaton generation and expert refinement
 825 for *PickLiftPlace* Task. The automaton of *PickLiftPlace* task before reduction is presented in Figure
 826 5, and several state reductions can be observed:

- 828 • The final states q_5, q_6 are grouped into q_8 .
- 829 • States q_3, q_4 are grouped into q_7 .

831 Figure 6(b) is the automaton after the expert refinement. It is decomposed into 5 states. q_{10} is a final
 832 state, which represents that the whole *Fetch* task succeeds. The edges represent low-level action
 833 policies. These policies can be concluded as *approach*, *grab*, *lift*, and *reach* the target
 834 position. At q_7 , we have 2 paths that can lead to the final state. This is because when the target
 835 state is above the horizon, *lift* and *reach* can be further combined into one policy, which is the
 836 shortcut edge from q_7 to q_{10} . From this perspective, ReLIC can also generate its high-level policy
 837 instead of executing low-level policy in a sequential arrangement.

838 We add additional expert knowledge $P_0^e = |x_{object} - x_{gripper}| + |y_{object} - y_{gripper}| + |z_{object} -$
 839 $z_{gripper}| + |g_{left} + g_{right} - t| \leq err, P_1^e = |y_{object} - \delta_z| \leq err$, where z represents the z-axis
 840 position of the object, t represents simulation time, and δ_z represents the threshold height set for the
 841 current task, err is a tolerable error range, to the high-level model and fine-tune it to get the refined
 842 automaton (shown in Figure 6(b)).



853 **Figure 5: Automaton before reduced for *Fetch* environment.**

$$\begin{aligned}
 857 \quad q_1 &\leftarrow P_{56} \wedge P_{57} \wedge P_{58} \wedge P_{59} \wedge P_{60} \wedge P_{61} \wedge P_{63} \\
 858 \quad q_2 &\leftarrow P_{21} \wedge P_{17} \wedge P_{18} \wedge P_{59} \wedge P_{60} \wedge P_{61} \wedge P_{63} \\
 859 \quad q_7 &\leftarrow P_{21} \wedge P_{17} \wedge P_{18} \wedge P_9 \wedge P_{10} \wedge P_{61} \wedge P_{63} \\
 860 \quad q_9 &\leftarrow P_{21} \wedge P_{17} \wedge P_{18} \wedge P_9 \wedge P_{10} \wedge P_{62} \wedge P_{63} \wedge P_1^e \\
 861 \quad q_{10} &\leftarrow P_{21} \wedge P_{17} \wedge P_{18} \wedge P_9 \wedge P_{10} \wedge P_{62} \wedge P_{64} \wedge P_0^e
 \end{aligned} \tag{14}$$

863 Here we list the key predicates mentioned in Eq. 14, and they are all contained in Table 8.

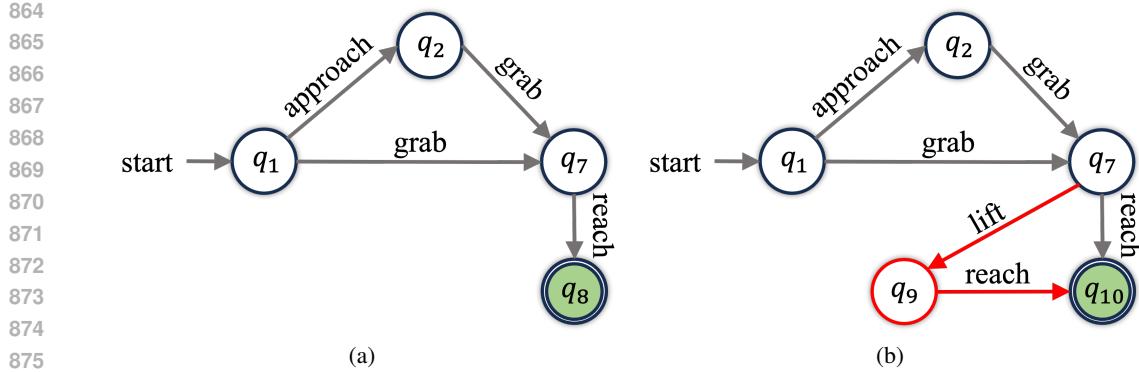


Figure 6: **Automaton Representation and refinement in Fetch.** (a) The reduced automaton for *Fetch*. (b) The automaton after the expert refinement. Every edge of the automaton represents the low-level action policy.

- 883 P_{61} : the height of the object is lower than the target height 0.45
- 884 P_{62} : the height of the object is lower than the target height 0.45
- 885 P_{63} : the object has not reached the target point
- 886 P_{64} : the object has reached the target point
- 887 P_{56} : the x-axis relative distance of the gripper and the object is larger than 0.1
- 888 P_{21} : the x-axis relative distance of the gripper and the object is between 0.008 and 0.01
- 889 P_{57} : the y-axis relative distance of the gripper and the object is larger than 0.1
- 890 P_{17} : the y-axis relative distance of the gripper and the object is between 0.006 and 0.008
- 891 P_{58} : the z-axis relative distance of the gripper and the object is larger than 0.1
- 892 P_{18} : the z-axis relative distance of the gripper and the object is between 0.006 and 0.008
- 893 P_{59} : the displacement of the left claw is larger than 0.1
- 894 P_9 : the displacement of the left claw is between 0.002 and 0.004
- 895 P_{60} : the displacement of the right claw is larger than 0.1
- 896 P_{10} : the displacement of the right claw is between 0.002 and 0.004

By abstracting our high-level policy into an automaton and extracting the corresponding predicates for each key node, we show the capability of our logical model to learn more complex logic beyond sequential logic, and the effectiveness and uniqueness of our predicate descriptions of the states.

G DFA SYNTHESIZE ALGORITHM

Here we provide a detailed description of our automaton synthesis program. The output of the high-level logical model is a probability distribution for each low-level action policy. We select the action policy π_δ based on this probability distribution. We invoke the corresponding policy π_δ also for many consecutive periods. During this process, we track the value of the *key predicate*. We define all the observations s with the same *key predicate* as a new state q for the automaton. We group the state s_{auto_v} with the same predecessor automaton state $s_{auto_{v-1}}$ and transition δ_{v-1} into a collection, which is represented by a new state S_i in the automaton. This process is repeated until the end of the episode.

In the experiment, we collect a large amount of traces (specifically 100,000) and group the observations into different automaton states. Additionally, we employ a predicate for judging whether the task is accomplished, so that we can easily figure out the terminating state for the automaton. Finally, we apply the Hopcroft Algorithm to simplify the automaton.

The pseudo-code for this algorithm is Algorithm 4.

918
919
920
921
922

Algorithm 4 Synthesis Automaton Logic Representation for High-level Policy

923 **Input:** high-level DLM policy $\pi(\cdot|\theta_{\text{DLM}})$ as described in Eq. (2), low-level action policies
 924 $\{\pi_i(\cdot|\theta_i)\}$, horizon H , volley size τ_{volley} , epoch N .
 925 epoch count $n \leftarrow 0$
 926 automaton state node map \mathcal{M} , the key of \mathcal{M} is the state node of automaton, while the value is
 927 another submap describing the decision and the corresponding next state
 928 **while** $n < N$ **do**
 929 Volley count $v \leftarrow 0$
 930 **while** task not completed and $v < H/\tau_{\text{volley}}$ **do**
 931 calculate the input predicates \mathcal{P} based on s_v
 932 sample an index $\delta_v \sim \pi(s_v|\theta_{\text{DLM}})$
 933 **if** $\delta_v \neq \delta_{v-1}$ **then**
 934 extract key predicates \mathcal{P}^* from $\pi(\cdot|\theta_{\text{DLM}})$ for the output δ_v
 935 calculate the true value of \mathcal{P}^* based on s_v
 936 automaton state $S_{\text{auto}_v} \leftarrow \mathcal{P}^*$
 937 **if** $S_{\text{auto}_{v-1}}$ in \mathcal{M} **then**
 938 **if** (δ_{v-1} in $\mathcal{M}[S_{\text{auto}_{v-1}}]$) **then**
 939 $S_{\text{exist}} \leftarrow \mathcal{M}[S_{\text{auto}_{v-1}}][\delta_{v-1}]$
 940 merge S_{exist} and S_{auto_v} because they represent the same state in automaton;
 941 **else**
 942 add $\{\delta_{v-1} : S_{\text{auto}_v}\}$ to $\mathcal{M}[S_{\text{auto}_{v-1}}]$
 943 **end if**
 944 **else**
 945 add $\{S_{\text{auto}_{v-1}} : \{(\delta_{v-1} : S_{\text{auto}_v})\}\}$ to \mathcal{M}
 946 **end if**
 947 **end if**
 948 **for** $j \leftarrow 0$ **to** τ_{volley} **do**
 949 if $j \neq 0$ then observe the environment state $s_{v \cdot \tau_{\text{volley}} + j}$
 950 execute the environment action $a_{v \cdot \tau_{\text{volley}} + j} \leftarrow \pi_{\delta_v}(s_{v \cdot \tau_{\text{volley}} + j}|\theta_{\delta_v})$
 951 **end for**
 952 **end while**
 953 $v \leftarrow v + 1$
 954 **end while**
 955 Split all nodes into final state A and non-final state N
 956 $N \leftarrow \{S \setminus \text{FinalState}\}$
 957 **while** True **do**
 958 **for** each state set \mathcal{T} in N **do**
 959 **for** each δ in option set **do**
 960 **if** δ can split \mathcal{T} **then**
 961 split \mathcal{T} into $\mathcal{T}_1 \dots \mathcal{T}_k$
 962 add $\mathcal{T}_1 \dots \mathcal{T}_k$ to N
 963 **end if**
 964 **end for**
 965 **end for**
 966 **if** no split operation is done **then**
 967 break
 968 **end if**
 969 **end while**
 970
 971

972
973 **Table 5: Hyperparameters in *Highway* envi-
974 ronment.**

975 Hyperparameter	976 Value
Joint Training Epoch	500
expert Refinement Frequency	50
DLM Depth	7
DLM Breadth	3
DLM Discount Factor	0.99
DLM Policy Number	4
DDPG Discount Factor	0.99
DDPG Learning Rate	0.0005
DDPG Replay Buffer Size	50000

985
986 **Table 6: Hyperparameters in *Fetch-Pick-
987 And-Place* environment.**

988 Hyperparameter	989 Value
Joint Training Epoch	500
expert Refinement Frequency	50
DLM Depth	3
DLM Breadth	3
DLM Discount Factor	0.99
DLM Policy Number	4
DDPG Discount Factor	0.95
DDPG Learning Rate	0.0001
DDPG Replay Buffer Size	200000

990

H IMPLEMENTATION DETAILS

991 All experiments were conducted on a machine running Ubuntu 22, equipped with an Intel Xeon 2.5
992 GHz CPU, 32 GB RAM, and an NVIDIA A100 GPU.993

H.1 HIGHWAY ENVIRONMENT

994 In the *Highway* environment, we have 4 low-level action policies corresponding to
995 acceleration, deceleration, merge left, merge right. We choose the Deep Deterministic
996 Policy Gradient (DDPG) algorithm for low-level action policies. We use Adam optimizer
997 to update the parameters in the DDPG model.998 The Hyperparameters for the *Highway* environment are shown in Table 5.1000

H.2 FETCH ENVIRONMENT

1001 In the *Fetch* environment, we conduct three experiments *Pick&Place*, *Pick&PlaceCorner*, and *Pick-
1002 LiftPlace*. We have 4 low-level action policies corresponding to approach, grab, lift, reach.
1003 We choose the DDPG algorithm for low-level action policies. We use Adam optimizer to update the
1004 parameters in the DDPG model.1005 The Hyperparameters for the *Fetch* environment are shown in Table 6.1014

I PREDICATES SUMMARY

1015 In this section, we provide a summary of all input predicates and their corresponding relationship
1016 with the input states for our two experiments: *Highway* and *Fetch-Pick-And-Place*.1021

I.1 INPUT PREDICATES IN HIGHWAY ENVIRONMENT

1022 Here we show the mathematical form of input predicates, which is derived from input states in
1023 *Highway* Environment. The specific input states and predicates are listed in Table 7.1024 The meanings of the variables in the input states are as follows:
1025

1026	d_{x0} : the x-axis position of the ego agent.	d_{x1} : the x-axis position of the nearest car ahead.
1027	d_{x2} : the x-axis position of the nearest car behind.	d_{x3} : the x-axis position of the nearest car on the left.
1028	d_{x4} : the x-axis position of the nearest car on the right.	d_{y0} : the y-axis position of the ego agent.
1029	d_{y1} : the y-axis position of the nearest car ahead.	d_{y2} : the y-axis position of the nearest car behind.
1030	d_{y2} : the y-axis position of the nearest car behind.	d_{y3} : the y-axis position of the nearest car on the left.
1031	d_{y4} : the y-axis position of the nearest car on the right.	v_{x0} : the x-axis velocity of the ego agent.
1032	v_{x1} : the x-axis velocity of the car ahead.	v_{x2} : the x-axis velocity of the car behind.
1033	v_{x3} : the x-axis velocity of the car on the left.	v_{x4} : the x-axis velocity of the car on the right.
1034	v_{y0} : the y-axis velocity of the ego agent.	v_{y1} : the x-axis velocity of the car ahead.
1035	v_{y2} : the x-axis velocity of the car behind.	v_{y3} : the x-axis velocity of the car on the left.
1036	v_{y4} : the x-axis velocity of the car on the right.	e_0 : if there exists a car ahead.
1037	e_1 : if there exists a car behind.	e_2 : if there exists a car on the left.
1038	e_3 : if there exists a car on the right.	l_0 : the lane in which the ego agent is located.
1039	l_1 : the target lane.	

1040 I.2 INPUT PREDICATES IN FETCH-PICK-AND-PLACE ENVIRONMENT

1041
 1042 Here we show the mathematical form of input predicates, which is derived from input states in
 1043 *Fetch-Pick-And-Place* environment.

1044 We set the activating intervals as follows: $\{0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016,$
 1045 $0.018, 0.02, 0.026, 1\}$. They are used to divide the input states into discrete predicates as the input
 1046 of the high-level logical model. The specific input states and predicates are listed in Table 8. Except
 1047 for those predicates, P_{61} and P_{62} represent if the height of the object is higher than the target height
 1048 or not based on z_1 , while P_{63}, P_{64} represent if the object has reached the target position or not based
 1049 on (x_1, y_1, z_1) .

1050 The meanings of the variables in the Input States are as follows:

x_0 : The x-axis position of the gripper.	x_1 : The x-axis position of the object.
y_0 : The y-axis position of the gripper.	y_1 : The y-axis position of the object.
z_0 : The z-axis position of the gripper.	z_1 : The z-axis position of the object.
d_0 : The displacement of the left claw.	d_1 : The displacement of the right claw.

1056 J PROMPT TEMPLATE OVERVIEW

1058
 1059 We present the complete prompt template for expert refinement via LLM (§ 3.3.2). The prompt is
 1060 generally composed of several parts:

- 1062 • Task description: Provide LLM with a description of the task and background information
 1063 of the environment.
- 1064 • Input description: Describe the semantic meaning of each input variable in the form of an
 1065 interpretable sentence and the relation between input variables.
- 1066 • Input: List all input variables in the sequence of the input description.
- 1067 • Your Task: Input the reduced automaton and failure traces.
- 1068 • Output: Instruct the LLM to generate the formatted result by employing the chain-of-
 1069 thought method.

1071 Table 9 demonstrates the complete prompt template of the *Fetch* task. Table 10 demonstrates the
 1072 complete prompt template of the *Highway* task. Table 11 presents an example of the input format.

1075 K THE USE OF LARGE LANGUAGE MODELS

1077 In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
 1078 to enhance the quality and clarity of our written English. The primary application was to identify
 1079 and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
 thereby improving the overall readability and professionalism of the manuscript.

1080

1081

Table 7: **Input predicates in Highway environment.**

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Activating Intervals	Input States	Predicates	Description
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{x0} - d_{x1} $	P_5, P_6, P_7, P_8, P_9	The x-axis relative distance between the ego agent and the car ahead.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{x0} - d_{x2} $	$P_{10}, P_{11}, P_{12}, P_{13}, P_{14}$	The x-axis relative distance between the ego agent and the car behind.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{x0} - d_{x3} $	$P_{15}, P_{16}, P_{17}, P_{18}, P_{19}$	The x-axis relative distance between the ego agent and the car on the left.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{x0} - d_{x4} $	$P_{20}, P_{21}, P_{22}, P_{23}, P_{24}$	The x-axis relative distance between the ego agent and the car on the right.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{y0} - d_{y1} $	$P_{25}, P_{26}, P_{27}, P_{28}, P_{29}$	The y-axis relative distance between the ego agent and the car ahead.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{y0} - d_{y2} $	$P_{30}, P_{31}, P_{32}, P_{33}, P_{34}$	The y-axis relative distance between the ego agent and the car behind.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{y0} - d_{y3} $	$P_{35}, P_{36}, P_{37}, P_{38}, P_{39}$	The y-axis relative distance between the ego agent and the car on the left.
$\{0, 1, 2.5, 5, 10, \infty\}$	$ d_{y0} - d_{y4} $	$P_{40}, P_{41}, P_{42}, P_{43}, P_{44}$	The y-axis relative distance between the ego agent and the car on the right.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{x0} - d_{x1} $	$P_{45}, P_{46}, P_{47}, P_{48}, P_{49}$	The x-axis relative velocity between the ego agent and the car ahead.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{x0} - d_{x2} $	$P_{50}, P_{51}, P_{52}, P_{53}, P_{54}$	The x-axis relative velocity between the ego agent and the car behind.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{x0} - d_{x3} $	$P_{55}, P_{56}, P_{57}, P_{58}, P_{59}$	The x-axis relative velocity between the ego agent and the car on the left.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{x0} - d_{x4} $	$P_{60}, P_{61}, P_{62}, P_{63}, P_{64}$	The x-axis relative velocity between the ego agent and the car on the right.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{y0} - d_{y1} $	$P_{65}, P_{66}, P_{67}, P_{68}, P_{69}$	The y-axis relative velocity between the ego agent and the car ahead.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{y0} - d_{y2} $	$P_{70}, P_{71}, P_{72}, P_{73}, P_{74}$	The y-axis relative velocity between the ego agent and the car behind.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{y0} - d_{y3} $	$P_{75}, P_{76}, P_{77}, P_{78}, P_{79}$	The y-axis relative velocity between the ego agent and the car on the left.
$\{0, 0.5, 1, 3, 6, \infty\}$	$ v_{y0} - d_{y4} $	$P_{80}, P_{81}, P_{82}, P_{83}, P_{84}$	The y-axis relative velocity between the ego agent and the car on the right.
$\{\}$	$e_i == 1, i = \{0, 1, 2, 3\}$	P_1, P_2, P_3, P_4	If there exists a car ahead / behind / on the left / on the right.
$\{-\infty, -0.1, 0.1, \infty\}$	$l_0 - l_1$	P_{85}, P_{86}, P_{87}	The relative direction between the lane in which the ego agent is located and the target lane.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

Table 8: **Input predicates in *Fetch-Pick-And-Place* environment.**

Input States	Predicates	Description
$ x_0 - x_1 $	$P_1, P_6, P_{11}, P_{16}, P_{21}, P_{26}, P_{31}, P_{36}, P_{41}, P_{46}, P_{51}, P_{56}$	The x-axis relative distance between the gripper and the object.
$ y_0 - y_1 $	$P_2, P_7, P_{12}, P_{17}, P_{22}, P_{27}, P_{32}, P_{37}, P_{42}, P_{47}, P_{52}, P_{57}$	The y-axis relative distance between the gripper and the object.
$ z_0 - z_1 $	$P_3, P_8, P_{13}, P_{18}, P_{23}, P_{28}, P_{33}, P_{38}, P_{43}, P_{48}, P_{53}, P_{58}$	The z-axis relative distance between the gripper and the object.
$ d_0 $	$P_4, P_9, P_{14}, P_{19}, P_{24}, P_{29}, P_{34}, P_{39}, P_{44}, P_{49}, P_{54}, P_{59}$	The displacement of the left claw.
$ d_1 $	$P_5, P_{10}, P_{15}, P_{20}, P_{25}, P_{30}, P_{35}, P_{40}, P_{45}, P_{50}, P_{55}, P_{60}$	The displacement of the right claw.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g., DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language checking and polishing. The prompts were designed to request grammatical corrections, suggestions for more concise or academically appropriate phrasing, and improvements in logical flow, without altering the core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant. All substantive intellectual contributions, including the core ideas, theoretical framework, experimental design, data analysis, and result interpretation, remain entirely our own. The final decision to adopt any suggestion provided by the LLM was always subject to our careful review and judgment. We ensured that every change aligned with our intended meaning and adhered to the standards of academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus more effectively on the scientific rigor and conceptual depth of our work.

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 9: **Complete prompt template for the *Fetch* environment.**

You are an expert in refining the automaton of a robot for the task Fetch available in the OpenAI Gym repository. You need to first understand the task and the automaton of the robot.

Task Description

The task in the environment is for a manipulator to move a block to a target position on top of a table or in mid-air. The robot is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper. The robot is controlled by small displacements of the gripper in Cartesian coordinates, and the inverse kinematics are computed internally by the MuJoCo framework. The gripper can be opened or closed in order to perform the grasping operation of pick and place. The task is also continuing, which means that the robot has to maintain the block in the target position for an indefinite period.

Total Predicates ID and Its Description

- total_predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
 1. The relative distance between the end effector and the object along the x, y, and z axes.
 2. The displacement of the left gripper and the right gripper.
 3. The height of the object from the table.

Key Predicates ID

- *key_predicates_id* is a list of predicate IDs that are important for the task.

State Predicates

- *state_predicates* is a dictionary that maps the state ID in *states* to a list of tuples of predicates.
- The boolean values of each predicate tuple are in the order of the *key_predicates_id*. # Automaton
- *action* is a dictionary that maps the action letter to its description.
- *states* is a list of state IDs in the automaton.
- *start_state* is the initial state of the automaton.
- *accept_states* is a list of accepting states in the automaton.
- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action letter, and the value is the next state ID.

Failure Trajectory

- *failure_trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the *key_predicates_id* and the action letter.

Input

Total Predicates ID and Its Description

- total_predicates = {TOTAL_PREDICATES}

Key Predicates ID

- key_predicates_id = {KEY_PREDICATES_ID}

State Predicates

- state_predicates = {STATE_PREDICATES}

Automaton

- action = {ACTION}
- states = {STATES}
- start_state = {START_STATES}
- accept_states = {ACCEPT_STATES}
- transitions = {TRANSITIONS}

Failure Trajectory

- failure_trajectory = {FAILURE_TRAJECTORY}

Your Task

You need to analyze and refine the automaton of the robot. You must follow the following rules.

1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on the Input.
2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by proposing new key predicates.
3. When performing (a), you can first consider the relationship between predicate tuples in the list and then consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.
4. When performing (c), you should reduce the number of states to four by removing counterintuitive transitions.
5. When performing (c), the format of the new states and transitions must be consistent with the existing automaton.
6. The state ID must be a unique integer, and the action letter must be a unique character.

Output

Now, analyze the logical relation between key predicates of states.

{ChatGPT response}

Analyze why failed trajectories failed to reach accepted states.

{ChatGPT response}

Refine the automaton by proposing new key predicates.

{ChatGPT response}

1242

1243

Table 10: Complete prompt template for the *Highway* environment.

1244

1245

You are an expert in refining the automaton of an ego vehicle for the task Highway available in the OpenAI Gym repository. You need to first understand the task and the automaton of the ego vehicle.

Task Description

The task in the environment is to drive an ego vehicle as fast as possible. At the same time, the ego vehicle should not hit any other cars. The vehicle is controlled by linear acceleration and angular acceleration in Cartesian coordinates, and the inverse kinematics are computed internally by the Highway environment. There are four lanes in the same direction in the environment. Other vehicles in the environment travel at a certain speed on a specific lane and will not perform unconventional driving maneuvers. This task lasts for a fixed duration, during which the vehicle must keep moving continuously.

Total Predicates ID and Its Description

- total_predicate is a dictionary that maps the predicate ID to its description, including three types of predicates:
 1. The relative distance between the ego vehicle and the car along the x and y axes.
 2. The relative velocity between the ego vehicle and the car along the x-axis.
 3. If there exists a car ahead, behind, on the left, or the right.
 4. The relative direction between the lane in which the ego agent is located and the target lane.

Key Predicates ID

- *key_predicates_id* is a list of predicate IDs that are important for the task.

State Predicates

- *state_predicates* is a dictionary that maps the state ID in *states* to a list of tuples of predicates.

- The boolean values of each predicate tuple are in the order of the *key_predicates_id*. # Automaton

- *action* is a dictionary that maps the action letter to its description.

- *states* is a list of state IDs in the automaton.

- *start_state* is the initial state of the automaton.

- *accept_states* is a list of accepting states in the automaton.

- *transitions* is a dictionary of transitions in the automaton. The key is a tuple of the state ID and the action letter, and the value is the next state ID.

Failure Trajectory

- *failure_trajectory* is a list of episodes. Each episode is a dictionary of transitions. The key is a tuple of the state, and the value is the next state. The state is a tuple represented by boolean values in the order of the *key_predicates_id and the action letter.

Input

Total Predicates ID and Its Description

- total_predicates = {TOTAL_PREDICATES}

Key Predicates ID

- key_predicates_id = {KEY_PREDICATES_ID}

State Predicates

- state_predicates = {STATE_PREDICATES}

Automaton

- action = {ACTION}

- states = {STATES}

- start_state = {START_STATES}

- accept_states = {ACCEPT_STATES}

- transitions = {TRANSITIONS}

Failure Trajectory

- failure_trajectory = {FAILURE_TRAJECTORY}

Your Task

You need to analyze and refine the automaton of the ego vehicle. You must follow the following rules.

1. You can also leverage your own knowledge about the goal of the task, but the conclusions must be based on the Input.

2. You need to analyze the automaton in these three steps: (a) analyze the logical relation between key predicates of states, (b) analyze why failed trajectories failed to reach accepting states, and (c) refine the automaton by proposing new key predicates.

3. When performing (a), you can first consider the relationship between predicate tuples in the list and then consider using the logical operators AND, OR, and NOT to combine the predicates in the tuple.

4. When performing (c), you should reduce the number of states to four by removing counterintuitive transitions.

5. When performing (c), the format of the new states and transitions must be consistent with the existing automaton.

6. The state ID must be a unique integer, and the action letter must be a unique character.

Output

Now, analyze the logical relation between key predicates of states.

{ChatGPT response}

Analyze why failed trajectories failed to reach accepted states.

{ChatGPT response}

Refine the automaton by proposing new key predicates.

{ChatGPT response}

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

Table 11: An example of variables that require the user to input.