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Abstract

Value function decomposition methods for coop-
erative multi-agent reinforcement learning com-
bine individual per-agent utilities into joint values
trained on a joint objective. To ensure consistent
action selection between individual utilities and
joint values, it is imperative for the composition
to satisfy individual-global max IGM). However,
most methods that satisfy IGM are characterized
by limited representation capabilities that hinder
their performance, and the one known exception is
unnecessarily convoluted. In this work, we reveal
a minimalistic formulation of IGM that inspires
the derivation of QFIX, a novel family of value
function decomposition methods that expand the
representation capabilities of prior methods by
means of a small “fixing” network. We imple-
ment three variants of QFIX, and demonstrate
empirically that QFIX is able to meet or exceed
state-of-the-art performance with better stability.

1. Introduction

Centralized training for decentralized execution
(CTDE) (Lowe et al.,, 2017) is a powerful frame-
work for cooperative multi-agent reinforcement learning
(MARL) characterized by a centralized training phase
where privileged information is freely shared between
agents and a decentralized execution phase where agents
act independently in adherence to standard decentralized
control. As a consequence of a training phase that is
informed by the full team’s behavior and experiences (and,
when feasible, the environment state), CTDE is commonly
associated with increased coordination between agents and
superior performances.

Value function decomposition (Sunehag et al., 2017) is a
class of CTDE methods that construct a joint team value
from individual per-agent utilities that encode agent be-
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haviors. By training the joint value on a joint centralized
objective, the individual utilities are also indirectly trained,
resulting in decentralized agent policies that can be executed
independently. Since its inception, value function decom-
position has become a topic of great interest in cooperative
MARL, with significant research effort put in both practical
algorithms (Sunehag et al., 2017; Son et al., 2019; Rashid
et al., 2020a;b; Wang et al., 2020; Marchesini et al., 2024)
and theoretical understanding (Wang et al., 2021; March-
esini et al., 2024). Individual-global max (IGM) (Son et al.,
2019) has been identified as a key property that connects
individual utilities and joint values, ensuring that their asso-
ciated decision making processes remain consistent.

In this work, we advance both theory and practice of value
function decomposition. We formulate a novel minimal-
istic formulation of IGM-complete value function decom-
position. Our formulation (i) correctly addresses general
decentralized partially observable control (avoiding strong
assumptions like full observability or centralized control),
and (ii) highlights the core mechanism that characterizes
the full IGM-complete function class. In contrast, prior
methods fail to satisfy at least one of these criteria (usually
the first). We introduce QFIX, a novel family of value func-
tion decomposition methods inspired by our formulation
of IGM-complete decomposition. QFIX employs a simple
“fixing” network to extend the representation capabilities of
prior methods. We derive two main specializations of QFIX
called QFIX-sum and QFIX-mono, respectively obtained
by “fixing” VDN (Sunehag et al., 2017) and QMIX (Rashid
et al., 2020b). To provide further insights into the core mech-
anisms that make value function decomposition so effective,
we also derive QFIX-lin, a third variant that technically falls
outside of the QFIX family, but combines QFIX-sum with a
core component of QPLEX. Finally, we extend prior work
on stateful value function decomposition to QFIX. An em-
pirical evaluation on the StarCraft Multi-Agent Challenge
v2 (Ellis et al., 2023) demonstrates that QFIX (i) is effective
at enhancing prior non-IGM-complete methods like VDN
and QMIX, (ii) is simpler to implement and understand,
and require smaller models than QPLEX, a state-of-the-art
method in IGM-complete value function decomposition,
(iii) is competitive or outperforms QPLEX while also show-
ing more stable convergence.



2. Related Work

Value Decomposition Networks (VDN) (Sunehag et al.,
2017) are a precursor to value decomposition methods that
employ a simple additive composition of individual utilities.
QMIX (Rashid et al., 2020b) employs a monotonic compo-
sition that generalizes the function class of VDN resulting
in significant performance improvements. Since VDN and
QMIX have limited expressiveness, several models have
attempted to achieve a broader function class. Weighted-
QMIX (WQMIX) (Rashid et al., 2020a) aims to expand the
function class of QMIX to non-monotonic cases so as to
include optimal values QQ*. However, WQMIX appears to
conflate the possibility of exploiting state information dur-
ing centralized training (which is correct) with the goal of
learning the decision process for a team of fully observable
agents (which is incorrect). As a consequence, the theory of
WQMIX assumes state values Q(s7 a) and an optimization
process that aims to recover the optimal fully observable
decision making process argmax, Q*(s, a), which is in-
consistent with partially observable decentralized control.
In contrast, QFIX is fully consistent with general partially
observable decentralized control. Son et al. (2019) iden-
tify individual-global max (IGM) as an important property
that corresponds to consistency between the individual and
joint decision making processes. Notably, VDN and QMIX
satisfy IGM, but are unable to represent the entire IGM-
complete function class. QTRAN (Son et al., 2019) identi-
fies a set of constraints that are sufficient to imply IGM, and
employs auxiliary objectives that softly enforce those con-
straints. Son et al. (2019) argue that their constraints are also
necessary for IGM under affine transformations, however
they only show that one such affine transformation exists,
rather than IGM being satisfied for all affine transformations.
In contrast, QFIX is both sufficient and necessary to imply
IGM, thus directly achieving the full IGM-complete func-
tion class. QPLEX (Wang et al., 2020) employs a dueling
network decomposition and multiple layers of transforma-
tions to achieve the IGM-complete function class. However,
QPLEX employs complex transformations that are superflu-
ous in relation to its representation capabilities, and fails to
identify the core underlying mechanism that is ultimately
responsible to achieve the IGM function class. In contrast,
QFIX is simpler to understand, and achieves the IGM func-
tion class with smaller models. Further, QPLEX is only
one instance in the space of IGM-complete models, and our
work will allow researchers to explore other instances that
can further improve performance while adhering to IGM.

3. Background
3.1. Decentralized Multi-Agent Control

A decentralized POMDP (Dec-POMDP) (Oliehoek &
Amato, 2016) generalizes single-agent partially ob-

servable control by accounting for multiple decen-
tralized agents acting concurrently to solve a shared
cooperative task. A Dec-POMDP is defined by
a tuple <N,S, {.,41, ce ,.AN} s {01,. . .7ON},T,R7O,’)/>
composed of: (i) number of agents N > 2; (ii) state space
§; (iii) individual action and observation spaces, respec-
tively A; and O;; (iv) starting state distribution p € AS;
(v) state transition function 7: S x A — AS; (vi) joint
observation function O: A x § — AQO; (vii) joint reward
function R: S x A — R; (viii) discount factor y € [0,1).

The number of agents N determines a set of agent indices
7 ={1,...,N}. The joint action, observation, and history
spaces are defined as the respective Cartesian products A =
X; Ai, O = X, 0;, and H = X, H;. Therefore, joint
actions a = (aq,...,an), observations o = (01, ...,0nN),
and histories h = (hq, ..., hy) are tuples of the respective
individual actions, observations, and histories.

Individual agent behaviors are generally modeled as indi-
vidual stochastic policies 7; : H; — AA; that act based on
their respective history h; € H; = O; x (A; x O;)". The
combined behavior of all policies is represented as a joint
(but still decentralized) policy 7 (h, a) = [], m;(hi, a;) that
factorizes accordingly. Decentralized multi-agent control
aims to find policies that jointly maximize the expected sum
of discounted rewards J™ = E [}, 7' R(s¢, a;)).

In this work, we focus on approaches that model agent poli-
cies implicitly via parametric utilities Qi: Hi x A; = R,
typically by means of greedy or e-greedy action selec-
tion. Such utilities Qi(hi, a;) are commonly decomposed
into corresponding values ‘Z(hl) = max,, Qi(hi, a;) and
(non-positive) advantages Ai(hi, a;) = Qi(hi, a;) — f/,(hz)
When convenient, we occasionally employ shorthand nota-

tiOIl q; = Qi(hi,ai), Vi = V;(hl), and U; = Al(h“ (LZ').

3.2. Value Function Decomposition

Value function decomposition methods (Sunehag et al.,
2017; Rashid et al., 2020b; Wang et al., 2020) construct
joint values Q(h,a) from individual per-agent utilities
Qi(hi, a;). We specifically use the term utility here to un-
derscore the fact that Qi(hi, -) represents an ordering over
actions, rather than any notion of expected performance.
Notably, QZ is never trained to perform evaluation, and nei-
ther Q;(hi, a;) = QT (hi, a;) nor Q;(hi,a;) = QF(hy,a;)
are expected interpretations of well-trained utilities Q;.

Value function decomposition methods employ joint mod-
els Q(h,a) that are a function of the individual utilities
Q(hs, a;), and mainly differ in terms of the relationship that
is enforced and the corresponding emergent properties. The

joint model Q(h, a) is trained on a joint objective,

Lohiario) = 5 (r+ymax @ (hao.a) - Q(h. %22 ,



which indirectly trains the individual utilities and behaviors.

3.2.1. INDIVIDUAL-GLOBAL MAX

Son et al. (2019) identify individual-global max (IGM) as a
useful property of decomposition models to achieve decen-
tralized action selection and address scaling concerns.

Definition 3.1 (Individual-Global Max). Individual utilities
{Qi(hi,a;)}X_, and joint values Q(h, a) satisfy individual-
global max (IGM) iff

argmax Q;(h;,a;) = (argmax Q(h, a)> )
a; a i
IGM denotes whether the individual and global decision
making processes are equivalent, and reduces the complexity
of finding the maximal joint action from exponential to
linear in the number of agents: For a given joint history h,
the full search over the joint action space .4 can be replaced
with N independent searches over the individual action
spaces A;. VDN (Section 3.2.2) and QMIX (Section 3.2.3)
are well-known models that satisfy IGM, although their
function class are limited subsets of all IGM values.

3.2.2. VDN: ADDITIVE DECOMPOSITION

Value Decomposition Networks (VDN) (Sunehag et al.,
2017) is a precursor to value function decomposition meth-
ods. VDN employs a simple additive value decomposition,

Qvox(h, a) ZQz hiy a;) . 3)

3.2.3. QMIX: MONOTONIC DECOMPOSITION

QMIX (Rashid et al., 2020b) constructs joint values as a
monotonic function of individual utilities,

Quix(h,a) = LN ) 4

where finono: RY — R is a parametric mixing network that
satisfies monotonicity,

8fm0n0(q17~'-uQN) >0. (5)

9q;

Monotonic composition generalizes the additive compo-
sition of VDN, consequently achieving a broader function
class, though it still falls short from modeling the entire IGM
function class. As in VDN, the joint model QMIX(h, a)is
trained on the centralized objective in Equation (1).

fmono(‘]la ce

3.2.4. QPLEX: IGM-COMPLETE DECOMPOSITION

QPLEX (Wang et al., 2020) reframes IGM in terms of ad-
vantages, and employs dueling network decomposition to
achieve full function class equivalence with IGM.
Definition 3.2 (IGM-Complete Function Class). A func-
tion class of individual utilities {Q;(h;,a;)}Y ; and joint
values Q(h, a) is IGM-complete if it contains all and only
functions that satisfy IGM.

Given utilities Q;(h;, a;) and joint action-values Q(h, a),
corresponding values and advantages are defined as follows,

Vi(h;) = max Qi(hi,ai), Ai(hi,a;) = Qi(hi,a;) —
(6)
V(h) = max Q(h,a), A(h,a) =Q(h,a) —V(h).
@)

Wang et al. (2020) reformulate IGM as a set of numeric
constraints between these individual and joint advantages.

Definition 3.3 (Advantage Constraints). Individual utilities
{Qi(hi,a;)}Y; and joint values Q(h, a) satisfy IGM iff,
Vh € H,Va* € A*(h),andVa € A\ A*(h),

A(h,a*) =0, Ai(hial) =0, (8
A(h.a) <0, Ai(hiya)) <0, (9)
where A*(h) = {a € A| Q(h,a) = V(h)} is the subset

of maximal joint actions according to the joint values.

QPLEX employs a mixing structure that provably enforces
Definition 3.3. Individual utilities Qi(hi, a;) are first de-
composed into Vi (h;) and A, (hi, a;), and then transformed
using centralized joint history information as follows,

Vi(h) = wi(h)Vi(hs) + bi(h) (10)

where w;: H — Ry are parametric positive weights and
b;: H — R are parametric biases. These transformed val-
ues are aggregated as weighted sums,

ﬁzv (12)
Z)\ (h,a)A

where A;: H x A — R are parametric positive weights.
Finally, Qprex (h, @) is obtained by recombining aggregate
values and advantages,

Qriex(h,a) =

VerLex (h

Aprux(h,a) i(h,a;), (13)

Verex(h) + Aprex(h,a).  (14)

This sequence of decomposition, transformations, and re-
composition, combined with positive weights w; and \;
results in the constraint from Definition 3.3 being satisfied.
Wang et al. (2020) also demonstrate that QPLEX satisfies
Definition 3.2 and its function class is IGM-complete, given
sufficiently expressive models w;(h), b;(h), and \;(h, a).

3.2.5. STATEFUL VALUE FUNCTION DECOMPOSITION

Practical implementations of value function decomposition
methods often employ stateful joint values Q(h, s, a) and

Vi(hi) s



diverge from the stateless theoretical derivations in ways that
may undermine core IGM-related properties. To address the
effects of state in value function decomposition, Marchesini
et al. (2024) formulate a state-compliant version of IGM.

Definition 3.4 (Stateful-IGM). Utilities {Q; (hi, )},
and stateful joint values Q(h, s, a) satisfy IGM iff

argmax Q;(h;,a;) = <argmax Egn [Q(R, s, a)]) (15)
a; a i
Marchesini et al. (2024) show that the stateful implementa-
tions of QMIX and QPLEX continue to satisfy IGM, while
the stateful implementation of QPLEX (which employs
historyless stateful weights w;(s), A\;(s,a)) is not IGM-
complete. Nonetheless, stateful implementations often per-
form well in practice, and remain a common occurrence.

4. Fixing Value Function Decomposition

Although QPLEX achieves the IGM-complete function
class, it is expressed as a convoluted sequence of trans-
formations that are never fully motivated. Unrolling the
QPLEX values directly in terms of individual values, we get

Qrrex(h,a) = wi(h)Vi(hi) + bi(h)
‘ + wl(h))\l(h,a)fll(hz, ai) , (16)

which raises questions about which components of this struc-
ture are truly important or necessary, e.g., the product of
individual advantages with two types of positive weights
w;(h) and \;(h, a) appears to be redundant. QPLEX only
represents one instance in a space of models that achieve
IGM-completeness, and whether simpler better-performing
decompositions exist remains an open question. The con-
voluted nature of the QPLEX transformations motivate us
to find a simpler and more general formulation of IGM-
complete decomposition.

In this section, we first propose a minimal formulation of
IGM-complete value function decomposition. Then, we use
this formulation to develop QFIX, a novel family of value
function decomposition models that operate by expanding
the representation capabilities of prior non-IGM-complete
models. We derive two primary instances of QFIX based on
“fixing” VDN and QMIX respectively, and a third instance
designed to resemble QPLEX. We also derive additive QFIX
(Q+FIX), a simple variant of QFIX that achieves significant
practical performance gains, and derive Q+FIX counterparts
of the QFIX instances. Finally, we discuss stateful variants
of QFIX and how state affects its theoretical properties.

4.1. A Minimal Formulation of IGM-Complete Values

We aim to formalize IGM-complete value function decom-
position in its simplest and most essential form. We begin

by simplifying Definition 3.3, noting that three of the four
constraints are satisfied by definition; The only constraint
that requires active enforcement is A;(h;,a}) = 0.
Definition 4.1 (Simplified Advantage Constraints). Utilities
{Qi(hi,a;)}Y, and joint values Q(h, a) satisfy IGM iff,

A(hv a’) =0 =W (Az(hz, ai) - O) ) (7
or, equivalently via contraposition,

In essence, constructing joint advantages A(h, a) that are
negative iff any of the individual advantages A4;(h;, a;) are
negative is both sufficient and necessary to satisfy IGM.

Consider the aptly named function
Q[GM(h, (1) = w(h, a)f(ul, .

where u; = A;(h;,a;) are the individual advantages,
w: H x A — Ry is an arbitrary positive function of
joint history and joint action, b: H — R is an arbitrary
function of joint history, and f: R, — R<q is any non-
positive function that is zero iff all inputs are zero (e.g.,

un) +b(h), (19)

f(ui,...,un) =3, u; is a simple instance of f). We note
Viem(h) = max Qicm(h, a)
=b(h), (20)
Argm(h, a) = Qiem (b, a) — Vigu(h)
=w(h,a)f(u1,...,un). ©3))

Essentially, Q1gn denotes a relationship where any devia-
tion from individual maximality (characterized by at least
one negative utility u; < 0, and corresponding to a negative
flug,...,un) < 0)is transformed into an arbitrary devia-
tionw(h,a)f(ui,...,un) < 0 from joint maximality. Per
Definition 4.1, Q1gm represents the IGM function class.

Lemma 4.2. For any f, w, and b, values {Q;}., and
Qrcwm satisfy IGM. (See proof in Appendix A.1.)

Theorem 4.3. For any f, and given free choice of w and b,
the function class of {Q; }}., and Qicm is IGM-complete.
(See proof in Appendix A.2.)

Q1cMm is a minimal formulation of the IGM function class
based on a single weighted transformation of individual ad-
vantages. Next, we explore how this formulation can be used
to derive QFIX, a novel family of value function decom-
position models that work by expanding the representation
capabilities of prior non-IGM-complete models.

4.2. QFIX

Let Qﬁxee (h, a) denote a “fixee” value function decomposi-
tion model that satisfies IGM but is not IGM-complete, e.g.,
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Figure 1. QFIX and Q+FIX diagrams.

VDN or QMIX. Equation (19) suggests a method to “fix”
Qfixee and have it achieve ful] IGM-completeness. We can
extend the expressiveness of Qgxee by processing it through
a “fixing” network that resembles Equation (19),

Qrix(h, a) = w(h,a)Agxee(h, a) + b(h),

where w: H x A — Rypisa parametric positive model,
b: H — R is a parametric model, and Agyee: H X A —
R« is the non-positive advantage of the fixee as defined by

Viiee(h) = (23)
Aﬁxcc (ha (1) =

(22)

max Qﬁxee (ha (1) }

Qﬁxcc(hq (1) - Vﬁxcc(h) . (24)
Figure 1a shows a diagram of the QFIX fixing structure. We
note that Aﬁxee(h, a) is zero iff the joint action a is maxi-
mal according to Qﬁxee, and negative otherwise. Given that
Qﬁxee satisfies IGM by assumption, a is maximal according
to Qﬁxee iff the individual actions a; are maximal according
to Qi(hz, a;), or, equivalently, iff A; (hi,a;) = 0. In short,
Aﬁxee(h, a) satisfies the requirements of f in Equation (19).
Theorem 4.4. QFIX satisfies IGM. Given sufficiently expres-
sive w and b, the function class of QFIX is IGM-complete.
(See proof in Appendix A.3.)

Given the free choice of fixee model Qﬁxee, QFIX really
represents a family of value function decomposition models.
This enables us to consider more or less complex fixees (e.g.,
VDN vs QMIX) to find an acceptable tradeoff between min-
imizing the complexity of the fixee model, and minimizing
the “fixing” burden on the fixing network.

Next, we compare QFIX to QPLEX, present two primary
instances of QFIX based on fixing VDN and QMIX, and
present yet another variant inspired by QPLEX.

4.2.1. RELATIONSHIP TO QPLEX

The advantage component of QFIX, w(h, a)flﬁxee(h, a),
is similar to one of the transformations of QPLEX,
> Aih, a)A;(h,a;) (see Equation (13)), which also ap-
plies positive weights to transformed aggregates of the indi-
vidual advantages. This similarity is no coincidence, as it

is specifically that component of QPLEX that is singularly
responsible for ensuring IGM-completeness; it is a more
convoluted form of our proposed fixing structure. However,
QPLEX also employs various other transformations that do
not contribute to achieving the IGM-complete function class,
and their necessity remains questionable (beyond general
considerations of modelling structure and size).

The weights \;(h, a) employed by QPLEX are also more
complex in that there is one such model per agent, and each
is implemented via self-importance. In contrast, we employ
a simpler structure based on a single model implemented
as a feed-forward network, and still manage to achieve
performance improvements. Our formulation is simpler in
that it focuses entirely on this single transformation, which
is minimally sufficient to guarantee IGM-completeness.

4.2.2. QFIX-suM: FIXING VDN.

QFIX—Asum is an instapce of QFIX based on VDN, i.c.,
with Qfixee(h,a) = Qvpn(h,a), which results in (see
Appendix B.3 for the formal derivation)

Qrix-sum (b, a) = w(h,a) Y Ai(hi,a;) + b(h). (25)

4.2.3. QFIX-MONO: FIXING QMIX

QFIX-mono is an instance of QFIX based on QMIX, i.e.,
with Qfixee (R, @) = Qnrx (h, @), which results in (see Ap-
pendix B.4 for formal derivation)

QrxX-mono(h, @) = w(h, @) (fmono(q1, - - -+ qN)
7fm0no(vla ce. 7UN))
+ b(h) . (26)

4.2.4. QFIX-LIN: SIMPLIFYING QPLEX

Given the similarity between QFIX and QPLEX shown in
Section 4.2.1, we may consider yet another QFIX variant
that also applies per-agent positive weights w;(h,a) > 0,
similarly to QPLEX. Due to the linear structure that strictly
generalizes the sum of QFIX-sum (though both achieve



IGM-completeness), we may call this variant QFIX-lin.

Zwlha

QFIX-lin does not strictly satisfy the form of Equation (22),
however, it represents a close enough variant of QFIX-sum
that we consider it QFIX-adjacent and name it accordingly.
QFIX-lin is a strict generalization of QFIX-sum, which can
be recovered as a special case where all the weights w; (h, a)
are equal. Formally, we must still explicitly prove the IGM
properties of QFIX-lin.

Theorem 4.5. QFIX-lin satisfies IGM. Given sufficiently
expressive w; and b, the function class of QFIX-lin is IGM-
complete. (See proof in Appendix A.4.)

Qrrx-in(h, @) i(hiya;) +b(h). (27)

4.2.5. RECOVERING THE FIXEE MODEL

We take a moment to note that QFIX is able to recover the
fixee model via w(h,a) = 1 and b(h) = Vaxee(h),

QFIX(h‘a a) = ’(U(h, a)Aﬁxcc(hv a) + b(h)
=1 Aﬁxee(h7 a) + Vﬁxee(h)
= Qﬁxee(ha (1) . (28)

Such values of w(h, a) and b(h) establish a direct relation-
ship between the fixee and fixed models, which is relevant
as we next use this relationship to derive a theoretically
equivalent but better-performing additive variant of QFIX.

4.3. Additive QFIX (Q+FIX)

In this section, we further derive a simple variant of
QFIX which, albeit having the same theoretical properties,
achieves significant practical performance improvements.
This variant will take on an additive form, when compared
to the fixee model, hence its name additive QFIX (Q+FIX).

As noted in Section 4.2.5, the values of w(h,a) = 1 and
b(h) = Vﬁxee(h) hold a special significance for QFIX.
Q+FIX is derived by reparameterizing w and b to incor-
porate such values via simple addition, as follows,

Qrix(h, a)
= (w(h,a) + 1)Aﬁxee(hv a) + (b(h) + Vﬁxee(h))
= Qfixee(h, @) + w(h, @) Agxee(h,a) + b(R), (29)

where w: H x A — Rs_; is a parametric model con-
strained by w(h,a) > —1, b: H — R is a parametric
model, and Qﬁxee and Agee are the fixee action-values and
advantages. Figure 1b shows a diagram of the Q+FIX fixing
structure. This reparameterization allows Q+FIX to more
directly exploit the original fixee model, providing the IGM-
complete function class as a separate additive component.
Note that, following the reparameterization of the w model,

the constraint imposed on its output has changed: since it’s
the full addition w(h, @) + 1 > 0 that must satisfy the posi-
tivity constraint from QFIX, the corresponding constraint
for Q+FIX is now w(h,a) > —1.

Theorem 4.6. Q+FIX satisfies IGM. Given sufficiently ex-
pressive w and b, the function class of Q+FIX is IGM-
complete. (See proof in Appendix A.5.)

4.3.1. Q+FIX-suM, Q+FIX-MONO, AND Q+FIX-LIN

Here, we show the Q+FIX counterparts to QFIX-sum,
QFIX-mono, and QFIX-lin, respectively called Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin. See Appendices B.5 to B.7
for their corresponding derivations and graphical diagrams.

Z Q’L h‘l7 a’l

+w(h,a)Y Ai(hi,a;) + b(h). (30)

i

Q+FIX sum h (1

Q+Fx-mono (R @) = fnono(q1, - - -, qN)
+w(h,a) (fmono(q1,---,qn)
— fmono(V1, - -+, UN))
+b(h). G1)

ZQZ h’L7aZ
+Zwl (h,a)A

Q rixin(h, a)

h“ a;) +b(h).(32)

4.3.2. DETACHING THE ADVANTAGES

The additive form of Q+FIX enables the use of an imple-
mentation detail already employed by QPLEX that appears
to significantly improve performance, i.e., the detachment
of the advantages when computing gradients. This can be
expressed using the stop-gradient operator' stop as follows,

Q+FIX(h7 G,) = Qﬁxee(ha a’)

+w(h,a)stop [Agsee(h, a)] +b(R) (33)

The reason why detaching the advantages improves per-
formance is not fully understood. Wang et al. (2020, Ap-
pendix B.2) argue that it (cit.) “increases the optimization
stability of the max operator of the dueling structure”, in
reference to dueling networks (Wang et al., 2016). However,
the connection between the detach and dueling networks
remains unclear. Instead, we hypothesize that detaching
the advantage may mitigate adverse effects that the fixing

'The stop-gradient function is a mathematical anomaly whose
value behaves like the identity function, stop [z] = x, while its gra-
dient behaves like the zero function, V stop [z] = 0. It is a func-
tionality commonly provided by deep learning frameworks, e.g.,
pytorch provides this via the Tensor.detach () method.



Table 1. Mixer sizes for Protoss in number of parameters.

Protoss 5vs5 10vslO0 20vs20
QMIX 38k 83k 201 k
QPLEX 135k 326 k 882k
Q+FIX-sum 20 k 50 k 138 k
Q+FIX-mono 54 k 180 k 743 k
Q+FIX-lin 21 k 51k 140 k

structure may have on the gradients V, Q+le(h, a) of the
joint values w.r.t. the agent parameters 6; (see Appendix C).

4.4. Stateful Variants

As with QMIX and QPLEX, we may consider stateful vari-
ants of QFIX that partially deviate from the stateless theory
developed so far. Such variants warrant a discussion on the
implications of employing state information on the corre-
sponding theoretical properties (Marchesini et al., 2024).
Different versions of stateful QFIX are possible by combin-
ing stateless/stateful fixees with stateless/stateful fixing net-
works. We briefly summarize the conclusions for two main
stateful variants. See additional discussion in Appendix D.

History-State QFIX When employing history-state fix-
ing models w(h, s, @) and b(h, s), QFIX continues to both
satisfy IGM and achieve the IGM-complete function class.

State-Only QFIX When employing state-only fixing
models w(s, a) and b(s), QFIX continues to satisfy IGM,
but fails to achieve the IGM-complete function class.

As Q+FIX is a reparameterization of QFIX, its properties re-
main the same in this regard. These conclusions are compa-
rable to those for stateful QPLEX (Marchesini et al., 2024).

5. Evaluation

We perform an empirical evaluation comparing Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin to competitive baselines in
the pymar12 (Ellis et al., 2023) multi-agent framework.

StarCraft Multi-Agent Challenge Pymarl12 provides
baseline implementations for the StarCraft Multi-Agent
Challenge v2 (SMACV2) (Ellis et al., 2023), a popular
benchmark for cooperative multi-agent control based on
the real-time strategy game StarCraft II. SMACv?2 features
two battling teams composed by configurable races, race-
dependent and stochastically determined unit types, and
team sizes. Our empirical evaluation is based on 9 common
scenarios obtained by combining the 3 races (Protoss,
Terran, and Zerg) with 3 team sizes (5vs5, 10vs10,
and 20vs20). Pymarl2 provides implementations for
VDN, QMIX, and QPLEX, our available baselines.

Implementation Details We note that pymarl2 pro-
vides stateful implementations of QMIX and QPLEX. For
QPLEX in particular, this means that state-only weights
w;(s) and A;(s, a) are employed. To maintain a fair com-
parison, our implementation of Q+FIX methods employs an
analogous stateful implementation with state-only weights
w(s, a) for Q+FIX-sum and Q+FIX-mono, and w;(s, a)
for Q+FIX-lin. QPLEX and Q+FIX implementations both
employ gradient detaching as described in Section 4.3.2.

Metrics SMACV2 logs various metrics pertaining to team
performance, including the mean return and the mean win-
rate obtained as the ratio of episodes where the agents suc-
ceed in defeating the enemies. Although the winrate is a
common metric used in prior work (e.g., Wang et al. (2020)
use the winrate in their SMACv1 evaluation), we have found
that winrates induce a different ordering over performances,
i.e., it is possible to obtain a higher winrate while achiev-
ing a lower return, and vice versa. This indicates that the
rewards of SMACv2 do not perfectly encode the task of
defeating the enemies—a matter of reward design that is
beyond the scope of this work. Since returns are the metric
that the methods are directly trained to maximize, we priori-
tize returns as our primary evaluation metric. Appendix E
contains additional results and discussion based on winrates.

Results We execute 3 independent runs per model per sce-
nario, and show learning performance for each in Figure 2.
To exploit the total sum of collected data, we also show
(normalized) aggregate returns across scenarios in Figure 3.

As expected, VDN fails to be a competitive baseline on
its own for most scenarios, likely due to the well-known
limited representation. Fixing VDN via Q+FIX-sum, we
are able to overcome this limitation (as noted by the perfor-
mance gap between VDN and Q+FIX-sum), expanding its
representation space and reaching SOTA performance.

QMIX sometimes exhibits fast initial learning speeds,
albeit often to a sub-competitive final performance
(Protoss-5vs5, Terran—-5vs5, Terran—-10vsl0,
Zerg-10vsl1l0, Terran-20vs20, Zerg-20vs20),
again a likely consequence of its limited representation. Fix-
ing QMIX via Q+FIX-mono, we are often able to exploit the
initial learning speeds and complement them with improved
performance at convergence reaching SOTA performance.

QPLEX is highly competitive and performs very well in
some scenarios (Protoss—-5vs5, Protoss—-20vs20,
Terran-20vs20, Zerg—-20vs20), but underper-
forms in others (Terran—-5vs5, Protoss—10vsl0,
Zerg-10vs10), and exhibits troubling convergence
instabilities as well (Zerg-5vs5, Terran—-10vs10).
Q+FIX-lin, as the simplified variant inspired by QPLEX,
manages to avoid such convergence instabilities, plausibly
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Figure 2. SMACv2 mean returns and bootstrapped confidence intervals.
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Figure 3. SMACv2 mean (normalized) aggregate returns and boot-
strapped confidence intervals. Aggregates are normalized via
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of returns logged by all models in all scenarios.

as a consequence of the simpler minimalist structure.

Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve simi-
lar learning performances in most cases, with only minor
differences across scenarios. Overall, Q+FIX-sum may
be slightly outperforming other variants in some scenar-
ios (Terran-5vs5, Zerg—-5vsb5), possibly an indication
that a simpler compositions are preferable, so long as the
full IGM-complete space is accessible.

The normalized aggregate returns in Figure 3 provide more
accurate estimations of expected performance due to the
larger sample size (27 total runs per model), and show more
clearly the trends discussed above. With these aggregate re-
sults, it becomes more clear that, even ignoring the unstable
convergence of QPLEX, the Q+FIX variants all manage to at
least mildly outperform QPLEX. These results demonstrate
that Q+FIX succeeds in enhancing the native performances
of VDN and QMIX fixees, and lifts them to a similar level
as QPLEX while maintaining more stable convergence. Fi-
nally, Table 1 shows that Q+FIX (especially Q+FIX-sum
and Q+FIX-lin) is able to achieve these performances while

using the smallest mixing network by a significant margin.

6. Conclusions

In recent years, value function decomposition methods that
employ the CTDE training paradigm for MARL have risen
to state-of-the-art status, achieving significant learning per-
formance benefits in cooperative multi-agent control prob-
lems. Such methods are often centered around the IGM
property, and recent work has focused on developing mod-
els that are able to represent the entire IGM-complete func-
tion class. When put under scrutiny, most such methods
have failed at that objective, and QPLEX represents the
singular exception. However, QPLEX only represents a
single instance in the space of models that achieve the IGM-
complete function class, and whether other better options
exist remained was an open question to explore.

In this work, we have advanced our understanding of the
IGM-complete function class by proposing a minimal for-
mulation of the IGM property that is directly implementable.
Inspired by such formulation, we were able to naturally de-
rive QFIX, a novel family of value function decomposition
methods that enhance the representation capabilities of prior
models via a simple manipulation of their outputs. As a
result, we are able to implement a number of IGM-complete
models that are significantly simpler than QPLEX. Our em-
pirical evaluation on SMACvV2 demonstrates that our QFIX
methods succeed in both enhancing the performance of prior
methods like VDN and QMIX, and achieving better con-
vergence properties than QPLEX while needing a fraction
of the parameters. Our contribution not only represents a
novel approach that performs well, but also opens the door
for new methods based on the QFIX framework.



Impact Statement

This paper presents work whose goal is to advance the field
of Multi-Agent Reinforcement Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

References

Ellis, B., Cook, J., Moalla, S., Samvelyan, M., Sun, M.,
Mabhajan, A., Foerster, J. N., and Whiteson, S. SMACv2:
An Improved Benchmark for Cooperative Multi-Agent
Reinforcement Learning, October 2023. URL http://
arxiv.org/abs/2212.07489. arXiv:2212.07489.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2017.

Marchesini, E., Baisero, A., Bhati, R., and Amato, C. On
Stateful Value Factorization in Multi-Agent Reinforce-

ment Learning, September 2024. URL http://arxiv.

org/abs/2408.15381. arXiv:2408.15381 [cs].

Oliehoek, F. A. and Amato, C. A concise introduction to
decentralized POMDPs. Springer, 2016.

Rashid, T., Farquhar, G., Peng, B., and Whiteson,
S.  Weighted QMIX: Expanding Monotonic Value
Function Factorisation for Deep Multi-Agent Re-

inforcement Learning. In Advances in Neural
Information Processing Systems, volume 33, pp.
10199-10210. Curran Associates, Inc., 2020a.

URL
cc/paper_files/paper/2020/hash/

https://proceedings.neurips.

N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-
Decomposition Networks For Cooperative Multi-Agent
Learning, June 2017. URL http://arxiv.org/
abs/1706.05296. arXiv:1706.05296 [cs].

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. QPLEX:
Duplex Dueling Multi-Agent Q-Learning.  October
2020. URL https://openreview.net/forum?
1d=Rcmk0xxIQV.

Wang, J., Ren, Z., Han, B., Ye, J., and Zhang, C.
Towards Understanding Cooperative Multi-Agent
Q-Learning with Value Factorization. In Advances
in Neural Information Processing Systems, vol-
ume 34, pp. 29142-29155. Curran Associates,
Inc., 202I. URL https://proceedings.
neurips.cc/paper/2021/hash/

f3flfaled348bfbebdeee8c80a04c3b9-Abstract.

html.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanc-
tot, M., and Freitas, N. Dueling Network Archi-
tectures for Deep Reinforcement Learning. In Pro-
ceedings of The 33rd International Conference on Ma-
chine Learning, pp. 1995-2003. PMLR, June 2016.
URL https://proceedings.mlr.press/v48/
wangfl6.html. ISSN: 1938-7228.

73ad427badebele32caa2elfc7530b7f3-Abstract.

html.

Rashid, T., Samvelyan, M., Witt, C. S. d., Farquhar, G.,
Foerster, J., and Whiteson, S. Monotonic Value Func-
tion Factorisation for Deep Multi-Agent Reinforcement
Learning. Journal of Machine Learning Research, 21
(178):1-51, 2020b. ISSN 1533-7928. URL http:
//Jjmlr.org/papers/v21/20-081.html.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi,
Y. QTRAN: Learning to Factorize with Transformation
for Cooperative Multi-Agent Reinforcement Learning.
In Proceedings of the 36th International Conference on
Machine Learning, pp. 5887-5896. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/
sonl9a.html. ISSN: 2640-3498.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat,


http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/2408.15381
http://arxiv.org/abs/2408.15381
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
http://jmlr.org/papers/v21/20-081.html
http://jmlr.org/papers/v21/20-081.html
https://proceedings.mlr.press/v97/son19a.html
https://proceedings.mlr.press/v97/son19a.html
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
https://openreview.net/forum?id=Rcmk0xxIQV
https://openreview.net/forum?id=Rcmk0xxIQV
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

A. Proofs
A.1. Proof of Lemma 4.2

Proof. For any given joint history h, let aj = argmax,, Q;(h;,a;) denote the maximal action according to the individual
utilities, and a* = (af, ..., a}y) the joint action constructed by those individual actions.

For this joint action a*, the corresponding advantage utilities are zero Vi (u; = 0) by definition, and

Qicm(h,a*) = w(h,a”) f(uy,...,uy) +b(h)
=0

= b(h). (34)

For any other non-maximal action a, we have at least one strictly negative utility 3 (u; < 0), and

C?I(;M(h7 a) = w(h, a) f(ul, . ,UN) —H)(h)
>0 <0

< b(h). (35)
Therefore a* = argmax, QicMm(h, a), and the actions that maximize the individual utilities also maximize the joint value.
O

A.2. Proof of Theorem 4.3

Proof. Let us denote the function class of Qigm as FC(Q1am ), and the IGM-complete function class as FCignv. We prove
the equivalence FC(Qicm) = FCigMm in two steps:

I. Q € FC(Qicm) = Q € FCicwm, 1.e., Qiem satisfies IGM,

2. Q € FCicm = Q € FC(Qicm), i-e., any function that satisfies IGM can be represented by Qicum-
Stepl. Q € FC(Qiam) = Q € FCigwm follows directly from Lemma 4.2.

Step 2. LetQ;(hi,a;) and Q(h, a) denote an arbitrary set of individual and joint values that satisfy IGM, i.e., Q € FCigm.
Let us denote the usual corresponding values and advantages as follows,

Vi(hi) = n}lain(hi, a;), Ai(hi,a;) = Qi(hy, a;) — Vi(hi), (36)
V(h) = max Q(h,a), A(h,a) = Q(h,a) - V(h), (37

with the usual shorthand ¢; = Q;(h;, a;) and v; = V;(h;), and u; = A;(h;, a;).

For any f that satisfies the requirements of Equation (19), let w and b be defined as follows,

b(h) =V(h), (38)
ARG f L uy) # 0
w(h,a) _ Flut,.un) ’ f( 1.5 3 N) # ) (39)
any value,  otherwise.
For any given joint history h, let aj = argmax, Q;(h;,a;) denote the maximal action according to the individual
utilities, and a* = (aj,...,a},) the corresponding joint action. Given that () satisfies IGM by assumption, we have

a* = argmax, Q(h, a), and Q(h, a*) = max, Q(h,a) = V(h).
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For this joint action a*, the corresponding individual advantage utilities are zero Vi (u; = 0) by definition, and

Qicm(h, a™) (h,a™)f(uy,...,un)+ b(h)
(h,a") f(0,...,0) +b(h)
—_——

=0

w
w

V(h)
Q(h,a”). (40)

For any other non-maximal action a', we have at least one strictly negative utility 3i (u; < 0), and

Qiam(h,a’) = w(h,a") f(u,...,uyx) + b(h)

- Mf(ul,...,uN)+V(h)

A
= Q(h,al). 1)

In either case, Qiam (b, a) = Q(h, a) for all joint histories and actions. Therefore Q € FCicm = Q € FC(Qiam)-
O

A.3. Proof of Theorem 4.4
Proof. Equation (22) satisfies the form and requirements of Equation (19). Therefore, IGM follows from Lemma 4.2. Given
w and b models that are sufficienty expressive, IGM-completeness follows from Theorem 4.3 O
A.4. Proof of Theorem 4.5

Proof. QFIX-lin is a monotonic function of individual advantages and therefore satisfies IGM. QFIX-lin is also a general-
ization of QFIX-sum, therefore its function class is a superset of the QFIX-sum function class, which is the IGM-complete
function class. Therefore, QFIX-lin can represent all models that satisfy IGM, and none of those that do not satisfy IGM. [
A.S. Proof of Theorem 4.6

Proof. (w(h,a) + 1) > 0 satisfies the positivity constraint of QFIX. Therefore, Theorem 4.4 applies. O

B. Derivations

This section contains explicit long-form derivations that had to be removed from the main document due to space limitations.
Appendices B.1 and B.2 contain the maximal value V' (h) and advantage A(h, a) for VDN and QMIX. Appendices B.3
and B.4 contain the derivation for QFIX-sum and QFIX-mono. Appendices B.5 to B.7 contain the derivation for Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin.
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B.1. VDN Maximal Values VMIX(h) and Advantages AMIX(h, a)

As areminder, VDN action-values are defined as QVDN (h,a)=>", Qi(hi, a;). Due to the the linear (monotonic) mixing
structure, the joint maximal values Vyypn(h) can be expressed as the sum of the individual maximal values,

Von(h) = max Qvon(h,a)
= max Z Qi(hi, ai)
= i (hi, a;
Gll’l}a,);N ; Q ( “ )
= Z max Qi(hi, a;) (monotonicity)
S Vi), “2)
and the joint advantages Avypx (h, a) can be expressed as the sum of the individual advantages,
Aypn(h,a) = Qvpn(h,a) — Vwpn(h)
=Y Qi(hiyai) =Y Vi(hi)
= Qi(hi,a;) — Vi(hs)

= ZAi(hi7ai)~ 43)

B.2. QMIX Maximal Values VMIX(h) and Advantages AMIX(h, a)

As a reminder, QMIX action-values are defined as QMIX(h, a) = fmono (q1,-..,9n). Due to the monotonic mixing
structure, the joint maximal values Virx (h) can be expressed as the monotonic mixing of the individual maximal values,

Varrx (h) = max Qurx (h, a)

= mgxfmono ((hv s 7qN)

= max Jmono (Ql(hlaa1)7 cees QN(hN7aN))

= fiono (max Ql (hla al)v .o, Max QN (th aN)) (monotonicity)
al anN

= fmono (‘71(/11)’ . -vVN(hN))
= fmono (V1,---,ON) , (44)
and the joint advantages AMIX(h, a) can be expressed as the corresponding difference,
Amix (h,a) = Quix(h, a) — Vaux (h)
= fmono (@15, qN) = fmono (V1,-- -, UN) - (45)
B.3. QFIX-sum

QFIX-sum is an instance of QFIX based on VDN as fixee model, Qﬁxee(h, a)= QVDN(h, a). From Equation (43), we
have that the VDN joint advantage is given as the sum of individual advantages (hence the “-sum” suffix). Therefore,
QFIX-sum is simply obtained as

Qrrxesum (b, @) = w(h, a)Aypx (h, a) + b(h)
= w(h,a) Z Ai(hi,a;) +b(h). (46)
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Figure 4. Specialized diagrams for Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin.

B.4. QFIX-mono

QFIX-mono is an instance of QFIX based on QMIX as fixee model, Qﬁxee(h, a) = QMIX(h, a). From Equation (45), we
have that the QMIX advantage is given as a difference between monotonic compositions of individual utilities (hence the
“-mono” suffix). Therefore, QFIX-mono is simply obtained as

QFIX—mono(ha a) = w(h’a a)AMIX(h’r a) + b(h)
= w(h, a)(fmono(q17 ceey qN) - fmono('Uh cee 7'UN>) + b(h) . (47)
B.5. Q+FIX-sum

Q+FIX-sum is an instance of Q+FIX based on VDN as fixee model, Qﬁxee(h, a) = QVDN (h,a) and Aﬁxee(h, a) =
Avypn(h, a), also equivalent to the additive formulation of QFIX-sum. Therefore, Q+FIX-sum is simply obtained as

Q+Fix-sum = Qvon (b, a) + w(h,a)Avpx (h, a) + b(h)
=> " Qi(h,a) + w(h,a))  Ai(h,a)+b(h). (48)

Figure 4a shows a graphical diagram for Q+FIX-sum.

B.6. Q+FIX-mono

Q+FIX-mono is an instance of Q+FIX based on QMIX as fixee model, Qﬁxee(h7 a) = QMIX(h, a) and Aﬁxee(h7 a) =
Anix (h, a), also equivalent to the additive formulation of QFIX-mono. Therefore, Q+FIX-mono is simply obtained as

Q+FIX-m0n0 = QVDN(h7 a) + ’LU(h, a’)AVDN(ha a) + b(h’)
= fmono(CIlv cee 7QN) + w(h7 a') (fmono((h: cee ;CIN) - fmono(vla ce 7UN)) + b(h) . (49)

Figure 4b shows a graphical diagram for Q+FIX-mono.

B.7. Q+FIX-lin

Q+FIX-lin is the additive formulation of QFIX-lin. Just as QFIX-lin is not formally a member of the QFIX family, but rather
a generalization of QFIX-sum, so is Q+FIX-lin not formally a member of Q+FIX, but rather a generalization of Q+FIX-sum.
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Given that QFIX-lin is obtained by introducing per-agent weights w;(h, a), Q+FIX-lin is simply obtained as
Qirrxain = Y Qilhiyai) + Y wi(h, a)Ai(hi,a;) + b(h) .

Figure 4c shows a graphical diagram for Q+FIX-lin.

C. Why Detaching the Advantages Helps Q+FIX
First, we note that the gradients VgiQJrFIX(h, a) when the advantages are not detached are as follows,
Vo, Qirix(h, a)

= Vei Qﬁxcc(ha a) + w(h, a)v&, Aﬁxcc(hy a)

= Vo, Viixee(R) + (w(h, @) + 1)V, Afixee(h, a) . (50)
It seems plausible that there may be poor values of w(h, a) that could result in degenerate gradient signals. For example,
a low fixing weight w(h,a) =~ —1 results in a dampened gradient Vo, Q1 rix (h,a) = Vj, Vixee(h), that is notably
independent on actions. On the other end of the spectrum, a very large fixing weight w(h, a) > —1 results in a gradient
that is dominated by the highly-weighted advantage component, overcoming the value component, Vy,Q 1rix(h, a) =~

w(hla)Vgi Aﬁxee(h, a). On each end of the spectrum, the gradient will propagate almost exclusively through the values
Vo, Viixee () or through the advantages Vo, Afixee (P, @).

On the other hand, the gradients V(;iQAJFFIX(h, a) when the advantages are detached are as follows,
Ve, Q+F1x(h7 a) = Ve, Qﬁxee(hv a)
= Vo, Viixee(h) + Vo, Agixee(h, @), (51)

and are unaffected by the fixing structure, equally dependent on the value and advantage components of Qﬁxee(h7 a).

D. Stateful QFIX

For simplicity, we assume a stateless fixee Qﬁxcc(h, a), although these results can be easily extended to stateful fixees
Qfixee (P, s, @) under mild conditions.
D.1. History-State QFIX
IGM In the case of history-state QFIX, as defined by
QFIX(h7Saa) = w(h,s,a)/iﬁxee(h,a) + b(h’7s) ) (52)

where w(h, s,a) > 0, we first show that Qpix (h, s, a) satisfies stateful-IGM. We employ the same methodology used by
Marchesini et al. (2024), whereby we show that the presence of the state is able to alter the values of QFIX(h, s, a), but not
the identity of the corresponding maximal action. For that purpose, let a* = argmax Aﬁxee(h, a) be the maximal action of
the fixee. For that action a*, we have that

Qrix(h, s,a*) = w(h, s, a*) Aggec(h, a*) +b(h, s) (53)
=0
=b(h,s), 54
whereas for any other non-maximal action a, we have
Qplx(h, s,a) =w(h,s,a) Aﬁxee(h7 a*)+b(h, s) (55)
—_—
>0 <0
< b(h,s). (56)

Therefore, the action a* that maximizes the fixee Qﬁxcc(h, a) also maximizes the stateful QFIX Qplx(h, s, a) regardless
of the state. Since the fixee is assumed to satisfy IGM, then the same set of individual actions maximize the individual
utilities @Q; (h;, a;), therefore QFIX satisfies stateful-IGM.
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IGM-Completeness This proof takes on a similar form to that for Theorem 4.3, although we proceed less formally. We
need to prove that any stateful value function Q(h, s, a) that satisfies stateful-IGM can be represented via history-state QFIX.
Let V(h,s) = maxq, Egp [Q(h, s,a)] and A(h,s,a) = Q(h,s,a) — V(h,s). Note the distinction between Q(h, s, a),
the stateful-IGM-compliant value we aim to model, and Qﬁxcc(h, a), the fixee we attempt to fix. To that end, let w and b be
defined as follows,

b(h,s) =V(h,s), -
Athsa) gp A (hog) £ 0
w(h,s,a) = Afixee(h,a) ’ ﬁxee( ,a)#£0, -
any value, otherwise.

For any given joint history h, let aj = argmax,. @Q;(h;, a;) denote the maximal action according to the individual utilities,
and a* = (aj, ..., a}) the corresponding joint action. Given that Q(h, s, a) satisfies stateful-IGM by assumption, we have
a* = argmax, By, [Q(h, s,a)] and Q(h,s,a*) = V(h, s).

For this joint action a*, the corresponding fixee advantage is zero by definition, and

Qrix(h,s,a*) = w(h,s,a") Anyee(h, a*) +b(h, ) (59)
=0

=b(h,s) (60)

=V(h,s) (61)

=Q(h,s,a"). (62)

For any other non-maximal action af, we have Agycc(h,a’) < 0, and

Qrix(h,s,al) = w(h, s, a’) Aggec(h, al) + b(h, s) (63)
A(h,s,a®) -

=27 Apree(h,al) + V(h, 64

AﬁXE‘E(h’7 aT) § ( “ ) + ( S) ( )

= A(h,s,a’) + V(h,s) (65)

=Q(h,s,a’). (66)

In either case, QFIX(h, s,a) = Q(h, s, a) for all joint histories, states, and joint actions.

D.2. State-Only QFIX
IGM In the case of state-only QFIX, as defined by
Qrix(h, s, a) = w(s,a)Aggec(h, a) + b(s) , (67)

where w(s, a) > 0, we first show that Qpix (h, s, @) satisfies stateful-IGM. We employ the same methodology used above,
whereby we show that the presence of the state is able to alter the values of QFIX(h, s,a), but not the identity of the
corresponding maximal action. For that purpose, let a* = argmax Aﬁxee(h, a) be the maximal action of the fixee. For that
action a™*, we have that

Qrix(h,s,a%) = w(s,a”) Agxee(h, a*) +b(s) (68)
=0
= b(s), (69)
whereas for any other non-maximal action a, we have
Qrix(h, s,a) = w(s,a) Agxee(h, a*) +b(s) (70)
—_—
>0 <0
< b(s). (71)

Therefore, the action a* that maximizes the fixee Qﬁxcc(h, a) also maximizes the stateful QFIX Qplx(h, s, a) regardless
of the state. Since the fixee is assumed to satisfy IGM, then the same set of individual actions maximize the individual
utilities Q; (h;, a;), therefore state-only QFIX satisfies stateful-IGM.
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Figure 5. SMACv2 mean winrates and bootstrapped confidence intervals.
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Figure 6. SMACv2 mean (normalized) aggregate winrates and bootstrapped confidence intervals.

IGM-Completeness In contrast to history-state QFIX, we are not able to use the same proof to show that state-only QFIX
satisfies IGM-completeness.

E. Additional Winrate Results

In this section, we show additional results based on the winrate metric. As with the return-based results, we show the
learning performance for each model and scenario in Figure 5, and the aggregate winrate across scenarios in Figure 6.

Winrates vs Returns As mentioned in the main document, the winrate and return metrics induce correlated but notably
different orderings over the evaluated methods. Comparing Figures 2 and 5, this is notable by the following non-exhaustive
examples:

e In Terran—-5vs5,

— Return implies Q+FIX-sum > Q+FIX-mono.
— Winrate implies Q+FIX-sum < Q+FIX-mono.

e In Zerg-5vs5,
— Return implies Q+FIX-sum > Q+FIX-mono ~ Q+FIX-lin.
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— Winrate implies Q+FIX-sum ~ Q+FIX-mono ~ Q+FIX-lin.

* In Zerg-10vs10,

— Return implies VDN =~ Q+FIX.
— Winrate implies VDN < Q+FIX.

e InProtoss—20vs20,

— Return implies VDN = Q+FIX-mono.
— Winrate implies VDN < Q+FIX-mono.

* In Terran-10vs10, the return of QPLEX drops significantly around the 90 timestep mark, whereas its winrate is
able to recover temporarily, indicating that high winrates are achievable even with low returns.

Comparing the final performances in Figures 3 and 6,

e Return implies VDN < QMIX < QPLEX.

* Winrate implies QPLEX < VDN ~ QMIX.

Winrate Results Despite this notable and concerning difference between returns and winrates as evaluation metrics, the
winrate-based evaluation arrives to largely the same conclusions as the return-based one in the main document.

As in the return-based results, VDN fails to be a competitive baseline on its own for most scenarios, likely due to the
well-known limited representation. Fixing VDN via Q+FIX-sum, we are able to overcome this limitation (as noted by the
performance gap between VDN and Q+FIX-sum), expanding its representation space and reaching SOTA performance.

As in the return-based results, QMIX sometimes exhibits fast initial learning speeds, albeit often to a sub-competitive
final performance (Protoss-5vs5, Terran-5vs5, Terran-10vsl0, Zerg-10vslO, Terran-20vs20,
Zerg-20vs20), again a likely consequence of its limited representation. Fixing QMIX via Q+FIX-mono, we are
often able to exploit the initial learning speeds and complement them with improved performance at convergence reaching
SOTA performance.

Compared to return-based results, QPLEX appears less competitive, and performs very well in fewer sce-
narios (Protoss-20vs20, Terran-20vs20, Zerg-20vs20), and underperforms in more (Terran-5vs5,
Zerg—-10vs10), and exhibits the same troubling convergence instabilities as well (Zerg—5vs5, Terran-10vs10).
Q+FIX-lin, as the simplified variant inspired by QPLEX, manages to avoid such convergence instabilities, plausibly as a
consequence of the simpler minimalist structure.

As in the return-based results, Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve similar learning performances in most
cases, with only minor differences across scenarios. Compared to the return-based results, it is Q+FIX-mono that may be
slightly outperforming other variants in some scenarios (Terran-5vs5, Zerg—5vs5).

The normalized aggregate returns in Figure 3 largely confirm the trends discussed above. Despite the concerning difference
between the return and winrate metrics, both demonstrate that Q+FIX succeeds in enhancing the native performances of
VDN and QMIX fixees, and lifts them to a similar level as QPLEX while maintaining more stable convergence.
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