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Abstract
Autonomous driving represents a prominent application of artificial intelligence.
Recent approaches have shifted from focusing solely on common scenarios to
addressing complex, long-tail situations such as subtle human behaviors, traffic
accidents, and non-compliant driving patterns. Given the demonstrated capabilities
of large language models (LLMs) in understanding visual and natural language
inputs and following instructions, recent methods have integrated LLMs into au-
tonomous driving systems to enhance reasoning, interpretability, and performance
across diverse scenarios. However, existing methods typically rely either on real-
world data, which is suitable for industrial deployment, or on simulation data
tailored to rare or hard case scenarios. Few approaches effectively integrate the
complementary advantages of both data sources. To address this limitation, we
propose a novel VLM-guided, end-to-end adversarial transfer framework for au-
tonomous driving that transfers long-tail handling capabilities from simulation to
real-world deployment, named CoC-VLA. The framework comprises a teacher
VLM model, a student VLM model, and a discriminator. Both the teacher and stu-
dent VLM models utilize a shared base architecture, termed the Chain-of-Causality
Visual–Language Model (CoC VLM), which integrates temporal information via
an end-to-end text adapter. This architecture supports chain-of-thought reason-
ing to infer complex driving logic. The teacher and student VLM models are
pre-trained separately on simulated and real-world datasets. The discriminator is
trained adversarially to facilitate the transfer of long-tail handling capabilities from
simulated to real-world environments by the student VLM model, using a novel
backpropagation strategy. Experimental results show that our method effectively
bridges the gap between simulation and real-world autonomous driving, indicating
a promising direction for future research.

1 Introduction
Autonomous driving has advanced significantly over the past decades, attracting interest from
both commercial and academic sectors. It has evolved from simple trajectory tracking into a
complex, integrated system. Typically, an autonomous driving system consists of several modules,
including environmental perception and decision-making. These systems may rely on rule-based
methods for navigating familiar roads or imitate human behavior to manage a wide range of driving
scenarios. Prevailing autonomous driving approaches primarily focus on achieving breakthroughs on
challenging benchmarks and are typically trained and evaluated on datasets collected in real-world
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Figure 1: Overview of the proposed framework. The framework comprises a teacher VLM model
(based on the simulation CoC VLM baseline), a student VLM model (based on the real-world CoC
VLM baseline), and a discriminator. The teacher and student VLM models share the same architecture
but are trained separately on simulation and real-world datasets, respectively. The discriminator
is employed to facilitate the adversarial transfer of capabilities from the simulation domain to the
real-world domain. Train step1 refers to the adversarial training step1. Train step2 refers to the
adversarial training step2.

environments. However, such systems may fail in previously unseen cases, such as rare accidents
or unexpected human behaviors, prompting the development of simulated dataset benchmarks to
evaluate performance under rare or hard case scenarios.
To ensure robust performance across diverse environments, researchers have adopted data-driven
end-to-end autonomous driving methods. These methods enhance system integrity by eliminating
accumulated errors. Moreover, the widespread adoption of end-to-end models enables faster inference
and lower resource consumption [1, 2]. By processing input from surrounding images and/or LiDAR
data, end-to-end systems generate final trajectories and/or control signals. However, these systems
operate as black boxes, offering no interpretability or explanation for their decisions, thereby raising
ethical and legal concerns. Furthermore, they lack mechanisms for human interaction, limiting their
applicability in advanced autonomous driving.
To address the black-box nature of end-to-end autonomous driving, numerous studies have explored
the integration of large language models (LLMs) to enhance vehicle interpretability, controllability,
and robustness. LLMs have demonstrated remarkable capabilities when trained on large-scale datasets,
which are highly desirable in autonomous driving systems. Additionally, LLMs exhibit strong
generalization capabilities, enabling them to handle unseen scenarios and unfamiliar environments.
Among LLM-based autonomous driving approaches, several are trained and evaluated on real-world
datasets for industrial deployment. Inspired by [3, 4], DriveGPT4 [5] represents a pioneering
effort to leverage LLMs for interpretable end-to-end autonomous driving. It accepts multi-frame
sequences and instruction prompts, and outputs vehicle control signals. Experimental results on
real-world datasets demonstrate the effectiveness of this method. LLMs offer a capability absent
in traditional autonomous driving systems: they can interpret textual descriptions and translate
driving instructions into actionable control signals. Moreover, LLM-based approaches aim to address
long-tail challenges in autonomous driving by employing diverse modeling strategies and utilizing
various sensor modalities [6–8]. However, LLMs trained on real-world datasets often fail to capture
critical uncommon cases such as traffic accidents, non-compliant driving behaviors, and pedestrian
intrusions. To address this limitation, some approaches are trained on simulated data and evaluated
in virtual environments. For example, [9] trains a language-based autonomous driving model using
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data collected in the CARLA simulator [10], and performs closed-loop evaluations within simulated
environments. However, these methods are tested on simulators, where the generated control signals
cannot be executed in real-world conditions. In summary, the gap between real-world and simulated
datasets remains an underexplored area of research.
Furthermore, to incorporate temporal information from historical frames, existing methods typically
feed image sequences directly into the LLM [9]. This significantly increases token length and
computational resource consumption. Therefore, an efficient and lightweight temporal aggregation
strategy is essential.
In this paper, we propose a novel VLM-based model for explainable end-to-end autonomous driving
that not only effectively transfers capabilities learned from simulated hard cases to real-world
applications, but also integrates temporal information and end-to-end outputs via a chain-of-causality
policy. The model takes surrounding image pairs and driving instructions in natural language, and
predicts CoC answers. The overall architecture is illustrated in Fig. 1. Our method comprises two
base models: a teacher VLM model and a student VLM model, as well as a discriminator. The
teacher VLM model is trained on synthetic data to acquire the ability to handle rare and challenging
scenarios, and transfers this knowledge to the student VLM model via adversarial learning with
the discriminator. The training process is non-trivial, requiring both a pre-trained VLM model and
multiple stages of training. During inference, only the student VLM model is deployed in real-world
scenarios. Furthermore, we reproduce several existing methods and compare them with ours using a
public benchmark dataset. Experimental results demonstrate that our method achieves an excellent
result.
The contributions of this work are summarized as follows:

• We present the first VLM-based autonomous driving model capable of transferring the
ability to handle uncommon scenarios from simulation to real-world, thereby bridging the
gap between simulated and real-world environments.

• We introduce a novel discriminator that learns the domain gap between simulation and
real-world data, enabling effective knowledge transfer from the teacher to the student VLM
model.

• We propose a back-propagation strategy that enhances the convergence stability of the
adversarial training process.

• We develop a chain-of-causality policy that connects temporal information to CoC answers,
enabling chain-of-thought reasoning to model deep driving logic.

• We conduct extensive experiments on the nuScenes-VLM dataset, demonstrating that our
approach significantly outperforms existing methods.

2 Related Works
2.1 End-to-End Autonomous Driving.
Traditional autonomous driving methods suffer from complex module designs and limited interaction
between modules, often resulting in error accumulation. To address these challenges, researchers
have proposed end-to-end autonomous driving methods that unify previously separate modules
into a cohesive framework. Typically, these methods integrate perception, mapping, prediction,
and planning sub-tasks into a single model. For instance, UniAD [1] integrates features from the
perception and prediction modules and generates ego-vehicle planning trajectories using a transformer
architecture. Building on BEVFormer [11], VAD [2] extracts BEV features and regresses planning
trajectories through multiple interactions and constraints. FusionAD [12] also predicts ego trajectories
on BEV maps constructed from both camera data and LiDAR point clouds. VAD2 [13] introduces a
vectorized encoding approach to model the probabilistic distribution of trajectories, demonstrating
superior closed-loop performance. Additionally, Ego-MLP and BEV-Planner [14, 15] extensively
explore the impact of ego-vehicle status to enhance trajectory planning accuracy. ThinkTwice [16]
retrieves encoder features near the predicted coordinates and refines coarse-grained positions and
actions. Inspired by these advancements, ReasonNet [17] utilizes global and temporal representations
of driving scenarios to enhance feature extraction. Notably, TCP [18] integrates trajectory and
control action predictions into dedicated branches to improve overall driving robustness. Roach [19]
employs reinforcement learning to distill a final agent capable of interacting effectively with dynamic
environments. In contrast to prior methods, SparseDrive [20] employs sparse feature sampling
alongside a hierarchical planning strategy to generate rational and efficient planning outputs. Since
open-loop evaluations do not account for dynamic responses from surrounding vehicles, researchers
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have introduced closed-loop evaluation metrics, such as Driving Score, Route Completion, and
Infraction Score, to more accurately assess and optimize their models [21, 10].

2.2 LLM for Autonomous Driving
In recent months, the emergence of large language models (LLMs) [22, 3, 4] has led researchers to
extend them into vision-language models (VLMs) [23, 24], which integrate textual and visual data for
richer content representation. In the field of autonomous driving, researchers have begun using LLMs
and VLMs to enhance overall system performance. For example, DriveGPT4 [5] uses multi-modal
input data to generate expected control signals for the vehicle. Another method integrates LLMs into
autonomous driving frameworks to generate action recommendations along with detailed explanations
[9]. However, the control actions predicted by these methods often fall short of real-world navigation
demands. Consequently, researchers are increasingly focusing on generating textual descriptions
of driving actions to offer interpretable and contextually appropriate explanations. For instance,
ContextVLM [6] incorporates diverse environmental contexts to enhance robustness across a range
of scenarios. Instead of relying on camera data, LiDAR-LLM [7] utilizes raw LiDAR inputs and
employs a three-stage training strategy to align 3D modalities with the LLM embedding space,
thereby enhancing spatial understanding for autonomous driving. DriveMM [8] processes diverse
inputs, such as images and multi-view videos, to pre-train a baseline model, which is then refined
to improve generalization in vehicle control. To improve temporal representation, LaVidaDrive
[25] introduces a Query-aware Token Selection module, a Spatial-Temporal Token Recovery and
Enhancement module to optimize both efficiency and performance. To address VLM limitations in
spatial reasoning, DriveVLM [26] integrates specialized reasoning modules for scene understanding
and hierarchical planning. Additionally, DriveMLM [27] introduces a behavior planning module
to generate optimal driving decisions with interpretable justifications. Notably, recent approaches
incorporate reinforcement learning to enhance multi-modal planning capabilities [28].

2.3 Domain Transfer
Domain transfer learning aims to build models capable of performing tasks in a target domain by
leveraging knowledge learned from a source domain. The method proposed in [29], implemented
using a deep learning strategy, achieves effective domain adaptation across several classification
datasets. To explore domain-specific characteristics, [30] explicitly extracts image representations
partitioned into two subspaces: one private to each domain and the other shared across domains. Given
the importance of pre-training in transfer learning, some methods leverage it to enhance adversarial
robustness compared to other approaches [31]. Most existing methods align the fully connected layers
in neural networks, while convolutional layers, which typically encode critical low-level domain
knowledge, are often left unmodified. This limitation restricts the effectiveness of domain discrepancy
reduction. To address this, [32] proposes an attention alignment mechanism on convolutional
layers to better minimize discrepancies between domains. MetaAlign [33] introduces a novel meta-
optimization strategy that maximizes gradient-based learning during training. Additionally, some
researchers have proposed asymmetric training schemes that align target domain features more
closely with those from the source domain [34]. [35] leverages object attributes to facilitate robotic
grasping and rapid adaptation across domains. Inspired by [36], which simultaneously trains a
generative model to learn data distribution and a discriminative model to estimate sample likelihoods,
Pix2Pix [37] extends the GAN-based strategy to image-to-image translation tasks, demonstrating
the effectiveness of the discriminator in image generation. Subsequently, numerous methods have
emerged to address diverse application scenarios, including PatchGAN, DTSGAN, and RFGAN
[38–40].

3 Methods
As illustrated in Fig. 1, the proposed architecture consists of three components: a Teacher Visual
Language Model (Teacher VLM), a Student Visual Language Model (Student VLM), and a Visual
Language Model Discriminator. Both the Teacher and Student VLMs share a common base architec-
ture, referred to as the Chain-of-Causality Visual Language Model (CoC VLM), which processes
multi-view image pairs, end-to-end prompts, and historical instructions from previous frames to
generate end-to-end outputs. The Teacher VLM is trained on simulated data to address diverse and
rare scenarios, such as pedestrian trespassing, driving violations, and traffic accidents. In contrast,
the Student VLM is trained on real-world data and serves as the final inference model, enabling the
transfer of knowledge from simulated to real-world contexts.
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3.1 Chain-of-Causality Visual Language Model
Since the Teacher VLM is primarily designed to transfer the capability of handling hard and challeng-
ing cases to the Student VLM, both VLMs are constructed using the same base architecture but with
different parameter sets. We design the Chain-of-Causality Visual Language Model as the shared
backbone for both the Teacher and Student VLMs. Based on extensive experimentation, LLaVA-v1.5
[41] was selected as the pre-trained VLM. The CoC VLM is primarily based on LLaVA [41] and
comprises four modules: Text Adapter, Vision Adapter, LLM Brain, and CoC Answer. Compared to
the original LLaVA, the CoC VLM introduces several enhancements: (1) A novel Chain-of-Causality
Text Adapter aggregates simplified answers from the previous frame and current instruction prompts,
thereby incorporating historical context and enhancing temporal causal reasoning. (2) A filter is em-
ployed to simplify the LLM-generated responses, effectively reducing token length. (3) A dedicated
CoC answer generation module is introduced to streamline output formatting.

3.1.1 Text Adapter
The Text Adapter comprises two components: the Chain-of-Causality (CoC) Text Adapter and the
Text Embedding module. The CoC Text Adapter aggregates temporal information from the previous
frame along with the current end-to-end prompt. Unlike existing methods such as LMDrive [9], which
utilize all historical sensor data to encode temporal information, our method selectively incorporates
simplified LLM outputs from the previous frame to enhance temporal consistency. This approach
significantly reduces token length and computational resource consumption. The proposed Text
Adapter is both simple and efficient. An illustrative example is provided below:

• Temporal Instruction: In the previous frame, a white car ahead is moving away from the
ego vehicle, and the vehicle continues in its current driving state.

• End-to-End Prompt: What are the objects around the ego vehicle? What is the moving
status of this object? What is the next action of the closest object? Will thread ego vehicle’s
safety? What are safe actions to take for the ego vehicle? Predict the future motion of the
ego vehicle.

Given the Temporal Instruction and End-to-End Prompt, we tokenize and concatenate the texts into
textual tokens, which are then embedded using the same embedding module as LLaVA [41].

3.1.2 Vision Adapter
The Vision Adapter transforms image data into tokens, as illustrated in Fig. 1. To emulate human
driving behavior, which relies solely on a 2D visual perspective, we directly stack six surrounding
camera images as input. No extrinsic or intrinsic parameters are utilized, nor are the images
transformed into BEV features, as human drivers also do not rely on such representations. This
approach contrasts with several existing end-to-end autonomous driving methods. Following the
guidance of LLaVA-V1.5 [41], we adopt the pre-trained CLIP image vision tower as our vision
encoder and apply a projection module to convert image features into tokens, which are subsequently
integrated into the textual prompt.

3.1.3 LLM Brain
The LLM Brain employs a specialized chain-of-thought reasoning mechanism to infer deep driving
logic. This module processes image tokens generated by the vision adapter and combines them with
text instructions from the text adapter to comprehend driving scenarios and generate tokens for the
next step. Similar to LLaVA-v1.5 [41], we adopt the LLaMA [4] language model as our LLM Brain.
Leveraging its pre-trained weights and fine-tuned components, our model achieves convergence as
we expected. The LLM Brain outputs end-to-end autonomous driving answers to manipulate the ego
vehicle.

3.1.4 CoC Answer
After processing by the LLM Brain, the output token sequences are decoded using a tokenizer decoder
to generate CoC answers. Inspired by [42], our CoC answer integrates perception, prediction, and
planning into a causal structure, which we represent as a causal chain. Specifically, perception
determines the future actions of surrounding objects, which subsequently influence the ego vehicle’s
motion. Causal reasoning is applied throughout the entire CoC answer. Furthermore, we design
a filter to summarize and cache the CoC answer, converting it into a concise instruction for the
subsequent frame. We provide an example below. This filter removes the reasoning component of
the CoC answer and extracts only the final action instruction for the ego vehicle—for example, and
reduces the input token size while preserving the most critical information from the previous frame.
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• CoC Answer: There is a white car in front of the ego vehicle, with coordinates
<CAM_FRONT, 1009, 486, 1074, 527>. The white car <CAM_FRONT, 1009, 486, 1074,
527> is accelerating and moving away. There is a traffic light · · · , and there are two pedes-
trians · · · . In front of the ego vehicle, there is no safety threat in front of the ego vehicle, the
ego vehicle should continue moving at the same speed. The future trajectory is (4.7, -0.7),
(7.4, -1.3) · · · .

• Cached Temporal Information: There is no safety threat, the vehicle maintains its current
speed.

3.2 Discriminator
3.2.1 Structure Design
This module aims to address the distributional gap between real-world and simulation domains by
transferring the performance of the teacher VLM model to align with the expectations of the student
VLM model. The discriminator is implemented using transformer architectures. It processes features
from both the teacher and student VLM models. Its objective is to minimize the domain gap and
adversarially align feature representations for the student VLM model.

3.2.2 Discrepancy Analysis
Let the data spaces of the simulation and real-world domains (referred to as the teacher and student
domains, respectively) be denoted as XS and XR. We denote the distributions that collected data
samples from these two domains as {xs

i , p
s(ysi |xs

i )} ∈ XS and {xr
i , p

r(yri |xr
i )} ∈ XR, xs

i and xr
i

are the data samples of simulation and real-world domains, ps(ysi |xs
i ) and pr(yri |xr

i ) represent the
conditional label distributions in the source and target domains, respectively. i is the sample index.
The discriminator is designed to learn representations that capture the domain shift between the
two domains. Since both the teacher and student VLM models project data into feature spaces, the
corresponding transformations are:{

ZS = gs(x
s
i ) xs

i ∈ XS

ZR = gr(x
r
i ) xr

i ∈ XR (1)

where, ZS and ZR are the feature space representation of two inputs. gs and gr are the corresponding
functions of two base models, tasked with preserving rich information relevant to autonomous driving.
The discriminator extracts representations in a hypothesized domain space:{

HS = hs(Z
S) = hs(gs(x

s
i )) xs

i ∈ XS

HR = hr(Z
R) = hr(gr(x

r
i )) xr

i ∈ XR (2)

HS and HR denote the output distribution spaces induced by the compositions hs · gs and hr · gr,
hs and hr are hypothesis functions to unify the feature spaces.
Given the definable difference between domains, we introduce a transformation matrix Ts2r to
minimize the distributional distance between the simulation and real-world domains. Accordingly,
the transformation function between the two domains is defined as:

HR := Ts2r ·HS := Ts2r · (hs · gs) (3)

With the relationship between the two domains established, the hypothesis function for the real-world
domain is defined as:

ŷri = Ts2r · hs(gs(x
r
i ))|hr : XR (4)

here, the real-world output ŷri is defined by hs, gs and transfer matrix Ts2r.
This method aims to quantify the discrepancy between the two domains. Given the two equations
defined above, the discrepancy Dδ

h between two domains XS and XR can be expressed by space
samples of the two domains. An invariant representation is expected to satisfy Dδ

h(X
S ||XR) =

0. Hence our algorithms learning representations and minimizing the domain error when label
distributions differ between source and target domains.

Dδ
h(X

S ||XR) := E
xs∈XS

(ls(hs(gs(x
s)), ys)

− E
xr∈XR

(lr(hr(gr(x
r)), yr)

(5)
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These results demonstrate that the hypothesis function h · g captures domain data distributions and
directly affects the measured discrepancy. As indicated by these equations, an upper bound is required
to characterize the simulation domain, which can be defined as:

sup E
xs∈XS

[ls(hs(gs(x
s)), ys)] := ρ < ∞ (6)

Here, ls is the bounded distance loss, the expected parameter is represented with ρ. Given the
transformation matrix Ts2r linking the two domains, we further explore the formula for discrepancy
Dδ:

Dδ
h(X

S ||XR) <= sup( E
xs∈XS

(hs(gs(x
s))− ys)

− E
xr∈XR

(T̂s2r(hs(gs(x
r))− yr)))

(7)

where sup is a supremum, T̂s2r denotes the Fenchel conjugate of a lower semi-continuous convex
function. This discrepancy Dδ

h is a variational formulation of the f-divergence for the convex function
δ, thus, Dδ

h(X
S ||XR) serves as a lower bound estimation of the f-divergence function.

In our method, the hypothesis can clearly explain the foundation of our hypothesis, since the final
function is a continuous convex function, which can be optimized with appropriate solvers.

3.2.3 Adversarial Optimization
In our VLM-based autonomous driving model, two components must be optimized to effectively
transfer knowledge from the simulation domain to the real-world domain. These components are
the VLM autonomous driving regression and the domain discrepancy discriminator, denoted as
Dδ

dis(X
S ||XR). The discriminator estimates and minimizes the feature distribution discrepancy

between two domains XS and XR. The total optimization problem is formulated as:

min
δ

(

∫ n

0

lV LM (hV LM (x), y)p(y|x)p(x)dydx+Dδ
dis(X

S ||XR)) (8)

where, lV LM is the VLM autonomous driving loss, hV LM is the VLM autonomous driving optimiza-
tion function. Furthermore, we define an upper bound for this discriminator:

dδdis =

∫ n

0

ldis(hdis(gdis(x
s,r)), ys,r)p(ys,r|xs,r)p(xs,r)dys,rdxs,r (9)

where hdis · gdis represents the discriminator networks responsible for extracting features from the
input data. From the two equations above, we derive the following inequality:

Dδ
dis(X

S ||XR) <= max
δ

dδdis (10)

The final optimized function is given by:

min
δ

∫ n

0

lV LM (hV LM (x), y)p(y|x)p(x)dydx

+min
δ

max
δ

∫ n

0

ldis(hdis(gdis(x
s,r)), ys,r)p(ys,r|xs,r)p(xs,r)dys,rdxs,r

(11)

As shown in Eq. (11), our model first minimizes the VLM loss functions using finite samples, the
second components correspond to discriminator losses, which are optimized using an adversarial
strategy with a min-max formulation.

4 Experiments
4.1 Model Training
The training procedure comprises two stages: pre-training and adversarial training.

4.1.1 Pre-training
During pre-training, the teacher VLM model and student VLM model are trained separately using
simulation and real-world datasets, respectively. To expedite training, checkpoints from LLaVA-v1.5
[41] are loaded as initialization. Both models accept image frames, temporal instructions, and
end-to-end prompts as inputs to fine-tune their respective Chain-of-Causality (CoC) VLMs, thereby
effectively aligning instruction, visual, and temporal information. Efficient training is achieved by
sampling frames at fixed intervals and applying temporal augmentation through random temporal
shifts.
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4.1.2 Adversarial Training
As illustrated in Fig. 1, the adversarial training process involves multiple steps. Initially, the
pre-trained teacher and student VLM models are loaded, and then the following steps are executed.
Step 1: The teacher VLM processes simulation data, while the student VLM processes real-world
data. Features extracted from both CoC VLMs are subsequently fed into the discriminator. After
calculating the discriminator loss, backpropagation is performed to only update exclusively the
discriminator parameters.
Step 2: The student VLM model is forward propagated using the real-world dataset, with concur-
rent involvement of the discriminator. This step optimizes the student VLM model using both its
autonomous driving loss and the discriminator loss. During backpropagation, the discriminator
propagates gradients without updating its parameters. The student VLM model is updated through
backpropagation based on the combined loss.

4.2 Main Comparison
We conducted a VQA-related experiment to compare our method with existing LLM-based au-
tonomous driving approaches. As illustrated in Table 1, our method demonstrates significant advan-
tages in VQA performance on the nuScenes-VLM dataset. The LLM-based autonomous driving
task is similar to traditional LLM tasks. Our method significantly outperforms the well-known
DriveLM [42] in terms of BLEU scores, achieving BLEU-1, BLEU-2, BLEU-3, and BLEU-4 scores
of 74.06, 69.33, 63.77, and 58.84, respectively, using the LLaVA-7b backbone. We also trained our
student VLM model on a mixed dataset comprising both simulation and real-world data. Besides, we
conduct another experiment, we using a two-stage fine-tuning process: first on the simulation dataset,
followed by fine-tuning on the real-world dataset. Both approaches yielded inferior results compared
to our method. The ROUGE-L performance aligns with our expectations, achieving improvements
of 3.38 and 1.01 over DriveLM and our proposed-FinetuneTwice model, respectively. Notably, our
method achieves nearly a 5-fold improvement over the competing method in terms of CIDEr score.
Specifically, our LLaVA-7b-based method shows a 1.05× improvement in accuracy compared to
DriveLM [42]. Furthermore, it yields a Match score of 45.30 and a SPICE score of 51.88, both of
which significantly surpass competing methods.
In our autonomous driving quantitative experiments, we aim to evaluate our method’s ability to
perform open-loop driving on the nuScenes-VLM dataset, focusing on transfer learning from simula-
tion to real-world scenarios and addressing the scarcity of challenging cases in real-world data. As
shown in Table 2, our approach demonstrates superior performance on the nuScenes-VLM dataset.
Specifically, our method with the LLaVA-7b backbone outperforms the competing method [42] by
more than 15.8% and 15.5% in ADE and collision rate, respectively. Notably, our final proposed
model achieves improvements of 0.16 and 0.15 over the proposed-FinetuneTwice model. These
findings strongly validate the effectiveness of our proposed model architecture.

Table 1: The general performance on our nuScenes-VLM dataset is evaluated using various language
metrics. * Indicates reproduced results. Proposed-Mix refers to the approach in which the student
VLM model is mix-trained using both simulated and real-world data. Proposed-FinetuneTwice de-
notes the strategy where the student VLM model is first fine-tuned on simulated data and subsequently
fine-tuned on real-world data to obtain the final results.

Methods
BLEU ↑

ROUGE-L ↑ CIDEr ↑ GPT ↑ Accuracy ↑ Match ↑ SPICE ↑
1 2 3 4

DriveLM [42]* 72.64 66.77 61.02 55.13 68.32 3.62 58.21 36.67 34.59 48.95

Proposed-Mix(LLaVA-7b) 71.98 67.31 61.57 56.11 68.60 21.07 60.22 73.13 40.38 49.98

Proposed-FinetuneTwice(LLaVA-7b) 72.18 68.07 61.77 58.36 70.69 21.21 61.72 73.74 41.51 49.87

Proposed(LLaVA-7b) 74.06 69.33 63.77 58.84 71.70 23.21 62.64 75.31 45.30 51.88

4.3 Ablation Study
4.3.1 Key Components Effectiveness
We conduct several ablation studies to evaluate the effectiveness of key component designs, with
results presented in Table 3. Five experiments are conducted using different combinations of model
components. As shown in Index-1 of Table 3, the teacher VLM model is trained solely on the
simulated dataset and evaluated on the nuScenes-VLM dataset. This configuration results in poor
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Table 2: The open-loop evaluation of planning performance is conducted on our nuScenes-VLM
dataset. This evaluation is based on Average Displacement Error (ADE) and Collision Rate metrics.
* Indicates results reproduced on our nuScenes-VLM dataset. Proposed-Mix refers to the approach in
which the student VLM model is mix-trained using both simulated and real-world data. Proposed-
FinetuneTwice denotes the strategy where the student VLM model is first fine-tuned on simulated
data and subsequently fine-tuned on real-world data to obtain the final results.

Methods ADE ↓ Collision Rate (%) ↓
DriveLM*[42] 1.71 1.87

Proposed-Mix (LLaVA-7b) 1.84 1.96
Proposed-FinetuneTwice (LLaVA-7b) 1.60 1.73

Proposed (LLaVA-7b) 1.44 1.58

performance. Similarly, as shown in Index-2, training the student VLM model exclusively on the
nuScenes-VLM dataset yields suboptimal results, achieving an ADE of 1.66 and a collision rate
of 1.80%. In Index-3, the student VLM model is trained on a mixture of simulated and real-world
datasets. A slight performance degradation is observed compared to Index-2, which can be attributed
to the model’s attempt to generalize across two distinct domains, reducing its effectiveness in a single-
scenario evaluation. In Index-4, the student VLM model is first fine-tuned on simulated data and
then fine-tuned on real-world data. This sequential fine-tuning strategy yields slight improvements
compared to Index-2. The final experiment corresponds to our proposed model, which achieves an
ADE of 1.44 and a collision rate of 1.58, representing reductions of 10.0% and 8.7%, respectively,
compared to Index-4.

Table 3: Ablation studies are conducted on key design elements of the proposed method using the
nuScenes-VLM and simulation datasets. The results demonstrate the effectiveness of the proposed
design. The baseline large language model (LLM) used for comparison is LLaVA-v1.5 (7b).

Index Module Component Description ADE ↓ Collision Rate (%) ↓

1 teacher VLM model baseline:
Simulation dataset trained, real-world dataset tested 17.33 –

2 student VLM model baseline:
Real-world dataset trained, real-world dataset tested 1.66 1.80

3 student VLM model baseline:
Simulation dataset and Real-world dataset mixed trained 1.84 1.96

4
student VLM model baseline:

Simulation dataset finetune firstly,
then finetune with Real-world dataset

1.60 1.73

5 Proposed (LLaVA-7b) 1.44 1.58

4.4 Qualitative Evaluation
We present additional qualitative results to further substantiate the superior performance of our model.
Qualitative results are shown in fig. 2 and fig. 3. fig. 2 depicts a scenario in which the vehicle
continues to move while the traffic light is green. fig. 2 illustrates a scenario involving the avoidance
of potential risks. Guided by our end-to-end prompt instruction, the method generates the expected
CoC answers and corresponding planning trajectories.

5 Conclusion
This paper introduces an end-to-end autonomous driving method based on a vision-language model
(VLM) that transfers long-tail and challenging cases handling capabilities from simulated data to
real-world deployment. The method comprises two baseline models and one discriminator. The
two baseline models separately incorporate text instructions and sensor data from simulated and
real-world datasets, respectively, to output CoC answers and future trajectories. The discriminator
employs adversarial learning to enhance the handling of uncommon scenarios and transfers this
knowledge to the student VLM model. Moreover, the overall training process accelerates convergence
and achieves promising results. Finally, the effectiveness of the proposed approach is validated on
the nuScenes-VLM dataset.
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 End-to-end Answer: There is a white car in front of ego 
vehicle, the coordinate is <CAM_FRONT, 1009, 486, 1074, 
527>. The write car <CAM_FRONT, 1009, 486, 1074, 527> 
is accelerate moving away. There is a traffic light …, There 
are two people …. In front of ego vehicle, there is no safety 
threat, the ego vehicle should keep going at the same 
speed. The future trajectory is (4.7, -0.7), (7.4, -1.3)….
Cache Temporal Information: There is no safety threat, the 
vehicle maintains its current speed.

Temporal Instruction: In the previous frame, a white car 
ahead is moving away from the ego vehicle, and the 
vehicle continues in its current driving state. 
End-to-end Prompt: What are the objects around the ego 
vehicle? What is the moving status of this object? What is 
the next action of the closest object? Will thread ego 
vehicle’s safety? What are safe actions to take for the ego 
vehicle? Predict the future motion of the ego vehicle.

Figure 2: Qualitative results. Ego vehicle passing through a traffic light.

 End-to-end Answer: There is a white car in front of ego 
vehicle, the coordinate is <CAM_FRONT, 551, 409, 909, 
739>. The write car <CAM_FRONT, 551, 409, 909, 739> is 
braking. In front of ego vehicle, there is a threat in front of 
ego vehicle, ego vehicle should slow down and proceed 
with caution. The future trajectory is (0.3, -0.0), (0.9, -0.1)….
Cache Temporal Information: There is a threat in front of 
ego vehicle, ego vehicle should slow down and proceed 
with caution.

Temporal Instruction: From last frame, we find a white car 
is decreasing in front of ego vehicle, ego vehicle is slow 
down. 
End-to-end Prompt: What are the objects around ego 
vehicle? what is the moving status of this object? What is 
the next action of the closest object? will thread ego 
vehicle’s safety? What are safe actions to take for the ego 
vehicle? Predict the future motion of ego vehicle.

Figure 3: Qualitative results. A scenario in which a car brakes in front of the ego vehicle.
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Justification: The abstract and last paragraphs accurately reflect our paper’s contributions
and scope.
Guidelines:
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Answer: [Yes]
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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Answer: [Yes]
Justification: We have review the NeurIPS Code of Ethics. Our paper meets this requirement.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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faith effort.
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Justification: Our paper does not have such risks.
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• The answer NA means that the paper does not use existing assets.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [Yes]
Justification: We will open-source all components of this paper and ensure that only assets
with appropriate usage permissions are cited and utilized.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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Answer: [NA]
Justification: [NA]
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should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use for checking grammar.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Experiment Appendix
A.1 More Ablation Study
A.1.1 Effectiveness of Projection
We also train our module using different projection methods, as shown in Table 4. In this experiment,
we replace the original projection module, which consists of several MLP layers, with the Q-former
from BLIP-2 [43] to evaluate the effectiveness of our projection design. As shown in the table,
the MLP-based projection slightly outperforms the Q-former-based projection. To further analyze
this phenomenon, we identify two possible reasons: (1) the Q-former contains significantly more
parameters than the MLP, making it better suited for large-scale datasets; and (2) the Q-former
compresses image features into 256 tokens, which may result in the loss of fine-grained visual
information, such as object positions, that is crucial for autonomous driving tasks.

Table 4: An ablation study is conducted to evaluate the effectiveness of the projection module on the
nuScenes-VLM dataset. The study compares MLP-based projection with Q-former-based projection.
Notably, the proposed model (LLaVA-7b) is implemented using an MLP-based projection module.

Name ADE ↓ Collision Rate (%) ↓
Proposed with Qformer (LLaVA-7b) 1.47 1.60

Proposed (LLaVA-7b) 1.44 1.58

A.1.2 Effectiveness of Temporal Information
As shown in Table 5, we conduct experiments on the nuScenes-VLM dataset to assess the effectiveness
of incorporating temporal information. As described in the model section, our method filters previous
answers, embeds them, and inputs them into the CoC VLM. In this experiment, we remove the
temporal information aggregation process. As shown in the first row of Table 5, this modification
results in a slight performance drop in both ADE and collision rate.

Table 5: Ablation study on the effectiveness of temporal information. The experiment uses the
nuScenes-VLM dataset and the simulated dataset.

Name ADE ↓ Collision Rate (%) ↓
Proposed without Temporal Information (LLaVA-7b) 1.53 1.64

Proposed (LLaVA-7b) 1.44 1.58

A.1.3 Long-tail Performance
We conducted a more in-depth analysis to demonstrate our model’s ability of handle uncommon
cases. Specifically, we split the challenging subset of the nuScenes dataset (comprising 122 scenes)
as our test set, while the remaining, easier cases were used for training. Here are challenging scene
examples: Scene-0026_379: The ego vehicle is intercepted by a construction worker to give way to a
construction truck approaching from the left. Scene-0046_568, Scene-0094_948, Scene-0131_1153,
Scene-0162_1556: Pedestrian intrusions. Scene-0150_1358: A construction worker blocks the road
using traffic cones or water barriers in front of the ego vehicle. Scene-0201_1978: The ego vehicle is
obstructed by a car attempting to park. We trained and evaluated our model using this challenging
subset. The performance results are presented below, as shown in Table 6.

Table 6: An ablation study of handling uncommon cases.

Name ADE ↓ Collision Rate (%) ↓
Our Student VLM model baseline 2.08 2.16

Straight Regressor Baseline 2.89 3.61

Proposed (LLaVA-7b) 1.73 1.92
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The results show that our proposed model achieved improvements of 0.35 and 0.24 compared to our
student baseline in the new split dataset.
Furthermore, to analyze the performance on easier cases (e.g., straight-line driving), we designed
a dummy regressor baseline that always predicts a straight trajectory. This baseline helps quantify
how much of the evaluation performance on the new nuScenes split can be attributed to genuine
methodological improvements. The dummy regressor, termed the Straight Regressor Baseline, is
based on our method. To generate a straight trajectory, we ignore the y-axis and predict only the
x-axis trajectory values (whereas existing methods predict both (x, y) coordinates). We trained this
Straight Regressor Baseline, and the results are presented in Table 6. This demonstrates that the
new split of the nuScenes dataset, which includes challenging scenarios, effectively validates our
strategy’s ability to transfer challenge-handling capabilities to real-world models.

A.1.4 Closed-loop Evaluation
We employed NeuroNCAP [44] as the closed-loop simulator, as it supports the nuScenes dataset
and provides pretrained rendering model checkpoints, making it well-suited for our method. We
cloned the NeuroNCAP [44] and NeoRAD-Studio [45] repositories, replaced the example model
(UniAD) with our own pretrained model from the main experiment, and integrated our checkpoints.
Additionally, we downloaded the NeuroAD weights, modified the evaluation script accordingly,
and conducted the closed-loop evaluation. Since NeuroNCAP offers a standardized benchmark
and evaluation metrics, and is commonly used by other methods, we followed its recommended
configuration. We evaluated our method on the suggested scenarios (e.g., scene-099, scene-0103,
etc.). As shown in the table below, our proposed method outperforms UniAD, VAD, and our student
baseline trained on the nuScenes dataset without adversarial transfer learning.

Table 7: An ablation study of closed-loop.

Model NeuroNCAP Score avg Collision Rate (%) avg

UniAD 1.84 68.70

VAD 2.75 50.70

Our Student VLM model baseline 3.07 48.83

Proposed (LLaVA-7b) 3.32 45.26

A.1.5 Datasets
During pre-training, the teacher and student VLMs are trained separately using simulated and real-
world datasets, respectively. The simulated dataset, referred to as CARLA-VLM, is collected using
the CARLA Leaderboard v2 simulator and comprises 61.6% normal scenes and 38.4% challenging
scenarios (e.g., traffic jams, near-miss vehicle interactions, and pedestrian intrusions). The real-world
dataset used is prepared from the publicly available nuScenes dataset. To accelerate training, we
initialize both models with checkpoints from LLaVA-v1.5 [40]. Each model is fine-tuned using
image frames, temporal instructions, and end-to-end prompts, enabling the Chain-of-Causality (CoC)
VLMs to align instruction, visual, and temporal information effectively. Efficient training is further
facilitated by sampling frames at fixed intervals and applying random temporal shifts as augmentation.
We use a real-world dataset (nuScenes-VLM) and a simulated dataset (CARLA-VLM) to pre-train
the student and teacher VLM models, respectively.
nuScenes-VLM dataset: The student VLM is pre-trained on the nuScenes-VLM dataset, which is
derived from the publicly available nuScenes dataset and enriched with textual prompts. We follow
the official train/validation split provided by nuScenes.
CARLA-VLM dataset: We use this dataset as our simulation dataset to pre-train teacher VLM model.
This dataset is configured with settings similar to nuScenes and annotated with textual prompts
consistent with those in the nuScenes-VLM dataset. To enhance dataset transparency, we provide
the statistical distribution of scenarios within the CARLA-VLM dataset. A new supplementary table
presents detailed counts for each scenario category. We believe these additions improve the clarity of
our dataset description and enable a more rigorous evaluation of the model’s performance, particularly
in challenging driving scenarios.
We have provided the statistical distribution of the simulated challenging scenarios to clearly charac-
terize the dataset. A new supplementary table presents detailed counts for each scenario category. We
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hope these additions enhance the transparency of our dataset and enable a more rigorous assessment
of the model’s performance in handling rare but critical driving events, as shown in Table 8.

Table 8: CARLA Scenarios Statistical Distribution.

Scenarios Category Proportion(%) Clips Count(total 600)

Normal (Straight, Left, Right Turn) 61.6 370

Pedestrian Intrusion 4.7 28

Fog 6.7 40

Rain 7.8 47

NearMiss Vehicle Interactions 2.7 16

Traffic Jam 4.5 27

Traffic Accident 1.8 11

Vehicle Cut In 2.2 13

Opposite Vehicle Intrusion 0.8 5

Vehicle U-Turning 0.5 3

Construction Obstacle 4.0 24

Bicycle Intrusion 0.5 3

Lane Merge 1.2 7

No Traffic Light Intersection 0.7 4

Turn Left and Merge In 0.3 2

A.1.6 N frames Fusion
We have conducted an experiment using two cached frames, with the results presented in Table 9. The
findings indicate that, compared to using one cached frame, there is no significant improvement in
ADE or Collision Rate. Therefore, we have chose to use a single cached frame to reduce the number
of input tokens.

Table 9: Ablation study on N frame temporal information.

Model ADE ↓ Collision Rate (%) ↓
With 1 Frame 1.44 1.58

With 2 Frames 1.47 1.56

A.2 Implementation Details
We conduct our experiments using nuScenes dataset and a simulator dataset collected from CARLA.
Our approach adopts the CoC VLM architecture as the baseline for both the teacher and student VLM
models, which are pre-trained on the simulation and real-world datasets, respectively. The LLM
Brain component is initialized using the LLaVA pre-trained model [41]. Given the complexity of the
training process and the associated convergence challenges, we adopt a multi-step training strategy.
To prevent convergence to suboptimal local minima, we utilize a large batch size during training.
Furthermore, different optimization algorithms are applied to the various modules to improve training
performance. All experiments are conducted on eight NVIDIA H100 GPUs. To reduce computational
resource requirements, we fine-tune our model using the LoRA method [46].
Before adversarial training, we load the pre-trained models for both the teacher and student VLM
models. The adversarial training process consists of multiple steps, incorporating our unique back-
propagation strategies.
Step 1:
Forward-Propagation: We freeze both the teacher and student VLM models and train only the
discriminator. Simulation and real-world data are fed into the two VLMs, respectively, and the
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resulting features are passed to the discriminator to outputs the logits. Backward-Propagation: Using
the discriminator’s output logits, we compute the loss and perform back-propagation. Since only the
discriminator is being trained at this stage, we update only its parameters while keeping both VLM
models frozen.
Step 2:
Forward-Propagation: In this process, only the student VLM and the discriminator are involved. Both
real-world and simulation data are input into the student VLM, and the resulting features are passed
to the discriminator to produce logits.
Backward-Propagation: This step introduces our novel contribution. We first back-propagate the
discriminator loss through the discriminator without updating its parameters. Then, the propagated
gradients, along with the VLM-specific losses, are used to update the student VLM model. This
strategy reduces convergence instability and accelerates the adversarial training process.

A.3 Adversarial Training Loss
Unlike existing methods, our approach incorporates additional distinct loss functions. During Step
1 of adversarial training, the discriminator loss is incorporated. This enables the discriminator to
distinguish between the two data distributions, defined as follows:

lstep1 = ld (12)

In Step 2, both the discriminator loss and the VLM autonomous driving loss are utilized, as shown
below:

lstep2 = lV LM + ld (13)
However, as described in the Model Training section, our discriminator only passes the gradient
parameters, and does not update their model parameters.

A.4 Evaluation Metrics
To evaluate the proposed method, we employ two categories of metrics: language evaluation metrics
and planning evaluation metrics.

A.4.1 Language Evaluation Metrics
In our experiments, several standard metrics are used to assess language performance.
SPICE. This is a prevailing metric used in VQA and image captioning, to evaluate the structure
similarity of predicted texts with ground truth while ignoring the semantic meanings [47]. In detail, it
parses the text into a syntactic dependency tree using probabilistic context-free grammar, then maps
the dependency tree into a scene graph in a rule-based manner. The scene graph describes the objects,
attributes, and their relationship in the original text, and the SPICE score is computed as the F-score
of the generated scene graphs from prediction and ground truth [47].
GPT Score. We employ GPT Score [48] to measure the semantic alignment of answers and comple-
ment the SPICE metric. Specifically, the question, the ground truth answer, the predicted answer,
and a prompt asking for a numerical score of the answer. GPT Score is a metric provided by
ChatGPT. Traditional metrics mainly assess word-level performance and may not capture seman-
tic nuances, potentially yielding unexpected evaluation outcomes. Leveraging ChatGPT’s robust
reasoning capabilities, we employ it to gauge prediction quality and derive a more rational score [48].
BLEU. Bilingual Evaluation Understudy (BLEU) is used to measure the n-grams between prediction
and ground truth, and is sensitive to the word order. The n ranges from 1 to 4 in our experiment. With
higher precision indicating a better match, The BLEU score is between 0 and 1, where 1 represents a
perfect match and 0 represents the opposite [49].
ROUGE_L. Recall-Oriented Understudy for Gisting Evaluation-Longest Common Subsequence
(ROUGE_L) calculates the precision and recall with the longest common sub-sequence, which utilizes
the n-grams policy similar to BLEU, but mainly based on recall [50].
CIDEr. Consensus-based Image Description Evaluation (CIDEr) encodes the frequency of n-grams
appearing in the text, calculates the weight of each n-gram through TF-IDF, represents the sentence
in vector form using n-grams, and then calculates the cosine distance of the TF-IDF vector between
the two text to measure their similarity [51].
Furthermore, we also use Accuracy and Match as suggested by [42] to evaluate our method.

A.4.2 Planning Evaluation Metrics
ADE. Average Displacement Error (ADE) is used to measure the performance of the planning results,
it indicates the average L2 distance between the labeled ground truth trajectories and predicted
trajectories.
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Collision Rate. This metric is used to compute the ratio of evaluation frames that collides with
objects in over all evaluation frames.
Notably, these metrics follow the VAD [2] settings, it will consider the error/collision rate as an
average over 0.5, 1, 1.5, 2, 2.5, 3 seconds, in another word, it uses average over average strategy.

B Data Generation
B.1 Data Collection
In our approach, the nuScenes dataset [52] is used as the real-world dataset. This dataset is collected
using multi-view cameras and LiDAR, with annotations provided for each key frame. A simulation
dataset is also collected using the CARLA Leaderboard v2 simulator [10]. The same configuration as
nuScenes is adopted, including multi-view cameras, labels, and HD maps. The data are segmented
into clips, consistent with the nuScenes format. In contrast, numerous challenging scenarios are
simulated, such as accidents, traffic violations, and pedestrian trespassing. These scenarios are
designed to enhance the generalization capabilities of the student VLM model.

B.2 CoC Answer Generation
VLM-based autonomous driving methods require textual prompts paired with corresponding answers.
Our method takes data clips as input, following the approach suggested by [42], with several
enhancements. We augment the data with specific object descriptions around the ego vehicle,
including orientation (azimuth), pixel bounding box coordinates (2D coordinates of the object in
the camera view), and dimensions (height and width of the bounding box, which serve as distance
cues). We refine the end-to-end question/answer templates using two main strategies: employing
classification-based multiple-choice questions for improved stability, and structuring logical templates
to coherently link tasks. These data are structured using chain-of-causality reasoning to extract end-
to-end driving logic. Notably, both the real-world and simulation datasets are generated using the
same prompt strategy and follow a consistent CoC answer format. These datasets are referred to as
nuScenes-VLM and CARLA-VLM, respectively, in our paper.

C Motivations
Recently, LLM-based autonomous driving methods have employed two distinct types of datasets.
One type consists of real-world datasets, such as nuScenes [52], while the other includes simulated
datasets, such as those generated using the CARLA simulator [10]. Methods trained on real-world
datasets suggest that models should be applied in real driving scenarios; hence, models trained on
real data are considered optimal. However, these methods face several challenges. First, collecting
and labeling real-world data is expensive. Second, real-world data lacks rare and challenging cases,
such as pedestrian trespassing, traffic violations, and accidents. Finally, real-world data often lacks
complex interactions and decision-making scenarios.
To address these limitations, other researchers have proposed models trained on simulated data.
Simulations can be freely deployed with arbitrarily dynamic or static environments and can reproduce
scenarios that are difficult or dangerous to capture in the real world, such as reckless driving, traffic
collisions, and extreme lighting conditions. Moreover, simulations facilitate the collection of large-
scale labeled datasets. However, a significant domain gap exists between simulations and real-world
driving, limiting the applicability of simulation-trained models to real vehicles. Therefore, transfers
strong handling capabilities from simulation to real-world deployment has become increasingly
important.
Furthermore, to incorporate temporal information from previous frames, existing methods typically
input sequences of images into LLM models [9]. This strategy significantly increases token length
and computational resource consumption. Therefore, it is essential to develop a simple and efficient
strategy for temporal aggregation.

D Why CoC
These Chain-of-Thought approaches often compromise the integrity of reasoning, resulting in frag-
mented and incoherent decision-making chains. In contrast, our Chain-of-Causality (CoC) method
outputs entire CoC answer (End2End answer) that preserves internal causal linkages across the entire
process. Specifically, it follows the sequence: T cached information → perception → prediction →
planning → T+1 cached information. For example, if the ego vehicle was turning left in the previous
frame, the model should detect an oncoming vehicle in the opposite lane, predict its trajectory, and
generate an appropriate plan accordingly.
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E More Related Works
E.1 Traditional Autonomous Driving
Traditional autonomous driving methods are typically composed of four subtasks: detection, online
mapping, prediction, and planning. Researchers have extensively studied each of these components,
contributing a wide range of solutions tailored to individual challenges in the driving pipeline.
Detection. CenterNet [53] introduces two specialized modules: Cascade Corner Pooling and Center
Pooling, to improve object detection performance. Differently, PointPillars [54] employs LiDAR
point clouds to predict 3D bounding boxes. DETR3D [55], a DETR-inspired approach, utilizes
3D queries to extract image features and directly predict bounding boxes without requiring non-
maximum suppression. Additionally, LSS [56] pioneers the use of depth prediction to construct
a Bird’s-Eye View (BEV) feature map for detection tasks. Similarly, PETR [57] enhances feature
initialization by incorporating 3D positional encodings into image features, which are then processed
via detection queries using a transformer-based mechanism. BEVFormer [11] further advances BEV-
based detection through spatio-temporal transformers, significantly improving detection accuracy for
autonomous driving.
Online Mapping. For constructing detailed road topology, researchers focus on accurately identifying
lane locations and geometries. LaneNet [58] decomposes the lane detection task into edge proposal
and line localization to mitigate confusion with visually similar objects. FIERY [59] performs
dense segmentation on the BEV feature map to predict lane features. Furthermore, HDMapNet
[60] transitions from dense segmentation to sparse map representations. Different from HDMapNet,
VectorMapNet [61] directly predicts polylines in the BEV space, removing the need for heuristic
post-processing. MapTR [62] introduces query-based representations for constructing lane topology.
Inspired by these methods, MapExpert [63] further refines this approach by distributing specialized
experts to handle heterogeneous map elements with varying geometric characteristics.
Prediction. Conventional prediction models use historical trajectories to forecast future movements.
Early methods, such as FaF and IntentNet [64, 65], use neural networks for motion prediction.
CoverNet and related works [66, 67] highlight the significance of dynamic behavior modeling. In
addition, MultiPath [68] combines visual features extracted from cameras with convolutional neural
networks to predict motion in BEV space. Different from methods above, VectorNet [69] introduces
sparse representations for trajectory prediction. Some researchers also adopt sparse representations
to forecast vectorized trajectories using transformer-based architectures [70, 71]. In contrast, some
models adopt dense representations to predict occupancy and motion flow [59, 72]. Other methods,
such as VIP3D and PIP [73, 74], integrate interactions with dynamic agents and static map elements
to boost predictive performance. PnPNet [75] adds a tracking strategy that derives trajectory estimates
from detection results. Recently, unified frameworks such as UniAD, VAD, and SparseDrive [1, 2, 20]
jointly perform perception and prediction within a single model.
Planning. Planning represents the final stage in autonomous driving, where systems generate
executable trajectories. ALVINN [76] is among the earliest neural-network-based planning models.
More recent approaches integrate perception outputs to refine trajectory accuracy [77, 78]. Others,
such as LookOut and ST-P3 [79, 80], incorporate rule-based optimizations. Notably, reinforcement
learning-based methods introduce teacher VLM models to guide planning [81, 82]. PlanT [83] utilizes
standard transformers to extract object representations for planning, while VAD2 [13] models planning
actions as probabilistic distributions, thereby enhancing local planning precision and achieving strong
closed-loop performance on benchmarks.

F Limitations
As LLaVA-7b is chosen as the baseline, inference computational cost and speed present challenges for
deployment in online systems, limiting potential applications. Furthermore, maintaining two baseline
models incurs high training costs. The complexity of the training process also poses optimization
challenges, particularly during the initial epochs. Since the objective of our method is to transfer
simulation capabilities to real-world performance, evaluation is conducted on real-world datasets.
Consequently, closed-loop evaluation metrics are not assessed. [45, 44]

G Social Impacts
The development of our Visual Language Model (VLM) methods holds significant potential to
enhance transportation systems by improving road safety and mitigating traffic congestion. These
methods exhibit robustness and strong generalization capabilities across diverse driving environments.

27



Moreover, their interpretability could facilitate the transition of autonomous driving systems from
black-box to white-box models, thereby accelerating deployment. However, because autonomous
driving is closely tied to human safety, the current limitations in the safety and trustworthiness of our
methods raise concerns about their widespread adoption. There is still a long way to go.
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