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Abstract: We present a method to learn compositional multi-object dynamics
models from image observations based on implicit object encoders, Neural Radi-
ance Fields (NeRFs), and graph neural networks. NeRFs have become a popular
choice for representing scenes due to their strong 3D prior. However, most NeRF
approaches are trained on a single scene, representing the whole scene with a
global model, making generalization to novel scenes, containing different num-
bers of objects, challenging. Instead, we present a compositional, object-centric
auto-encoder framework that maps multiple views of the scene to a set of latent
vectors representing each object separately. The latent vectors parameterize indi-
vidual NeRFs from which the scene can be reconstructed. Based on those latent
vectors, we train a graph neural network dynamics model in the latent space to
achieve compositionality for dynamics prediction. A key feature of our approach
is that the latent vectors are forced to encode 3D information through the NeRF
decoder, which enables us to incorporate structural priors in learning the dynamics
models, making long-term predictions more stable compared to several baselines.
Simulated and real world experiments show that our method can model and learn
the dynamics of compositional scenes including rigid and deformable objects.
Video: https://dannydriess.github.io/compnerfdyn/
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1 Introduction
Learning models from observations that predict the future state of a scene is a fundamental con-
cept for enabling an agent to reason about actions to achieve a desired goal. A major challenge in
learning predictive models is that raw observations such as images are usually high-dimensional.
Therefore, a common approach is to map the observation space into a lower-dimensional latent rep-
resentation of the scene via an auto-encoder structure. Based on those latent vectors, a dynamics
model can be learned that predicts the next latent state, conditioned on actions an agent takes. An
intuition for this is that if a latent vector is sufficient to reconstruct the observations, then it contains
enough information about the scene to learn a dynamics model on top of it. While an auto-encoder
structure combined with a latent dynamics model is a general approach that is applicable for a large
variety of tasks, it raises multiple challenges. First, scenes in our world are composed of multiple ob-
jects. Therefore, a fixed-size latent vector has difficulties in generalizing over different and changing
numbers of objects in the scene than during training, both due to the limited capacity of fixed-size
vectors and lack of diversity in the training distribution. Second, image observations are 2D, but
the 3D structure of our world is essential for many tasks to reason about the underlying physical
processes governing the dynamics the model should predict. Dealing with occlusions, object perma-
nence, and ambiguities in 2D views is challenging for 2D image representations. Importantly, many
forward predictive models in visual observation spaces suffer from instabilities in making long-term
predictions, often manifested in blurry image predictions [1].

One way to address these issues is to incorporate inductive biases and structural priors in the model
architectures. Li et al. [2] proposed to use Neural Radiance Fields (NeRFs) [3] as a decoder within an
auto-encoder to learn dynamics models in latent spaces. NeRFs exhibit strong structural priors about
the 3D world, leading to increased performance over 2D baselines. However, the approach of [2]
represents the whole scene as a single latent vector, which we found insufficient for scenes composed
of multiple, different numbers of objects, in terms of representation and dynamics prediction.

In the present work, we aim to overcome these challenges by incorporating inductive biases on the
compositional nature and underlying 3D structure of our world both in learning the latent representa-
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t = 0 t = 15

(a) Bottom row renderings of forward predictions with dynamic model, top row ground truth (b) novel view
Figure 1: Visual forward predictions with our model. (a) left: initial scene, (a) right: after 15 prediction steps
into the future. (b) renderings of the model after 15 prediction steps from novel views. Future predictions are
based on the initial observation of the scene at t = 0 and then rendered from the prediction of the latent vectors.
Blue pusher is articulated by the robot. Despite multiple objects interacting, predictions are sharp and accurate.

tions themselves and the dynamics model. We propose a compositional, object-centric auto-encoder
framework whose latent vectors are used to learn a compositional forward dynamics model in that
learned latent space based on graph neural networks (GNN). More specifically, we learn an implicit
object encoder that maps image observations of the scene from multiple views to a set of latent
vectors that each represent an object in the scene separately. These latent object encodings then
parameterize individual NeRFs for each object. We apply compositional rendering techniques to
synthesize images from multiple viewpoints, which forces the object-centric NeRF functions and
the corresponding latent vectors to learn precise 3D configurations of the constituting objects. This
3D inductive bias both in the encoder and the compositional NeRF decoder enables us to incorporate
priors from the models’ own predictions about objects interactions via an estimated adjacency ma-
trix into learning the GNN dynamics model, making long-term dynamics predictions more stable.
This long term-stability allows us utilize a planning method based on RRTs in the latent space.

In our evaluations, we show through comparisons that non-compositional auto-encoder frameworks
and non-compositional dynamics models struggle with tasks containing multiple objects, while our
framework generalizes well over different numbers of objects than during training and is capable of
generating sharp and stable long-term predictions. Relative to more traditional multibody system
identification [4], these models learn the geometry of unknown objects in addition to (implicitly)
learning the inertial and contact parameters. We demonstrate the performance of the approach in
terms of image reconstruction error, dynamics prediction error, and planning, generalizing over
different numbers of objects than during training. Our experiments include rigid and deformable
objects in simulation and with a real robot. To summarize, our main contributions are

• A compositional scene encoding framework that uses implicit object encoders and NeRF
decoders for each object, forcing the view-invariant latent representation to learn about the
3D structure of the problem in a composable way.

• A factored dynamics model in the latent space as a graph neural network (GNN), exploit-
ing the compositional nature of the scene representation and an adaptive adjacency matrix
estimated from the model itself to yield stable long-term predictions.

2 Related Work
Learning Dynamics Models for Compositional Systems. Graph neural networks (GNNs) have
shown success in introducing relational inductive biases [5], enabling them to model the dynamics
of compositional systems consisting of interactions between multiple objects [6, 7, 8, 9, 10, 11],
large-scale dynamical systems represented with particles and meshes [12, 13, 14, 15, 16, 17], or
from visual observations [18, 19, 20, 21, 22, 23, 24]. Our method differs from prior work by learn-
ing compositional scene representations grounded in 3D space from visual observations. Our novel
combination of implicit object encoders and graph-based neural dynamics models reflects the struc-
ture of the underlying scene, which endows our agent with better generalization ability in handling
complicated compositional dynamic environments.

NeRF for Compositional and Dynamic Scenes. Recent advances on neural implicit repre-
sentations [25] have demonstrated widespread success in image synthesis or 3D reconstruc-
tion [26, 27, 28, 29, 30]. Notably, Neural Radiance Fields (NeRF) show impressive results on novel-
view synthesis [3]. Initial NeRF approaches were trained on a single scene without generalization.
Prior work [31, 32, 33, 34, 35, 36] have since proposed to modify neural scene representations to
make them compositional for static scenes without considering dynamics of object interactions. Re-
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Figure 2: Overview of the dynamics prediction framework. The initial scene observations are encoded with Ω
into a set of latent vectors z1:m, each representing the objects individually. The GNN dynamics model predicts
the evolution of the latent vectors. At each step, the predicted latent vectors can be rendered into an arbitrary
view with the compositional NeRF decoder. Refer to the appendix for visualizations of Ω and the GNN.

cent research has also extended NeRF to enable view synthesis from a sparse set of views [37], as
well as modeling dynamic scenes by learning implicitly represented flow fields or time-variant latent
codes [38, 39, 40, 41, 42, 43, 44, 45, 46, 33, 47]. However, these approaches for dynamic environ-
ments typically interpolate over a single time sequence and are not able to handle scenes of different
initial configurations or different action sequences, limiting their use in downstream planning and
control tasks. Li et al. [2] addressed this issue by combining an NeRF auto-encoding framework
with modeling the dynamics in a latent space. Yet, they employed a single latent vector as the
whole scene representation, which we will show is insufficient at modeling compositional systems.
In contrast, our method considers a graph-based scene representation to capture the structure of the
underlying scene and achieves significantly better generalization performance than [2].

Implicit Models in Robotics. Implicit models in robotics have been explored, e.g., for grasping
[48, 49, 50, 51], deformable objects [52], object descriptors [53], or general manipulation constraints
[54, 55]. Analytic signed distance functions (SDFs) [56, 57, 54] or learned NeRFs [58] are used for
trajectory planning. One assumption in [54, 55] is that SDF values are available during training. Our
work, in contrast, directly operates on RGB images without requiring explicit 3D shape supervision.

3 Overview – Compositional Visual Dynamics Learning
Our dynamics learning framework (Fig. 1) consists of three parts, an object encoder Ω turning ob-
servations into a set of latent vectors z1:m, a compositional NeRF-based decoder DNeRF that renders
the latent vectors back into images of the scene to train the encoder, and a graph neural network
dynamics model FGNN predicting the evolution of the scene in the latent space. This section gives a
high-level overview, while Sec. 4, Sec. 5 as well as the appendix Sec. C, Sec. D provide details.

Assume that a scene is observed by RGB images Ii ∈ R3×hI×wI , i = 1, . . . , V from V many
camera views and that the scene containsm objects j = 1, . . . ,m. We further assume to have access
to the camera projection matrices Ki ∈ R3×4 for each view and binary masks M i

j ∈ {0, 1}hI×wI

of each object j in view i. Given those posed images and masks, the goal is to learn an encoder Ω
that fuses the information of the objects observed from the multiple views into a set of latent vectors
z1:m by querying Ω on the individual masks M1:V

j such that

zj = Ω
(
I1:V ,K1:V ,M1:V

j

)
∈ Rk (1)

represents the object j separately. Ω is trained end-to-end with a NeRF decoderDNeRF reconstructing

I = DNeRF(z1:m,K) (2)

for arbitrary views specified by the camera matrix K from the set of latent object representations
z1:m. The initial observation of the scene is encoded with Ω into the initial latent vectors z01:m. The
GNN dynamics model zt+1

1:m = FGNN (zt1:m) then generates long-term predictions of future latent
states zt1:m that can also be decoded with DNeRF to yield visual predictions from arbitrary views.
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4 Encoding Scenes with Compositional Image-Conditioned NeRFs

4.1 Implicit Object Encoder
Instead of learning Ω defined in (1) as a direct mapping from images, camera matrices and masks to
the latent vectors, we first encode each object in the scene as a feature-valued function over 3D space,
conditioned on the image observations. This allows us to incorporate multiple views of the objects
in a geometrically consistent way, as well as to apply 3D affine transformations to the objects, which
will be important for the dynamics model (Sec. 5). This function is then turned into a latent vector
by evaluating it on a workspace set followed by a 3D convolutional network.

All object feature functions are based on the same feature encoder E(Ii,Ki(x)) ∈ Rno that outputs
an no-dimensional feature vector from the image Ii of view i at any 3D world coordinate x ∈ R3.
This is realized by first projecting x into camera coordinates Ki(x) =

(
ui(x), vi(x), di(x)

)T ∈ R3

where ui(x), vi(x) are pixel coordinates in the image plane and di(x) ∈ R is the depth of x from
the camera origin. Hence, E is a function of the camera coordinates only and not of absolute world
coordinates. Using bilinear interpolation, the encoder E(Ii,Ki(x)) determines the RGB values of
Ii at (ui(x), vi(x)) which are passed through a dense neural network (MLP). Parallel to this, a dense
MLP encoding of Ki(x) is computed. The concatenated outputs of both MLPs define the encoding
feature vector E(Ii,Ki(x)). Intuitively, E(Ii,Ki(x)) is a feature vector computed from what can
be seen of the world at x in the image Ii from viewpoint i, taking into account its location relative
to the camera origin of the view i, which is important not only to enable the model to reason about
the 3D geometry, but also to enable us to obtain a functional representation of a specific object j.
Namely, we define the feature function for object j by summing over the individual views i

yj(x) =
1

p(x)

∑

i: Ki(x)∈Mi
j

E(Ii,Ki(x)) ∈ Rno with p(x) =
∑

i: Ki(x)∈Mi
j

1. (3)

Importantly, for a specific x, this sum only takes those views i into account where the object j
can be seen, i.e., where the camera coordinates Ki(x) of x are within the object’s mask M i

j . We
define yj(x) = 0 ∈ Rno if p(x) = 0, meaning if an object is not observed from any view at x, the
corresponding feature vector is zero. An advantage of this formulation is that it naturally handles
occlusions in different views and fuses the observations from different views consistently.

Given the implicit object descriptor function yj(·) of object j, we turn it into a latent vector zj ∈ Rk
representing object j with a 3D convolutional network Φ as follows. Formally, zj = Φ(yj) is
a function of the object function. As discussed in [54], learning a function of a function can be
realized with neural networks by evaluating yj on a workspace set. We assume that the interactions
in the scene happen within a workspace set X ⊂ R3 that is large enough to contain all objects.
This workspace set is discretized as the voxel grid Xh ∈ Rd×h×w. The object descriptor functions
are then evaluated on Xh which produces an object feature voxel grid that is processed with a 3D
convolutional neural network leading to the latent vector zj ∈ Rk, i.e.

zj = Φ(yj) = CNN(yj(Xh)). (4)

Note that the same workspace set Xh is used for all objects. The appendix (Sec. C) contains visual-
izations of the architectures of E, y and Φ (Fig. 8, 9, 10).

In summary, the object encoder z1:m = Ω
(
I1:V ,K1:V ,M1:V

1:m ,Xh
)

maps images from multiple
views, object masks and the set Xh to latent vectors. The resulting zj’s contain not only the appear-
ance of the objects, but also their spatial configurations in the scene relative to other objects.

4.2 Decoder as Compositional, Conditional NeRF Model
The general idea of NeRF [3] is to learn a function f that predicts at a 3D world coordinate x ∈ R3

the RGB color value c(x) ∈ R3 and volume density σ(x) ∈ R≥0. Based on (σ(·), c(·)) = f(·),
images from arbitrary views and camera configurations can be rendered by determining the color of
the pixels along corresponding camera rays through volumetric rendering. For details, see Sec. C.

Compared to this standard NeRF formulation where one single model is used to represent the whole
scene, we associate separate NeRFs with each object, meaning that the NeRF for object j

(σj(x), cj(x)) = fj(x) = f(x, zj) (5)
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is conditioned on zj for j = 1, . . . ,m. σj is the density and cj the color prediction for object j,
respectively. To turn those f1:m back into a global NeRF model that can be rendered to an image,
we sum the individual predicted object densities σ(x) =

∑m
j=1 σj(x) and obtain the colors as their

density weighted combination c(x) = 1
σ(x)

∑m
j=1 σj(x)cj(x). These composition formulas have

been proposed multiple times in the literature, e.g. [59, 32]. This composition forces the individual
NeRFs to learn the 3D configuration of each object individually and therefore ensures that each fj
only predicts the object where it is located in the 3D space.

To summarize, the compositional NeRF-decoder DNeRF takes the set of latent vectors z1:m for
objects j = 1, . . . ,m and the camera matrix K for a desired view as input to render I =
DNeRF(z1:m,K). Since we only represent the objects and not the background as NeRFs, render-
ing the composed NeRF will yield an image with the background subtracted. In the experiments,
we investigate the importance of the decoder being both compositional and a NeRF.

4.3 Training
The auto-encoder framework is trained end-to-end on an L2 image reconstruction loss for view i

Li =
∑

(u,v)∈M̂i
tot

∥∥(Ii ◦M i
tot

)
uv
−DNeRF

(
Ω
(
I1:V ,K1:V ,M1:V

1:m ,Xh
)
,Ki

)
uv

∥∥2
2
. (6)

Since solely the objects are represented as NeRFs and not the background, we compute the union of
the masks of the individual objects M i

tot =
∨m
j=1M

i
j and define the target image as Ii ◦ M̂ i

tot with
M̂ i

tot being a slightly enlarged union mask. Please refer to the appendix Sec. C for more details.

5 Latent Dynamics Model with Graph Neural Networks
Having trained the auto-encoder framework, we learn a graph neural network dynamics model

zt+1
1:m = FGNN

(
zt1:m, A

t
)

(7)

in the latent space, where At ∈ {0, 1}m×m is the adjacency matrix at time t. Following [8], we use
multi-step message passing to deal with cases where multiple objects interact within one prediction
step. Refer to the appendix Sec. D and Algo. 1 for more details about our GNN dynamics model.

Adjacency Matrix from Learned Model. The adjacency matrix A in the GNN dynamics model
(7) plays an important role in indicating which objects interact. While a dense adjacency matrix, i.e.
a graph where each object interacts with all other objects, would in principle work as the GNN could
figure out from the latent vectors which objects interact, we found that the long-horizon prediction
performance is greatly increased if A is more selective in reflecting which objects actually interact.

We propose to utilize the NeRF decoder density prediction σj for each object to determine the
adjacency matrix from the models’ own predictions during training and planning. In order to do so,
we define the entries of the adjacency matrix between objects i and j based on the collision integral

Aij =

{
1
∫
X [σ(x, zi) > κ][σ(x, zj) > κ] dx > 0

0 else
(8)

over the density predictions of the learned NeRF model for a threshold κ ≥ 0. Estimating A this
way takes the actual 3D geometry of the objects in the scene into account and thereby informs the
GNN dynamics model, leading to more stable predictions. Please refer to the appendix Sec. D for
more details about A and how it is used in the forward prediction Algo. 1.

Actions. So far, we have formulated the GNN dynamics model without a notion of actions. We
interpret an action as an intervention to a latent vector and train the GNN to predict the latent vectors
at the next time step as a result to this modification. This allows us to not explicitly distinguish
between controlled and uncontrolled/passive objects. In order to realize these interventions and
hence to incorporate actions in the first place, we utilize the fact that our object encoder is built
from an implicit representation. Assume that an action is a rigid transformation q ∈ R7 applied on
object j. As described in Sec. C we can modify the object’s latent vector ztj into the transformed
z̄tj = zt+1

j = T (q)[zj ] representing the rigidly transformed object j. The model FGNN then predicts
how the other objects in the scene react to this rigid transformation of the articulated object.
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Figure 3: Image prediction error comparison between the reconstructed image from the predicted latent vectors
over the number of time steps into the future and ground truth image observations, for test dataset of scenarios
containing 2, 4, and 8 objects (plus the pusher). 2 and 8 objects is generalization over number of objects, 4 is
as during training. One step corresponds to 2 cm movement, i.e. for 50 steps the pusher has moved 1 m.

6 Experiments
We demonstrate our framework on pushing tasks both in simulation and in the real world. The
scenarios are challenging as they are composed of multiple, interacting objects, sparse rewards, and
complex dynamics [60, 61, 62, 63]. Please refer to the video https://dannydriess.github.
io/compnerfdyn/ as well as the appendix for more details and further experiments.

6.1 Visual Reconstruction and Prediction Performance – Comparison to Baselines

We compare our framework to non-compositional scene representations, non-compositional dynam-
ics models, 2D CNN baselines (visual foresight) without NeRF as decoder, and the importance of
estimating the adjacency matrix from the model itself.

Reconstruction and Prediction Performance for Generalization over Numbers of Objects.
Fig. 4a shows predictions of the model forward unrolled in time for an action sequence of the red
pusher, i.e. applying Algo. 1 (appendix) to an initial scene observation and rendering the predicted
latent vectors with the NeRF decoder. Despite the movements in this scene leading to multiple ob-
ject interactions, even after 38 time steps, the rendered predictions from the model are still sharp
and reflect the underlying dynamics. By utilizing the estimated adjacency matrix, there is little drift
in the objects, leading to long-term prediction stability. Due to its compositional nature, our model
generalizes to scenes that contain more or less objects than in the training set, as shown in Fig. 5
where eight objects plus the pusher are observed and reconstructed with high quality from novel
views, although during training the model has seen only and exactly 4 objects.

Comparison to Non-Compositional Scene Representation Baselines. We compare to two non-
compositional baselines where the scene is represented globally with one single latent vector per
time-step. The dynamics model for these baselines is an MLP zt+1 = FMLP(zt, q) that takes the
action q as an additional input. The first baseline (Global NeRF) is the approach from [2], i.e. we use
their CNN encoder to produce one latent vector that conditions a global NeRF which reconstructs
the whole scene (Fig. 14c). The second baseline (Global 2D CNN auto encoder) uses both a 2D
CNN encoder and 2D CNN decoder as well as a single latent vector representing the whole scene
(Fig. 4c). Such frameworks have been used many times in the literature, e.g. [1, 64, 65, 66, 67] and
are known as visual foresight. Fig. 3 shows that both global baselines are significantly inferior in
our scenarios to our proposed compositional framework, especially for long horizons.

Comparison to 2D Baselines – Importance of NeRF as Decoder. In this section, we replace the
NeRF decoder with a 2D CNN decoder to investigate the importance of NeRFs. This decoder takes
as input one single latent vector and the camera matrix, i.e. I = DCNN(z,K). In order to make
it compositional, we aggregate the set of latent vectors z1:m from Ω with a mean operation and
then pass the aggregated feature through an MLP to produce the single z for DCNN. The rest of the
architecture, i.e. implicit object encoder and GNN, stays the same. Since there is no clear way to
estimate the adjacency matrix fromDCNN, we use a dense adjacency matrix for the GNN. As one can
see in Fig. 3, the long-term prediction performance of the CNN decoder is significantly worse than
with a compositional NeRF model as the decoder, especially when asking for numbers of objects
that differ from the training distribution. Qualitatively, one can see in Fig. 4c that not only the initial
reconstruction is much less sharp compared to the NeRF-based models, but especially also that even
after only a few time-steps, the predictions with the CNN decoder are of little use.
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t = 0 t = 38

(a) Predictions with our method

(b) Predictions with dense adjacency matrix baseline

(c) Predictions with CNN decoder baseline (no NeRF)
Figure 4: Visual forward predictions. With our proposed method (a), the
predictions are very sharp, even after 38 steps, while with a dense adjacency
matrix (b) leads to drifting objects until the predictions are not useful anymore.
The CNN decoder baseline is even worse, such that after only a few steps the
predictions are of little use. Multiple object interactions happen in this scene.

(a) Ground truth

(b) Reconstruction

Figure 5: Generalization
to twice as many objects as
during training.

Comparison to CNN Encoder. Exchanging the implicit object encoder with a 2D CNN composi-
tional encoder leads to an auto-encoder framework similar to [32]. As seen in Fig. 3, the performance
is better compared to the other baselines, but still clearly worse than with the proposed method.

Importance of Estimating the Adjacency Matrix. In Sec. 5, we propose how the adjacency matrix
of the GNN can be estimated from the learned NeRFs to increase the long-term stability of the
predictions. Here we compare to a dense adjacency matrix, i.e. where the network has to figure out
from the latent vectors themselves which objects interact. As one can see in Fig. 3 and Fig. 4b,
a dense A has significantly worse long-horizon prediction performance compared to our proposed
way of estimating A through the learned NeRF model. In the 2 and 8 object case (generalization
over numbers of objects), the predictions with the dense A are useless after only a few time-steps.

Non-Compositional Dynamics. Replacing the GNN with a fully connected MLP zt+1
1:m =

FMLP(zt1:m) leads to worse performance than with a GNN with dense adjacency matrix. This model
cannot generalize to different numbers of objects due to its fixed input size.

Summary of Performance Comparisons Our method outperforms all baselines both in terms of
pure reconstruction error (as can be seen in Fig. 3 by the error after 0 prediction steps) and its ability
to perform long-term predictions forward unrolled on the model’s own predictions. Estimating the
adjacency matrix from the model itself is important for long-term stability as it prevents objects
from drifting away. Too large drift makes future predictions for a pushing tasks meaningless. Since
the reconstruction error of our proposed method without dynamics is better than the baselines, the
question arises if the increased performance is an artifact of the lower reconstruction error. We show
in Fig. 3d the error in the image space between renderings when having access to the observations
at each step and the renderings from the predicted latent vectors into the future after observing the
scene only at the beginning. This shows the increase in error relative to the reconstruction process.
The results indicate that not solely the reconstruction itself is the reason for the better performance,
but that the structural choices of our framework also enable to learn the dynamics more precisely.

6.2 Planning and Execution Results on Object Sorting Task
To demonstrate the effectiveness of the learned model, we utilize it to solve a box sorting task,
where the pusher needs to push colored boxes into their corresponding goal regions as shown in
Fig. 6. This task is inspired by [68] and involves multiple challenges: As multiple objects interact,
a greedy strategy of pushing objects straight to the goal region fails. Movements, i.e. actions, of the
pusher do often not immediately lead to a change in the cost function, since contact with the object
from a suitable side has to be established [54, 63]. In the appendix Sec. E we propose a latent space
RRT that uses our framework for planning. Refer to the appendix and the video for more details
about our proposed planning algorithm and comparisons to baselines.

6.3 Real World Experiments & Deformable Objects
Fig. 1a shows the rendered forward predictions of our model for a real world scenario where a
robot pushes a shoe and a giraffe-shaped toy. Fig. 1b are renderings from novel view points. We
further show in Fig. 7 that our method is also applicable to deformable objects. The appendix Sec. G
contains more details regarding this experiment, including a quantitative analysis.
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(a) Initial scene (b) Final goal achieved (c) Initial scene (d) Final goal achieved
Figure 6: Two planning scenarios with our learned visual dynamics model and latent space RRT. The goal is
to move the blue and yellow boxes into their respective shaded areas. (a), (c) are initial states, (b), (d) shows
the achieved goal at the end of the planning/execution loop.

t = 0 t = 19
ground
truth

forward
predictions

Figure 7: Forward predictions for deformable object scenario. The predicted reconstructions are based on the
latent vector from the initial observation (t = 0) that is then forward predicted with the dynamics model.

7 Discussion & Limitations
The appendix Sec. A contains an extended discussion regarding limitations of this work.

Object Masks. The compositional scene encoding framework requires object masks to achieve
compositionality. Many mature methods for instance segmentation have been developed such that
we believe having masks as input is a reasonable assumption and we have also shown the appli-
cability of our method in real world scenarios where no precise masks are available. We further
investigate in Sec. F.4 and Sec. G.2 the robustness of our method with respect to mask perturbations.
Methods for unsupervised discovery of objects [32, 69] could also be integrated into our pipeline.

Latent Representations. We have shown the great benefits of a compositional latent representation
as it not only provides generalization over different numbers of objects in the scene, but also leads
to increased reconstruction and dynamics prediction performance compared to non-compositional
baselines. Furthermore, latent representations compress observations, enabling efficient dynamics
prediction. As each object in the scene is represented as a latent vector of finite size, one could argue
that latent models are capable of mainly representing objects with shapes similar to the training dis-
tribution. We currently use a single neural network to represent all objects. Therefore, all variations
in object appearance are controlled by this latent vector (of size 64 in our experiments). Despite
this being a rather small latent space, our framework already exhibits interpolation capabilities for
object shapes and poses. The variety of the scenes considered in this work, including the deformable
object, can sufficiently be represented with this latent vector. Therefore, we are confident that by
exposing the method to a more diverse set of objects and potentially increasing the size of the la-
tent space, one could see generalization capabilities beyond the training object category distribution,
which is an interesting area for future research.

Long-Term Prediction Stability. Our dynamics model framework exhibits significantly better
long-term prediction stability compared to baselines. Our experiments indicate that this is due the
structural biases enabled through (compositional) NeRFs. This stability allowed us to use the model
for planning scenarios requiring long-horizons, which none of the baseline methods could support.
However, we believe that there is still room for improvement regarding the prediction stability.

8 Conclusion
Visual dynamics models are of high interest to the computer vision and robotics community, as they
avoid explicit shape model assumptions and imply end-to-end perception. However, to support ma-
nipulation planning and reasoning we need models that generalize strongly over objects and provide
stable long-term predictions. In this paper we proposed a system that introduces 3D structural and
compositional priors at various levels, namely compositional NeRFs, 3D implicit object encoders,
and GNNs dynamics with an adaptive adjacency matrix. Together our system exhibits significantly
stronger long-term prediction performance compared to multiple baselines without these priors or
without compositionality, and supports using a latent space RRT planner. We have shown general-
ization over different numbers of objects, notably up to two times more than during training.
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