
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Fixing Value Function Decomposition for Multi-Agent Reinforcement Learning

Anonymous Authors1

Abstract
Value function decomposition methods for coop-
erative multi-agent reinforcement learning com-
bine individual per-agent utilities into joint values
trained on a joint objective. To ensure consistent
action selection between individual utilities and
joint values, it is imperative for the composition
to satisfy individual-global max (IGM). However,
most methods that satisfy IGM are characterized
by limited representation capabilities that hinder
their performance, and the one known exception is
unnecessarily convoluted. In this work, we reveal
a minimalistic formulation of IGM that inspires
the derivation of QFIX, a novel family of value
function decomposition methods that expand the
representation capabilities of prior methods by
means of a small “fixing” network. We imple-
ment three variants of QFIX, and demonstrate
empirically that QFIX is able to meet or exceed
state-of-the-art performance with better stability.

1. Introduction
Centralized training for decentralized execution
(CTDE) (Lowe et al., 2017) is a powerful frame-
work for cooperative multi-agent reinforcement learning
(MARL) characterized by a centralized training phase
where privileged information is freely shared between
agents and a decentralized execution phase where agents
act independently in adherence to standard decentralized
control. As a consequence of a training phase that is
informed by the full team’s behavior and experiences (and,
when feasible, the environment state), CTDE is commonly
associated with increased coordination between agents and
superior performances.

Value function decomposition (Sunehag et al., 2017) is a
class of CTDE methods that construct a joint team value
from individual per-agent utilities that encode agent be-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

haviors. By training the joint value on a joint centralized
objective, the individual utilities are also indirectly trained,
resulting in decentralized agent policies that can be executed
independently. Since its inception, value function decom-
position has become a topic of great interest in cooperative
MARL, with significant research effort put in both practical
algorithms (Sunehag et al., 2017; Son et al., 2019; Rashid
et al., 2020a;b; Wang et al., 2020; Marchesini et al., 2024)
and theoretical understanding (Wang et al., 2021; March-
esini et al., 2024). Individual-global max (IGM) (Son et al.,
2019) has been identified as a key property that connects
individual utilities and joint values, ensuring that their asso-
ciated decision making processes remain consistent.

In this work, we advance both theory and practice of value
function decomposition. We formulate a novel minimal-
istic formulation of IGM-complete value function decom-
position. Our formulation (i) correctly addresses general
decentralized partially observable control (avoiding strong
assumptions like full observability or centralized control),
and (ii) highlights the core mechanism that characterizes
the full IGM-complete function class. In contrast, prior
methods fail to satisfy at least one of these criteria (usually
the first). We introduce QFIX, a novel family of value func-
tion decomposition methods inspired by our formulation
of IGM-complete decomposition. QFIX employs a simple
“fixing” network to extend the representation capabilities of
prior methods. We derive two main specializations of QFIX
called QFIX-sum and QFIX-mono, respectively obtained
by “fixing” VDN (Sunehag et al., 2017) and QMIX (Rashid
et al., 2020b). To provide further insights into the core mech-
anisms that make value function decomposition so effective,
we also derive QFIX-lin, a third variant that technically falls
outside of the QFIX family, but combines QFIX-sum with a
core component of QPLEX. Finally, we extend prior work
on stateful value function decomposition to QFIX. An em-
pirical evaluation on the StarCraft Multi-Agent Challenge
v2 (Ellis et al., 2023) demonstrates that QFIX (i) is effective
at enhancing prior non-IGM-complete methods like VDN
and QMIX, (ii) is simpler to implement and understand,
and require smaller models than QPLEX, a state-of-the-art
method in IGM-complete value function decomposition,
(iii) is competitive or outperforms QPLEX while also show-
ing more stable convergence.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

2. Related Work
Value Decomposition Networks (VDN) (Sunehag et al.,
2017) are a precursor to value decomposition methods that
employ a simple additive composition of individual utilities.
QMIX (Rashid et al., 2020b) employs a monotonic compo-
sition that generalizes the function class of VDN resulting
in significant performance improvements. Since VDN and
QMIX have limited expressiveness, several models have
attempted to achieve a broader function class. Weighted-
QMIX (WQMIX) (Rashid et al., 2020a) aims to expand the
function class of QMIX to non-monotonic cases so as to
include optimal values Q∗. However, WQMIX appears to
conflate the possibility of exploiting state information dur-
ing centralized training (which is correct) with the goal of
learning the decision process for a team of fully observable
agents (which is incorrect). As a consequence, the theory of
WQMIX assumes state values Q̂(s,a) and an optimization
process that aims to recover the optimal fully observable
decision making process argmaxa Q∗(s,a), which is in-
consistent with partially observable decentralized control.
In contrast, QFIX is fully consistent with general partially
observable decentralized control. Son et al. (2019) iden-
tify individual-global max (IGM) as an important property
that corresponds to consistency between the individual and
joint decision making processes. Notably, VDN and QMIX
satisfy IGM, but are unable to represent the entire IGM-
complete function class. QTRAN (Son et al., 2019) identi-
fies a set of constraints that are sufficient to imply IGM, and
employs auxiliary objectives that softly enforce those con-
straints. Son et al. (2019) argue that their constraints are also
necessary for IGM under affine transformations, however
they only show that one such affine transformation exists,
rather than IGM being satisfied for all affine transformations.
In contrast, QFIX is both sufficient and necessary to imply
IGM, thus directly achieving the full IGM-complete func-
tion class. QPLEX (Wang et al., 2020) employs a dueling
network decomposition and multiple layers of transforma-
tions to achieve the IGM-complete function class. However,
QPLEX employs complex transformations that are superflu-
ous in relation to its representation capabilities, and fails to
identify the core underlying mechanism that is ultimately
responsible to achieve the IGM function class. In contrast,
QFIX is simpler to understand, and achieves the IGM func-
tion class with smaller models. Further, QPLEX is only
one instance in the space of IGM-complete models, and our
work will allow researchers to explore other instances that
can further improve performance while adhering to IGM.

3. Background
3.1. Decentralized Multi-Agent Control

A decentralized POMDP (Dec-POMDP) (Oliehoek &
Amato, 2016) generalizes single-agent partially ob-

servable control by accounting for multiple decen-
tralized agents acting concurrently to solve a shared
cooperative task. A Dec-POMDP is defined by
a tuple ⟨N,S, {A1, . . . ,AN} , {O1, . . . ,ON} , T,R,O, γ⟩
composed of: (i) number of agents N ≥ 2; (ii) state space
S; (iii) individual action and observation spaces, respec-
tively Ai and Oi; (iv) starting state distribution p ∈ ∆S;
(v) state transition function T : S × A → ∆S; (vi) joint
observation function O : A× S → ∆O; (vii) joint reward
function R : S ×A → R; (viii) discount factor γ ∈ [0, 1).

The number of agents N determines a set of agent indices
I .
= {1, . . . , N}. The joint action, observation, and history

spaces are defined as the respective Cartesian products A .
=

×i
Ai, O

.
=×i

Oi, and H .
=×i

Hi. Therefore, joint
actions a = (a1, . . . , aN), observations o = (o1, . . . , oN),
and histories h = (h1, . . . , hN) are tuples of the respective
individual actions, observations, and histories.

Individual agent behaviors are generally modeled as indi-
vidual stochastic policies πi : Hi → ∆Ai that act based on
their respective history hi ∈ Hi

.
= Oi × (Ai ×Oi)

∗. The
combined behavior of all policies is represented as a joint
(but still decentralized) policy π(h,a)

.
=

∏
i πi(hi, ai) that

factorizes accordingly. Decentralized multi-agent control
aims to find policies that jointly maximize the expected sum
of discounted rewards Jπ .

= E [
∑

t γ
tR(st,at)].

In this work, we focus on approaches that model agent poli-
cies implicitly via parametric utilities Q̂i : Hi × Ai → R,
typically by means of greedy or ϵ-greedy action selec-
tion. Such utilities Q̂i(hi, ai) are commonly decomposed
into corresponding values V̂i(hi)

.
= maxai

Q̂i(hi, ai) and
(non-positive) advantages Âi(hi, ai)

.
= Q̂i(hi, ai)− V̂i(hi).

When convenient, we occasionally employ shorthand nota-
tion qi

.
= Q̂i(hi, ai), vi

.
= V̂i(hi), and ui

.
= Âi(hi, ai).

3.2. Value Function Decomposition

Value function decomposition methods (Sunehag et al.,
2017; Rashid et al., 2020b; Wang et al., 2020) construct
joint values Q̂(h,a) from individual per-agent utilities
Q̂i(hi, ai). We specifically use the term utility here to un-
derscore the fact that Q̂i(hi, ·) represents an ordering over
actions, rather than any notion of expected performance.
Notably, Q̂i is never trained to perform evaluation, and nei-
ther Q̂i(hi, ai) ≈ Qπ

i (hi, ai) nor Q̂i(hi, ai) ≈ Q∗
i (hi, ai)

are expected interpretations of well-trained utilities Q̂i.

Value function decomposition methods employ joint mod-
els Q̂(h,a) that are a function of the individual utilities
Q̂(hi, ai), and mainly differ in terms of the relationship that
is enforced and the corresponding emergent properties. The
joint model Q̂(h,a) is trained on a joint objective,

LQ̂(h,a, r,o)
.
=

1

2

(
r + γmax

a′
Q̂−(hao,a′)− Q̂(h,a)

)2

,
(1)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

which indirectly trains the individual utilities and behaviors.

3.2.1. INDIVIDUAL-GLOBAL MAX

Son et al. (2019) identify individual-global max (IGM) as a
useful property of decomposition models to achieve decen-
tralized action selection and address scaling concerns.
Definition 3.1 (Individual-Global Max). Individual utilities
{Qi(hi, ai)}Ni=1 and joint values Q(h,a) satisfy individual-
global max (IGM) iff

argmax
ai

Qi(hi, ai) =

(
argmax

a
Q(h,a)

)
i

. (2)

IGM denotes whether the individual and global decision
making processes are equivalent, and reduces the complexity
of finding the maximal joint action from exponential to
linear in the number of agents: For a given joint history h,
the full search over the joint action space A can be replaced
with N independent searches over the individual action
spaces Ai. VDN (Section 3.2.2) and QMIX (Section 3.2.3)
are well-known models that satisfy IGM, although their
function class are limited subsets of all IGM values.

3.2.2. VDN: ADDITIVE DECOMPOSITION

Value Decomposition Networks (VDN) (Sunehag et al.,
2017) is a precursor to value function decomposition meth-
ods. VDN employs a simple additive value decomposition,

Q̂VDN(h,a)
.
=

∑
i

Q̂i(hi, ai) . (3)

3.2.3. QMIX: MONOTONIC DECOMPOSITION

QMIX (Rashid et al., 2020b) constructs joint values as a
monotonic function of individual utilities,

Q̂MIX(h,a)
.
= fmono(q1, . . . , qN) , (4)

where fmono : RN → R is a parametric mixing network that
satisfies monotonicity,

∂fmono(q1, . . . , qN)

∂qi
≥ 0 . (5)

Monotonic composition generalizes the additive compo-
sition of VDN, consequently achieving a broader function
class, though it still falls short from modeling the entire IGM
function class. As in VDN, the joint model Q̂MIX(h,a) is
trained on the centralized objective in Equation (1).

3.2.4. QPLEX: IGM-COMPLETE DECOMPOSITION

QPLEX (Wang et al., 2020) reframes IGM in terms of ad-
vantages, and employs dueling network decomposition to
achieve full function class equivalence with IGM.
Definition 3.2 (IGM-Complete Function Class). A func-
tion class of individual utilities {Qi(hi, ai)}Ni=1 and joint
values Q(h,a) is IGM-complete if it contains all and only
functions that satisfy IGM.

Given utilities Qi(hi, ai) and joint action-values Q(h,a),
corresponding values and advantages are defined as follows,

Vi(hi)
.
= max

ai

Qi(hi, ai) , Ai(hi, ai)
.
= Qi(hi, ai)− Vi(hi) ,

(6)

V (h)
.
= max

a
Q(h,a) , A(h,a)

.
= Q(h,a)− V (h) .

(7)

Wang et al. (2020) reformulate IGM as a set of numeric
constraints between these individual and joint advantages.

Definition 3.3 (Advantage Constraints). Individual utilities
{Qi(hi, ai)}Ni=1 and joint values Q(h,a) satisfy IGM iff,
∀h ∈ H, ∀a∗ ∈ A∗(h), and ∀a ∈ A \A∗(h),

A(h,a∗) = 0 , Ai(hi, a
∗
i) = 0 , (8)

A(h,a) < 0 , Ai(hi, ai) ≤ 0 , (9)

where A∗(h)
.
= {a ∈ A | Q(h,a) = V (h)} is the subset

of maximal joint actions according to the joint values.

QPLEX employs a mixing structure that provably enforces
Definition 3.3. Individual utilities Q̂i(hi, ai) are first de-
composed into V̂i(hi) and Âi(hi, ai), and then transformed
using centralized joint history information as follows,

V̂i(h)
.
= wi(h)V̂i(hi) + bi(h) , (10)

Âi(h, ai)
.
= wi(h)Âi(hi, ai) , (11)

where wi : H → R>0 are parametric positive weights and
bi : H → R are parametric biases. These transformed val-
ues are aggregated as weighted sums,

V̂PLEX(h)
.
=

∑
i

V̂i(h) , (12)

ÂPLEX(h,a)
.
=

∑
i

λi(h,a)Âi(h, ai) , (13)

where λi : H×A → R>0 are parametric positive weights.
Finally, Q̂PLEX(h,a) is obtained by recombining aggregate
values and advantages,

Q̂PLEX(h,a)
.
= V̂PLEX(h) + ÂPLEX(h,a) . (14)

This sequence of decomposition, transformations, and re-
composition, combined with positive weights wi and λi

results in the constraint from Definition 3.3 being satisfied.
Wang et al. (2020) also demonstrate that QPLEX satisfies
Definition 3.2 and its function class is IGM-complete, given
sufficiently expressive models wi(h), bi(h), and λi(h,a).

3.2.5. STATEFUL VALUE FUNCTION DECOMPOSITION

Practical implementations of value function decomposition
methods often employ stateful joint values Q(h, s,a) and

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

diverge from the stateless theoretical derivations in ways that
may undermine core IGM-related properties. To address the
effects of state in value function decomposition, Marchesini
et al. (2024) formulate a state-compliant version of IGM.

Definition 3.4 (Stateful-IGM). Utilities {Qi(hi, ai)}Ni=1

and stateful joint values Q(h, s,a) satisfy IGM iff

argmax
ai

Qi(hi, ai) =

(
argmax

a
Es|h [Q(h, s,a)]

)
i

(15)

Marchesini et al. (2024) show that the stateful implementa-
tions of QMIX and QPLEX continue to satisfy IGM, while
the stateful implementation of QPLEX (which employs
historyless stateful weights wi(s), λi(s,a)) is not IGM-
complete. Nonetheless, stateful implementations often per-
form well in practice, and remain a common occurrence.

4. Fixing Value Function Decomposition
Although QPLEX achieves the IGM-complete function
class, it is expressed as a convoluted sequence of trans-
formations that are never fully motivated. Unrolling the
QPLEX values directly in terms of individual values, we get

Q̂PLEX(h,a) =
∑
i

wi(h)V̂i(hi) + bi(h)

+ wi(h)λi(h,a)Âi(hi, ai) , (16)

which raises questions about which components of this struc-
ture are truly important or necessary, e.g., the product of
individual advantages with two types of positive weights
wi(h) and λi(h,a) appears to be redundant. QPLEX only
represents one instance in a space of models that achieve
IGM-completeness, and whether simpler better-performing
decompositions exist remains an open question. The con-
voluted nature of the QPLEX transformations motivate us
to find a simpler and more general formulation of IGM-
complete decomposition.

In this section, we first propose a minimal formulation of
IGM-complete value function decomposition. Then, we use
this formulation to develop QFIX, a novel family of value
function decomposition models that operate by expanding
the representation capabilities of prior non-IGM-complete
models. We derive two primary instances of QFIX based on
“fixing” VDN and QMIX respectively, and a third instance
designed to resemble QPLEX. We also derive additive QFIX
(Q+FIX), a simple variant of QFIX that achieves significant
practical performance gains, and derive Q+FIX counterparts
of the QFIX instances. Finally, we discuss stateful variants
of QFIX and how state affects its theoretical properties.

4.1. A Minimal Formulation of IGM-Complete Values

We aim to formalize IGM-complete value function decom-
position in its simplest and most essential form. We begin

by simplifying Definition 3.3, noting that three of the four
constraints are satisfied by definition; The only constraint
that requires active enforcement is Ai(hi, a

∗
i) = 0.

Definition 4.1 (Simplified Advantage Constraints). Utilities
{Qi(hi, ai)}Ni=1 and joint values Q(h,a) satisfy IGM iff,

A(h,a) = 0 =⇒ ∀i (Ai(hi, ai) = 0) , (17)

or, equivalently via contraposition,

∃i (Ai(hi, ai) ̸= 0) =⇒ A(h,a) ̸= 0 . (18)

In essence, constructing joint advantages A(h,a) that are
negative iff any of the individual advantages Ai(hi, ai) are
negative is both sufficient and necessary to satisfy IGM.

Consider the aptly named function

QIGM(h,a)
.
= w(h,a)f(u1, . . . , uN) + b(h) , (19)

where ui = Ai(hi, ai) are the individual advantages,
w : H × A → R>0 is an arbitrary positive function of
joint history and joint action, b : H → R is an arbitrary
function of joint history, and f : Rn

≤0 → R≤0 is any non-
positive function that is zero iff all inputs are zero (e.g.,
f(u1, . . . , uN) =

∑
i ui is a simple instance of f). We note

VIGM(h)
.
= max

a
QIGM(h,a)

= b(h) , (20)
AIGM(h,a)

.
= QIGM(h,a)− VIGM(h)

= w(h,a)f(u1, . . . , uN) . (21)

Essentially, QIGM denotes a relationship where any devia-
tion from individual maximality (characterized by at least
one negative utility ui < 0, and corresponding to a negative
f(u1, . . . , uN) < 0) is transformed into an arbitrary devia-
tion w(h,a)f(u1, . . . , uN) < 0 from joint maximality. Per
Definition 4.1, QIGM represents the IGM function class.

Lemma 4.2. For any f , w, and b, values {Qi}Ni=1 and
QIGM satisfy IGM. (See proof in Appendix A.1.)

Theorem 4.3. For any f , and given free choice of w and b,
the function class of {Qi}Ni=1 and QIGM is IGM-complete.
(See proof in Appendix A.2.)

QIGM is a minimal formulation of the IGM function class
based on a single weighted transformation of individual ad-
vantages. Next, we explore how this formulation can be used
to derive QFIX, a novel family of value function decom-
position models that work by expanding the representation
capabilities of prior non-IGM-complete models.

4.2. QFIX

Let Q̂fixee(h,a) denote a “fixee” value function decomposi-
tion model that satisfies IGM but is not IGM-complete, e.g.,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

MLP MLP
Agent Agent

, ,

Fixing Network

MLP

RNN

MLP

Fixee

(a) QFIX diagram.

MLP MLP
Agent Agent

, ,

Additive Fixing Network

MLP

RNN

MLP

Fixee

(b) Q+FIX diagram.

Figure 1. QFIX and Q+FIX diagrams.

VDN or QMIX. Equation (19) suggests a method to “fix”
Q̂fixee and have it achieve full IGM-completeness. We can
extend the expressiveness of Q̂fixee by processing it through
a “fixing” network that resembles Equation (19),

Q̂FIX(h,a)
.
= w(h,a)Âfixee(h,a) + b(h) , (22)

where w : H ×A → R>0 is a parametric positive model,
b : H → R is a parametric model, and Âfixee : H ×A →
R≤0 is the non-positive advantage of the fixee as defined by

V̂fixee(h)
.
= max

a
Q̂fixee(h,a) , (23)

Âfixee(h,a)
.
= Q̂fixee(h,a)− V̂fixee(h) . (24)

Figure 1a shows a diagram of the QFIX fixing structure. We
note that Âfixee(h,a) is zero iff the joint action a is maxi-
mal according to Q̂fixee, and negative otherwise. Given that
Q̂fixee satisfies IGM by assumption, a is maximal according
to Q̂fixee iff the individual actions ai are maximal according
to Q̂i(hi, ai), or, equivalently, iff Âi(hi, ai) = 0. In short,
Âfixee(h,a) satisfies the requirements of f in Equation (19).
Theorem 4.4. QFIX satisfies IGM. Given sufficiently expres-
sive w and b, the function class of QFIX is IGM-complete.
(See proof in Appendix A.3.)

Given the free choice of fixee model Q̂fixee, QFIX really
represents a family of value function decomposition models.
This enables us to consider more or less complex fixees (e.g.,
VDN vs QMIX) to find an acceptable tradeoff between min-
imizing the complexity of the fixee model, and minimizing
the “fixing” burden on the fixing network.

Next, we compare QFIX to QPLEX, present two primary
instances of QFIX based on fixing VDN and QMIX, and
present yet another variant inspired by QPLEX.

4.2.1. RELATIONSHIP TO QPLEX

The advantage component of QFIX, w(h,a)Âfixee(h,a),
is similar to one of the transformations of QPLEX,∑

i λi(h,a)Âi(h, ai) (see Equation (13)), which also ap-
plies positive weights to transformed aggregates of the indi-
vidual advantages. This similarity is no coincidence, as it

is specifically that component of QPLEX that is singularly
responsible for ensuring IGM-completeness; it is a more
convoluted form of our proposed fixing structure. However,
QPLEX also employs various other transformations that do
not contribute to achieving the IGM-complete function class,
and their necessity remains questionable (beyond general
considerations of modelling structure and size).

The weights λi(h,a) employed by QPLEX are also more
complex in that there is one such model per agent, and each
is implemented via self-importance. In contrast, we employ
a simpler structure based on a single model implemented
as a feed-forward network, and still manage to achieve
performance improvements. Our formulation is simpler in
that it focuses entirely on this single transformation, which
is minimally sufficient to guarantee IGM-completeness.

4.2.2. QFIX-SUM: FIXING VDN.

QFIX-sum is an instance of QFIX based on VDN, i.e.,
with Q̂fixee(h,a) = Q̂VDN(h,a), which results in (see
Appendix B.3 for the formal derivation)

Q̂FIX-sum(h,a) = w(h,a)
∑
i

Âi(hi, ai) + b(h) . (25)

4.2.3. QFIX-MONO: FIXING QMIX

QFIX-mono is an instance of QFIX based on QMIX, i.e.,
with Q̂fixee(h,a) = Q̂MIX(h,a), which results in (see Ap-
pendix B.4 for formal derivation)

Q̂FIX-mono(h,a) = w(h,a) (fmono(q1, . . . , qN)

−fmono(v1, . . . , vN))

+ b(h) . (26)

4.2.4. QFIX-LIN: SIMPLIFYING QPLEX

Given the similarity between QFIX and QPLEX shown in
Section 4.2.1, we may consider yet another QFIX variant
that also applies per-agent positive weights wi(h,a) > 0,
similarly to QPLEX. Due to the linear structure that strictly
generalizes the sum of QFIX-sum (though both achieve

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

IGM-completeness), we may call this variant QFIX-lin.

Q̂FIX-lin(h,a)
.
=

∑
i

wi(h,a)Âi(hi, ai) + b(h) . (27)

QFIX-lin does not strictly satisfy the form of Equation (22),
however, it represents a close enough variant of QFIX-sum
that we consider it QFIX-adjacent and name it accordingly.
QFIX-lin is a strict generalization of QFIX-sum, which can
be recovered as a special case where all the weights wi(h,a)
are equal. Formally, we must still explicitly prove the IGM
properties of QFIX-lin.

Theorem 4.5. QFIX-lin satisfies IGM. Given sufficiently
expressive wi and b, the function class of QFIX-lin is IGM-
complete. (See proof in Appendix A.4.)

4.2.5. RECOVERING THE FIXEE MODEL

We take a moment to note that QFIX is able to recover the
fixee model via w(h,a) = 1 and b(h) = V̂fixee(h),

Q̂FIX(h,a) = w(h,a)Âfixee(h,a) + b(h)

= 1 · Âfixee(h,a) + V̂fixee(h)

= Q̂fixee(h,a) . (28)

Such values of w(h,a) and b(h) establish a direct relation-
ship between the fixee and fixed models, which is relevant
as we next use this relationship to derive a theoretically
equivalent but better-performing additive variant of QFIX.

4.3. Additive QFIX (Q+FIX)

In this section, we further derive a simple variant of
QFIX which, albeit having the same theoretical properties,
achieves significant practical performance improvements.
This variant will take on an additive form, when compared
to the fixee model, hence its name additive QFIX (Q+FIX).

As noted in Section 4.2.5, the values of w(h,a) = 1 and
b(h) = V̂fixee(h) hold a special significance for QFIX.
Q+FIX is derived by reparameterizing w and b to incor-
porate such values via simple addition, as follows,

Q̂+FIX(h,a)
.
= (w(h,a) + 1)Âfixee(h,a) + (b(h) + V̂fixee(h))

= Q̂fixee(h,a) + w(h,a)Âfixee(h,a) + b(h) , (29)

where w : H × A → R>−1 is a parametric model con-
strained by w(h,a) > −1, b : H → R is a parametric
model, and Q̂fixee and Âfixee are the fixee action-values and
advantages. Figure 1b shows a diagram of the Q+FIX fixing
structure. This reparameterization allows Q+FIX to more
directly exploit the original fixee model, providing the IGM-
complete function class as a separate additive component.
Note that, following the reparameterization of the w model,

the constraint imposed on its output has changed: since it’s
the full addition w(h,a) + 1 > 0 that must satisfy the posi-
tivity constraint from QFIX, the corresponding constraint
for Q+FIX is now w(h,a) > −1.

Theorem 4.6. Q+FIX satisfies IGM. Given sufficiently ex-
pressive w and b, the function class of Q+FIX is IGM-
complete. (See proof in Appendix A.5.)

4.3.1. Q+FIX-SUM, Q+FIX-MONO, AND Q+FIX-LIN

Here, we show the Q+FIX counterparts to QFIX-sum,
QFIX-mono, and QFIX-lin, respectively called Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin. See Appendices B.5 to B.7
for their corresponding derivations and graphical diagrams.

Q̂+FIX-sum(h,a) =
∑
i

Q̂i(hi, ai)

+ w(h,a)
∑
i

Âi(hi, ai) + b(h). (30)

Q̂+FIX-mono(h,a) = fmono(q1, . . . , qN)

+ w(h,a) (fmono(q1, . . . , qN)

−fmono(v1, . . . , vN))

+ b(h) . (31)

Q̂+FIX-lin(h,a) =
∑
i

Q̂i(hi, ai)

+
∑
i

wi(h,a)Âi(hi, ai) + b(h). (32)

4.3.2. DETACHING THE ADVANTAGES

The additive form of Q+FIX enables the use of an imple-
mentation detail already employed by QPLEX that appears
to significantly improve performance, i.e., the detachment
of the advantages when computing gradients. This can be
expressed using the stop-gradient operator1 stop as follows,

Q̂+FIX(h,a) = Q̂fixee(h,a)

+ w(h,a) stop
[
Âfixee(h,a)

]
+ b(h) (33)

The reason why detaching the advantages improves per-
formance is not fully understood. Wang et al. (2020, Ap-
pendix B.2) argue that it (cit.) “increases the optimization
stability of the max operator of the dueling structure”, in
reference to dueling networks (Wang et al., 2016). However,
the connection between the detach and dueling networks
remains unclear. Instead, we hypothesize that detaching
the advantage may mitigate adverse effects that the fixing

1The stop-gradient function is a mathematical anomaly whose
value behaves like the identity function, stop [x] = x, while its gra-
dient behaves like the zero function, ∇x stop [x] = 0. It is a func-
tionality commonly provided by deep learning frameworks, e.g.,
pytorch provides this via the Tensor.detach() method.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Table 1. Mixer sizes for Protoss in number of parameters.
Protoss 5vs5 10vs10 20vs20

QMIX 38 k 83 k 201 k
QPLEX 135 k 326 k 882 k
Q+FIX-sum 20 k 50 k 138 k
Q+FIX-mono 54 k 180 k 743 k
Q+FIX-lin 21 k 51 k 140 k

structure may have on the gradients ∇θiQ̂+FIX(h,a) of the
joint values w.r.t. the agent parameters θi (see Appendix C).

4.4. Stateful Variants

As with QMIX and QPLEX, we may consider stateful vari-
ants of QFIX that partially deviate from the stateless theory
developed so far. Such variants warrant a discussion on the
implications of employing state information on the corre-
sponding theoretical properties (Marchesini et al., 2024).
Different versions of stateful QFIX are possible by combin-
ing stateless/stateful fixees with stateless/stateful fixing net-
works. We briefly summarize the conclusions for two main
stateful variants. See additional discussion in Appendix D.

History-State QFIX When employing history-state fix-
ing models w(h, s,a) and b(h, s), QFIX continues to both
satisfy IGM and achieve the IGM-complete function class.

State-Only QFIX When employing state-only fixing
models w(s,a) and b(s), QFIX continues to satisfy IGM,
but fails to achieve the IGM-complete function class.

As Q+FIX is a reparameterization of QFIX, its properties re-
main the same in this regard. These conclusions are compa-
rable to those for stateful QPLEX (Marchesini et al., 2024).

5. Evaluation
We perform an empirical evaluation comparing Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin to competitive baselines in
the pymarl2 (Ellis et al., 2023) multi-agent framework.

StarCraft Multi-Agent Challenge Pymarl2 provides
baseline implementations for the StarCraft Multi-Agent
Challenge v2 (SMACv2) (Ellis et al., 2023), a popular
benchmark for cooperative multi-agent control based on
the real-time strategy game StarCraft II. SMACv2 features
two battling teams composed by configurable races, race-
dependent and stochastically determined unit types, and
team sizes. Our empirical evaluation is based on 9 common
scenarios obtained by combining the 3 races (Protoss,
Terran, and Zerg) with 3 team sizes (5vs5, 10vs10,
and 20vs20). Pymarl2 provides implementations for
VDN, QMIX, and QPLEX, our available baselines.

Implementation Details We note that pymarl2 pro-
vides stateful implementations of QMIX and QPLEX. For
QPLEX in particular, this means that state-only weights
wi(s) and λi(s,a) are employed. To maintain a fair com-
parison, our implementation of Q+FIX methods employs an
analogous stateful implementation with state-only weights
w(s,a) for Q+FIX-sum and Q+FIX-mono, and wi(s,a)
for Q+FIX-lin. QPLEX and Q+FIX implementations both
employ gradient detaching as described in Section 4.3.2.

Metrics SMACv2 logs various metrics pertaining to team
performance, including the mean return and the mean win-
rate obtained as the ratio of episodes where the agents suc-
ceed in defeating the enemies. Although the winrate is a
common metric used in prior work (e.g., Wang et al. (2020)
use the winrate in their SMACv1 evaluation), we have found
that winrates induce a different ordering over performances,
i.e., it is possible to obtain a higher winrate while achiev-
ing a lower return, and vice versa. This indicates that the
rewards of SMACv2 do not perfectly encode the task of
defeating the enemies—a matter of reward design that is
beyond the scope of this work. Since returns are the metric
that the methods are directly trained to maximize, we priori-
tize returns as our primary evaluation metric. Appendix E
contains additional results and discussion based on winrates.

Results We execute 3 independent runs per model per sce-
nario, and show learning performance for each in Figure 2.
To exploit the total sum of collected data, we also show
(normalized) aggregate returns across scenarios in Figure 3.

As expected, VDN fails to be a competitive baseline on
its own for most scenarios, likely due to the well-known
limited representation. Fixing VDN via Q+FIX-sum, we
are able to overcome this limitation (as noted by the perfor-
mance gap between VDN and Q+FIX-sum), expanding its
representation space and reaching SOTA performance.

QMIX sometimes exhibits fast initial learning speeds,
albeit often to a sub-competitive final performance
(Protoss-5vs5, Terran-5vs5, Terran-10vs10,
Zerg-10vs10, Terran-20vs20, Zerg-20vs20),
again a likely consequence of its limited representation. Fix-
ing QMIX via Q+FIX-mono, we are often able to exploit the
initial learning speeds and complement them with improved
performance at convergence reaching SOTA performance.

QPLEX is highly competitive and performs very well in
some scenarios (Protoss-5vs5, Protoss-20vs20,
Terran-20vs20, Zerg-20vs20), but underper-
forms in others (Terran-5vs5, Protoss-10vs10,
Zerg-10vs10), and exhibits troubling convergence
instabilities as well (Zerg-5vs5, Terran-10vs10).
Q+FIX-lin, as the simplified variant inspired by QPLEX,
manages to avoid such convergence instabilities, plausibly

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

10.0

12.5

15.0

17.5

20.0
Re

tu
rn

5vs5 | Protoss 10vs10 | Protoss 20vs20 | Protoss

10.0

12.5

15.0

17.5

20.0

Re
tu

rn

5vs5 | Terran 10vs10 | Terran 20vs20 | Terran

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10.0

12.5

15.0

17.5

20.0

Re
tu

rn

5vs5 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10vs10 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20vs20 | Zerg

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

Figure 2. SMACv2 mean returns and bootstrapped confidence intervals.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

0.6

0.7

0.8

0.9

Re
tu

rn
 (N

or
m

al
ize

d) Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

Figure 3. SMACv2 mean (normalized) aggregate returns and boot-
strapped confidence intervals. Aggregates are normalized via
G̃i

.
= Gi−mink Gk

maxk Gk−mink Gk
∈ [0, 1], where {Gi}i is the total set

of returns logged by all models in all scenarios.

as a consequence of the simpler minimalist structure.

Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve simi-
lar learning performances in most cases, with only minor
differences across scenarios. Overall, Q+FIX-sum may
be slightly outperforming other variants in some scenar-
ios (Terran-5vs5, Zerg-5vs5), possibly an indication
that a simpler compositions are preferable, so long as the
full IGM-complete space is accessible.

The normalized aggregate returns in Figure 3 provide more
accurate estimations of expected performance due to the
larger sample size (27 total runs per model), and show more
clearly the trends discussed above. With these aggregate re-
sults, it becomes more clear that, even ignoring the unstable
convergence of QPLEX, the Q+FIX variants all manage to at
least mildly outperform QPLEX. These results demonstrate
that Q+FIX succeeds in enhancing the native performances
of VDN and QMIX fixees, and lifts them to a similar level
as QPLEX while maintaining more stable convergence. Fi-
nally, Table 1 shows that Q+FIX (especially Q+FIX-sum
and Q+FIX-lin) is able to achieve these performances while

using the smallest mixing network by a significant margin.

6. Conclusions
In recent years, value function decomposition methods that
employ the CTDE training paradigm for MARL have risen
to state-of-the-art status, achieving significant learning per-
formance benefits in cooperative multi-agent control prob-
lems. Such methods are often centered around the IGM
property, and recent work has focused on developing mod-
els that are able to represent the entire IGM-complete func-
tion class. When put under scrutiny, most such methods
have failed at that objective, and QPLEX represents the
singular exception. However, QPLEX only represents a
single instance in the space of models that achieve the IGM-
complete function class, and whether other better options
exist remained was an open question to explore.

In this work, we have advanced our understanding of the
IGM-complete function class by proposing a minimal for-
mulation of the IGM property that is directly implementable.
Inspired by such formulation, we were able to naturally de-
rive QFIX, a novel family of value function decomposition
methods that enhance the representation capabilities of prior
models via a simple manipulation of their outputs. As a
result, we are able to implement a number of IGM-complete
models that are significantly simpler than QPLEX. Our em-
pirical evaluation on SMACv2 demonstrates that our QFIX
methods succeed in both enhancing the performance of prior
methods like VDN and QMIX, and achieving better con-
vergence properties than QPLEX while needing a fraction
of the parameters. Our contribution not only represents a
novel approach that performs well, but also opens the door
for new methods based on the QFIX framework.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Impact Statement
This paper presents work whose goal is to advance the field
of Multi-Agent Reinforcement Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

References
Ellis, B., Cook, J., Moalla, S., Samvelyan, M., Sun, M.,

Mahajan, A., Foerster, J. N., and Whiteson, S. SMACv2:
An Improved Benchmark for Cooperative Multi-Agent
Reinforcement Learning, October 2023. URL http://
arxiv.org/abs/2212.07489. arXiv:2212.07489.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2017.

Marchesini, E., Baisero, A., Bhati, R., and Amato, C. On
Stateful Value Factorization in Multi-Agent Reinforce-
ment Learning, September 2024. URL http://arxiv.
org/abs/2408.15381. arXiv:2408.15381 [cs].

Oliehoek, F. A. and Amato, C. A concise introduction to
decentralized POMDPs. Springer, 2016.

Rashid, T., Farquhar, G., Peng, B., and Whiteson,
S. Weighted QMIX: Expanding Monotonic Value
Function Factorisation for Deep Multi-Agent Re-
inforcement Learning. In Advances in Neural
Information Processing Systems, volume 33, pp.
10199–10210. Curran Associates, Inc., 2020a.
URL https://proceedings.neurips.
cc/paper_files/paper/2020/hash/
73a427badebe0e32caa2e1fc7530b7f3-Abstract.
html.

Rashid, T., Samvelyan, M., Witt, C. S. d., Farquhar, G.,
Foerster, J., and Whiteson, S. Monotonic Value Func-
tion Factorisation for Deep Multi-Agent Reinforcement
Learning. Journal of Machine Learning Research, 21
(178):1–51, 2020b. ISSN 1533-7928. URL http:
//jmlr.org/papers/v21/20-081.html.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi,
Y. QTRAN: Learning to Factorize with Transformation
for Cooperative Multi-Agent Reinforcement Learning.
In Proceedings of the 36th International Conference on
Machine Learning, pp. 5887–5896. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/
son19a.html. ISSN: 2640-3498.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat,

N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-
Decomposition Networks For Cooperative Multi-Agent
Learning, June 2017. URL http://arxiv.org/
abs/1706.05296. arXiv:1706.05296 [cs].

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. QPLEX:
Duplex Dueling Multi-Agent Q-Learning. October
2020. URL https://openreview.net/forum?
id=Rcmk0xxIQV.

Wang, J., Ren, Z., Han, B., Ye, J., and Zhang, C.
Towards Understanding Cooperative Multi-Agent
Q-Learning with Value Factorization. In Advances
in Neural Information Processing Systems, vol-
ume 34, pp. 29142–29155. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.
html.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanc-
tot, M., and Freitas, N. Dueling Network Archi-
tectures for Deep Reinforcement Learning. In Pro-
ceedings of The 33rd International Conference on Ma-
chine Learning, pp. 1995–2003. PMLR, June 2016.
URL https://proceedings.mlr.press/v48/
wangf16.html. ISSN: 1938-7228.

9

http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/2408.15381
http://arxiv.org/abs/2408.15381
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
http://jmlr.org/papers/v21/20-081.html
http://jmlr.org/papers/v21/20-081.html
https://proceedings.mlr.press/v97/son19a.html
https://proceedings.mlr.press/v97/son19a.html
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
https://openreview.net/forum?id=Rcmk0xxIQV
https://openreview.net/forum?id=Rcmk0xxIQV
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f3f1fa1e4348bfbebdeee8c80a04c3b9-Abstract.html
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A. Proofs
A.1. Proof of Lemma 4.2

Proof. For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according to the individual

utilities, and a∗ = (a∗1, . . . , a
∗
N) the joint action constructed by those individual actions.

For this joint action a∗, the corresponding advantage utilities are zero ∀i (u∗
i = 0) by definition, and

QIGM(h,a∗) = w(h,a∗) f(u∗
1, . . . , u

∗
N)︸ ︷︷ ︸

=0

+b(h)

= b(h) . (34)

For any other non-maximal action a, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h,a) = w(h,a)︸ ︷︷ ︸
>0

f(u1, . . . , uN)︸ ︷︷ ︸
<0

+b(h)

< b(h) . (35)

Therefore a∗ = argmaxa QIGM(h,a), and the actions that maximize the individual utilities also maximize the joint value.

A.2. Proof of Theorem 4.3

Proof. Let us denote the function class of QIGM as FC(QIGM), and the IGM-complete function class as FCIGM. We prove
the equivalence FC(QIGM) = FCIGM in two steps:

1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM, i.e., QIGM satisfies IGM,

2. Q ∈ FCIGM =⇒ Q ∈ FC(QIGM), i.e., any function that satisfies IGM can be represented by QIGM.

Step 1. Q ∈ FC(QIGM) =⇒ Q ∈ FCIGM follows directly from Lemma 4.2.

Step 2. Let Qi(hi, ai) and Q(h,a) denote an arbitrary set of individual and joint values that satisfy IGM, i.e., Q ∈ FCIGM.
Let us denote the usual corresponding values and advantages as follows,

Vi(hi) = max
ai

Qi(hi, ai) , Ai(hi, ai) = Qi(hi, ai)− Vi(hi) , (36)

V (h) = max
a

Q(h,a) , A(h,a) = Q(h,a)− V (h) , (37)

with the usual shorthand qi = Qi(hi, ai) and vi = Vi(hi), and ui = Ai(hi, ai).

For any f that satisfies the requirements of Equation (19), let w and b be defined as follows,

b(h) = V (h) , (38)

w(h,a) =

{
A(h,a)

f(u1,...,uN) , if f(u1, . . . , uN) ̸= 0 ,

any value , otherwise .
(39)

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according to the individual

utilities, and a∗ = (a∗1, . . . , a
∗
N) the corresponding joint action. Given that Q satisfies IGM by assumption, we have

a∗ = argmaxa Q(h,a), and Q(h,a∗) = maxa Q(h,a) = V (h).

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

For this joint action a∗, the corresponding individual advantage utilities are zero ∀i (ui = 0) by definition, and

QIGM(h,a∗) = w(h,a∗)f(u1, . . . , uN) + b(h)

= w(h,a∗) f(0, . . . , 0)︸ ︷︷ ︸
=0

+b(h)

= V (h)

= Q(h,a∗) . (40)

For any other non-maximal action a†, we have at least one strictly negative utility ∃i (ui < 0), and

QIGM(h,a†) = w(h,a†)f(u1, . . . , uN) + b(h)

=
A(h,a†)

f(u1, . . . , uN)
f(u1, . . . , uN) + V (h)

= A(h,a†) + V (h)

= Q(h,a†) . (41)

In either case, QIGM(h,a) = Q(h,a) for all joint histories and actions. Therefore Q ∈ FCIGM =⇒ Q ∈ FC(QIGM).

A.3. Proof of Theorem 4.4

Proof. Equation (22) satisfies the form and requirements of Equation (19). Therefore, IGM follows from Lemma 4.2. Given
w and b models that are sufficienty expressive, IGM-completeness follows from Theorem 4.3

A.4. Proof of Theorem 4.5

Proof. QFIX-lin is a monotonic function of individual advantages and therefore satisfies IGM. QFIX-lin is also a general-
ization of QFIX-sum, therefore its function class is a superset of the QFIX-sum function class, which is the IGM-complete
function class. Therefore, QFIX-lin can represent all models that satisfy IGM, and none of those that do not satisfy IGM.

A.5. Proof of Theorem 4.6

Proof. (w(h,a) + 1) > 0 satisfies the positivity constraint of QFIX. Therefore, Theorem 4.4 applies.

B. Derivations
This section contains explicit long-form derivations that had to be removed from the main document due to space limitations.
Appendices B.1 and B.2 contain the maximal value V (h) and advantage A(h,a) for VDN and QMIX. Appendices B.3
and B.4 contain the derivation for QFIX-sum and QFIX-mono. Appendices B.5 to B.7 contain the derivation for Q+FIX-sum,
Q+FIX-mono, and Q+FIX-lin.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

B.1. VDN Maximal Values V̂MIX(h) and Advantages ÂMIX(h,a)

As a reminder, VDN action-values are defined as Q̂VDN(h,a)
.
=

∑
i Q̂i(hi, ai). Due to the the linear (monotonic) mixing

structure, the joint maximal values V̂VDN(h) can be expressed as the sum of the individual maximal values,

V̂VDN(h)
.
= max

a
Q̂VDN(h,a)

= max
a

∑
i

Q̂i(hi, ai)

= max
a1,...,aN

∑
i

Q̂i(hi, ai)

=
∑
i

max
ai

Q̂i(hi, ai) (monotonicity)

=
∑
i

V̂i(hi) , (42)

and the joint advantages ÂVDN(h,a) can be expressed as the sum of the individual advantages,

ÂVDN(h,a)
.
= Q̂VDN(h,a)− V̂VDN(h)

=
∑
i

Q̂i(hi, ai)−
∑
i

V̂i(hi)

=
∑
i

Q̂i(hi, ai)− V̂i(hi)

=
∑
i

Âi(hi, ai) . (43)

B.2. QMIX Maximal Values V̂MIX(h) and Advantages ÂMIX(h,a)

As a reminder, QMIX action-values are defined as Q̂MIX(h,a)
.
= fmono (q1, . . . , qN). Due to the monotonic mixing

structure, the joint maximal values V̂MIX(h) can be expressed as the monotonic mixing of the individual maximal values,

V̂MIX(h)
.
= max

a
Q̂MIX(h,a)

= max
a

fmono (q1, . . . , qN)

= max
a1,...,aN

fmono

(
Q̂1(h1, a1), . . . , Q̂N (hN , aN)

)
= fmono

(
max
a1

Q̂1(h1, a1), . . . ,max
aN

Q̂N (hN , aN)

)
(monotonicity)

= fmono

(
V̂1(h1), . . . , V̂N (hN)

)
= fmono (v1, . . . , vN) , (44)

and the joint advantages ÂMIX(h,a) can be expressed as the corresponding difference,

ÂMIX(h,a)
.
= Q̂MIX(h,a)− V̂MIX(h)

= fmono (q1, . . . , qN)− fmono (v1, . . . , vN) . (45)

B.3. QFIX-sum

QFIX-sum is an instance of QFIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a). From Equation (43), we
have that the VDN joint advantage is given as the sum of individual advantages (hence the “-sum” suffix). Therefore,
QFIX-sum is simply obtained as

Q̂FIX-sum(h,a)
.
= w(h,a)ÂVDN(h,a) + b(h)

= w(h,a)
∑
i

Âi(hi, ai) + b(h) . (46)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

MLP MLP

Agent Agent

VDN + Additive Fixing Network

MLP

RNN

MLP

(a) Q+FIX-sum diagram.

MLP MLP

Agent Agent

QMIX + Additive Fixing Network

MLP

RNN

MLP

(b) Q+FIX-mono diagram.

MLP MLP

Agent Agent

VDN + Additive Fixing Network

MLP

RNN

MLP

(c) Q+FIX-lin diagram.

Figure 4. Specialized diagrams for Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin.

B.4. QFIX-mono

QFIX-mono is an instance of QFIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a). From Equation (45), we
have that the QMIX advantage is given as a difference between monotonic compositions of individual utilities (hence the
“-mono” suffix). Therefore, QFIX-mono is simply obtained as

Q̂FIX-mono(h,a)
.
= w(h,a)ÂMIX(h,a) + b(h)

= w(h,a)(fmono(q1, . . . , qN)− fmono(v1, . . . , vN)) + b(h) . (47)

B.5. Q+FIX-sum

Q+FIX-sum is an instance of Q+FIX based on VDN as fixee model, Q̂fixee(h,a) = Q̂VDN(h,a) and Âfixee(h,a) =
ÂVDN(h,a), also equivalent to the additive formulation of QFIX-sum. Therefore, Q+FIX-sum is simply obtained as

Q̂+FIX-sum
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
=

∑
i

Q̂i(h,a) + w(h,a)
∑
i

Âi(h,a) + b(h) . (48)

Figure 4a shows a graphical diagram for Q+FIX-sum.

B.6. Q+FIX-mono

Q+FIX-mono is an instance of Q+FIX based on QMIX as fixee model, Q̂fixee(h,a) = Q̂MIX(h,a) and Âfixee(h,a) =
ÂMIX(h,a), also equivalent to the additive formulation of QFIX-mono. Therefore, Q+FIX-mono is simply obtained as

Q̂+FIX-mono
.
= Q̂VDN(h,a) + w(h,a)ÂVDN(h,a) + b(h)
.
= fmono(q1, . . . , qN) + w(h,a) (fmono(q1, . . . , qN)− fmono(v1, . . . , vN)) + b(h) . (49)

Figure 4b shows a graphical diagram for Q+FIX-mono.

B.7. Q+FIX-lin

Q+FIX-lin is the additive formulation of QFIX-lin. Just as QFIX-lin is not formally a member of the QFIX family, but rather
a generalization of QFIX-sum, so is Q+FIX-lin not formally a member of Q+FIX, but rather a generalization of Q+FIX-sum.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Given that QFIX-lin is obtained by introducing per-agent weights wi(h,a), Q+FIX-lin is simply obtained as

Q̂+FIX-lin
.
=

∑
i

Q̂i(hi, ai) +
∑
i

wi(h,a)Âi(hi, ai) + b(h) .

Figure 4c shows a graphical diagram for Q+FIX-lin.

C. Why Detaching the Advantages Helps Q+FIX
First, we note that the gradients ∇θiQ̂+FIX(h,a) when the advantages are not detached are as follows,

∇θiQ̂+FIX(h,a)

= ∇θiQ̂fixee(h,a) + w(h,a)∇θiÂfixee(h,a)

= ∇θi V̂fixee(h) + (w(h,a) + 1)∇θiÂfixee(h,a) . (50)

It seems plausible that there may be poor values of w(h,a) that could result in degenerate gradient signals. For example,
a low fixing weight w(h,a) ≈ −1 results in a dampened gradient ∇θiQ̂+FIX(h,a) ≈ ∇θi V̂fixee(h), that is notably
independent on actions. On the other end of the spectrum, a very large fixing weight w(h,a) ≫ −1 results in a gradient
that is dominated by the highly-weighted advantage component, overcoming the value component, ∇θiQ̂+FIX(h,a) ≈
w(h,a)∇θiÂfixee(h,a). On each end of the spectrum, the gradient will propagate almost exclusively through the values
∇θi V̂fixee(h) or through the advantages ∇θiÂfixee(h,a).

On the other hand, the gradients ∇θiQ̂+FIX(h,a) when the advantages are detached are as follows,

∇θiQ̂+FIX(h,a) = ∇θiQ̂fixee(h,a)

= ∇θi V̂fixee(h) +∇θiÂfixee(h,a) , (51)

and are unaffected by the fixing structure, equally dependent on the value and advantage components of Q̂fixee(h,a).

D. Stateful QFIX
For simplicity, we assume a stateless fixee Q̂fixee(h,a), although these results can be easily extended to stateful fixees
Q̂fixee(h, s,a) under mild conditions.

D.1. History-State QFIX

IGM In the case of history-state QFIX, as defined by

Q̂FIX(h, s,a)
.
= w(h, s,a)Âfixee(h,a) + b(h, s) , (52)

where w(h, s,a) > 0, we first show that Q̂FIX(h, s,a) satisfies stateful-IGM. We employ the same methodology used by
Marchesini et al. (2024), whereby we show that the presence of the state is able to alter the values of Q̂FIX(h, s,a), but not
the identity of the corresponding maximal action. For that purpose, let a∗ = argmax Âfixee(h,a) be the maximal action of
the fixee. For that action a∗, we have that

Q̂FIX(h, s,a
∗) = w(h, s,a∗) Âfixee(h,a

∗)︸ ︷︷ ︸
=0

+b(h, s) (53)

= b(h, s) , (54)

whereas for any other non-maximal action a, we have

Q̂FIX(h, s,a) = w(h, s,a)︸ ︷︷ ︸
>0

Âfixee(h,a
∗)︸ ︷︷ ︸

<0

+b(h, s) (55)

< b(h, s) . (56)

Therefore, the action a∗ that maximizes the fixee Q̂fixee(h,a) also maximizes the stateful QFIX Q̂FIX(h, s,a) regardless
of the state. Since the fixee is assumed to satisfy IGM, then the same set of individual actions maximize the individual
utilities Q̂i(hi, ai), therefore QFIX satisfies stateful-IGM.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

IGM-Completeness This proof takes on a similar form to that for Theorem 4.3, although we proceed less formally. We
need to prove that any stateful value function Q(h, s,a) that satisfies stateful-IGM can be represented via history-state QFIX.
Let V (h, s)

.
= maxa Es|h [Q(h, s,a)] and A(h, s,a)

.
= Q(h, s,a) − V (h, s). Note the distinction between Q(h, s,a),

the stateful-IGM-compliant value we aim to model, and Q̂fixee(h,a), the fixee we attempt to fix. To that end, let w and b be
defined as follows,

b(h, s) = V (h, s) , (57)

w(h, s,a) =

{
A(h,s,a)

Âfixee(h,a)
, if Âfixee(h,a) ̸= 0 ,

any value , otherwise .
(58)

For any given joint history h, let a∗i = argmaxai
Qi(hi, ai) denote the maximal action according to the individual utilities,

and a∗ = (a∗1, . . . , a
∗
N) the corresponding joint action. Given that Q(h, s,a) satisfies stateful-IGM by assumption, we have

a∗ = argmaxa Es|h [Q(h, s,a)] and Q(h, s,a∗) = V (h, s).

For this joint action a∗, the corresponding fixee advantage is zero by definition, and

Q̂FIX(h, s,a
∗) = w(h, s,a∗) Âfixee(h,a

∗)︸ ︷︷ ︸
=0

+b(h, s) (59)

= b(h, s) (60)
= V (h, s) (61)
= Q(h, s,a∗) . (62)

For any other non-maximal action a†, we have Âfixee(h,a
†) < 0, and

Q̂FIX(h, s,a
†) = w(h, s,a†)Âfixee(h,a

†) + b(h, s) (63)

=
A(h, s,a†)

Âfixee(h,a†)
Âfixee(h,a

†) + V (h, s) (64)

= A(h, s,a†) + V (h, s) (65)

= Q(h, s,a†) . (66)

In either case, Q̂FIX(h, s,a) = Q(h, s,a) for all joint histories, states, and joint actions.

D.2. State-Only QFIX

IGM In the case of state-only QFIX, as defined by

Q̂FIX(h, s,a)
.
= w(s,a)Âfixee(h,a) + b(s) , (67)

where w(s,a) > 0, we first show that Q̂FIX(h, s,a) satisfies stateful-IGM. We employ the same methodology used above,
whereby we show that the presence of the state is able to alter the values of Q̂FIX(h, s,a), but not the identity of the
corresponding maximal action. For that purpose, let a∗ = argmax Âfixee(h,a) be the maximal action of the fixee. For that
action a∗, we have that

Q̂FIX(h, s,a
∗) = w(s,a∗) Âfixee(h,a

∗)︸ ︷︷ ︸
=0

+b(s) (68)

= b(s) , (69)

whereas for any other non-maximal action a, we have

Q̂FIX(h, s,a) = w(s,a)︸ ︷︷ ︸
>0

Âfixee(h,a
∗)︸ ︷︷ ︸

<0

+b(s) (70)

< b(s) . (71)

Therefore, the action a∗ that maximizes the fixee Q̂fixee(h,a) also maximizes the stateful QFIX Q̂FIX(h, s,a) regardless
of the state. Since the fixee is assumed to satisfy IGM, then the same set of individual actions maximize the individual
utilities Q̂i(hi, ai), therefore state-only QFIX satisfies stateful-IGM.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

20%

40%

60%

80%

W
in

ra
te

5vs5 | Protoss 10vs10 | Protoss 20vs20 | Protoss

20%

40%

60%

80%

W
in

ra
te

5vs5 | Terran 10vs10 | Terran 20vs20 | Terran

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20%

40%

60%

80%

W
in

ra
te

5vs5 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

10vs10 | Zerg

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20vs20 | Zerg

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

Figure 5. SMACv2 mean winrates and bootstrapped confidence intervals.

0 2 M 4 M 6 M 8 M 10 M
Timesteps

20%

40%

60%

80%

W
in

ra
te

Model
Q+FIX-sum
Q+FIX-mono
Q+FIX-lin
QPLEX
QMIX
VDN

Figure 6. SMACv2 mean (normalized) aggregate winrates and bootstrapped confidence intervals.

IGM-Completeness In contrast to history-state QFIX, we are not able to use the same proof to show that state-only QFIX
satisfies IGM-completeness.

E. Additional Winrate Results
In this section, we show additional results based on the winrate metric. As with the return-based results, we show the
learning performance for each model and scenario in Figure 5, and the aggregate winrate across scenarios in Figure 6.

Winrates vs Returns As mentioned in the main document, the winrate and return metrics induce correlated but notably
different orderings over the evaluated methods. Comparing Figures 2 and 5, this is notable by the following non-exhaustive
examples:

• In Terran-5vs5,

– Return implies Q+FIX-sum ≻ Q+FIX-mono.
– Winrate implies Q+FIX-sum ≺ Q+FIX-mono.

• In Zerg-5vs5,

– Return implies Q+FIX-sum ≻ Q+FIX-mono ≈ Q+FIX-lin.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

– Winrate implies Q+FIX-sum ≈ Q+FIX-mono ≈ Q+FIX-lin.

• In Zerg-10vs10,

– Return implies VDN ≈ Q+FIX.
– Winrate implies VDN ≺ Q+FIX.

• In Protoss-20vs20,

– Return implies VDN ≈ Q+FIX-mono.
– Winrate implies VDN ≺ Q+FIX-mono.

• In Terran-10vs10, the return of QPLEX drops significantly around the 9M timestep mark, whereas its winrate is
able to recover temporarily, indicating that high winrates are achievable even with low returns.

Comparing the final performances in Figures 3 and 6,

• Return implies VDN ≺ QMIX ≺ QPLEX.

• Winrate implies QPLEX ≺ VDN ≈ QMIX.

Winrate Results Despite this notable and concerning difference between returns and winrates as evaluation metrics, the
winrate-based evaluation arrives to largely the same conclusions as the return-based one in the main document.

As in the return-based results, VDN fails to be a competitive baseline on its own for most scenarios, likely due to the
well-known limited representation. Fixing VDN via Q+FIX-sum, we are able to overcome this limitation (as noted by the
performance gap between VDN and Q+FIX-sum), expanding its representation space and reaching SOTA performance.

As in the return-based results, QMIX sometimes exhibits fast initial learning speeds, albeit often to a sub-competitive
final performance (Protoss-5vs5, Terran-5vs5, Terran-10vs10, Zerg-10vs10, Terran-20vs20,
Zerg-20vs20), again a likely consequence of its limited representation. Fixing QMIX via Q+FIX-mono, we are
often able to exploit the initial learning speeds and complement them with improved performance at convergence reaching
SOTA performance.

Compared to return-based results, QPLEX appears less competitive, and performs very well in fewer sce-
narios (Protoss-20vs20, Terran-20vs20, Zerg-20vs20), and underperforms in more (Terran-5vs5,
Zerg-10vs10), and exhibits the same troubling convergence instabilities as well (Zerg-5vs5, Terran-10vs10).
Q+FIX-lin, as the simplified variant inspired by QPLEX, manages to avoid such convergence instabilities, plausibly as a
consequence of the simpler minimalist structure.

As in the return-based results, Q+FIX-sum, Q+FIX-mono, and Q+FIX-lin achieve similar learning performances in most
cases, with only minor differences across scenarios. Compared to the return-based results, it is Q+FIX-mono that may be
slightly outperforming other variants in some scenarios (Terran-5vs5, Zerg-5vs5).

The normalized aggregate returns in Figure 3 largely confirm the trends discussed above. Despite the concerning difference
between the return and winrate metrics, both demonstrate that Q+FIX succeeds in enhancing the native performances of
VDN and QMIX fixees, and lifts them to a similar level as QPLEX while maintaining more stable convergence.

17

