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ABSTRACT

We aim to introduce Look-Up Tables (LUTs), a highly efficient approach, for
ultra-fast inverse tone mapping (ITM). However, as LUT size scales exponen-
tially with increasing bit-depth, it remains challenging to employ dense sampling
for high bit-depth accuracy. This inevitably introduces quantization artifacts and
degrades the fidelity of ITM. To address this issue, we propose GMLUT, which
encodes high-bit-depth HDR information into a low-bit-depth learnable Gain Map
(GM), thereby facilitating the application of LUTs. Nevertheless, since the LUT
alone can only perform global mapping, it is insufficient to address local tone-
mapping degradations in practical scenarios. Thus, we devise three closely co-
ordinated operators to address the limitation of LUTs: (a) bilateral grids for lo-
cal adaptation, (b) image-adaptive LUTs for SDR-to-GM translation, and (c) a
lightweight neural modulator for GM refinement. In addition, we construct a syn-
thetic dataset of over 8,000 4K SDR–GM pairs together with a real-capture test set
to support the training and evaluation of GMLUT. Experiments demonstrate that
GMLUT outperforms prior state-of-the-art lightweight ITM methods by +1.4 dB
in PQ-PSNR while reducing inference time by 70%. Remarkably, it processes 4K
inputs in only 6.2 ms, achieving significant gains in both accuracy and efficiency.

1 INTRODUCTION

Modern TVs and devices are increasingly equipped with high dynamic range (HDR) and wide color
gamut (WCG) displays, capable of showing brighter and more vivid images. However, most existing
content is still in standard dynamic range (SDR), designed for older screens with lower brightness
and color range. This gap creates a strong demand for inverse tone mapping (ITM), which converts
SDR content into HDR format to enhance visual quality. Unlike professional remastering, practical
ITM must run in real-time on high-resolution images, often on edge devices with limited computing
power, such as smart TVs or set-top boxes.

Recent learning-based methods (Chen et al., 2021c; Guo et al., 2023a; Chen et al., 2021a; He et al.,
2022; Xu et al., 2022; Wang et al., 2022) have demonstrated promising perceptual performance
for ITM by directly regressing PQ-compressed or linear HDR values from SDR inputs. These
models handle complex tone and color adjustments and perform well on a wide range of content.
However, their high computational costs, memory usage, and latency make them unsuitable for
real-time inference, particularly on low-power edge devices.

In contrast, look-up tables (LUTs) provide excellent runtime efficiency by replacing computation
with indexed queries and interpolation. They are widely used in real-time image enhancement
and color grading due to their low latency and deployment simplicity (Adobe Systems Inc., 2005;
Blackmagic Design, 2020; Xu et al., 2020). This inherent efficiency makes them appealing for
achieving real-time, high-resolution SDR-to-HDR upconversion. However, vanilla LUTs are ill-
suited for ITM, particularly in converting low-bit-depth SDR inputs to high-bit-depth HDR outputs.
First, achieving sufficient precision for HDR/WCG fidelity requires dense sampling, which scales
the table size cubically and leads to increased memory and bandwidth costs. Second, LUTs are
context-agnostic, performing pixel-wise transformation from the input (r, g, b) triplet without ac-
cess to spatial or global information. This severely limits their ability to handle local tone-mapping
degradations in SDR content, where adaptive compression is often applied to preserve perceptual
detail, especially in highlights and shadows.
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Figure 1: (a) Performance radar chart for both synthetic and real test sets. (b) Speed–performance
trade-off: GMLUT achieves a 1.4 dB PQ-PSNR gain and a 70% runtime reduction compared with
prior lightweight methods. (c) Visual comparisons with baselines, demonstrating superior ITM
quality at significantly lower computational cost.

While recent LUT-based methods enhance LUTs capability by learning parameters or mix-
tures (Yang et al., 2022a; Li et al., 2023; Zeng et al., 2022; Kim et al., 2024; 2025; Li et al.,
2022), they remain tailored to 8-bit SDR enhancement, and face key limitations when applied to
the more challenging ITM task, including the need for dense sampling and the per-pixel transfor-
mation. Notably, ITMLUT (Guo et al., 2023b) extends this direction by predicting three LUTs for
dark, midtone, and highlight regions using global network-generated weights. While this improves
adaptivity, it still incurs nontrivial computational overhead and remains vulnerable to locally tone-
mapped SDR, limiting its effectiveness for real-world ITM deployment.

To achieve real-time ITM in real-world applications, we introduce GMLUT, an ultra-fast framework
that leverages a Gain Map-based LUT architecture. Inspired by recent industry standards (ISO;
Adobe, 2024; Google, 2024), GMLUT avoids direct regressing high-bit-depth HDR radiance values
by predicting an 8-bit color GM, which encodes the HDR and WCG information over the SDR
base. This formulation simplifies optimization, mitigates banding artifacts, and aligns with pioneer
HDR content formats. To address local tone-mapping degradations while maintaining efficiency,
GMLUT generates three image-adaptive operators conditioned on a global thumbnail of the original
high-resolution SDR image: (1) a bilateral grid for local adaptation, (2) learnable LUTs for fast
SDR-to-GM translation, and (3) a lightweight neural modulator for GM refinement. These operators
are sequentially applied to the high-resolution SDR input to produce the GM output, effectively
restoring local tone mapping degradation and achieving high-quality ITM with a cache-friendly
LUT size. Since high-resolution processing is network-free, the proposed pipeline achieves very
low runtime and computational cost.

To facilitate training and comprehensive evaluation, we construct a dataset containing over 8K syn-
thetic SDR–Gain Map pairs based on RAISE raw data (Dang-Nguyen et al., 2015), along with
a real-captured test set that reflects practical degradations. As shown in Fig. 1, GMLUT runs at
merely 6.20 ms per 4K image on an NVIDIA V100 GPU, achieving a 1.4 dB gain in PQ-PSNR
over prior lightweight ITM baselines, while reducing runtime by 70%. We summarize our principal
contributions as follows:
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• We introduce GMLUT, an ultra-fast GM-based LUT architecture that learns an 8-bit color
GM instead of high-bit-depth HDR values, simplifying optimization and mitigating quan-
tization artifacts.

• We efficiently address local tone-mapping degradations by predicting three image-adaptive
operators: bilateral grids for local adaptation, learnable LUTs for fast SDR-to-GM transla-
tion, and a neural modulator for GM refinement. This introduces spatial adaptivity without
increasing LUT resolution or incurring significant computational overhead.

• To support color GM supervision and local tone-mapping degradations, we construct a
high-quality dataset of over 8K synthetic SDR–GM pairs along with a real-captured test
set for training and comprehensive evaluation.

• Extensive experiments demonstrate that GMLUT achieves a strong quality-efficiency bal-
ance, outperforming prior lightweight ITM methods by 1.4 dB in PQ-PSNR while reducing
runtime by 70%, requiring only 6.20 ms per 4K image on an NVIDIA V100 GPU.

2 RELATED WORK

2.1 LEARNING-BASED INVERSE TONE MAPPING

Early learning-based ITM methods typically train neural networks to directly predict PQ-
compressed or linear HDR representations from SDR inputs. DeepSR-ITM (Kim et al., 2019), which
formulates ITM and super-resolution as a joint learning task to simultaneously enhance resolution
and dynamic range; HDRUNet (Chen et al., 2021a) adopts a U-Net architecture tailored for HDR
reconstruction, with a focus on structural preservation and highlight details; FMNet (Xu et al., 2022)
introduces frequency-aware modulation to suppress low-frequency artifacts and enhance perceptual
fidelity; HDRTVNet (Chen et al., 2021c) leverages hierarchical context modeling and multi-scale
supervision to improve spatial adaptivity and highlight reconstruction; KUNet (Wang et al., 2022)
integrates adaptive kernel selection to capture local variations and improve detail-aware ITM. While
these models deliver high perceptual quality, their high FLOPs, memory usage, and latency make
them impractical for real-time deployment on consumer-grade edge devices.

2.2 GAIN MAP FOR INVERSE TONE MAPPING

Gain Map (GM) is an emerging HDR representation that decouples a high-bit-depth HDR image
into a two-layer, low-bit-depth SDR–GM pair, enabling display-adaptive rendering, GPU-friendly
processing, and backward compatibility with existing software (ISO; Adobe, 2024; Google, 2024).
Building on this format, GMNet (Liao et al.) shifts the prediction target from absolute HDR values
to GMs. Compared with direct HDR regression, learning in the GM domain yields a more balanced
distribution and preserves highlight details more effectively, making GM a compelling alternative
supervision signal for ITM. However, the prior method typically restrict GMs to a single luminance
channel, construct datasets accordingly, and rely on heavy neural backbones that are unsuitable for
real-time, high-resolution inference. To overcome these limitations, we construct a dataset of over
8,000 high-resolution SDR–color GM pairs to enable color GM supervision. Building on this, our
proposed GMLUT predicts a three-channel color Gain Map for both HDR and WCG expansion,
integrated with lightweight, image-adaptive operators for efficient and high-fidelity ITM.

2.3 LUT-BASED IMAGE PROCESSING

LUTs have long been used for real-time color grading and tone mapping due to their low latency and
hardware efficiency. With learning-based extensions, they have been applied to many image process-
ing tasks via basis mixtures (Zeng et al., 2020), dynamic range enhancement with adaptive interval
sampling (Yang et al., 2022b), higher-dimensional encoding for contextual variation (Chen et al.,
2021b), and spatially adaptive tone mapping guided by feature extractors or bilateral grids (Wang
et al., 2020; Gharbi et al., 2017; Kim et al., 2024). To reduce storage, decomposition and com-
pact table have also been explored (Kim et al., 2025; Li et al., 2024). Nonetheless, most LUT-based
methods are restricted to 8-bit SDR with low sampling densities, limiting HDR fidelity. High-quality
ITM demands denser LUTs or higher-precision coefficients, but their cubic growth strains memory
and bandwidth. Moreover, vanilla LUTs are per-pixel and context-agnostic, making them ineffective
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Figure 2: Overview of GMLUT. A high-resolution SDR input IHR is downsampled to a thumbnail
Ithumb, which predicts the global absolute dynamic range Q̂max and generates three image-adaptive
operators: a bilateral grid for local adaptation, a 3D LUT for SDR-to-GM translation, and a neural
modulator for GM refinement. These operators are sequentially applied to IHR to produce the nor-
malized log-GM GM log

norm, which is then scaled by Qmax to obtain the final GM. The HDR output is
reconstructed from the SDR input and the estimated GM (Eq. 2). The figure also illustrates interme-
diate results and visualizes the predicted Q̂max distribution on the synthetic test set.

for local tone-mapping degradations. Hybrid models such as ITMLUT (Guo et al., 2023b) enhance
adaptivity via multiple LUTs from global features, but remain costly and inadequate. Our method
retains LUT efficiency while addressing these limitations through globally conditioned, lightweight
dynamic operators.

3 METHOD

Overview Instead of regressing linear HDR values or compressed counterparts (e.g., tanh, PQ),
we predict a normalized, log-encoded, three-channel Gain Map GM log

norm ∈ [−1, 1], along with a
global scalar Q̂max that defines the absolute dynamic range. The proposed framework generates
image-adaptive operators in parallel on the thumbnail version of the high-resolution SDR input,
while the generated operators sequentially perform network-free operations on the original SDR to
achieve minimal runtime and computational overhead.

Specifically, given a high-resolution SDR image IHR, we extract a global feature from the corre-
sponding resized 256×256 thumbnail Ithumb, which is used to predict both Q̂max and three image-
adaptive operators: (1) bilateral grids for local adaptation, (2) learnable LUTs for fast SDR-to-GM
translation, and (3) a lightweight neural modulator for GM refinement. The dynamic operator are
generated in parallel and the sequentially applied to the original high-resolution IHR to generate the
normalized log-GM GM log

norm. The final absolute log-domain GM GM log
pred is given by:

GM log
pred = Q̂max ·GM log

norm. (1)

This formulation explicitly decouples global illuminance prediction (Q̂max) from relative dynamic
range and color gamut modeling (GM log

norm). To reconstruct the final HDR output, we follow the
standard formulation for log-domain GM. Given the gamma-compressed SDR image IHR ∈ [0, 1],
the predicted log-domain GM GM log

pred, the final recovered linear HDR image I lin
HDR is computed as:

I logHDR = log2
(
(IHR)

γ + offset
)
+GM log

pred, I lin
HDR = exp(2, I logHDR)− offset, (2)

where the γ is set as 2.2, offset is defaulted as 1/64. This fomulation aligns with industry-standard
display pipelines (e.g., Adobe and Google (Adobe, 2024; Google, 2024)).
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3.1 SCALE ESTIMATION

Estimating absolute luminance from cropped patches is inadequate and ill-posed, hindering both
learning and accurate recovery. We therefore estimate the global illuminance scale only from the
whole image. As shown in Fig. 2, we feed the thumbnail image Ithumb to a small encoder with
strided convolutional blocks to produce the global feature Fthumb. A two-layer MLP then maps
Fthumb to the estimated scale Q̂max. During training, though supervision is on cropped patches, we
still provide the full-image thumbnail Ithumb so that the scale remains globally consistent rather than
patch dependent and avoid train-test inconsistency.

3.2 GRID GENERATION AND SLICING

To address spatially varying local tone mapping degradations, GMLUT predicts dynamic bilateral
grids from the thumbnail feature Fthumb. While bilateral grids have been widely explored for image
enhancement (Gharbi et al., 2017; Kim et al., 2024; 2025), we condition them directly on global
features, enabling adaptation to scene-dependent local distortions such as non-uniform tone curves.
Specifically, a lightweight MLP generates K grids of dimension Nb×Nb×Nb; in practice, we use
K = 3 and Nb = 8 to balances expressiveness and efficiency. Using multiple grids mitigates over-
smoothing and provides richer, scene-adaptive bases. To avoid extra computation, the input RGB
channels are reused as the range guidance. Grid features are then fused with the input RGBs through
a 1×1 projection, producing a spatially modulated base Igrid for subsequent LUT transformation.

3.3 LUT GENERATION AND TRANSFORMATION

In parallel to the bilateral grid, we generate 3D LUTs from the global thumbnail feature Fthumb
to achieve fast SDR-to-GM translation. Specifically, A lightweight two-layer MLP predicts the
table parameters T of dimension 3 × Nt × Nt × Nt, with Nt is set as 17 in our implementation.
The generated LUTs directly processes the intermediate high-resolution grid-sliced Igrid through
tri-linear sampling in T , producing a global intensity and color remapping from SDR domain to log-
GM domain. Conditioned on global thumbnail features, the generated LUT provides a scene-aware
transformation that works jointly with the generated bilateral grid operator, resulting in a refined
high-resolution GM GM log

LUT prior to the final modulation stage.

3.4 NEURAL MODULATION

To further incorporate global context into the GM prediction without expensive spatial alignment,
we extract compact vectors from the thumbnail feature Fthumb using a small MLP which predicts
channel-wise (α, β) parameters. The vectors are broadcast over the full resolution and applied to
the LUT transformed log-GM GM log

LUT through an efficient affine transformation:

GM log
norm = tanh

(
GM log

LUT ⊙ (1 + α) + β
)
. (3)

This lightweight modulation promotes coherence across large-scale structures (e.g., sky, indoor
lighting) while keeping computation low. The final GM prediction is obtained according to Eq. 1.

3.5 LOSS FUNCTION

We minimize the objective function with two data-fidelity terms and two LUT regularizers. For
Gain Map learning, we use per-pixel ℓ1 losses: one on the predicted normalized log domain Gain
Map GM log

norm against its normalized reference GM log
gt-norm to enforce relative intensity, and another on

the final scaled Gain Map GM log
pred against the original unnormalized reference GM log

gt to enforcing
global scale stably. Following common practice, the LUT is constrained by a smoothness penalty
Ls and a monotonicity penalty Lm. The overall objective is

L = ∥GMnorm −GM gt
norm∥1 + λ1 ∥GMpred −GM gt

orig∥1 + λ2 (Ls + Lm), (4)

where λ1 is set as 3 to emphasize both absolute scale estimation and the relative dynamic range
prediction, and λ2 is set as 0.1 to ensure the LUT monotonicity and smoothness.
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Figure 3: Visual Comparison on Synthetic Test Set. Each column shows the predicted HDR result
and its corresponding Y-channel error map (bottom) computed on PQ-encoded HDR. Our method
produces more accurate and perceptually faithful results than existing methods.

Table 1: Quantitative comparison on the synthetic dataset (↑ higher is better, ↓ lower is better).

Methods Linear domain PQ domain HDR metrics

PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDRVDP3↑

HDRUNet 34.28 0.9426 0.9937 25.94 0.9182 0.9836 20.08 8.691
FMNet 34.66 0.9515 0.9899 31.26 0.9422 0.9959 15.25 9.364
KUNet 33.95 0.9479 0.9911 30.37 0.9422 0.9969 15.37 8.844
GMNet 33.78 0.9439 0.9902 31.79 0.9465 0.9966 14.08 9.385

LUTwithGrid 34.22 0.9407 0.9891 25.53 0.9174 0.9803 20.64 9.069
SVDLUT 34.23 0.9402 0.9888 25.65 0.9203 0.9795 21.42 9.031
ITMLUT 33.81 0.9483 0.9888 30.66 0.9481 0.9920 15.13 9.171
Ours 35.25 0.9554 0.9912 32.06 0.9516 0.9927 13.89 9.263

4 EXPERIMENT

Proposed Dataset Public paired datasets containing SDR images and three-channel (RGB) Gain
Maps are unavailable. Existing resources are limited in various ways: HDRTV1K (Chen et al.,
2021c) (1235 pairs) and HDRTV4K (3878 pairs) (Guo et al., 2023a) focus on global tone mapping
degradation and do not provide per-channel Gain Maps; GMNet (Liao et al.) introduces SDR–Gain
Map pairs, but the gain is restricted to a single luminance channel and the scale is modest (900
synthetic and 900 real).

To enable our learning strategy, we construct a new dataset with 8150 4K synthetic SDR–GM pairs
for training and testing and 82 real captured pairs for comprehensive evaluation. For the synthetic
set, we start from the RAISE RAW image dataset (Dang-Nguyen et al., 2015) and apply adaptive
local tone mapping in Adobe Photoshop (Adobe Inc., 2024) to produce SDR renders with their
corresponding three-channel Gain Maps. For the real set, we use Adobe Indigo (Levoy & Kainz,
2025), which captures, aligns, and fuses multi-exposure raw images to create HDR content, and
directly produces a double-layer SDR–Gain Map format for restoring. All real scenes were recorded
with an iPhone 12 Pro Max, spanning daytime/nighttime and indoor/outdoor settings with realistic
mobile-photography characteristics. We train on a subset of the synthetic data, reserve 200 synthetic
pairs for testing, and use the entire real set only for testing to assess robustness. More details of the
proposed datasets can be found in the appendix.

Implementation Details We adopt the Adam optimizer (Kingma & Ba, 2015) with β1=0.9 and
β2=0.99. The learning rate is initialized to 2 × 10−4 and decays by a factor of 0.5 at 200k, 400k,
600k, and 800k iterations following a MultiStep schedule, without warm-up. Training is conducted

6
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Figure 4: Visual Comparison on Real-Capture Test Set. Each column shows the predicted HDR
result and its Y-channel error map (bottom) computed on PQ-encoded HDR. Our method achieves
accurate recovery in challenging nighttime scenes with extreme dynamic range and motion.

Table 2: Quantitative comparison on the real test set ( ↑ higher is better, ↓ lower is better).

Methods Linear domain PQ domain HDR metrics

PSNR↑ SSIM↑ SRSIM↑ PSNR↑ SSIM↑ SRSIM↑ ∆EITP ↓ HDRVDP3↑

HDRUNet 32.26 0.9415 0.9581 26.38 0.8793 0.9674 32.51 7.995
FMNet 31.63 0.9484 0.9576 29.56 0.9274 0.9873 25.42 8.936
GMNet 31.71 0.9449 0.9561 29.93 0.9280 0.9851 24.73 8.898
KUNet 31.08 0.9443 0.9546 29.60 0.9305 0.9872 24.92 8.833

LUTwithGrid 32.29 0.9431 0.9613 26.11 0.8706 0.9583 32.80 7.855
SVDLUT 32.33 0.9432 0.9608 26.26 0.8736 0.9597 33.04 7.994
ITMLUT 32.61 0.9483 0.9604 29.59 0.9229 0.9883 25.84 8.793
Ours 31.28 0.9473 0.9575 30.02 0.9404 0.9900 24.61 8.859

on 256 × 256 random crops with random horizontal flips and rotations. All experiments are per-
formed on NVIDIA V100 GPUs with a batch size of 16.

4.1 COMPARISON WITH BASELINE METHODS

Compared Methods We compare with three state-of-the-art network-based ITM methods:
HDRUNet (Chen et al., 2021a), FMNet (Xu et al., 2022), and KUNet (Wang et al., 2022), which
regress linear or compressed HDR targets. We also include two closely related baselines: ITM-
LUT (Guo et al., 2023b), which estimates separate LUTs for highlights and shadows followed by
fusion, and GMNet (Liao et al.), the first learning-based method that predicts a single-channel Gain
Map. To assess efficiency, we adapt two strong LUT-based image-enhancement methods to the ITM
setting, namely LUTwithGrid (Kim et al., 2024) and SVDLUT (Kim et al., 2025). All methods are
trained and evaluated under the same setting and data splits.

Evaluation Metrics We report results in three domains. In the linear domain, because HDR
predictions have highly varying peak values, we normalize both prediction and reference by the
ground-truth peak to [0, 1] and then compute PSNR, SSIM, and SRSIM (Zhang & Li, 2012) for
comparison. In the PQ domain, we encode prediction and reference with the PQ function and report
the same three metrics, which align better with perceived contrast. In the HDR domain, we addi-
tionally report the color-difference metric ∆EITP (ITU-R, 2019) and the perceptual quality index
HDRVDP3 (Mantiuk et al., 2023).

Quantitative Evaluation We evaluate GMLUT on a synthetic test set with 200 pairs and a real-
captured HDR test set across linear, PQ, and perceptual HDR domains (Tabs. 1 and 2). On the syn-
thetic dataset, GMLUT achieves new state-of-the-art performance among lightweight ITM methods,
surpassing baselines by a significant margin. Notably, it delivers a 1.4 dB improvement in PQ-PSNR

7
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Table 3: Efficiency and quality trade-off analysis on both 4K and 2K resolutions.

Methods Params
(M)

Runtime
(ms, 4K/2K)

FLOPs
(G, 4K/2K)

Memory
(MB, 4K/2K)

PQ-PSNR
(synthetic)

PQ-PSNR
(real)

HDRUNet 1.65 785 / 200 2946 / 736 16435 / 4112 25.94 26.38
FMNet 1.30 478 / 120 2935 / 734 5267 / 1326 31.26 29.55
KUNet 1.14 941 / 237 2666 / 667 15105 / 3780 30.37 29.93
GMNet 1.92 455 / 115 3155 / 790 4955 / 1245 31.79 29.60

LUTwithGrid 0.46 4.19 / 1.41 0.25 / 0.08 674.9 / 280.6 25.53 26.11
SVDLUT 0.27 1.78 / 1.56 0.02 / 0.02 388.9 / 104.2 25.65 26.26
ITMLUT 0.60 18.5 / 6.29 41.9 / 10.5 676.5 / 198.8 30.66 29.59

GMLUT (Ours) 0.64 6.20 / 2.42 0.48 / 0.25 962.1 / 330.4 32.06 30.01
GMLUT (downsample 2048) 0.64 3.07 / 2.45 0.26 / 0.25 588.3 / 330.4 32.21 29.98
GMLUT (downsample 1024) 0.64 2.27 / 2.20 0.20 / 0.20 507.4 / 252.2 32.12 29.57

over ITMLUT. Compared with strong network baselines such as GMNet, our method still attains a
+0.27 dB improvement in PQ-PSNR and achieves the best ∆EITP score, demonstrating that LUT-
based efficiency does not come at the cost of accuracy. The same trend holds on the real set, where
GMLUT delivers the highest PQ-PSNR and lowest ∆EITP. The advantage becomes more pro-
nounced when compared against LUT-based methods, confirming that conditioning on global fea-
tures and predicting GMs provides a significant step forward for LUT-based ITM. Overall, GMLUT
combines network-level accuracy with LUT-like efficiency. It surpasses state-of-the-art learning-
based networks while retaining the lightweight efficiency of LUT-based methods.

Qualitative Comparison As shown in Figs. 3 and 4, visual comparisons further highlight the
benefits of GMLUT. Our method preserves fine details in both highlights and shadows, reduces halo
artifacts, and maintains natural color reproduction. In contrast, LUT-only methods often produce
oversmoothed structures and hue shifts, while network baselines tend to lose sharp local contrast.
The combination of a dynamic bilateral grid and image-wise LUT enables sharper local modulation
together with faithful color recovery.

Efficiency Analysis We analyze runtime, FLOPs, and memory usage at 4K and 2K resolutions
in Tab. 3. At 4K resolution, GMLUT runs in 6.20 ms with a tiny computational footprint, more
than 70% faster than ITMLUT and two orders of magnitude faster than network-based baselines. At
2K resolution, latency decreases further to 2.4 ms with proportionally lower FLOPs and memory.
In terms of quality, GMLUT consistently outperforms LUT-based methods and slightly surpasses
strong network baselines, establishing it as the first approach to combine network-level accuracy
with LUT-level efficiency. Further, a practical trade-off is also available: downsampling the input
4k SDR to 2K reduces latency by 51% with negligible loss in quality, while downsampling input 2k
SDR to 1K maintains acceptable performance with further savings in runtime and memory.

4.2 ABLATION STUDIES

We validate the contribution of each component by removing one module at a time while keeping
data, training, and evaluation protocols fixed. As shown in Tab. 4, the ablation results are reported
on the real test set using PQ domain metrics and HDR metrics.

Ablation of Gain Map Learning We eliminate the Gain Map learning strategy, including both
Gain Map supervision and scale estimation, which reduces the model to direct HDR radiance re-
gression. This severely exacerbates bit-depth limitations, weakens dynamic range disentanglement,
increases ∆EITP from 24.61 to 31.89, and lowers PQ-PSNR by more than 3 dB, underscoring the
necessity of learning an explicit log-Gain Map. Moreover, the visual comparison in Fig. 5 shows
that direct HDR regression makes learning extremely difficult for the LUT, preventing accurate up-
conversion in highlight and shadow regions.

Ablation of Grid Slicing In this experiment, we remove grid generation and slicing from our
framework. Without the dynamic bilateral grid, the model lacks spatially adaptive bases and relies

8
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Figure 5: Visual ablation of key components on the real test set.

Table 4: Ablation on major components on real test set (↑ higher is better; ↓ lower is better).
Configuration PQ-PSNR↑ PQ-SSIM↑ ∆EITP ↓ HDRVDP3↑

w/o Gain Map learning 26.59 0.8823 31.89 7.934
w/o Grid slicing 29.68 0.9382 25.35 8.788
w/o LUT transform 29.75 0.9373 25.14 8.839
w/o Neural modulation 29.79 0.9372 25.33 8.825
Full model 30.01 0.9404 24.61 8.859

solely on the LUT and global modulator. This prevents the framework from handling spatially
variant tone-mapping degradations, leading to flattened contrast and weakened edge structures, as
reflected by a notable drop across metrics. Visual results in Fig. 5 further confirm this effect.

Ablation of LUT Transform Removing the LUT severely impairs color fidelity. Although the
grid preserves spatial structure, both ∆EITP and PQ-PSNR drop noticeably, demonstrating that the
LUT is essential for channel-wise enhancement and complements spatial modulation.

Ablation of Neural Modulation Disabling the lightweight neural modulation results in minor
quality degradation across all metrics. Although the overall performance remains reasonable, the
outputs exhibit reduced global consistency. This verifies the modulator’s role in enhancing global
coherence at negligible computational cost.

Resolution–Performance Trade-off We further evaluate GMLUT under different input resolu-
tions (Tab. 3). At native 4K resolution, the model achieves a runtime of 6.20 ms and a PQ-PSNR of
30.01 dB on the real test set. Reducing the 4K input SDR to 2K resolution decreases runtime to 3.07
ms, corresponding to a 51% speedup, with negligible accuracy loss. Further downsampling 4K input
to 1K resolution reduces runtime to 2.27 ms but introduces moderate degradation. These results are
relevant for practical deployment: since the Gain Map information is not highly sensitive to reso-
lution, HDR images can be reconstructed from downsampled Gain Maps. Consequently, GMLUT
maintains strong perceptual performance while supporting flexible efficiency–accuracy trade-offs.

5 CONCLUSION

We propose GMLUT, an ultra-fast Gain Map-based LUT framework for real-time inverse tone map-
ping. By predicting an 8-bit color GM instead of high-bit-depth HDR values, GMLUT simplifies
optimization and alleviates quantization artifacts. To handle local tone-mapping degradations with-
out increasing LUT resolution, it generates three lightweight, image-adaptive operators: a bilateral
grid for local adaptation, learnable LUTs for SDR-to-GM translation, and a neural modulator for
GM refinement. We further construct a high-quality dataset of over 8K synthetic SDR–GM pairs
with a real-captured test set to support color GM supervision and evaluation. Extensive experi-
ments demonstrate that GMLUT achieves superior quality–efficiency trade-offs, surpassing prior
lightweight ITM baselines while running in only 6.2 ms for 4K inputs.

9
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A APPENDIX

A.1 MORE VISUAL COMPARISON

We further provide more visual comparison on both the synthetic dataset and the real-capture test set
in Fig. 6 and 7, respectively. It is clear that GMLUT is able to produce more accurate illuminance
recovery and gamut expansion under diverse conditions for practical usage.

GMNet ITMLUTHDRUNet LUTwithGridKUNet OursFMNet SVDLUTSDR Image

HDR Image GMNet ITMLUTHDRUNet LUTwithGridKUNet OursFMNet SVDLUT

Figure 6: Visual Comparison on Synthetic Test Set. Each column shows the predicted HDR result
and its corresponding Y-channel error map (bottom) computed on PQ-encoded HDR. Our method
produces more accurate and perceptually faithful results than existing methods.

OursITMLUTSVDLUTLUTwithGridKUNetGMNetFMNetHDRUNet

FMNet GMNetHDRUNet KUNet SVDLUTLUTwithGrid OursITMLUT

SDR Image

HDR Image

Figure 7: Visual Comparison on Real Capture Test Set. Each column shows the predicted HDR
result and its Y-channel error map (bottom) computed on PQ-encoded HDR.

A.2 INTERMEDIATE STAGES VISUALIZATION

We provide additional visualizations of intermediate outputs from different stages of GMLUT to
illustrate its working process in Fig. 8. The generated bilateral grid first performs fast local adapta-
tion on the input SDR image, while remaining in the linear SDR domain. The learnable LUT then
translates the adapted SDR to an initial GM. Next, the neural modulator corrects the global scale and
shift for each channel to ensure accurate estimation. Finally, the normalized GM is combined with
the estimated absolute dynamic range to produce the final GM. Since none of these operators involve
high-resolution network processing, the runtime and computational overhead remain minimal.
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Figure 8: Intermediate results of GMLUT. We illustrate the intermediate stages of the GMLUT
process, including bilateral grid processing, LUT translation, and neural modulation. For clear vi-
sualization, we also present the final predicted log-domain GM alongside the corresponding ground
truth log-domain GM.

A.3 DATASET DETAILS

We visualize representative samples from the constructed synthetic dataset and the real-capture
mobile dataset in Fig. 9 and 10, respectively. The synthetic dataset is derived from the RAISE
dataset Dang-Nguyen et al. (2015), which contains 8,156 high-resolution, uncompressed RAW im-
ages collected over three years by four photographers using three different cameras across more than
80 European locations. All images are guaranteed to be camera-native and unaltered. We process the
RAW data in Adobe Photoshop to generate SDR–GM pairs by applying the “HDR” function with
“Auto” settings and limiting the “HDR” parameter to three, thereby producing locally tone-mapped
SDR base images. The SDR–GM pairs are saved in JPEG format with the P3 color gamut.

The real-captured dataset is acquired using an iPhone 12 Pro Max with Adobe Indigo, an exper-
imental computational photography system. Indigo merges up to 32 underexposed RAW frames
to preserve highlights and suppress noise, followed by mild local tone mapping with semantically
aware adjustments, resulting in natural-looking images. It outputs paired SDR base and GainMap
images in JPEG format. The real-captured test set contains 82 SDR–GM pairs covering diverse con-
ditions (day/night, indoor/outdoor, and dynamic scenes with slight blur). Reference HDR images
can be reconstructed from the paired SDR and GM for quantitative evaluation.

A.4 AI USE DECLARATION

We used Qwen-3 solely for grammar checking in Sections 3 and 4. No large language model was
employed for generating experimental results, figures, or core technical claims. All content was
reviewed, verified, and approved by the human authors.

A.5 ETHICS STATEMENT

We confirm that this work adheres to the ICLR Code of Ethics. It does not involve human subjects,
sensitive data, or practices that raise ethical concerns.
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A.6 REPRODUCIBILITY STATEMENT

We detail the components of GMLUT in Sec. 3 and the experimental settings in Sec. 4, and provide
extensive visual results in Sec. 4 and the appendix for verification. We will release the training and
testing code together with the constructed datasets upon publication to ensure full reproducibility.

Figure 9: Visualization of the synthetic dataset. The synthetic dataset contains 8,000+ 4K SDR–GM
pairs covering landscapes, nature, people, objects, and assorted indoor/outdoor scenes, delivering
high-quality training data for practical ITM methods.

Figure 10: Visualization of the real-capture mobile dataset by iPhone 12 Pro Max with Adobe
indigo software. The dataset spans diverse conditions, including nighttime and daytime, indoor and
outdoor scenes, as well as static and dynamic content.
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