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Abstract

Incomplete multi-view deep clustering is an emerging research hot-pot to incor-
porate data information of multiple sources or modalities when parts of them are
missing. Most of existing approaches encode the available data observations into
multiple view-specific latent representations and subsequently integrate them for
the next clustering task. However, they ignore that the latent representations are
unique to a fixed set of data samples in all views. Meanwhile, the pair-wise similar-
ities of missing data observations are also failed to utilize in latent representation
learning sufficiently, leading to unsatisfactory clustering performance. To address
these issues, we propose an incomplete multi-view deep clustering method with
data imputation and alignment. Assuming that each data sample corresponds to a
same latent representation among all views, it projects the latent representations
into feature spaces with neural networks. As a result, not only the available data
observations are reconstructed, but also the missing ones can be imputed accord-
ingly. Moreover, a linear alignment measurement of linear complexity is defined
to compute the pair-wise similarities of all data observations, especially including
those of the missing. By executing the above two procedures iteratively, the dis-
criminative latent representations can be learned and used to group the data into
categories with off-the-shelf clustering algorithms. In experiment, the proposed
method is validated on a set of benchmark datasets and achieves state-of-the-art
performances.

1 Introduction

With the development of electronical device and information technology, the data observations are
widely accumulated from different sources and modalities, collectively referred to as multi-view data
in academic communities. For instance, when making advertisement recommendation to Internet
users, the content provider would collect their personal details from multiple aspects in advance,
such as living habit, shopping record, etc. [1]] In the diagnosis and treatment of Alzheimer’s disease,
multiple types of data are collected and analyzed along with a set of medical examinations, including
blood test, Cerebrospinal Fluid (CSF) examination, Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), Positron Emission Tomography (PET), etc. [2] Therefore, how to integrate the
multi-view data effectively and efficiently is a critical problem. In this background, multi-view
clustering can explore the consensus and complementary information among different data views and
improve the performance over single-view clustering by large margins, catching a large volume of
attentions from researchers [3].
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Since most of the existing multi-view clustering are derived from single-view algorithms, they can
be grouped into five categories accordingly, i.e., multiple kernel clustering [4, |5, 6, 5], multi-view
subspace clustering [7, 18, 9], multi-view spectral clustering [[10, [1 1], multi-view matrix factorization
[12} 13] and multi-view deep clustering [14}[15)]. Insides, multi-view deep clustering is emerging in
recent years along with the rapid development of neural network techniques. Among the advances,
Cui et al. propose to extract high-level features from data observations of each view with multiple
view-specific fully connected auto-encoders, then design the dual contrasting losses to maximize
the distance between different clusters and enhance the compactness within clusters [16]]. Yu et al.
employ graph convolutional encoder on each data view [[17]. Subsequently, the contrastive learning
technique and block diagonalization constraint are adopted to guide representation matrix learning,
while representation learning is utilized into clustering result generation. Similarly, Chen et al. learn
view-invariant data representations with auto-encoders and compute results by contrasting the cluster
assignments among different views [18]]. Usually, multi-view deep clustering approaches achieve
better performance than the others due to the superior capability of neural networks to generate
high-quality latent representations on data observations.

Due to sensor failure or restricted conditions, the collected multi-view data are often incomplete
where one or more views are missing completely. In such setting, the researchers propose a number
of incomplete multi-view deep clustering approaches to make the most of available data observations
rather than discarding the data samples with missing views [19] 20]. Mostly, they first encode
the available data observations into multiple view-specific latent representations and subsequently
integrate them by designing different losses on them. For instance, Chao et al. adopt the contrastive
loss to maximize representation similarities of the same data sample in different views while minimize
those of different data samples [21]]. At the same time, Lin et al. modify the contrastive loss to
maximize mutual information across all data views, promoting the learning of informative and
consistent latent representations [22].

Although the existing methods achieves satisfactory performance, they ignore the fact that the
latent representations of a fixed set of data samples are unique and invariant to different views.
Meanwhile, they only concentrate on the integration of available data observations but overlook the
pair-wise similarity information among missing data observations, limiting the further improvement
of clustering performance. To address these issues, we propose a novel Incomplete Multi-view Deep
Clustering with Data Imputation and Alignment (IMDC-DIA). Specifically, it assumes that all views
share a same latent representation with respect to a certain data sample. Contrary to the mainstream
methods of encoding data observations into latent representations, the proposed approach projects the
unique latent representations to feature space of each view with multiple independent neural networks.
As a consequence, not only the available data observations are reconstructed, but also the missing
ones can be imputed accordingly. Moreover, a linear alignment measurement is defined and analyzed
accordingly. Then, we adopt it to align the latent representations with the data observations of each
view, so as to utilize the pair-wise similarities of all data observations, especially including those of
the missing. By executing the above data imputation and alignment coherently and iteratively, the
discriminative latent representations can be learned and used to group the data into categories with
off-the-shelf clustering algorithms. To validate effectiveness of the proposed IMDC-DIA method, we
conduct extensive experiments on a set of benchmark datasets and compare it with the most recent
advances in literature. Corresponding results show it achieves state-of-the-art clustering performance
in almost all settings, well validating its effectiveness and superiority.

2 Related work

2.1 Multi-view deep clustering

As a representative of multi-view clustering, multi-view deep clustering is one of the most effective
technique to group data samples with integrating their multi-view information. Typically, it achieves
better performances than the other multi-view clustering methods, since the adopted neural networks
can extract higher-quality latent representations on the data observations of each view. Among them,
the Multiple Layer Perceptron (MLP) network is the most widely used in literature, such as those in
[L6,23]]. Besides, the other types of neural networks are also employed to further improve the quanlity
of latent representations. For example, Yu et al. generate the view-specific latent representations with
Graph Convolutional Network (GCN) encoder on each view, successfully capturing the structural
data information along with learning attribute features [[17]. Observing the poor scalability of MLP,



Zhu et al. transform the feature vector into image and use Convolutional Neural Networks (CNN)
subsequently, achieving satisfactory clustering performance [24]]. Yang et al. adopt the Transformer
structure by utilizing self-attention mechanism, enabling the encoder to better retain complementary
information across different views and remove the exclusive information [25]].

Apart from the neural network structure, plenty of constraints and loss functions are developed in
existing researches. Insides, contrastive loss is the most popular one of them. Commonly, it regards
the latent representations of a data sample in different views as positive pairs while the rest as negative
pairs, and maximizes the similarities of the former while minimizes those of the latter 25| [23].
At the same time, Cui et al. integrate the pseudo-labels in training stage and consider the latent
representations of data samples in a same temporary cluster as positive pair, improving the clustering
performance effectively [16]. In addition, a large number of researches employ the self-representation
loss derivate from the self-representation constraint in classical multi-view clustering [24} 26]]. It
assumes each latent representation to be a linear sum of the others and minimizes their differences.
Nevertheless, some of the other popular constraints and loss functions would be the adversarial
similarity constraint [27]], the discriminative constraint [15] and the self-supervised loss [17].

2.2 Incomplete multi-view deep clustering

To deal with incomplete data in real-world scenarios, incomplete multi-view deep clustering is
emerging to be a promising approach and explored in recent literature. Some of them only rely on
the available data observations to compute the clustering results [28}29]. They usually encode the
available data observations into latent representations with multiple neural networks with each in one
data view. On the basis, Wen et al. propose a graph embedding strategy to simultaneously capture the
high-level features and local structure of each data view, while a self-paced strategy is also utilized to
select the most confident samples in model training, reducing the negative influence of outliers [29].
Differently, Xu et al. learn latent representations by incorporating the Mixture-of-Gaussians prior
information to enhance their clustering-friendly structure and develop a Product-of-Experts approach
to efficiently aggregate them [30]. Xu et al. utilize all view-specific latent representations into a
consensus one with an adaptive feature projection module, avoiding to impute the missing data [31].
Then, the correlated common cluster information is explored by maximizing its mutual information,
while the distribution alignment is achieved by minimizing its mean discrepancy coherently.

Different from the above approaches, the other incomplete multi-view deep clustering methods try to
recover the missing data along with the latent representation learning and data clustering [211 [32}33]].
For instance, Wang et al. learn the low-dimensional latent representations with view-specific encoder
networks and explicitly generate the missing data with generative adversarial networks at the same
time [33]. Lin et al. unify the cross-view consistency learning and data recovery techniques by
maximizing the mutual information of different views and minimizing the conditional entropy through
dual prediction, respectively [22, 134]. Liu et al. propose a two-stage autoencoder network with
recurrent graph reconstruction mechanism to extract high-level latent representations and recover the
missing data synchronously [35].

3 Methodology

In this section, the proposed IMDC-DIA method is introduced, where its framework is visualized
in Fig. [I] Briefly, it aims to learn the high-quality latent representations which are subsequently
fed to off-the-shelf clustering algorithms so as to group the data accurately. To accomplish this, the
latent representations are assumed to be unique to all views. On the basis, three main components
are concerned, i.e., data reconstruction, imputation and alignment. On the left of Fig. m the
proposed IMDC-DIA method projects the unique latent representations to feature space of each view
with multiple independent neural networks. Thereby, not only the available data observations are
reconstructed (data reconstruction), but also the missing ones can be imputed and completed (data
imputation) accordingly. In data alignment, a linear alignment measurement is defined and, as shown
on the right of Fig. [T} is adopted to align the unique data representations with the completed data
observations of each view.
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Figure 1: Framework of the proposed IMDC-DIA method. For the ease of expression, only two data
views are presented, but arbitrary number of views are supported. Also, any types of neural networks,
apart from the fully-connected, can be employed, only if they project the latent representations into
data feature space.

3.1 Formulation

Denoting N, V and D, as the number of data samples, the number of views and the feature dimension

of v-th view, the multi-view data observations can be specified to {xz(.v) }fv 1321 in which Xl(-”) € RPv,

Corresponding availability indicators are {a; } ¥ ; where a; is a discrete vector in {0, 1}"". Here, the
data observation of v-th view xgv) is available if the v-th element a; ,, is 1, while missing if 0. In
such setting, incomplete multi-view deep clustering methods aim to group the data into clusters with

the available observations where the cluster number K is known in advance.

3.1.1 Data reconstruction and imputation

Instead of encoding the available data observations into multiple view-specific latent representations,
the proposed IMDC-DIA method assumes that the data latent structure is intrinsic and corresponding
latent representations should be unique to all data views. Denoting the latent representations to be
{z;}}¥, where z; € RP, it proposes to reconstruct the multi-view data observations by projecting
the latent representations into feature spaces with V' independent neural networks as

1" = go (24), (1)

where ©, represents parameters of the v-th neural network. It is worth to note that the latent
representation z; is not fixed but a variable which can be optimized in model training. Correspondingly,
we can obtain the reconstruction loss by minimizing the differences between the generated data and
the available data observations via

1 N1
_ }: }: S(v)  _(v)2
LT* NiZI‘/iU:laZvU”Xi X, H27 (2)

in which V; refers to the number of available views of i-th data sample. Nevertheless, it can be
observed in aforementioned reconstruction process that not only the available data observations are
reconstructed, but also the missing ones are imputed accordingly. Therefore, the multi-view data can
be completed by filling the missing with those imputed in Eq. (I). As a result, the complete data can
be formulated as

XZ(',U) _
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3.1.2 Data alignment

On the basis of the complete multi-view data of Eq. (3), the proposed IMDC-DIA method also
incorporate the pair-wise similarities of all data observations, especially those of the missing, to

regularize the latent representations. Primarily, the Linear Alignment of two matrices is defined in
Definition Il

Definition 1 (Linear Alignment) Given two arbitrary matrices X1 and Xo of size n x dy and
n X dg respectively, the linear alignment is computed as

LE(X{ Xs)
Lrp(X{X;)  Lp(XgXs)’

in which Ly (-) denotes the Frobenius norm of matrix. Corresponding computation complexity is
linear to n.

LA =

“

Denoting vector x; to the ¢-th row of an arbitrary matrix X, the pair-wise linear similarity between
its ¢-th and j-th rows is measured by their dot-products that
k@j = XiXT

i, wrtoije{l,2,--- N} 5)

With considering two arbitrary matrices X; and Xy coherently, their pair-wise linear similarities
should be
k:ll = xlleT and klz = szfT (6)
On this basis, the similarity consistency of these two matrices can be measured by the sum of their
dot-products as
N 1 7.2
ZZ J=1 k g kw (7

\/ZZJ lkl,J w\/zu 1k271k721

where the denominator is a scaler term to ensure the obtained consistency in range [—1, 1].

Theorem 1 The linear alignment of two arbitrary matrices measures the consistency of the pair-wise
linear similarities of their rows.

Proof 1 The consistency of Eq. (/) can be transformed to
SN kL k2 SN KRk

4,5=1"1,5 1,5 i,5=1"1,5"j,i

C = =
N kLl gl 2 1.2 N 1 1.1
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in which the second equation holds for

2 _ T 2
ki = %a,j%z; = Xo 1X2 g = ki )
while the third holds for
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This completes the proof.



According to Theorem[I] the linear alignment of two arbitrary matrices measures the consistency
of the pair-wise linear similarities of their rows. To consider the pair-wise similarities of all data
observations, especially including those of the missing ones, we propose to maximize the linear
alignment between the latent representations and the completed data observations of v-th view, i.e.,
max LA(Z, X)) Therefore, corresponding loss can be formulated to

LH(Z'X™)
Lr(ZTZ) Lp(XTX®)’

LW = —LA(Z,XW) = — (11)
in which Z and X(*) are the matrix form of {z;}, and {)’(EU)}Z-I\LI, respectively. Furthermore, to

consider the data quality of each view, an additional set of weight parameters {w, }"_, are introduced
to balance their effect on latent representations. As a consequence, the overall data alignment loss

can be written to
v 1%
Lo = Zvag’”, s.t. ng =1 (12)
v=1

v=1

It is worth to note that {w,, }"_, are variables to be optimized in model learning rather than hyper-
parameters specified in advance.

3.1.3 Loss function

As seen in the framework of Fig. [T} the proposed IMDC-DIA method is composed of three main
components, including the data reconstruction, imputation and alignment. By utilizing the recon-
struction loss of Eq. (I)), missing data imputation of Eq. and data alignment loss of Eq. (12), the
overall loss function is written to
v
L=1L,+ L, s.t.zwg =1 (13)

v=1

in which f is a trade-off parameter and should be specified before model training.

3.2 Optimization

According to the overall loss of Eq. (T3), there are three variables to optimize in model training,
including the neural network parameter {©,}Y_,, the unique latent representation {z;}¥ ; and
weight parameter {w, }Y_,. Each of them can be optimized in the following.

Optimization of neural network parameter {0, }V_,. Same to most of deep learning methods, the
neural network parameter can be optimized with gradient descent strategy. In experiment, we adopt
the popular Adaptive Moment Estimation (Adam) optimizer.

Optimization of latent representation {z;}\_,. Different from the existing multi-view clustering
methods, such as [13], the proposed IMDC-DIA method is difficult to find the close-form solution of
data latent representation. Therefore, the gradient descent strategy with Adam optimizer is adopted in
its optimization.

Optimization of weight parameter {w, }"_,. With fixing the others, LY is given and minimizing the
overall loss of Eq. (T3) equals to
%

v
max{wu}})/zlzwv(—Lg’)), s.t.zwg: . (14)
v=1

v=1

According to o Cauchy—Schwarz inequality [36],

14 14 14 1%
3w, (~L{) < <Zw2> <ZL§”)2> = > L2, (15)
v=1

v=1 v=1

where the equality holds for when

w1 W2 wy
M w2 WV (16)
ORI ~LY)



Unifying the constraint 25:1 w2 = 1in Eq. , the solution can be computed to

a7

Overall, the aforementioned three parameters are optimized alternately and the latent representations
can be achieved until the convergence or maximal epoch. Next, k-means algorithm is applied on the
computed latent representations {z; } ; to group multi-view data into categories. Furthermore, the
pseudo-code of the optimization procedure is summarized in Alg. [T}

Algorithm 1 Incomplete Multi-view Deep Clustering with Data Imputation and Alignment

N,V
1, v=1

Input: incomplete multi-view data {x§”>} with availability indicator {a;}¥ |, cluster number k
Output: data labels
1: initialize latent representation {z;}¥ ; and network parameters {©,}V_;;
2: t=0;
3: while ¢ < epochs do
# forward
compute L, with Eq. (2));
complete multi-view data with Eq. (3);
compute {Lg))}i‘,/:1 with Eq. lb
update the view weights {w, }/_; with Eq. (17);
9:  compute the overall loss L with Eq. (I3);
10:  # back propagation
11:  update latent representation {z; } ; and network parameters {©,}Y_;;
12 t=t+1;
13: end while
14: compute the data labels with k-means on latent representations {z; }

AN

N .
=1

3.3 Computation complexity

Specifically, the data reconstruction and imputation of Eq. (I)), (2) and (3 only require projecting the
latent representations into feature spaces with parameterized neural networks, hence introducing a
O(N) complexity. Also, corresponding updates on latent representations and network parameters are

of O(N) complexity. Besides, the complexity of data alignment loss L™ in Eq. is mainly on the
computation of LZ(ZTX®), Lr(Z"Z) and Lp(X™TX®)) which are all of O(N) complexity.
Nevertheless, the optimization of weight parameter {w,, }"_; via Eq. is of O(V') complexity. In
summary, the overall complexity of the proposed IMDC-DIA method is linear to the number of data
samples, i.e., O(N).

4 Experiment

4.1 Experiment setting

To validate the proposed IMDC-DIA method, we conduct extensive experiments on four benchmark
datasets, including HandWritterf| [37], Caltech5V{| [38], Flower17| [39] and MSRCV If| [40]. On the
basis, we generate incomplete datasets by following the common strategy [41] in literature. Specifi-
cally, assuming the missing ratio to be m, m percent of data samples are selected to remove at least
one views randomly. In the following experiments, m is set in {0.1,0.3,0.5,0.7.0.9}. Meanwhile,
five recent incomplete multi-view deep clustering approaches are considered in comparison, including
DITA-IMVC [42], DSIMVC [41]], DCP [34], DVIMVC [30] and CPSPAN [43]. Note that, we

“https://archive.ics.uci.edu/ml/datasets/Multiple+Features
*https://data.caltech.edu/records/mzrjq-6wc02
*https://www.robots.ox.ac.uk/ vgg/data/flowers/17
https://github.com/youweiliang/Multi-view_Clustering
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Table 1: Performance comparison between the proposed IMDC-DIA and recent incomplete deep
multi-view clustering approaches. The avg. column refers to performance averages of all missing
ratios. Note that, the best results are marked in bold, while the second-best with underline.

Metric ACC NMI

Missing ratio 0.1 0.3 0.5 0.7 09 avg. | 0.1 0.3 0.5 0.7 0.9 avg.
DITA-IMVC | 75.48 78.92 81.37 81.02 55.00 74.36|75.81 78.05 77.62 75.54 52.16 71.84

S DSIMVC  [79.55 80.73 78.83 77.48 50.87 73.49|78.57 77.76 74.93 7197 4853 70.35
£ DCP 81.95 75.73 77.23 71.77 13.07 63.95|84.37 78.95 79.22 7439 093 63.57
5 DVIMC 86.42 83.05 45.48 2520 18.92 51.81|87.64 84.78 56.58 3543 17.96 56.48
= CPSPAN 9042 91.25 91.08 90.27 86.73 89.95|83.84 84.37 84.01 83.55 82.62 83.68

IMDC-DIA [96.37 93.68 91.80 90.65 87.93 92.09|91.80 93.68 91.80 90.65 87.93 91.17
"~ DITA-IMVC | 79.10 75.76 68.02 58.90 40.29 64.41|67.56 64.78 58.84 52.40 2929 54.57
> DSIMVC | 7664 73.14 6636 57.38 44.95 63.69|68.02 63.11 5671 49.23 33.99 54.21
< DCP 4450 46.95 46.45 44.67 1698 3991|4522 5231 50.69 4507 0.54 38.77
2 pvimMC 88.64 81.36 84.93 80.86 68.81 80.92|80.52 73.38 76.27 73.56 62.40 73.23
© CPSPAN 83.29 81.10 77.21 7679 79.02 79.48|73.81 71.30 68.73 68.43 69.26 70.31

IMDC-DIA [86.05 85.05 83.33 85.02 81.29 84.15|86.05 85.05 83.33 85.02 81.29 84.15
" DITAIIMVC | 18.75 17.52 13.77 13.16 12.84 15.21|18.15 16.60 1023 8.65 8.66 12.46
~ DSIMVC |18.63 16.86 13.50 1336 13.36 15.14[17.51 1478 929 927 922 12.01
T DCP 26.15 2549 2221 15.05 10.78 19.94|26.18 25.94 2347 1537 3.69 18.93
E% DVIMC 36.69 3123 26.84 23.41 21.69 27.97(3543 29.82 24.30 20.93 20.08 26.11

CPSPAN 36.27 39.34 31.15 37.35 36.00 36.02|37.13 39.65 30.88 38.15 35.97 36.36
IMDC-DIA |52.03 46.47 44.22 41.54 39.14 44.68|52.03 46.47 44.22 41.54 39.14 44.68

DITA-IMVC | 76.03 74.60 70.95 66.83 55.87 68.86|67.62 63.02 60.61 5496 43.32 5791
DSIMVC 78.57 76.98 70.48 71.59 64.76 72.48|68.37 65.81 62.26 59.19 51.78 61.48
DCP 17.94 20.00 22.06 2222 2270 2098 | 7.11 754 7.05 495 4.62 625
DVIMC 74.60 61.43 56.67 43.17 38.25 54.82|66.68 56.40 54.91 42.02 30.08 50.02
CPSPAN 85.08 86.51 85.40 84.29 77.62 83.78 |75.86 77.25 75.51 74.09 69.06 74.35
IMDC-DIA |91.27 92.22 86.03 85.08 83.02 87.52|91.27 92.22 86.03 85.08 83.02 87.52

MSRCV1

directly adopt the public codes available on the authors’ websites without modification. To ensure
the comparison fairness, we grid-search their parameters and report the best. So does the proposed
IMDC—DIAE] method with setting its only parameter /3 in {0.01,0.1,1,10,100}. By following the
literature, four most common metrics are adopted to measure the clustering performance, including
accuracy (ACC), normalized mutual information (NMI), purity (PUR) and adjusted rand index (ARI).
Nevertheless, all methods are executed multiple times and their averages are reported to remove
randomness effect.

4.2 Effectiveness

In order to validate effectiveness of the proposed IMDC-DIA method, we compare it with the recent
advances on incomplete deep multi-view clustering in literature. Corresponding results can be found
in Table[I] It is obvious that the proposed IMDC-DIA outperforms the recent advances in almost all
missing ratios on all datasets. Concretely, it achieves the improvements of 5.95%, 2.43%, 0.72%,
0.38%, 1.20% in accuracy and 4.16%, 8.90%, 7.79%, 7.10%, 5.31% in NMI on HandWritten; 15.34%),
7.13%, 13.07%, 4.19%, 3.14% in accuracy and 14.90%, 6.82%, 13.34%, 3.39%, 3.17% in NMI on
Flower17; 6.19%, 5.71%, 0.63%, 0.79%, 5.40% in accuracy and 15.41%, 14.97%, 10.52%, 10.99%,
13.96% in NMLI, respectively. Although slight decreases in 0.1 and 0.3 missing ratios on Caltech5V
are observed, i.e., 2.59% and 1.60%, the proposed IMDC-DIA obtains better performances on the
other missing ratios consistently. Nevertheless, with averaging the results in all missing ratios, we can
see that it improves the accuracy by 2.14%, 2.27%, 3.14%, 3.74% and the NMI by 7.49%, 10.92%,
8.32%, 13.17% on the four benchmark datasets. To be summarized, the aforementioned observations

SThe code is available at https://github.com/liujiyuan13/IMDC-DIA-code_releasel
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Table 2: Performance comparison between the proposed IMDC-DIA method and its variants of
modifying and removing the data imputation and alignment components. The avg. column refers to
performance averages of all missing ratios, while the avg. row reports the performances in the setting
of completing missing data with average values. Note that, the best results are marked in bold, while
the second-best with underline.

Metric ACC NMI
Missing ratio 0.1 0.3 0.5 0.7 09 avg. | 0.1 0.3 0.5 0.7 09 avg.
o avg.  |7558 66.17 5647 50.63 41.78 58.13|75.30 64.92 5595 5155 42.18 57.98
§ £ zero |83.85 68.87 6133 4823 4472 61.40|76.90 64.85 56.41 49.60 42.58 58.07
§ S rand  |7998 69.73 5837 5505 44.33 6149|7833 68.31 57.06 5281 4245 59.79
2 none | 96.13 82.55 87.82 7870 55.83 80.21 |91.37 82.39 82.03 74.80 49.31 75.98
T wloalign. [93.62 86.65 90.57 81.27 82.78 86.98 [87.78 81.89 81.82 76.88 73.44 80.36
IMDC-DIA | 96.37 93.68 91.80 90.65 87.93 92.09 | 91.80 86.68 83.31 82.05 77.39 84.25
o 7; avg.  |74.14 73.19 63.86 52.07 46.98 62.05[72.26 66.11 56.68 47.16 39.89 56.42
> 5 zero (8074 73.60 67.38 61.81 5212 67.13|74.06 63.71 57.33 5274 4337 5824
5 € mnd 7876 68.31 6205 58.10 47.95 63.03|7270 60.89 53.63 5037 37.17 54.95
= none | 87.98 82.14 81.71 7631 61.74 77.98|78.57 72.57 70.35 62.81 46.61 66.18
© wioalign. |80.21 81.90 80.07 83.50 81.60 81.46 |73.42 72.84 71.04 72.08 67.51 71.38
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o 7:; avg.  |47.23 39.80 3270 29.78 25.02 34.91[46.18 38.56 3321 27.93 2429 34.03
~ E zero |45.15 36.86 31.81 27.38 24.63 33.17 |44.51 3458 29.05 2527 2277 3124
é S rand  |4564 3520 30.15 2598 23.75 32.14 4517 33.54 27.65 23.60 20.75 30.14
3 none [42.01 3593 2564 13.11 17.23 26.78 |42.74 34.80 22.81 7.58 1143 23.87
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well illustrate the effectiveness of the proposed IMDC-DIA method and its superiority over the recent
advances in literature.

4.3 Ablation study

To demonstrate the rationality of our motivations and effectiveness of the proposed techniques, we
further conduct an thorough ablation study in the following. Two settings are designed by modifying
and removing the data imputation and alignment components. Specifically,

1. The avg., zero and rand of w/o imp. substitute the data imputation into completing the miss-
ing data with averages of available data observations, zeros and random values, respectively.
Meanwhile, the none of w/o imp. refers to only using the available data observations in data
alignment module rather than completing the missing.

2. w/o align. removes the data alignment module, which can be easily implemented by setting
parameter 3 to 0.

By comparing results of the proposed IMDC-DIA method and its w/o imp. settings, the former
achieves better clustering performances in almost missing ratios on all benchmark datasets. Although
slight decreases in missing ratio 0.1 on CaltechSV are observed, i.e., 1.93% accuracy and 2.18%
NMLI, the proposed IMDC-DIA obtains better performances on the other missing ratios, i.e., 2.91%,
1.62%, 8.71%, 19.55% accuracy and 2.71%, 1.87%, 9.47% 21.53% NMIL. In average, it improve the
accuracy by 11.88%, 6.17%, 8.44%, 32.38% and the NMI by 8.27%, 6.68%, 7.32%, 32.76%. These
observations well validate effectiveness of the proposed data imputation module. In addition, we
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Figure 2: Accuracy variation with respect to parameter /3 in different missing ratios on the four
benchmark datasets. The shaded area represents the accuracy variance correspondingly.

find the proposed IMDC-DIA exhibits larger and larger performance improvements when increasing
the missing ratio. Also, the results in none setting are better than those in avg., zero and rand
settings in most cases. The two observations indicate that complementing the missing data without
data-irrelevant values would introduce extra bias hence decreasing the performance.

By comparing results of the proposed IMDC-DIA method and its w/o align. settings, similar
observations can be obtained. Specifically, 0.31% accuracy decrease is presented in missing ratio
0.9 on Caltech5V, while different degrees of improvements are observed in the other missing ratios,
i.e., 5.84%, 3.15%, 3.26%, 1.52% accuracy and 2.97%, 2.44%, 1.18%, 0.20% NMI. Also, with
averaging the results in all missing ratios, the proposed IMDC-DIA method achieves better accuracies
by 5.11%, 2.69%, 9.49% 12.98% and NMIs by 3.89%, 1.48%, 10.38%, 15.31%, respectively. These
well demonstrate that the defined linear alignment is conducive to the performance improvement.

Globally, the proposed IMDC-DIA method achieves better clustering performances than its none
of w/o imp. setting, i.e., 11.88%, 6.17%, 16.57%, 33.33% accuracies and 8.27%, 6.68%, 17.48%,
33.41% NMIs. This proves that incorporating the data similarities among missing data observations
can largely enhance the learning of latent representations, hence obtaining better clustering results.

4.4 Parameter analysis

In the proposed IMDC-DIA method, the only parameter is the trade-off $ between the data re-
construction loss and data alignment loss. To investigate its effect on performance, we collect the
clustering accuracies when £ set in range {0.01,0.1,1, 10, 100} and present their average curves and
corresponding variances in Fig. [2] In general, the clustering accuracy decreases with a larger 3 in
almost all missing ratios on all benchmark datasets. Specifically, it can be seen that the best accuracies
are obtained mostly when setting 8 to 0.01 and sometimes when setting 8 to 0.1. Therefore, we
recommend to set it from 0.01 to 0.1 in first priority.

5 Conclusion

In literature, existing incomplete multi-view deep clustering approaches overlook the fact that the
latent representations should be unique for a specific set of data samples. Also, they fail to utilize
the pair-wise similarities of missing data observations sufficiently. Therefore, this paper proposes
an incomplete multi-view deep clustering method with data imputation and alignment by assuming
each data sample corresponds to a same latent representation among all views. Insides, a novel linear
alignment measurement of linear complexity is defined and incorporated to integrate the pair-wise
similarities of all data observations, including those of the missing ones. Nevertheless, an alternate
optimization strategy is proposed to learn high-quality latent representations for the next clustering
task. In experiment, the proposed method is compared with recent advances, while its motivations
and method design are validated. Also, its parameter effect is explored empirically.

Although the proposed method achieves state-of-the-art results compared to recent advances, it may
be partially limited by lacking sufficient constraints on the latent representations, preventing from
further improvement of the clustering performance. In the future work, we will explore more feasible
constraints. Meanwhile, the evaluation on missing data imputation is also a promising research
direction on the basis of this work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper focuses on the reseach on incomplete multi-view deep clustering
algorithm. It propose a novel incomplete multi-view deep clustering with data imputation
and alignment, effectively improving the clustering performance on incomplete multi-view
data.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: This paper has no obvious limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theorem I]is proved in Proof[I]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The datasets are publicly avaiable and the proposed method is clearly described
with equations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: =~ The code is released at https://github.com/liujiyuani3/
IMDC-DIA-code_release. Meanwhile, the used datasets are popular in literature
and available publicly.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Since all data samples are fed at once as for clustering algorithm, there is no
need to split them into training and test sets. Also, a parameter study is conducted.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars are reported in Fig. 2} In addition, Table[I]and ] only reports
the averages while ignore the variances due to space limit. They can be provided if required.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: They are reported in Section D]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This is doubly checked.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper propose an incomplete multi-view deep clustering method and
there is no obvious negative societal impact of the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please see Section Bl
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLM at all.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Convergence analysis

In the optimization, the proposed IMDC-DIA method aims to minimize the loss L of Eq. (13).
Insides, three variables are optimized alternately, including the neural network parameter {©,},_;,
the unique latent representation {z;}}¥ ; and weight parameter {w, }¥_,. With a little abuse of
notation, let the loss be represented by

L= g({gv}7‘1/217 {zz i=1s {wv}v 1)- (18)
Taking the loss at ¢ epoch to be
L = ({0, {2 1Y 17{w Mo, (19)
By fixing {z;}}¥, and {w,}Y_; at {z; t)} v, and {wq, V_,, optimizing {©,}Y_; at t + 1 epoch
induces to
CHOM T Az {wP Y ) < ({OTIN_ {2H wPH). o)

So do the optimizations of {z;}¥ ; and {w,}Y_,, resulting in

O {2 {wP ) < ({0 DN {2, fwt }v )

2D
1) 1)
<Oy {2 I {wlP ) < (O IN {2 TUY {wl T,
which can be simplified to
@ < 1) (22)
Nevertheless,
L=L.-+B8L,>0+(-1)=-1. (23)

To be summarized, Eq. (22) indicates that the loss monotonically decreases, while Eq. (23) illustrates
that the loss is lower bounded. Therefore, the optimization algorithm is convergent.

B Dataset detail

The specifics of the used benchmark datasets are presented in Table[3] Also, they are briefly introduced
as follows:

1. HandWrittelﬂ [37]. It consists of 2,000 digital images of ten classes from O to 9 in which
there are 200 images in each class. Here, six features are used, i.e., 216-D profile correlations,
76-D Fourier coefficients of the character shapes, 64-D Karhunen-Love coefficients, 6-D
morphological features, 240-D pixel averages in 2 x3 windows and 47-D Zernike moments.

2. CaltechSVﬂ [38]]. It collects 1400 object images belonging to 7 classes. I experiment, five
well-known conventional feature descriptors are adopted, including 48-D wavelet moments,
40-D CENTRIST, 254-D LBP, 512-D GIST and 928-D HOG, respectively.

3. Flowerl?ﬂ [39]]. It collects flower images of 17 categories with 80 images for each class.
Corresponding features are 5376-D Color Histogram, 512-D GIST, 5376-D HOG (2x2),
5376-D HOG (3x3), 1239-D LBP, 5376-D SIFT and 5376-D SSIM features.

4. MSRCVI[]E] [40]. It collects 210 images of seven categories with each category provides
30 images. For each image, six features are extracted, including 1302-D CENTRIST, 48-D
Color Moment, 512-D GIST, 100-D HOG, 256-D LBP and 210 SIFT, respectively.

For HandWritten, Flower17 and MSRCV 1, the creators share them publicly but do not issue licenses,
while Caltech5V is issued the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

C Incomplete multi-view data setting

The incomplete multi-view data are generated by following the common strategy [41] in literature.
Specifically, assuming the missing ratio to be m, m percent of data samples are selected to remove
at least one views randomly. In the following experiments, m is set in {0.1,0.3,0.5,0.7.0.9}.
Meanwhile, the corresponding psuedo-code is outlined in Alg.

"https://archive.ics.uci.edu/ml/datasets/Multiple+Features
Shttps://data.caltech.edu/records/mzrjq-6wc02
‘https://www.robots.ox.ac.uk/ vgg/data/flowers/17
""https://github.com/youweiliang/Multi-view_Clustering
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Table 3: Details of the used benchmark datasets. Note that, in brackets are the feature dimensions of
each data view.

Number of
Dataset . . .
Samples Clusters Views (Dimensions)

HandWritten 2000 10 6 (216/76/64/6/240/47)

Caltech5V 1400 7 5 (48/40/254/512/928)

Flower17 1360 17 7(512/5376/5376/1239/5376/5376)
MSRCV1 210 7 6 (1032/48/512/100/256/210)

Algorithm 2 Generation of Incomplete Multi-view Data

N,V
i,v=1°

Input: incomplete multi-view data {XEU)}
N
i=1

missing ratio m
Output: availability indicator {a;}

1: obtain the numbers of data samples and views, i.e. N and V;

2: random sample incomplete data index S with missing ratio m;

3: initialize availability indicator a; = {1,2,--- ,V} wrt. i € {1,2,--- | N};
4: forp € Sdo

5:  random sample missing index m,, C {1,2,--- ,V} and m, = {);

6:  set availability indicator a, = {1,2,--- ,V} —my;

7: end for

D More experiment settings

In the experiments, we adopt fully-connected neural networks on all datasets where different numbers
of neurons are adopted according to different feature dimensions, as shown in TableE} Meanwhile,
the unique data latent representation and parameters of neural netowrks are both optimized with
gradient descent strategy with Adam optimizer whose learning rate is set to 0.001. Additionally, the
codes of the proposed method and recent advances in comparison are executed on a server with 40
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz CPUs and 2 NVIDIA GeForce RTX 3090 GPUs. The
software environment includes Python 3.10.13 and PyTorch 1.12.1 optimized with CUDA 11.4.

E Additional result

Apart from the ACC and NMI results in Table[T]and 2] we also provide the experiment results in
PUR and ARI metrics in Table[5]and [6] respectively. It can be observed that the PUR and ARI results
follow similar trends with those in ACC and NMI. Nevertheless, to analyze the training process
more deeply, we also record the loss value and corresponding performances at each training epoch,
which are visualized in Fig. [3] It is obvious that the loss value continuously decreases and finally
converges to the minimum, while the ACC and NMI increase to the top and fluctuate around their
top values. These observations well illustrate the effectiveness of loss design in Eq. and the
proposed IMDC-DIA method.

Table 4: The neuron numbers of the proposed IMDC-DIA method specific to different datasets.
HandWritten ~ Caltech5V Flower17 MSRCV1
Ist-view (60, 64,216) (21, 16, 40) (34,512,5376) (21,256, 1302)
2nd-view (60, 64,76) (21, 64, 254) (34,256,512) (21,32, 48)
3rd-view (60, 32, 64) (21, 128, 928) (34,512,5376) (21, 64, 512)
dth-view (60, 16, 6) (21,128,512)  (34,512,5376) (21, 32, 100)
Sth-view (60, 64,240) (21,256, 1984) (34, 256, 1239) (21, 64, 256)
6th-view (40, 32, 47) - (34,512,5376) (21, 64, 210)
7th-view - - (34,512,5376) -
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Table 5: Performance (PUR and ARI) comparison between the proposed IMDC-DIA and recent
incomplete deep multi-view clustering approaches. The avg. column refers to performance averages
of all missing ratios. Note that, the best results are marked in bold, while the second-best with
underline.
Metric PUR ARI
Missing ratio 0.1 0.3 0.5 0.7 09 avg. | 0.1 0.3 0.5 0.7 0.9 avg.
DITA-IMVC | 77.85 80.90 81.38 81.02 55.00 75.23|66.61 70.78 70.87 68.67 3592 62.57

é DSIMVC 81.13 80.73 79.88 77.50 51.18 74.08|71.69 70.19 67.27 6391 3236 61.08
'§ DCP 83.97 78.08 79.40 73.40 1342 65.65|7532 6127 62.61 53.62 0.02 50.57
= DVIMC 86.53 83.12 45.53 2527 19.45 51.98|82.38 7791 35.65 1420 5.74 43.18
= CPSPAN 90.42 91.25 91.08 90.27 87.82 90.17 | 80.83 82.12 81.69 80.46 78.02 80.62

IMDC-DIA [96.37 93.68 91.80 90.65 87.93 92.09 | 92.09 93.68 91.80 90.65 87.93 91.23

DITA-IMVC | 79.10 75.76 68.02 60.64 41.31 64.97|61.06 57.26 48.75 40.62 18.10 45.16

> DSIMVC 76.64 73.14 66.36 58.57 46.31 64.20|60.87 54.83 47.05 37.67 22.88 44.66
5 DCP 49.24 5431 51.52 4840 17.29 44.15|23.18 27.54 28.11 20.46 -0.06 19.85
% DVIMC 88.64 81.36 84.93 81.38 68.83 81.03|77.33 67.12 71.87 68.58 52.92 67.56
©)

CPSPAN 83.29 81.10 78.14 77.76 80.05 80.07 | 69.41 6571 62.80 61.27 63.60 64.56

IMDC-DIA |86.05 85.05 83.33 85.02 81.29 84.15|86.05 85.05 83.33 85.02 81.29 84.15
~ DITA-IMVC |20.61 19.53 15.10 13.80 1341 1649|563 481 220 2.10 196 3.34
DSIMVC ~ [20.07 18.58 1434 14.00 13.82 16.16| 538 430 198 2.06 248 3.24
DCP 27.11 27.18 23.87 1576 11.10 21.00|10.07 8.02 3.86 1.76 0.03 4.75
DVIMC 37.84 32.57 27.87 24.53 2297 29.16|18.88 14.32 10.93 847 7.71 12.06
CPSPAN 38.11 40.86 32.55 39.68 37.23 37.69|17.47 19.36 13.19 19.06 16.89 17.19
IMDC-DIA |52.03 4647 44.22 41.54 39.14 44.68|52.03 46.47 44.22 41.54 39.14 44.68
"~ DITA-IMVC | 76.83 74.60 70.95 66.83 56.67 69.18 |58.42 54.43 49.80 43.22 2920 47.01
DSIMVC  |78.57 76.98 70.79 71.59 6540 72.67|59.93 57.68 51.54 50.56 41.58 52.26
DCP 18.10 20.63 22.54 22.54 23.17 21.40|-0.01 007 024 -0.16 -021 -0.01
DVIMC 74.60 61.43 56.83 43.81 38.25 54.98|57.67 45.83 41.15 27.52 19.05 38.24
CPSPAN 85.08 86.51 85.40 84.29 78.10 83.88 | 70.63 72.54 70.95 69.02 61.63 68.95

IMDC-DIA |91.27 92.22 86.03 85.08 83.02 87.52|91.27 92.22 86.03 85.08 83.02 87.52

MSRCV1

HandWritten Caltech5V Flower17 MSRCV1
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Figure 3: Loss and performance variation at each epoch on the four benchmark datasets. The blue
curve represents loss value, while the yellow and green curves are accuracy and NMI, respectively.
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Table 6: Performance (PUR and ARI) comparison between the proposed IMDC-DIA method and its
variants of modifying and removing the data imputation and alignment components. The avg. column
refers to performance averages of all missing ratios, while the avg. row reports the performances in
the setting of completing missing data with average values. Note that, the best results are marked in
bold, while the second-best with underline.

Metric PUR ARI
Missing ratio 0.1 0.3 0.5 0.7 0.9 avg. | 0.1 0.3 0.5 0.7 09 avg.

o ave 78.12 68.13 59.27 53.78 44.48 60.76 |62.70 44.29 2449 18.14 1149 3222
§ £ zero |8398 7098 6273 51.35 46.63 63.14|71.39 47.75 3275 21.58 1548 37.79
S S rand  |8018 7113 5995 5562 46.58 62.69|70.79 5561 32.89 25.63 1586 40.16
2 none | 96.13 84.73 89.28 79.67 56.68 81.30|91.59 77.60 80.11 69.16 37.18 71.13
T wiloalign. |93.62 88.18 90.57 83.77 84.12 88.05(86.73 78.23 80.55 71.71 69.92 77.43

IMDC-DIA |96.37 93.68 91.80 90.65 87.93 92.09 |92.09 86.37 82.60 80.53 75.42 83.40
4 avg  |78.50 7448 64.81 54.62 4886 64.25(6029 46.02 3032 1749 1295 3341
> E zeo  |82.17 73.60 67.88 61.81 53.00 67.69 |6543 5059 38.09 27.57 1636 39.6l
5 S rand | 7924 68.67 6243 5893 4824 6350 |67.77 5112 37.88 2801 1716 4039
£ none |87.98 8245 81.71 7631 61.93 78.08 |76.63 68.91 68.49 58.79 3825 62.22
O wioalign. [80.81 82.19 80.93 83.50 81.60 81.80 [68.21 68.29 67.07 68.89 6525 67.54

IMDC-DIA | 86.05 85.05 83.33 85.02 81.29 84.15|73.54 72.05 69.00 71.06 65.78 70.29
L ave 14870 41.72 34.07 30.59 2620 36.25|2593 14.78 1140 8.11 540 13.12°
~ E zero |4581 37.55 3270 27.97 25.42 33.89(27.61 19.97 13.97 9.85 7.61 15.80
TE S rand | 4637 3571 3096 2679 2446 32.86|28.77 1825 12.66 9.27 630 1505
2 none |42.92 36.84 26.62 13.85 18.14 27.67|22.89 18.09 991 068 298 1091
" wioalign. |39.46 37.60 36.57 3228 29.71 35.12|18.55 18.39 1634 13.59 11.55 15.68

IMDC-DIA | 52.03 46.47 44.22 41.54 39.14 44.68 |27.04 25.11 21.99 20.89 17.73 22.55
. avg | 7286 59.52 5222 44.60 38.10 53.46[52.89 2730 2049 1075 780 2385
— £ zero [69.05 6333 57.30 46.51 43.81 56.00 4329 33.62 2593 14.12 11.75 25.74
§ S rand | 6746 5683 51.59 46.03 4492 53.37|4875 3153 26.17 1575 1257 26.96
% none | 79.68 62.38 62.22 33.97 41.43 5594 |66.16 4672 39.52 8.04 14.72 35.03
= Woalign. |85.56 85.24 73.65 67.62 62.86 74.98 |72.51 70.51 5278 4335 39.98 55.83

IMDC-DIA |91.27 92.22 86.03 85.08 83.02 87.52|80.92 82.50 70.95 69.28 64.59 73.65
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