
Experiences of Using WDumper to Create
Topical Subsets from Wikidata

Seyed Amir Hosseini Beghaeiraveri1[0000−0002−9123−5686]sh200@hw.ac.uk,
Alasdair J.G. Gray2,3[0000−0002−5711−4872]a.j.g.gray@hw.ac.uk, and Fiona J.

McNeill3[0000−0001−7873−5187]f.j.mcneill@ed.ac.uk

1 Heriot-Watt University, Campus The Avenue, Edinburgh EH14 4AS, UK
2 The University of Edinburgh, Edinburgh, UK

Abstract. Wikidata is a general-purpose knowledge graph covering a
wide variety of topics with content being crowd-sourced through an open
wiki. There are now over 90M interrelated data items in Wikidata which
are accessible through a public query endpoint and data dumps. However,
execution timeout limits and the size of data dumps make it difficult
to use the data. The creation of arbitrary topical subsets of Wikidata,
where only the relevant data is kept, would enable reuse of that data
with the benefits of cost reduction, ease of access, and flexibility. In this
paper, we provide a formal definition of topical subsets over the Wikidata
Knowledge Graph and evaluate a third-party tool (WDumper) to extract
these topical subsets from Wikidata.

Keywords: wikidata · knowledge graph subsetting · topical subset ·
wdumper.

1 Introduction

A Knowledge Graphs (KG) is defined as representing real-world realities as a
graph, in which nodes are real-world entities and edges, are the relationships
between them [10]. In recent years, there have been a growing number of publicly
available KGs; ranging from focused topic specific ones such as GeoLinkedData
[12], EventMedia [11], and UniProt [7], to more general knowledge ones such as
Freebase [6], DBpedia [3], and Wikidata [16]. These general purpose KGs cover a
variety of topics from sports to geography, literature to life science, with varying
degrees of granularity.

Wikidata [16] is a collaborative and open Knowledge Graph (KG) created by
the Wikimedia Foundation since 29 October 2012. The main purpose of Wikidata
is to provide reliable structured data to feed other Wikimedia projects such as
Wikipedia and is actively used in over 800 Wikimedia projects3. It contains
over 90 million data items covering over 75 thousand topics4. Regular dumps of

3 https://www.wikidata.org/wiki/Wikidata:Statistics accessed 4 February 2021
4 https://w.wiki/yVY accessed 9 February 2021. Note that the query execution

timesout if you try to return the count query SELECT (COUNT(DISTINCT ?0) AS

?numTopics) WHERE { ?s wdt:P31 ?o }.

https://www.wikidata.org/wiki/Wikidata:Statistics
https://w.wiki/yVY

2 SA. Hosseini et al.

the data are published under the Creative Commons CC0 public license. These
dumps are available in several formats including JSON and RDF. However, the
size of the gzipped download files has grown from 3GB in 2015 to 85GB, and
keeps increasing as more data is added. The size of these files make it increasingly
difficult and costly for others to download and reuse; particularly if only focused
on a particular topic within the data, e.g. life sciences data or politicians. While
Wikidata can be queried directly through an open SPARQL endpoint5, it is
subject to usage limits (as are other public endpoints of KGs) which limits the
scale and complexity of queries that can be issued [16]. Thus there is a need for
generating subsets over large KGs such that they contain the data for a specific
topic in a size that enables complex analysis queries to be conducted in a cost
effective and time efficient way.

Our motivation for research on Wikidata subsetting is a combination of re-
search goals, flexibility and ease of use. From the flexibility and ease of use
perspective, we are looking for Wikidata subsets that can allow users to run
smaller versions of Wikidata on available platforms such as laptops and PCs.
Wikidata, as a knowledge graph with an interesting data model, has significant
features for inspiration and improvement, but the speed of research and the di-
versity of researchers will be reduced if any experiment on it requires powerful
servers, processing clusters, and hard disk arrays.

From the research point of view, our motivation is creating a type of subsets
we call Topical Subset which is a set of entities related to a particular topic and
the relationships between them. Having topical subsets of Wikidata for example
in the fields of art, life sciences, or sports, not only helps us achieve the first
goal (flexibility and ease of use) but also provides a platform for comparing
and evaluating Wikidata features in different topics. The subset will also make
the research experiments reproducible as they can be archived and shared more
easily.

You can envision that such subsets can be generated through SPARQL
CONSTRUCT queries. While this is straightforward for small subsets focused
on a single entity type, e.g. politicians, it does not scale to interrelated topics
that make up a larger domain, e.g. the life sciences subset defined by GeneWiki
[17].

In this paper, we present our experiences of defining and creating topical sub-
sets over Wikidata using WDumper [1]; a third-party tool provided by Wikidata
to create custom RDF dumps of Wikidata. We provide a formal definition for a
KG subset on a specific topic (Section 3) and evaluate WDumper as a practical
tool to extract such subsets (Section 4).

2 Knowledge Graph Subsets

General purpose KGs like Wikidata are valuable sources of facts on a wide
variety of topics. On the Linked Data Web they serve as a common linking point

5 https://query.wikidata.org/sparql accessed February 2021

https://query.wikidata.org/sparql

Experiences of Using WDumper to Create Topical Subsets from Wikidata 3

between inter-, and sometimes intra-, domain KGs6. However, their increasing
size makes them costly and slow to use locally. Additionally, the large volume of
data in Wikidata increases the time required to run complex queries. This often
restricts the types of queries that can be posed over the public endpoint since
it has a strict 60-second limit on the execution time of queries. Any query that
takes more time to execute than this will timeout7.

Downloading and using a local version of Wikidata is a way of circumventing
the timeout limit. However, this is not a cheap option due to the size of the data.
A suggested system to have a personal copy of Wikidata includes 16 vCPUs,
128GB memory, and 800GB of raided SSD space8. A google cloud computation
engine with these specification would cost more than $570 per month9.

There are a large number of use case scenarios where users will not need
access to all topics in a large general purpose KG. A small and complete enough
subset can be more suitable for many purposes. For example, a subset contain-
ing all data points about genes, proteins, drugs, and diseases would be useful
in pharmaceutical research [17]. With a small subset inference strategies can be
applied to the data and complete in reasonable time. Topical subsets could also
be published along with papers, which provides better reproducibility of experi-
ments [18]. Small subsets are also easier to archive. Various topical archives can
be created from Wikidata, which gives better access to the data, while multi-
ple time snapshots can be created from this data. Wikidata subsets can also
provide more appropriate datasets for students and schools by censoring adult
content. Therefore having a topical subset that is smaller but has the required
data can enable complex query processing on cheap servers or personal com-
puters — reducing the overall cost — whilst also providing an improvement in
query execution times.

2.1 Topical Subset Use Cases

In this section, we define four examples of topical subsets in Wikidata. These
examples will be our use cases to review WDumper and can also be used in
other reviews as a comparison platform. Note that use cases are defined in terms
of English language statements. A subsetting approach, method, or tool would
need to formalise these, as appropriate for their configuration, to extract the
relevant data.

Politicians. This subset should contain all entities that are an instance of the
class politician(Q82955), or any of its subclasses. The subset should contain all
statements and properties pertaining to these entities.

6 https://lod-cloud.net/ accessed 9 February 2021
7 https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/
8 See this post: https://addshore.com/2019/10/your-own-wikidata-query-

service-with-no-limits/
9 Estimated by Google Cloud Pricing Calculator: https://cloud.google.com/

products/calculator/#id=32eca290-7628-48af-9988-20508f4bc861 accessed 9
February 2021

https://www.wikidata.org/wiki/Q82955
https://lod-cloud.net/
https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-20508f4bc861
https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-20508f4bc861

4 SA. Hosseini et al.

This subset should contain all entities that are an instance of the class politi-
cian, or any of its subclasses. In the case of Wikidata, this would be the class
(Q82955), while for DBpedia it would be the class (Politician). The subset should
contain all facts pertaining to these entities, i.e. in Wikidata all statements and
properties.

General(military) Politicians. The subset should contain all entities that are an
instance of the class politician(Q82955) or any of its subclasses, who also are
a military officer(Q189290) and have the rank of general(Q83460), i.e. politico-
military individuals.

The main goal of this use case is to see the effect of having more conditions
in the English definition on the run-time and the volume of the output of subset
extraction tools.

UK Universities. The subset should contain all instances of the class univer-
sity(Q3918) or any of its subclasses, that also has country(P17) of the United
Kingdom(Q145). The subset should contain all statements and properties per-
taining to these entities.

This use case extends the complexity of the subset by having alternative
properties and values to satisfy.

Gene Wiki. This case is based on the class-level diagram of the Wikidata knowl-
edge graph for biomedical entities mentioned in [17]. The goal of this paper and
the Gene Wiki project is to make and maintain Wikidata as a central hub of
linked knowledge on genes, proteins, diseases, drugs, and related concepts10.
The class-level diagram specifies 17 different item types from Wikidata men-
tioned in the Gene Wiki project. The subset should contain all instances of the
class gene(Q7187), protein(Q8054), and all other 17 items or their subclasses
mentioned in the above class-level diagram.

The selection of these use cases is a combination of research and experimental
goals. The GeneWiki and Politicians use cases have been selected for future
research purposes because of their hypothetical richness in references. To have
a quite smaller subset as output compared to the other two, we chose the UK
universities. The General(military) Politicians use case was chosen because we
want to see the effect of having more conditions in the subset creation compared
to the Politicians.

2.2 Related Works

Creating a subset of Wikidata [2] was one of the topics covered in 12th In-
ternational SWAT4HCLS conference11 and further pursued in project 35 of
BioHackathon-Europe12 [8]. Although there have been several proposals to do

10 https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki
11 http://www.swat4ls.org/workshops/edinburgh2019/
12 https://github.com/elixir-europe/BioHackathon-projects-2020/tree/

master/projects/35 accessed 9 February 2021

https://www.wikidata.org/wiki/Q82955
https://dbpedia.org/ontology/Politician
https://www.wikidata.org/wiki/Q82955
https://www.wikidata.org/wiki/Q189290
https://www.wikidata.org/wiki/Q83460
https://www.wikidata.org/wiki/Q3918
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Q7187
https://www.wikidata.org/wiki/Q8054
https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki
http://www.swat4ls.org/workshops/edinburgh2019/
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35

Experiences of Using WDumper to Create Topical Subsets from Wikidata 5

this, to the best of our knowledge there is no agreed definition for a topical sub-
set nor a unified and evaluated way to create such subsets, especially a topical
subset of Wikidata.

Matsumoto et al. [13] have introduced the Graph to Graph Mapping Lan-
guage (G2GML) that aims to convert RDF graphs to property graphs. G2G
Mapper13 is a tool that receives a mapping config file written in G2GML and an
RDF turtle file (or a SPARQL endpoint) as input and creates a property graph
from the RDF data specified by the input mapping. Although the purpose of
the G2GML language was to generate property graphs from RDF graphs to take
advantage of the property graphs, it can be used as a topical subset creator, how-
ever the output will be a property graph.

Mimouni et al. [15,14] use a concept called the Context Graph to generate
a smaller dataset than the original large KGs such as DBPedia and Wikidata
which enable them to test their knowledge base completion method on this
dataset instead of the entire KG. The context graph construction algorithm
starts with an initial set of seed nodes, and in each round, adjacent nodes of the
seed set (that are not in a forbidden set) and their relations are added to the seed
nodes. This operation continues to a number of rounds called the radius. The
context graph production process seems to be suitable for generating random
subsets, however, it is not an integrated method for generating topical subsets.
To produce topical subsets, as we can see in Section 3, we need a way to identify
the member entities of a particular topic, but there is no such concept in the
context graph. One has to extract all the nodes related to a topic from the
beginning and put them in the initial seed set. On the other hand, extracting
node neighbors to a radius ≥ 2 may enter information that is not relevant to
the topic.

WDumper [1] is a third-party tool for creating custom and partial RDF
dumps of Wikidata suggested at the Wikidata database download page14. The
WDumper backend uses the Wikidata Toolkit (WDTK) Java library to apply
filters on the Wikidata entities and statements, based on a specified configuration
that is created by its python frontend. This tool needs a complete JSON dump
of Wikidata and creates an N-Triple file as output based on filters that the config
file explains. This tool can be used as a topical subset creator, however, it cannot
be said that WDumper can build a complete topical subset. This is due to the
limitations of this tool, which we discuss in Section 4.5 after reviewing this tool.

Shape Expressions (ShEx) [9] is a structural schema language allowing vali-
dation, traversal and transformation of RDF graphs. The ability of keeping track
of the triples employed during validation can be used to define data schemata
which could help define subsets traversing the graph. Compared to WDumper,
which is a tool focused on data extraction, ShEx is a language for validating
RDF data, with the possibility of extracting traversed data with its developed
tools. WDumper also works directly on the Wikidata JSON dump which making
it the first choice for extracting topical subsets from Wikidata.

13 Demo: http://g2g.fun/, Github: https://github.com/g2glab/g2g
14 https://www.wikidata.org/wiki/Wikidata:Database_download

http://g2g.fun/
https://github.com/g2glab/g2g
https://www.wikidata.org/wiki/Wikidata:Database_download

6 SA. Hosseini et al.

Listing 1.1. An example of a function R which is a query to return all entities with
type city

SELECT ?entity WHERE {
?entity wdt:P31 wd:Q515 . # instance of(P31) city(Q515)

}

3 Topical Subset Definition

We now provide a formal definition for topical subsets. This definition is based on
Wikidata data model. Considering that Wikidata data model is RDF compatible,
this definition can be generalized to all RDF-based KGs.

From the outside, the Wikidata knowledge graph consist of the following
collections:

– E: set of Wikidata entities – their ID starts with a Q.
– P : set of Wikidata properties – their ID starts with a P.
– S: set of Wikidata statements.

Now we define the filter function R : E 7→ E as a black-box that can be applied
on E and selects a finite number of its members related to a specific topic. Let
ER ⊂ E be the output of the function R. For entity e ∈ E let Se ⊂ S be
all simple and complex Wikidata statements in which e is the subject. Note
that in Wikidata, a simple statement is a regular RDF triple, while a complex
statement is a triple that references and/or qualifiers attached to it. Also, let Pe

be all properties which are used in Se triples either for the statement itself or
qualifiers/references. With these assumptions, we define dump DR as a topical
subset of Wikidata with respect to R:

DR := {ER,
⋃

e∈ER

Pe,
⋃

e∈ER

Se}

From the definitions of Pe and Se we can conclude that
⋃

e∈ER

Pe ⊂ P and⋃
e∈ER

Se ⊂ S and subsequently D is a mathematical subset of Wikidata. We

consider R as black-box; the input of R is the set of all Wikidata entities and its
output is a subset of Wikidata entities related to a specific topic. The function
R can be any set of definitions, rules, or filters that describe a related group of
entities. The definition of R depends on the topic that is being described. One
example of R is a simple SELECT query that describes all entities that have type
city (Listing 1.1).

4 WDumper

WDumper is a tool provided by Wikidata for producing custom dumps from
Wikidata15. WDumper is capable of extracting some topical subsets as per our

15 https://www.wikidata.org/wiki/Wikidata:Database_download#Partial_RDF_

dumps - accessed 9 February 2021

https://www.wikidata.org/wiki/Wikidata:Database_download##Partial_RDF_dumps
https://www.wikidata.org/wiki/Wikidata:Database_download##Partial_RDF_dumps

Experiences of Using WDumper to Create Topical Subsets from Wikidata 7

Fig. 1. Component overview of WDumper

definition. In WDumper, the R function can be seen as a filtration approach on
entities. For each topic, the appropriate filters on entities must be defined. Once
the filters are defined and the subset ER is extracted, for each e ∈ ER WDumper
extracts all statements with origin e along with their qualifiers and references.
A component overview of WDumper is given in Figure 1.

WDumper requires two inputs. The first input is the complete dump of the
Wikidata database in JSON format. Note that Wikidata database is available
with different formats such as JSON and N-Triple. We may refer to this complete
dump as “full dump”. The second input is a JSON specification file that contains
rules and filters for determining which entities, properties and statements to
extract from the full Wikidata dump.

The output of WDumper is an N-Triple (.nt) file that contains the entities
and statements specified in the second input. There is also a GUI for creating
the input specification file.

In this section we want to review WDumper . Our route for this review
includes the following steps:

1. Generating WDumper specification files according to each use case of Sec-
tion 2.1.

2. Running WDumper with the above specifications on two complete Wikidata
dumps belonging to two different time points and compare the run-time
and the volume of the extracted output.

3. Evaluating the extracted output via performing different queries both on the
output and the input full dump.

4. Summarizing results and expressing strengths and weaknesses of WDumper.

4.1 WDumper Specification Files

In Section 2.1, we introduced some use cases that enable us to evaluate subset
extraction tools. In this section, we describe how to generate the WDumper
specification file according to each use case. The WDumper specification files for
each use case can be found in [5].

Politicians. For achieving this use case with WDumper, we can define a filter
on the occupation(P106) property of the entities to be a politician(Q82955).

8 SA. Hosseini et al.

Fig. 2. Configuring WDumper GUI for the politicians subset.

Figure 2 Shows how to set the WDumper GUI for this example. Selecting the
“any” option for the “rank” in Figure 2 forces WDumper to extract any entity
that has an occupation property with the value politician even if this property
is not the best rank or is deprecated. Note that in Wikidata, each statement can
have a rank that can be used to identify the preferred value if the statement
has more than one value. Ranks are available in Wikidata RDF data model like
qualifiers and references.

General(military) Politicians. To achieve this subset, we add two more condi-
tions into the filter of the above case. The first condition is occupation(P106)
property to be military officer(Q189290). The second condition is military rank
(P410) property to be general(Q83460).

UK Universities. For achieving this, we can add a filter on entities with two con-
ditions: instance of(P31) property to be university(Q189290) and country(P17)
property to be United Kingdom(Q145).

Gene Wiki. For each item type of the class-diagram, we create a filter on entities
in WDumper via instance of(P31) property to be gene(Q7187), protein(Q8054),
etc. In this case, different types are added as new basic filters, not new conditions
as we want all different 17 types to be in the output by all their statements and
properties.

Note that extracting properties is also possible like entities in WDumper (by
selecting property instead of item in Figure 2). This feature as mentioned in the
formal definition of topical subsets is required to extract Wikidata ontology on
a particular topic. However in this paper we did not use this feature in our use
cases to avoid extra complexity.

In addition to entities, WDumper can also apply filters on statements. For
example, we can select whether specific statements (by mentioning their prop-
erty) and their references and qualifiers be in the output or not. These filters,
which are in the form of on-off buttons in the GUI, allow the WDumper to ex-
tract the intermediate nodes of statements, references, and qualifiers. In all use
cases, we get a run without any filters on the statements and a run by selecting
the option to include all references and qualifiers. The second run is to see the
effect of statement filters on execution time and output volume. In the specifi-
cation file, these filters can be seen in the statement sub-array, as ”qualifiers”,
”references”, ”simple”, ”full” keys which are false or true respectively.

Experiences of Using WDumper to Create Topical Subsets from Wikidata 9

Table 1. Details of the Wikidata dumps. The size column states compressed JSON.gz
size. Total items and total statements columns are obtained from Wikidata Stats
tool19regarding to the specified dumps.

Release Time Size (GB) Total Items Total Statements

2015-04-27 4.52 17,632,496 61,427,934
2020-11-13 90.42 90,368,519 1,153,949,899

4.2 Experimental Setup

We now give details of our experimental environment in which we will evaluate
WDumper. This includes details of the Wikidata dumps and the hardware used.

Input Dumps. We use two full dumps of the Wikidata database. The first full
dump is from 27 April 201516, and the second is from 13 November 202017. The
selected 2020 dump was the latest JSON dump available when conducting our
evaluation. The selected 2015 dump is the first archive date for which both JSON
and turtle files are available (we need the JSON file for WDumper running, while
the turtle file is needed to import the full dump in a triplestore and evaluate
output of WDumper based on the input). Table 1 provides summary information
about these two dumps. The 2015 dump is smaller, can be stored and processed
locally even on PCs, and it takes a much shorter time to generate output from
it. For this reason, it is very suitable for initial tests. The 2020 dump, on the
other hand, is much richer and can provide insights on how WDumper deals
with large datasets of the size that Wikidata now produces.

Experimental Environment. All of WDumper running tests were performed on
multi-core server with 64 8-core AMD 6380 2.5GHz 64bit CPUs, 512GB of mem-
ory and 2.7TB disk space. Java openJDK version 11 (build 11+28) and Gradle
6.7.1 was used to compile and run WDumper.

Experimental Run. The calculated times have been extracted from the elapsed
time mentioned in WDumper output log. For each of the execution cases, three
independent runs were performed and the average and deviation from the stan-
dard of these times were calculated.

4.3 Evaluating WDumper

We run WDumper with the specification files described in Section 4.1 and the two
Wikidata dumps. The outputs can be found in [5]. The results of time and size

16 Downloaded from https://archive.org/download/wikidata-json-20150427 - ac-
cessed 11 November 2020

17 Downloaded from https://dumps.wikimedia.org/wikidatawiki/entities/ - ac-
cessed 15 November 2020

19 https://wikidata-todo.toolforge.org/stats.php

https://archive.org/download/wikidata-json-20150427
https://dumps.wikimedia.org/wikidatawiki/entities/
https://wikidata-todo.toolforge.org/stats.php

10 SA. Hosseini et al.

are listed in Table 2. For each use case, we considered two types of specification
files. First, a specification that aims to extract statement nodes, references, and
qualifiers and is labeled with a “withRQFS” in Table 2. Second, a specification
that aims to extract just simple statements without any statement nodes.

Analysis. The initial observations from Table 2 shows that the run-time on the
2020 dump is significantly longer than the 2015 dump. This can be justified
by the larger volume of the 2020 dump and the increased data that must be
processed to produce the subset. In all cases, the specification set with “with-
RQFS” took longer than the corresponding without “withRQFS”, and produced
more volume in the output, indicating the addition of references, qualifiers, and
statements nodes in the output. For example, this change is very significant in
the case of Gene Wiki in 2020 dump. The added filters as well as the conditions
added to the filters also have a direct effect on the run-time and an inverse ef-
fect on the output volume, which is to be expected. Of course in run-times, the
amount of data that must be written in the output must also be considered. This
is evident, for example, in comparisons between UK universities and the military
politicians in which the volume of data has a greater impact than the number
of conditions. Overall, considering the high volume of data, the time required
to extract a topical subset by WDumper seems appropriate. Also, adding more
filters does not have a huge effect on runtime.

4.4 Topical Subset Validation

The previous section considered the runtime performance of the WDumper tool
and the size of the generated subsets. We now consider validating the content of
the subsets. That is, we consider if the produced output has the information that
it was supposed to have according to the definition in Section 3. Our assessment
will be based on the following hypotheses:

– Hypothesis 1: The number of filtered entities in the output should be
equal to the same number of entities in the input dump. For example, in the
Politicians use case, the number of persons with the occupation of politician
in output should be equal to the number of persons with the occupation of
politician in the corresponding input dump. This hypothesis can be tested
with COUNT queries both on input and output.

– Hypothesis 2: For each entity that is supposed to be in output, the number
of its related statements must be equal in both output and input dump. For
example, in the Politicians use case, if the main dump has 50 statements
about George Washington, we expect to see the same number of statements
about this politician in the output too. This hypothesis can be tested using
DESCRIBE queries.

– Hypothesis 3: WDumper can extract intermediate statement nodes, refer-
ences, and qualifiers exactly as they are at the input dump. This hypothesis
can be tested by querying the qualifiers and references of some given state-
ments.

Experiences of Using WDumper to Create Topical Subsets from Wikidata 11

Table 2. Time elapsed and the size of the output in running WDumper on each use
case and full dumps. “withRQFS” label denotes the specification that aims to extract
statement nodes, references, and qualifiers. The FoE column denotes the number of
filters on entities. The CiF column denotes the number of conditions in each filter.
The times are averaged from three runs (AVG column) and the standard deviation
(SD column) is also written. Sizes belong to compressed nt.gz files that are the direct
output of WDumper. Inside parentheses, sizes and times are converted to other units
for more readability (h for hours, KB for kilobytes, and MB for megabytes).

Use case FoE CiF
2015 Dump 2020 Dump

Time (sec)
Size (GB)

Time (sec)
Size (GB)

AVG SD AVG SD

Politicians 1 1
1835

(31min)
198

0.07
(70MB)

39779
(11h)

2029
0.37

(370MB)

Politicians
withRQFS

1 1
2347

(39min)
28

0.31
(300MB)

44271
(12h)

2811 1.4

UK Universities 1 2
1584

(26min)
38

0.000105
(105KB)

41474
(12h)

3424
0.000255
(255KB)

UK Universities
withRQFS

1 2
1774

(30min)
142

0.000175
(175KB)

41890
(12h)

8436
0.000864
(864KB)

General (military)
Politicians

1 3
1570

(26min)
59

0.000268
(268KB)

37155
(10h)

917
0.00105
(1MB)

General (military)
Politicians
withRQFS

1 3
1655

(28min)
48

0.000664
(664KB)

42334
(12h)

7341
0.04

(4MB)

Gene Wiki 17 1
1731

(29min)
95

0.01
(11MB)

40828
(11h)

2284
0.70

(709MB)

Gene Wiki
withRQFS

17 1
1844

(31min)
276

0.026
(26MB)

48943
(14h)

4993 4.5

Evaluation Environment. The environment used to evaluate is the same as the
running experiment environment in Section 4.2. Testing the hypotheses requires
running different queries on input and output of WDumper. For the output of
WDumper, we use Apache Jena triple store version 3.17 to import data as TDB2
RDF datasets and perform queries.

Data Corrections. For the evaluation process, we require to perform some SPARQL
queries over the input and the output of the WDumper. We tried to import the
turtle version of 2015 dump 20 in Jena, which has a smaller volume but we rec-
ognized that the available turtle file has some syntax problems. One of these
syntax problems, which can be seen in more than 100 cases in 2015 dump, is the
bad end lines in the file as we can see in Figure 3. Another type of error that
was observed is the existence of characters such as ’\a’ that cannot be read by
Jena. Unacceptable characters such as ’\n’ and ’\\’ can also be seen in the

20 Downloaded from https://archive.org/download/wikidata-json-20150427 - ac-
cessed 20 December 2020

https://archive.org/download/wikidata-json-20150427

12 SA. Hosseini et al.

Fig. 3. An example of bad end lines in the Wikidata 2015 turtle dump file.

Listing 1.2. Commands used for fixing syntax errors of the 2015 dump.

sed -i -E ’s/(<.*)}(.* >)/\1\2/ ’ <dump_file >
sed -i -E ’s/(<.*)\\n(.* >)/\1\2/ ’ <dump_file >
sed -i -E ’s/(<.*)\|(.* >)/\1\2/ ’ <dump_file >

WDumper outputs, which reinforces the possibility that this problem occurs due
to the conversion of information from the JSON file to RDF format.

In the case of WDumper outputs and the 2015 dump, we fixed the errors
manually by a set of sed commands in Listing 1.2. The sanitized dump is avail-
able in [4]. We then imported the WDumper outputs and the 2015 dump into
Apache Jena. In the case of 2020 dump, we use Wikidata Query Service (WDQS)
because importing the full 2020 Wikidita dump data in the turtle (.ttl) format
with Apache Jena with a size of 150GB requires days of processing. We started
the importing process but even the 2020 dump has the syntax errors which re-
quire much more time to correct. The date of implementation of our evaluation
queries is approximately two months after the creation date of the 2020 dump
(November, 27). In this period, new data may have entered Wikidata which
are available by WDQS and are not present in 2020 dump (and subsequently
are not present in the WDumper output). Because of this, there may be slight
differences in the counts of entities and statements between input and output
that is not related to WDumper functionality. We tried to use Wikidata history
query service21 to quantify the rate of Wikidata increases in this period, but the
history covers a range from the creation of Wikidata to July 1st 2019.

Validation of Hypothesis 1 We use COUNT queries to validate this hypoth-
esis. The purpose of these queries is to count the entities that should be in the
output according to the filter(s) of each use case. If WDumper is performing
correctly, the result of this count should be the same on both the output subset
and the input dump. These queries will be different for each use case, depending
on the definition of that use case. For example, while in the Politicians use case
we count the number of people with political jobs, in the case of Gene Wiki we
count the union of entities of type disease, genes, proteins, etc.

Listing 1.3 shows the queries executed for each use case. These queries run
on the each use case’s output (“withRQFS” version only) and the corresponding
input dump separately. In Table 3 the results of performing COUNT queries are
shown.

21 https://www.wikidata.org/wiki/Wikidata:History_Query_Service

https://www.wikidata.org/wiki/Wikidata:History_Query_Service

Experiences of Using WDumper to Create Topical Subsets from Wikidata 13

Listing 1.3. COUNT queries for evaluating hypothesis 1. Prefixes and most of Gene
Wiki’s query have been deleted for more readability.

############ Politicians ##############################
SELECT (COUNT (DISTINCT ?item) AS ?count) WHERE{
?item wdt:P106 wd:Q82955 . # occupation of politician
}

############ UK Universities ##########################
SELECT (COUNT (DISTINCT ?item) AS ?count) WHERE{
?item wdt:P31 wd:Q3918 ; # instance of university

wdt:P17 wd:Q145 . # country of United Kingdom
}

############ General(military) Politicians ############
SELECT (COUNT (DISTINCT ?item) AS ?count) WHERE{
?item wdt:P106 wd:Q82955 ; # occupation of politician

wdt:P106 wd:Q189290 ; # occupation of milit. officer
wdt:P410 wd:Q83460 . # military rank of general

}

############ Gene Wiki ################################
SELECT (COUNT (DISTINCT ?item) AS ?count) WHERE{
{?item wdt:P31 wd:Q423026 .} # instance of active site
UNION
{?item wdt:P31 wd:Q4936952 .} # instance of anat. struct.
UNION
...
UNION
{?item wdt:P31 wd:Q50379781 .} # instance of therap. use
}

Table 3. Results of performing COUNT queries of each use case (Listing 1.3) on the
output of WDumper and input full dump for both 2015 and 2020 dumps. The last
column are COUNT results queried against WDQS instead of the 2020 dump itself.

Use case
2015 Dump 2020 Dump

Output Input Output Input

Politicians 246,009 246,044 641,387 646,401

General (military) Politicians 165 165 597 602

UK Universities 73 73 183 186

Gene Wiki 19,432 19,432 3,282,560 3,283,471

Analysis. Table 3 shows that for 2015 dump, the number of entities in the output
and input is equal except for the Politicians use case. In both 2015 and 2020
dumps, the difference between input and output is less than one percent in the
cases of inequality. In the case of 2020 dump, the difference can be attributed to
the entry of new data in the interval between our tests and the dump date. This is
reasonable especially in the case of Gene wiki which many bots are importing new
information into Wikidata every day. In the case of 2015 dump in the Politicians
row, the 35 differences between input and output is unjustifiable. The reason
for this difference may be the inability of WDumper to parse the data of these
entities in the input dump. WDumper uses the JSON file as input, and to be able
to fetch an entity, it must see the specific structure of the Wikidata arrays and
sub-arrays in the JSON file. Some entities may not have this complete structure
in the JSON file but they do exist in the turtle file.

Validation of Hypothesis 2 To validate this hypothesis, in each use case we
use DESCRIBE queries for an arbitrary entity that is in the WDumper output.
The purpose of DESCRIBE query is to list all triples of the given entity. We

14 SA. Hosseini et al.

Table 4. Results of performing DESCRIBE queries on the selected entity output of
WDumper and input full dump for both 2015 and 2020 dumps in each use case.

Use case Entity
2015 Dump 2020 Dump

Output Input Output Input

Politicians Q23 408 776 871 921

General (military) Politicians Q355643 104 150 207 228

UK Universities Q1094046 64 108 208 224

Gene Wiki Q30555 12 22 30 37

Table 5. Details and total numbers of predicates that are in the 2015 dump and
WDumper could not fetch.

Entity schema:name skos:prefLabel Total

Q23 184 184 368

Q355643 23 23 46

Q1094046 22 22 44

Q30555 5 5 10

expect that the result of DESCRIBE should be the same on both the output
subset and the input dump. For each use case, we selected an arbitrary entity
(called Tested Entity) which is present both in the input dump and the output of
WDumper. Then we run a “DESCRIBE wd:Q...” query and count the extracted
triples. Table 4 shows the results of performing describe queries on both input
dump and output of WDumper in both 2015 and 2020 cases.

Analysis. From Table 4 it is clear that the number of triples in the DESCRIBE
queries in both 2020 and 2015 dumps are not equal. This difference prompted
us to explore the differences using the compare module of the RDFlib library. It
was found that in the case of the 2015 dump, the input dump contains predicates
such as <http://www.w3.org/2004/02/skos/core#prefLabel> and <http://

schema.org/name>, which are not extracted by WDumper. Table 5, Shows the
details and total numbers of predicates that are in the input dump (2015 dump)
for the selected entities and WDumper could not fetch. As we can see, the total
column is exactly the difference between the output and the input in the 2015
dump at Table 4. In the case of 2020 dump, some of predicates with <http:

//www.w3.org/2004/02/skos/core#> prefix, such as dateModified, and all
<http://www.wikidata.org/prop/direct-normalized/> predicates are not de-
tectable by WDumper. However, in both dumps the statements whose predi-
cate is a property of Wikidata (e.g. P31, P106, etc.), completely extracted by
WDumper.

Validation of Hypothesis 3 To validate this hypothesis, we selected an ar-
bitrary entity from each use case, and for this entity, we considered one of its
statements. We then counted the qualifiers and the references of this statement
in 2020 dump (over the WDQS) and in the output of WDumper. Table 6 shows

<http://www.w3.org/2004/02/skos/core##prefLabel>
<http://schema.org/name>
<http://schema.org/name>
<http://www.w3.org/2004/02/skos/core##>
<http://www.w3.org/2004/02/skos/core##>
<http://www.wikidata.org/prop/direct-normalized/>

Experiences of Using WDumper to Create Topical Subsets from Wikidata 15

Table 6. Number of qualifiers and references for the selected property of the selected
entity in the output and input of WDumper (2020 dump).

Entity Property
Qualifiers References

Output Input Output Input

Q23 P26 4 4 2 2

Q355643 P485 1 1 1 1

Q1094046 P355 1 1 1 1

Q17487737 P680 24 24 96 96

the selected entity, selected property, and the number of qualifiers and refer-
ences for them. From Table 6, it is clear that WDumper can extract qualifiers
and references completely from the input.

4.5 Summarizing Results, Strengths and Weaknesses

The results of our evaluations show that WDumper, as a custom dump produc-
tion tool, can be used to create some topical subsets. This tool can correctly and
completely extract the entities specified by its filters. It also extracts almost all
statements related to entities (except it is not designed to extract some prefixes).
One of the features we have been looking for is the ability to extract references
and qualifiers of Wikidata statements, which WDumper can do. Setting up this
tool is not very complicated; the user only needs to select the filters of the enti-
ties and statements, run the tool and it extracts all of the information at once.
Its GUI is also somewhat helpful, while the JSON structure of its specification
files is also simple and understandable.

Limitations and Weaknesses WDumper tool has some weaknesses that we
address in this section. The most important weakness of WDumper with re-
gard to the topical subsets is the limitation in the definition of entity filters. In
WDumper, entities can only be filtered based on the presence of a Px property
or having the value v for a Px property. Although it is possible to deploy any
number of such filters, this is not enough to specify some kinds of use cases. For
example, suppose we want to specify the Scottish universities subset. By review-
ing some of these universities on the Wikidata website, we can find that their
corresponding entity does not have any property that directly indicates they
belong to Scotland. Of course, we can define the R function of these subsets
through indirect methods (for example, considering the Geo-location of entities
in Scottish universities), but these type of filters are not available in WDumper.

The recognition of type hierarchies is another limitation of WDumper. In the
case of UK universities, for example, the University of Edinburgh(Q160302) is
not among the universities extracted by WDumper. The reason for this is that
property instance of(P31) in this university refers to public university(Q875538)
instead of university(Q3918). In SPARQL queries, such cases are handled by the
property paths like wdt:P31/wdt:P279∗. These property paths are not available

16 SA. Hosseini et al.

in WDumper and considering more filters for each subtype needs to be familiar
with the Wikidata ontology and will fail if the class hierarchy changes.

Another limitation is the ability to communicate between different filters
in multi-filter cases. For example, in the Gene Wiki use case, we may want
diseases that are somehow related to a gene or protein, while in WDumper
output there are diseases that have nothing to do with genes, proteins, and
other Gene Wiki types. The ability to choose another output format other than
N-Turtle, especially the Wikibase JSON output, which is more suitable for using
the subset produced in a Wikibase instance and also has a smaller volume, is
another limitation.

The main implications of these limitations is the reduction of flexibility of
subset extracting with this tool. With these weaknesses, users have to spend
much more time defining the desired subset.

5 Conclusion

In this paper, we reviewed the issue of building topical subsets over the Wiki-
data knowledge graph. Our motivation for topical subsets is to enable efficient
evaluation of complex queries over the knowledge graph with lower costs, repro-
ducibility of experiments through archiving datasets, ease of use, and flexibility.
We provided example use cases for topical subsets as well as a formal definition
for topical subsets. This definition enables us to evaluate and compare subset
creation tools.

In this study we used WDumper for topical subset extraction over Wikidata
and then tested it by measuring run-time and output volume on four different
use cases. We evaluated the correctness of the subsets generated by WDumper
by comparing the answers to queries over the subsets and the full knowledge
graph. Our experience shows that WDumper can be used to generate topical
subsets of Wikidata in some use cases but not all use cases. WDumper can
extract the entities specified by its filters and extract most statements related
to those entities; it also fetches the statement nodes and references/qualifiers.
However, WDumper has some weaknesses regarding to topical subsets. Its main
problem is the way it defines filters on entities that reduces the power of this
tool to build topical subsets. The most tangible issue is the inability to define
and fetch subclasses of a class of entities, which is important in many use
cases. Our suggestion for the future works is to explore alternative subsetting
approaches such as using SPARQL queries or Shape Expressions. With selectors
like SPARQL queries or ShEx schemata, we can increase the expressivity of the
subset creation. It will also allow for subsets to be created on Knowledge Graphs
other than Wikidata.

Acknowledgement. We would like to acknowledge the fruitful discussions with
the participants of project 35 of the BioHackathon-Europe 2020; Dan Brickley,
Jose Emilio Labra Gayo, Eric Prud’hommaux, Andra Waagmeester, Harold Sol-
brig, Ammar Ammar, and Guillermo Benjaminsen.

Experiences of Using WDumper to Create Topical Subsets from Wikidata 17

References

1. Wdumper - a tool to create custom wikidata rdf dumps, https://tools.wmflabs.
org/wdumps/, , GitHub repository: https://github.com/bennofs/wdumper

2. Wikidata:WikiProject Schemas/Subsetting - Wikidata, https://www.wikidata.

org/wiki/Wikidata:WikiProject_Schemas/Subsetting, accessed 2020-12-31
3. Auer, S., Bizer, C., Kobilarov, G., et al.: DBpedia: A Nucleus for a Web of Open

Data. In: The Semantic Web. pp. 722–735. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-052

4. Beghaeiraveri, S.A.H.: Wikidata dump 27-04-2015 fixed syntax errors (Feb 2021).
https://doi.org/10.5281/zenodo.4534445

5. Beghaeiraveri, S.A.H.: Wikidata Subsets and Specification Files Created by
WDumper (Feb 2021). https://doi.org/10.5281/zenodo.4495855

6. Bollacker, K., Tufts, P., Pierce, T., Cook, R.: A platform for scalable, collaborative,
structured information integration. In: Intl. Workshop on Information Integration
on the Web (IIWeb’07). pp. 22–27 (2007)

7. Consortium, U.: Uniprot: a hub for protein information. Nucleic acids research
43(D1), D204–D212 (2015)

8. Gayo, J.E.L., Ammar, A., Brickley, D., et al.: Knowledge graphs and wikidata
subsetting. Tech. rep. (2021)

9. Gayo, J.E.L., Prud’Hommeaux, E., Boneva, I., Kontokostas, D.: Validating rdf
data. Synthesis Lectures on Semantic Web: Theory and Technology 7(1), 1–328
(2017)

10. Hogan, A., Blomqvist, E., Cochez, M., et al.: Knowledge Graphs. arXiv:2003.02320
[cs] (Mar 2020), http://arxiv.org/abs/2003.02320

11. Khrouf, H., Troncy, R.: Eventmedia: A lod dataset of events illustrated with media
(2012)

12. Lopez-Pellicer, F.J., Silva, M.J., Chaves, M., et al.: Geo linked data. In: Inter-
national Conference on Database and Expert Systems Applications. pp. 495–502.
Springer (2010)

13. Matsumoto, S., Yamanaka, R., Chiba, H.: Mapping rdf graphs to property graphs.
arXiv preprint arXiv:1812.01801 (2018)

14. Mimouni, N., Moissinac, J.C., Tuan, A.: Domain specific knowledge graph embed-
ding for analogical link discovery. International Journal On Advances in Intelligent
Systems (2020)

15. Mimouni, N., Moissinac, J.C., Vu, A.: Knowledge base completion with analogical
inference on context graphs. In: Semapro 2019 (2019)

16. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM 57(10), 78–85 (Sep 2014).
https://doi.org/10.1145/2629489

17. Waagmeester, A., Stupp, G., Burgstaller-Muehlbacher, S., et al.: Wikidata
as a knowledge graph for the life sciences. eLife 9, e52614 (Mar 2020).
https://doi.org/10.7554/eLife.52614, publisher: eLife Sciences Publications, Ltd

18. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al.: The FAIR Guiding Prin-
ciples for scientific data management and stewardship. Scientific Data 3(1), 160018
(Mar 2016). https://doi.org/10.1038/sdata.2016.18, number: 1 Publisher: Nature
Publishing Group

https://tools.wmflabs.org/wdumps/
https://tools.wmflabs.org/wdumps/
https://github.com/bennofs/wdumper
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.5281/zenodo.4534445
https://doi.org/10.5281/zenodo.4495855
http://arxiv.org/abs/2003.02320
https://doi.org/10.1145/2629489
https://doi.org/10.7554/eLife.52614
https://doi.org/10.1038/sdata.2016.18

	Experiences of Using WDumper to Create Topical Subsets from Wikidata

