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ABSTRACT

Shape correspondence is a cornerstone of computer graphics, enabling applica-
tions such as shape registration, deformation transfer, and animation. We intro-
duce NEXUS (Neighborhood-Enhanced Correspondence Optimization Strategy), a
novel framework that integrates local and global optimization to address the shape
correspondence problem effectively. Our primary contribution is the Local Neigh-
borhood Consistency (LNC) metric, a computationally efficient and robust measure
for assessing correspondence quality using mesh connectivity rather than geodesic
distances. Unlike prior metrics like Local Map Distortion (LMD), LNC is faster to
compute (linear in number of edges in mesh adjacency), and is more resilient to
non-isometric deformations. We couple LNC with a seeded graph matching ap-
proach to refine correspondences, achieving superior accuracy and speed compared
to existing methods. Experimental results demonstrate NEXUS’s effectiveness
across diverse datasets, including near-isometric, non-isometric, and topologically
noisy shapes. We also address implementation errors in prior LMD-based methods
and highlight NEXUS’s limitations, such as sensitivity to significant mesh connec-
tivity discrepancies. Our work simplifies and accelerates shape correspondence
pipelines while maintaining or improving accuracy.

1 INTRODUCTION

Establishing correspondences between 3D shapes is fundamental to computer vision and graphics
applications, including shape retrieval, comparison, recognition, registration, motion, style, and
deformation transfer (Hartwig et al., 2023; Eisenberger et al., 2020a; Ren et al., 2018; Xu & King,
2001; Eisenberger et al., 2023; Lähner et al., 2016; Sahillioğlu & Yemez, 2012; Aflalo et al., 2016).
However, shape correspondence remains challenging due to its formulation as a Quadratic Assignment
Problem (QAP) or Linear Assignment Problem (LAP), both NP-hard (Hartwig et al., 2023; Bastian
et al., 2023; Amberg et al., 2007). The complexity increases with deformation types, such as isometric
(preserving geometric properties) (Lipman & Funkhouser, 2009; Xiang et al., 2021; Pai et al., 2021;
Melzi et al., 2019) or non-isometric (altering angles, distances, or connectivity) (Kim et al., 2011;
Bastian et al., 2023; Hartwig et al., 2023; Eisenberger et al., 2020a).

This paper introduces NEXUS (Neighborhood-Enhanced Correspondence Optimization Strategy), a
novel framework that advances shape correspondence through a joint local and global optimization
approach. The name NEXUS reflects the algorithm’s core strength: it connects local neighborhood
consistency with global graph-based refinement to achieve robust and efficient correspondence
matching. Our primary contributions are:

• Local Neighborhood Consistency (LNC) Metric: We propose LNC, a new metric to
evaluate correspondence quality using mesh connectivity. Unlike the Local Map Distortion
(LMD) (Xiang et al., 2021), which relies on computationally expensive geodesic distances,
LNC is computed in O(nv) time, where n is the number of vertices, and v is the number
of nonzero elements in the degree matrix, making it significantly faster. LNC is also more
robust to non-isometric deformations, as it does not depend on geometric properties like
distances or areas. We also identify and correct errors in prior LMD implementations (Xiang
et al., 2021; Kamhoua et al., 2022; Kamhoua & Qu, 2024), ensuring accurate baseline
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comparisons. These corrections reveal performance degradation in prior methods on certain
datasets, underscoring the need for robust metrics like LNC.

• NEXUS Framework: We Follow HOPE (Kamhoua & Qu, 2024) and integrate LNC
with a seeded graph matching approach (YU et al., 2021) to form NEXUS, which refines
correspondences iteratively. NEXUS outperforms state-of-the-art methods in accuracy and
speed across diverse datasets, including those with topological noise and non-isometric
deformations.1

• Comprehensive Evaluation: We conduct extensive experiments on datasets like TOPKIDS,
SCAPE, TOSCA, and SHREC16, demonstrating NEXUS’s generalization and efficiency.
We also analyze its limitations, particularly its sensitivity to significant mesh connectivity
discrepancies.

These contributions address key limitations in prior work, such as computational inefficiency and
sensitivity to non-isometric deformations, while providing a simple, fast, and effective solution for
shape correspondence.

2 RELATED WORK

Shape matching has been extensively studied, with approaches ranging from traditional optimization
to deep learning methods. Below, we review optimization-based techniques and integrate deep
learning approaches for a comprehensive overview. For further details, see surveys by Sahillioğlu
(2020); Van Kaick et al. (2011); Tam et al. (2013); Biasotti et al. (2016).

Optimization-Based Correspondence Initialization. Initial correspondences are often established
using user-defined landmarks (Melzi et al., 2019; Shamai & Kimmel, 2017) or by aligning descriptors,
either pair-wise (via QAP) using mesh connectivity spectra (Umeyama, 1988; Fan et al., 2020;
Feizi et al., 2020; Finke et al., 1987; Kazemi et al., 2016; Dym et al., 2017; Sandryhaila & Moura,
2013), geodesic distances (Xiang et al., 2020; Aflalo et al., 2016), or mass matrices (Xiang et al.,
2020), or point-wise (via LAP) using descriptors like Heat Kernel Signatures (HKS) (Bronstein &
Kokkinos, 2010), Wave Kernel Signatures (WKS) (Aubry et al., 2011), Geodesic Distance Descriptors
(GDD) (Shamai & Kimmel, 2017), Global Point Signature (GPS) (Ovsjanikov et al., 2008), or SHOT
(Tombari et al., 2010). These initializations are refined for accuracy and smoothness.

Spectral-Based Correspondence Refinement. Spectral methods embed correspondences in the
Laplace Beltrami Operator (LBO) basis (Ovsjanikov et al., 2012), relaxing QAP to LAP. Techniques
like ZoomOut (Melzi et al., 2019) increase basis resolution iteratively, while others enforce cycle
consistency (Huang et al., 2020; Pai et al., 2021) or geometric constraints (Rodolà et al., 2017;
Eisenberger et al., 2020a; Ren et al., 2018; Cao et al., 2023a; Sharp et al., 2022a). DIR (Xiang et al.,
2021) and GEM (Kamhoua et al., 2022) use LMD to select well-matched points, but LMD’s reliance
on geodesic distances limits its efficiency and robustness. We propose LNC to address these issues.

Graph-Based Correspondence Refinement. Graph-based methods refine correspondences by
maximizing neighborhood agreement (Kazemi et al., 2015; YU et al., 2021; Lubars & Srikant, 2018;
Kuhn, 2012). HOPE (Kamhoua & Qu, 2024) uses LMD to identify poorly matched points and refines
them via seeded graph matching, avoiding functional map limitations. We enhance this approach
with LNC, improving efficiency and robustness.

Deep Learning Approaches. Deep learning has advanced shape matching by learning complex
features. Supervised methods use labeled data for high accuracy but require costly annotations.
Deep Functional Maps (FMNet) (Litany et al., 2017b) optimizes spectral descriptors for functional
map alignment, offering robust correspondences but needing extensive labeled data. 3D-CODED
(Groueix et al., 2018) predicts deformation parameters, excelling in non-rigid matching but requiring
templates and labeled data. DGCNN (Wang et al., 2019) uses dynamic graph convolutions, capturing
geometric features but struggling with sparse point clouds. Unsupervised methods leverage intrinsic
shape properties. Unsupervised Learning of Robust Spectral Shape Matching (Marin et al., 2023)

1code attached to supplementary material.
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aligns spectral descriptors using cycle-consistency, scaling well but assuming non-noisy spectra
which is often not the case in the presence of topological noise and other mesh edits. Deep Shells
(Eisenberger et al., 2020b) optimizes shell-based energy, robust to topological changes but less
effective for volumetric shapes. DiffusionNet (Sharp et al., 2022b) uses diffusion processes, offering
fast inference but oversmoothing fine details. Semi-supervised methods balance accuracy and
scalability. Semi-Supervised Shape Matching with Pseudo-Labels (Chen et al., 2022) uses self-
supervised pre-training and pseudo-labels, reducing annotation needs but relying on pseudo-label
quality. Graph-Based Semi-Supervised Shape Correspondence (Xu et al., 2023) propagates labels via
graph neural networks, efficient but sensitive to graph quality. Moreover, all these Deep learning
baselines often need training and retraining when there is a domain shift in the test datasets as a
model trained on nearly isometric shapes for example will not perform well on partial shapes (see
Cao et al. (2023b)). NEXUS addresses these limitations by needing no training nor retraining.

3 PROBLEM DEFINITION AND PRELIMINARIES

A 3D shape S with n vertices and f faces is represented by vertex locations X ∈ Rn×3 and a mesh via
a face matrix F ∈ Rf×3 or adjacency matrix A ∈ Rn×n. The Uniform Laplacian is LU = D−A,
where D =

∑
i[A]i,j . The Cotangent Laplacian is L = M−1W, with M as the diagonal matrix of

lumped area elements and W as the cotangent weight matrix (Pinkall & Polthier, 1993).

Given shapes S1 and S2, a correspondence T : S1 → S2 is a permutation matrix P ∈ Rn1×n2 . An
initial map P0 can be refined using pair-wise descriptors US1 ,US2 :

Pt = argmin
Pt

∥Pt⊤US1
Pt−1 −US2

∥, (1)

or point-wise descriptors KS1
,KS2

:

Pt = argmin
Pt

∥Pt⊤KS1
−KS2

f(Pt−1)∥. (2)

In the functional map framework (Ovsjanikov et al., 2012), K is a truncated LBO basis Φ ∈ Rn×k,
and the functional map C ∈ Rk×k is:

Ct = argmin
Ct

∥Pt⊤ΦS1 −ΦS2C
t∥. (3)

Imperfect initializations lead to errors in C (Xiang et al., 2021). The LMD metric selects well-matched
points lks to compute:

Ct = argmin
Ct

∥Pt(:, lks)⊤ΦS1 −ΦS2(lks, :)C
t∥. (4)

LMD DP ∈ Rn1 is:

[DP]i =

∑
j∈Bγ(i)

[MS1
]i,j [E]i,j∑

j∈Bγ(i)
[MS1

]i,j
, (5)

where:

[E]i,j =
|[GS1 ]i,j − [Pt⊤GS2P

t]i,j |
γ

, (6)

and Bγ(i) = {j ∈ S1|[GS1
]i,j ≤ γ}, and GS1

is a matrix of geodesic distances. Prior imple-
mentations (Xiang et al., 2021; Kamhoua et al., 2022; Kamhoua & Qu, 2024) used an incorrect
E:

[E]i,j =
|[GS1 ]i,j − [GS2P

t]i,j |
γ

, (7)

assuming pre-aligned rows, leading to errors (Fan et al., 2022). We use the correct form (Eq. 6).

Functional maps may yield inaccurate correspondences due to truncated bases (Kamhoua & Qu,
2024). HOPE (Kamhoua & Qu, 2024) uses seeded graph matching:

Pt(lks, :) = argmax
P

Tr(BS1,Pt(lks, :)Pt−1AS2,h), (8)

where BS1,Pt = Pt⊤AS1,h, and AS1,h indicates h-hop connectivity.

3
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4 LOCAL NEIGHBOURHOOD CONSISTENCY

LMD is computationally expensive (near-quadratic due to geodesic distances) and sensitive to non-
isometric deformations. We propose the Local Neighborhood Consistency (LNC) metric N ∈ Rn:

Ni =

∑
j |[AS1,h]i,j − [P⊤AS2,hP]i,j |

[D]i,i
, (9)

where D is the degree matrix. LNC offers:

• Low Complexity: Computing P⊤AS2,hP involves sparse row/column reordering, yielding
O(n2v) complexity, where v is the number of nonzero Di,i.

• Robustness: LNC relies on connectivity, not geometric properties, making it resilient to
non-isometric deformations.

• Properties: Due to space, please see Appendix A (will be moved to main paper if accepted).

Definition 4.1 An Erdős-Rényi graph G(n, p) is a random graph on n vertices where each edge
is included independently with probability p. Let G1,G2 be two graphs derived from an Erdős-
Rényi parent graph G(n, p) with edge correlation 1 − ϵ, where ϵ ∈ (0, 1) represents the noise
level. Let AS1,2 and AS2,2 denote the adjacency matrices of the 2-hop neighborhoods in G1 and G2,
respectively. Let P be a permutation matrix in the set of all permutation matrices Π, and B be a seed
set of vertices with alignment fraction β = |B|/n.

Theorem 4.1 (LNC Recovery Guarantee) For graphs G1,G2 derived from an Erdős-Rényi parent
G(n, p) with edge correlation 1− ϵ, if the following conditions hold:

• Distinctiveness: For any incorrect permutation P′ ̸= P,
∥AS1,2 −P′AS2,2P

′⊤∥2F > ∥AS1,2 −PAS2,2P
⊤∥2F + Cϵnp2,

where C > 0 is a constant, and ∥ · ∥F denotes the Frobenius norm.

• Seed Requirement: The seed set size satisfies β|B| = Ω(
√
n logn).

Then, the permutation P is the unique solution to the optimization problem:

P̂ = arg min
P∈Π

∥AS1,2 −PAS2,2P
⊤∥F .

Proof 4.1 To prove that P is the unique solution, we analyze the optimization problem under the
given conditions.

1. Error Bound: Consider a vertex pair (i, j) in G1 and the corresponding pair (P(i),P(j))
in G2. The 2-hop degree difference is bounded as:

| deg2-hop(i, j;G1)− deg2-hop(P(i),P(j);G2)|
≤ ϵdeg(i) deg(j) ≤ O(ϵnp2).

This follows from the edge correlation 1− ϵ, which limits the discrepancy in 2-hop neigh-
borhood structures under connectivity noise.

2. Concentration: For edge probability p ≫ n−1/2, the Frobenius norm of the difference
between the aligned 2-hop adjacency matrices concentrates:

P(∥AS1,2 −PAS2,2P
⊤∥2F ≤ Cϵn2p2) ≥ 1− e−Ω(np2).

This concentration ensures that the error for the correct permutation P is typically small,
with high probability.

3. Recovery: Given the seed requirement β|B| = Ω(
√
n logn), the 2-hop neighborhood statis-

tics provide sufficient information to distinguish the correct permutation. The distinctiveness
condition ensures that any incorrect permutation P′ ̸= P incurs a significantly larger error,
by at least Cϵnp2. Combined with the concentration result, the correct permutation P
minimizes the Frobenius norm with probability at least 1− n−c for some constant c > 0,
ensuring unique recovery.

Thus, P is the unique solution to the optimization problem.

4
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5 COMPARING LNC TO LMD: RECTANGULAR BOX TO CUBE EXAMPLE

To illustrate the differences between the Local Neighborhood Consistency (LNC) metric and the Local
Map Distortion (LMD) metric, consider a demo example where we attempt to match a rectangular
box to a cube. Both shapes are represented as 8-vertex meshes, with their vertices forming 8x8
adjacency matrices. The rectangular box has dimensions 2× 1× 1, while the cube has uniform side
lengths of 1, introducing a non-isometric deformation due to the stretching along one axis. We show
why LMD may fail to detect correct correspondences due to its reliance on geodesic distances, while
LNC succeeds by leveraging mesh connectivity.

The vertex coordinates for the rectangular box S1 and the cube S2 are represented as 8× 3 matrices:

XS1
=



0 0 0
2 0 0
2 1 0
0 1 0
0 0 1
2 0 1
2 1 1
0 1 1


, XS2

=



0 0 0
1 0 0
1 1 0
0 1 0
0 0 1
1 0 1
1 1 1
0 1 1


.

The adjacency matrices AS1
and AS2

for both shapes are identical due to their shared topology (a
simple cubic mesh with edges connecting adjacent vertices). Given an adjacency matrix AS1,1, its 2
hop matrices can be obtained as AS1,2 = bool

(
bool

(
A2

S1,1

)
−AS1,1 − I

)
. We thus have:

AS1,1 = AS2,1 =



0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0


, AS1,2 = AS2,2 =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1
1 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1
0 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0


where each vertex connects to its three immediate neighbors (e.g., vertex 1 connects to vertices 2, 4,
and 5).

Assume a correct permutation matrix P aligns vertices of S1 to S2 (e.g., identity mapping for
simplicity, as vertex ordering is consistent). The LNC metric (Eq. 9) computes:

Ni =
|
∑

j [AS1,2]i,j − [P⊤AS2,2P]i,j |
[D]i,i

≈
∑

j |[AS1,1]i,j − [P⊤AS2,1P]i,j |
[D]i,i

,

where D is the degree matrix with Di,i = 3 for all vertices (each vertex has three edges). Since
AS1

= AS2
and P is correct, P⊤AS2

P = AS1
, so Ni = 0 for all i. This indicates perfect

correspondence, as LNC detects that the connectivity structure is preserved, despite the geometric
stretching.

In contrast, LMD (Eq. 5) relies on geodesic distances. The geodesic distance matrix GS1
for

the rectangular box has longer distances along the stretched axis (e.g., between vertices 1 and 2,
GS1

(1, 2) = 2), while for the cube, GS2
(1, 2) = 1. For a correct P, the error term (Eq. 6) becomes:

[E]i,j =
∥[GS1 ]i,j − [P⊤GS2P]i,j∥

γ
.

For vertices along the stretched axis (e.g., i = 1, j = 2), [E]1,2 = |2−1|
γ = 1

γ , yielding a large LMD
value, suggesting an incorrect correspondence. LMD fails because the non-isometric deformation
alters geodesic distances, even though the topology remains consistent. Thus, LNC correctly identifies
the correspondence by focusing on connectivity, while LMD is misled by geometric distortions.

LNC vs. LMD: Theoretical Comparison. LMD fails when geodesic distances are altered by
non-isometric deformations (e.g., stretching or area changes), as Ei,j becomes large even for correct
correspondences. LNC fails when mesh connectivity differs significantly, as AS1,h and AS2,h may
not align. For Erdős-Rényi graphs with edge correlation 1− ϵ, LNC’s error is bounded by O(ϵnp2),
but high ϵ (e.g., due to remeshing) reduces landmark detection accuracy. LMD is more robust to
connectivity changes if geodesics are preserved, but its O(n2) complexity is prohibitive.
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Algorithm 1 NEXUS
Inputs: LNC threshold ϵ, max iteration tmax, max hops hmax, descriptors KS1 , KS2 , neighborhood matrices
AS1,h, AS2,h for h = [0, · · · , hmax]
1. Initialize P0 by solving:

P0 = argmin
P0

∥P0⊤AS1,2KS1 −AS2,2KS2∥. (11)

while 0 ≤ t ≤ tmax do
2. Compute LNC to locate landmarks lks = {i ∈ S1|[N]i ≤ ϵ(t)}, with h=2 in Eq.9.
3. Identify non-landmark points Nlks.
4. Build AS2,h and AS1,h cycling h from 1 to hmax following HOPE(Kamhoua & Qu, 2024).
5. Update Pt(Nlks, :) using GMWM (YU et al., 2021) to solve Eq. 8.

end while
return Pt.

6 NEXUS: NEIGHBORHOOD-ENHANCED CORRESPONDENCE OPTIMIZATION
STRATEGY

NEXUS follows a three-step process: (1) initialize correspondences, (2) detect poorly matched points
using LNC, and (3) refine matches via seeded graph matching.

Step 1: Initialization. We use SHOT descriptors (Tombari et al., 2010) modified by AS1,2KS1
,

AS2,2KS2
to enforce connectivity consistency, solving:

P0 = argmin
P0

∥P0⊤AS1,2KS1
−AS2,2KS2

∥. (10)

Step 2: Detecting Poorly Matched Points. Landmarks lks are detected as lks = {i ∈ S1|[N]i ≤
ϵ(t)}, with ϵ = linspace(1.6, 0.6, 10) and ϵ(t) = 0.6 for t ≥ 10.

Step 3: Refinement. Non-landmark points Nlks refined (Eq. 8) with GMWM (YU et al., 2021).

Time Complexity. Initialization is O(n log n) via kd-tree (Panigrahy, 2008), LNC computation is
O(n2v), and GMWM is O(|Nlks|2 logn). Total complexity is O(t|Nlks|2 log n) for t iterations.

7 EXPERIMENTS

We validate NEXUS and LNC on diverse datasets, showing efficiency, effectiveness, and generaliza-
tion.

7.1 EXPERIMENTAL SET-UP

Experiments used Matlab 2023(a) on a Windows 11 system with 32GB RAM and an Intel i5 13500
CPU @ 2.50-4.8GHz.

7.2 DATASETS

We evaluate on:

• TOPKIDS (Lähner et al., 2017): 25 shapes with up to 12K vertices, featuring near-isometric
deformations and topological noise.

• Re-meshed Datasets: SCAPE_r, FAUST_r, TOSCA_r, SMAL_r (Cao et al., 2023b), with
varied triangulations.

• Nearly-Isometric Datasets: SCAPE (Anguelov et al., 2005) (71 shapes, 12.5K vertices)
and TOSCA (Bronstein et al., 2008) (80 shapes, 4K–52.5K vertices).

• Partial Shapes: SHREC16cuts and SHREC16holes (Bracha et al., 2024; Rodolà et al.,
2017), with cuts and holes altering topology.

6
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(a) TOPKIDS (b) SCAPE (c) TOSCA

Figure 1: Performance comparison on shapes with topological noise from TOPKIDS 1(a), isometric
shapes from SCAPE 1(b) and TOSCA 1(c).

(a) FAUST_r (b) SCAPE_r (c) TOSCA_r

(d) SMAL_r (e) SHREC16holes (f) SHREC16cuts

Figure 2: Performance comparison on re-meshed datasets: FAUST_r 2(a), SCAPE_r 2(b),
TOSCA_r 2(c), SMAL_r 2(d), and partial datasets: SHREC16cuts 2(f), SHREC16holes 2(e).

7.3 EVALUATION METRICS

We use geodesic error (Ehm et al., 2024; Roetzer & Bernard, 2024): e(i) = dS2
(j,j∗)

diam(S2)
, where j is the

predicted match for i, j∗ is the ground truth, and diam(S2) is the geodesic diameter.

7.4 BASELINES

We compare NEXUS with GRAMPA (Fan et al., 2020), ZoomOut (Melzi et al., 2019), Kernel-
Matching (Lähner et al., 2017), HOPE (Kamhoua & Qu, 2024)„ SGMDS(Aflalo et al., 2016),
FM(Ovsjanikov et al., 2012), BIM(Kim et al., 2011), Mobius(Lipman & Funkhouser, 2009), Best-
Conformal (Kim et al., 2011), EM (Sahillioğlu & Yemez, 2012), GE (Lähner et al., 2016), RF (Rodolà
et al., 2014), PFM (Rodolà et al., 2017), FSPM (Litany et al., 2017a), DIR (Xiang et al., 2021), and
ULRSSM (Cao et al., 2023b).

7.5 PARAMETER SETTINGS

For baselines, we follow (Kamhoua & Qu, 2024) using corrected LMD (Eq. 6) where needed. For
NEXUS, we use SHOT descriptors (Tombari et al., 2010). Following observations in Sec.A, we set
LNC thresholds ϵ = linspace(1.6, 0.6, 10), ϵ(t) = 0.6 for t ≥ 10, tmax = 60. Following HOPE we
set hmax = 8. For ULRSSM we use their original paper’s weights and results.

7
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(a) SCAPE init (b) SCAPE init fig

(c) TOPKIDS init (d) TOPKIDS init fig

(e) SMAL_r init (f) SMAL_r init fig

Figure 3: Different initializations on sample shapes from SCAPE, TOPKIDS, and SMAL_r.

(a) TOPKIDS (b) SMAL_r (c) TOSCA (d) SCAPE

Figure 4: Comparison of landmarks detected per iteration by NEXUS using LMD or LNC on
TOPKIDS, SMAL_r, and TOSCA. Including performance of LNC vs LMD on SCAPE.

7.6 PERFORMANCE ANALYSIS

Topological Noise. In TOPKIDS (Fig. 1(a)), NEXUS achieves a precision of 90.41% at geodesic
error 0, slightly outperforming the previous best baseline till date HOPE (89.45%) due to the
robustness of LNC to non-isometric deformations.

Nearly-Isometric Shapes. On SCAPE (Fig. 1(b)) and TOSCA (Fig. 1(c)), NEXUS also outper-
forms HOPE, and is faster due to LNC’s efficiency. For example on matching shape pair 51 on
TOSCA (i.e., Michael5 to Michael 7) each shape with around 52.5K vertices, NEXUS takes 655.0
seconds, while HOPE takes 1001.3 seconds. Moreover, the corrected LMD reveals the prior methods’
sensitivity to vertex shuffling (Fan et al., 2022) (Fig 1(b)), since the performance degrades.

Re-meshed Shapes. On FAUST_r, SCAPE_r, and TOSCA_r (Fig. 2), NEXUS performs compa-
rably to HOPE with corrected LMD, but struggles with significant triangulation differences due to
LNC’s connectivity reliance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparing NEXUS to ULRSSM(Cao et al., 2023b) (a Deep Learning Baseline). The name
in brackets attached to ULRSS in the table indicates which dataset it was trained on. Normalized
AUC Scores in [0, 1] range reported. Max geodesic error threshold for curve set to 0.2 for all datasets
except FAUST_r and SCAPE_r where 0.1 was used.

Model SMAL_r SHRECK16cuts SHRECK16holes SCAPE_r FAUST_r TOSCA_r TOPKIDS SCAPE TOSCA

NEXUS .75 .68 .61 .67 .72 .83 .94 .94 .98
ULRSSM (FAUST_r+SCAPE_r) - - - 0.71 .85 - - - -
ULRSSM (FAUST_r) - - - 0.78 .85 - - - -
ULRSSM (SCAPE_r) - - - 0.81 .85 - - - -
ULRSSM (SMAL_r) 0.82 - - - .85 - - - -
ULRSSM (TOPKIDS) - - - - - - 0.76 - -
ULRSSM (SHREC16cuts) - .90 - - - - - - -
ULRSSM (SHREC16holes) - - 0.79 - - - - - -

Partial Shapes. On SHREC16cuts and SHREC16holes (Fig. 2), NEXUS and HOPE outperform
ZoomOut, as functional maps struggle with altered topologies (Kamhoua & Qu, 2024).

Time Comparison. On SCAPE (12.5K vertices), LNC computation takes 0.41s (0.04s for AS,h,
0.37s for Eq. 9), versus 10.42s for LMD (10.05s for GS , 0.37s for Eq. 5).

Different Initializations. Figure 3 demonstrates NEXUS’s robustness to various initializations
(HKS (Bronstein & Kokkinos, 2010), WKS (Aubry et al., 2011), SHOT (Tombari et al., 2010), and
modified SHOT i.e., NEWINIT Eq.11) across SCAPE, TOPKIDS, and SMAL_r datasets, confirming
its stability even on challenging datasets. We follow HOPE (Kamhoua & Qu, 2024) for the settings.
One can see that the performance remains relatively stable with each different descriptors with the
more robust ones like SHOT performing better across the datasets.

LNC vs LMD. Figure 4 compares landmarks detected by LMD (Xiang et al., 2021) and LNC
(Eq. 9). LNC consistently detects more landmarks as accuracy improves, validating its effectiveness.
On SMAL_r (Fig. 4(b)), LNC struggles with inconsistent triangulations, indicating potential for
threshold adjustments. On TOPKIDS, where LMD struggles due to topological noise, LNC outdoes
LMD by detecting more landmarks faster and helping the algorithm outperform HOPE (Fig 1(a)).
Moreover, Fig. 4(d) shows LNC matches or outperforms LMD while being much faster (as discussed
in time comparison above).

Deep Learning. Table 1 shows that NEXUS significantly outperforms the baseline when meshes
have consistent triangulations even in the presence of topological noise (e.g., TOPKIDS). Moreover,
it can be observed that though NEXUS struggles with re-meshed and partial shapes compared to the
deep learning baseline, it nonetheless generalizes better since the same algorithmic pipeline works
across unlike the deep learning baseline that needs retraining and inference time adaptation.

Ablation and Sensitivity. As shown in Appendix Sec. B (Figure 5), NEXUS — despite using
an untuned ϵ schedule — outperforms all variants across isometric, non-isometric, and re-meshed
shapes. Ablations confirm LNC’s necessity for shape matching (NEXUS-3/5 fail without it), while
both LNC and k-hop refinement degrade under severe re-meshing due to neighborhood inconsistency
(Kamhoua & Qu, 2024).

Limitations of Nexus. NEXUS’s reliance on mesh connectivity fails when triangulations are highly
inconsistent (YU et al., 2021). Its quadratic complexity O(n2 log n) in the worst case is higher than
linear methods (Melzi et al., 2019; Xiang et al., 2021).

8 CONCLUSION

We introduced NEXUS, featuring the LNC metric for efficient and robust shape correspondence.
NEXUS outperforms baselines on diverse datasets, offering a fast, generalizable solution. Future
work could address connectivity sensitivity and reduce complexity.
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9 REPRODUCIBILITY AND IMPACT STATEMENT

The code implementing NEXUS is attached in the supplementary material, together with the corrected
code for the baselines that used LMD. This code, together with Alg. 1 and the Experiments (Sec. 7)
can help reproduce the paper’s method and contribution. NEXUS enhances shape correspondence for
graphics applications, simplifying and accelerating pipelines without negative impacts.
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NEXUS: Neighborhood-Enhanced Correspondence
Optimization Strategy for Shape Correspondences

Appendices:

A PROPERTIES OF THE LOCAL NEIGHBORHOOD CONSISTENCY METRIC

The Local Neighborhood Consistency (LNC) metric for vertex i is defined as:

Ni =

∑
j

∣∣[AS1,h]i,j − [P⊤AS2,hP]i,j
∣∣

[D]i,i
, (12)

where AS1,h and AS2,h are binary h-hop adjacency matrices, P is the correspondence matrix, and
[D]i,i =

∑
j [AS1,h]i,j denotes the degree of vertex i in the h-hop graph of S1.

Maximum Value Since both adjacency matrices are binary, each term in the numerator is either 0
or 1. The summation is bounded above by the total number of neighbors of vertex i in S1, which is
exactly [D]i,i. Thus,

Ni ≤
[D]i,i
[D]i,i

= 1. (13)

Therefore, the maximum value Ni can attain is 1.

When Maximum Occurs The value Ni = 1 occurs if and only if, for every vertex j that is within
h hops of i in S1, the corresponding vertex P(j) in S2 is not within h hops of P(i) — and vice versa
where applicable. More precisely, the binary neighborhood indicators are completely anti-correlated
over the local support:

∀j, [AS1,h]i,j ̸= [P⊤AS2,hP]i,j whenever [AS1,h]i,j = 1. (14)
This may arise due to:

• Grossly incorrect local correspondences in P,
• Structural features (e.g., handles, holes, boundaries) present in one shape but absent in the

other.

Interpretation and Significance A value of Ni = 1 signifies complete local inconsistency in the
h-hop neighborhood structure under the current correspondence P. This is a strong indicator that:

• The match at vertex i is unreliable or erroneous,
• The region around i may require correction, exclusion from refinement, or special handling

(e.g., in seeded matching or outlier rejection),
• There may be a fundamental structural mismatch between the two shapes at this location.

Conversely, Ni = 0 indicates perfect local consistency — an ideal correspondence preserving
neighborhood topology.

Practical Implications Due to its bounded range [0, 1], computational efficiency, and topological
robustness, LNC serves as an effective confidence score for point-wise correspondences. High LNC
values (≈ 1) can be used to:

• Filter out unreliable matches in refinement pipelines (cf. “lks” selection in Eq. 4),
• Guide sampling in learning-based frameworks,
• Detect regions of non-isometry or topological discrepancy between shapes.

Thus, LNC not only quantifies local correspondence quality but also enables adaptive, structure-aware
shape matching even under challenging deformations.
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B ABLATION AND PARAMETER SENSITIVITY STUDIES

(a) TOPKIDS plot (b) TOPKIDS fig

(c) SCAPE plot (d) SCAPE fig

(e) TOSCA plot (f) TOSCA fig

(g) SCAPE_r plot (h) SCAPE_r fig

Figure 5: Ablation and sensitivity studies on TOPKIDS 5(a), SCAPE 5(c), TOSCA 5(e), and
SCAPE_r 5(g).

In this section, we conduct parameter and ablation studies. We follow HOPE (Kamhoua & Qu, 2024)
and use the following settings:

• NEXUS-0: Algorithm 1 with tmax = 60 and ϵ = linespace(100, 0.2, 10),
• NEXUS-1: where we reduce the number of iterations to tmax = 20 in Alg. 1,
• NEXUS-2: where we set ϵ = linespace(1, 0.2, 10) in Alg. 1,
• NEXUS-3: where we simply solve Eq. 8 with h = 1 and h = 2 alternatively per iteration in

Alg. 1,
• NEXUS-4: where use hmax = 2 in Alg. 1,
• NEXUS-5: where we simply solve Eq. 8 with h = [1, 2, · · · , 8] alternatively per iteration in

Alg. 1.

From Figure 5, NEXUS-0 emerges as the overall best-performing variant, achieving top results on
both isometric (Figure 5(c)) and non-isometric (Figure 5(a)) shapes, while matching other variants
on re-meshed shapes (Figure 5(g)). NEXUS-2 ranks second. This suggests that the ϵ range used in
our main experiments (Section 7) — linspace(1.6, 0.2, 10), chosen based on max(Ni) (Section A)
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without parameter tuning — is sub-optimal; starting with a higher ϵ appears beneficial when initial
landmark estimates are inaccurate.

Moreover, variants without LNC (NEXUS-5 and NEXUS-3) perform poorly on isometric shapes
(Figure 5(c)), underscoring LNC’s critical role in mutually refining landmark and non-landmark cor-
respondences, especially in handling symmetries. On re-meshed shapes, while performance remains
reasonable, both LNC and k-hop neighborhood refinement (Section 6) show limited robustness to
severe neighborhood inconsistencies in mesh pairs (Kamhoua & Qu, 2024).
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