
CHIRon: A Generative Foundation Model for
Structured Sequential Medical Data

Brian L. Hill
Optum AI

Melika Emami
Optum AI

Vijay S. Nori
Optum AI

Aldo Cordova-Palomera
Optum AI

Robert Tillman
Optum AI

Eran Halperin
Optum AI

Abstract

Recent advances in large language models (LLMs) have shown that foundation
models (FMs) can learn highly complex representations of sequences that can be
used for downstream generative and discriminative tasks such as text generation
and classification. While most FMs focus on text, recent work has shown FMs
can be learnt for sequential medical data, e.g. ICD-10 diagnosis codes associated
with specific patient visits. These FMs demonstrate improved performance on
downstream discriminative disease classification tasks, but cannot be used for
generative tasks such as synthesizing artificial patient visits for data augmentation
or privacy-preserving data sharing since they utilize BERT-based pre-training. In
this paper, we introduce CHIRon, the first generative FM for sequential medical
data. CHIRon utilizes causal masking during for pre-training, enabling generative
applications, and incorporates a number of architectural improvements and support
for additional medical data types (diagnoses, procedures, medications, lab results,
place of service, demographics). We show empirically that CHIRon can be used to
generate realistic sequential medical data and also outperforms state of the art FMs
for sequential medical data on disease classification tasks.

1 Introduction

Foundation models (FMs) offer many improvements over traditional machine learning (ML) models,
including better predictive performance, requiring less labeled data, and simplifying model deploy-
ment [24]. However, most prior work using FMs in the healthcare setting focuses on text such as
clinical notes [8] or biomedical text [10], despite significant amounts of healthcare data such as
administrative claims or electronic health records (EHRs) being stored in structured databases.

Several papers have developed FMs such as BERT [6] using structured sequential medical data [11,19],
such as ICD-10 diagnosis codes associated with specific patient visits, and have shown promising
improvements over traditional ML methods in downstream prediction tasks such as disease classifi-
cation. These BERT-based FMs, however, cannot easily be used for generative purposes [16] – for
example, generating synthetic visit sequences to enable privacy-preserving data sharing applications
or augmenting existing patient data [26]. Given the recent success of generative FMs such as GPT-
style models for text [3, 17, 18], we propose a novel generative FM for structured sequential patient
data and investigate its performance on both generative and discriminative tasks.

In this work, we introduce CHIRon (Contextualized Healthcare Information RepresentatiON), the first
generative FM trained on structured sequential medical data (rather than text). In addition to utilizing
causal masking for pre-training the FM, we also introduce a number of architectural improvements
and support for additional data types. While previous transformer-based models for sequential
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medical data have focused specifically on diagnosis codes, we expand to include procedure codes,
medications, lab results, and patient demographics. Additionally, we introduce a novel embedding
for place of service information that adds useful context to each medical code. We show that CHIRon
can accurately generate new codes using several quantitative metrics. Further, we fine-tuned CHIRon
for disease onset classification and find that it outperforms existing state-of-the-art discriminative
FMs for sequential medical data. Our experiments show that generative FMs can be powerful tools
for both generating and classifying sequential medical data.

2 Related Work

Language model pretraining LLM pre-training has shown remarkable success in a variety of
downstream tasks. These models efficiently use in-context information and eliminate the need
for task-specific architectures. One of the most widely used models, BERT [6], is built on the
Transformer [21] architecture and uses bidirectional context for learning representations. The core
training objective employed by BERT is masked language modeling which encourages the model
to better understand word relationships. GPT-style models [3, 17, 18] similarly uses a Transformer
architecture but emphasize auto-regressive generation, which is useful in synthetic data generation.
It scales up to billions of parameters and can perform both conditional and unconditional text
generation. Like BERT, it can also be adapted for different NLP tasks by fine-tuning. Recent works
have incorporated BERT and GPT for NLP tasks using medical text such as [2, 7, 8, 10, 14, 25].

Representation learning frameworks in the clinical domain One successful model that lever-
aged the temporal dependencies in clinical events is RETAIN [5], which used a two-level neural
attention mechanism for learning visit representations. Papers such as BEHRT [11] and G-BERT [20]
have attempted to employ contextualized pre-trained embeddings in the clinical domain. The former
developed a model for diagnosis code prediction in different time windows and the latter leveraged
graph neural networks for medication code prediction using a single-visit-level dataset. Perhaps the
most relevant work to ours is Med-BERT [19]. The authors used a BERT model to learn contextu-
alized diagnosis code embeddings along with a visit and/or positional embedding for downstream
disease prediction tasks. While BERT models are able to effectively learn contextualized code
representations, these models are not explicitly optimized for generation like GPT-style transformer
models. In this paper, we adapt the framework of GPT-style models and pretrain our 6.3M parameter
model on structured health records (rather than clinical text).

3 Methods

For our experiments we utilized Optum de-identified data which contains structured administrative
claims and clinical data such as medical and pharmacy claims, lab results, demographics, and
enrollment records for 44 million patients. The protocol and supporting materials representing this
work were prospectively submitted to the UnitedHealth Group Office of Human Research Affairs for
IRB review and were approved. We extracted demographics (age and sex), diagnosis codes, procedure
codes, medications, and lab results, along with their corresponding encounter dates and place of
service information, to build chronologically ordered lists of medical codes for each individual. See
Appendix 6.1 for more details.

CHIRon pre-training CHIRon is a GPT-style [17, 18] model, where each medical code is repre-
sented as an individual token. We augment the GPT architecture with several additional embeddings
to add healthcare-specific context to each code. In addition to the standard positional embeddings,
we include visit embeddings (similar to [11, 19]), age embeddings (similar to [11]), and place of
service embeddings, a novel data type. Place of service specifies where the service (code) took place,
including these locations: outpatient, inpatient, emergency, custodial, independent lab, home (or
unknown). This information adds important context – e.g., a diagnosis code for chest pain should
have a different representation if it occurred in a primary care office versus an emergency room
setting. Each of these embeddings are element-wise added to the code embeddings before being used
as input to the model. We also prepend two tokens to every code sequence: one token indicating the
sex of the patient and one token indicating the patient’s age (binned into 5-year groups – e.g., 20-24,
25-29, etc.). The model was pre-trained using the causal language modeling objective as described
in [18]. For additional model pre-training details see Appendix 6.3.
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Sequential medical data generation To estimate the generative performance of CHIRon, we use
a truncation procedure to remove medical codes from the end of a patient record, and evaluate
how similar the generated codes are to the truncated codes. Specifically, we filter the pre-training
validation set to select patients who have at least 50 codes. We truncate the last (most recent) T
codes from each record, and these T codes are used as our reference (ground truth) code sequences.
Using the truncated records as input to the model, the CHIRon model generates T additional codes
for each record. We then compare the reference code sequences with the generated code sequences to
determine model performance for this generative task.

Disease classification The pre-trained CHIRon model was then fine-tuned for five separate binary
classification tasks: predicting disease onset for chronic kidney disease (CKD), chronic obstructive
pulmonary disease (COPD), dementia, diabetes, and predicting CKD disease progression (CKD-P,
from stage 1-3a to stage 3b+). Cohort creation details can be found in Appendix 6.1. Classification
cohort sizes ranged from 382k (CKD-P) to 3.3M (diabetes) individuals (see Appendix Table 4).
To fine-tune the model, we append a classification (CLS) token to the code sequence and add a
feed-forward neural network layer on top of the final layer’s classification token embedding. During
fine-tuning, we allow the entire model to be updated.

For comparison, we used state-of-the-art and other common classification methods: gradient-boosted
trees (GBT), RETAIN [4], and Med-BERT [19] (see Appendix 6.4 for baseline method details). While
Med-BERT originally only used diagnosis codes, we included procedure codes and medications as
input to the Med-BERT model for a more fair comparison, and denote this with “Med-BERT+” (see
Appendix 6.5 for Med-BERT results using only diagnosis codes).

4 Experiments

Sequential medical data generation Just as generative models for text can be used to generate
synthetic text sequences based on an initial prompt, we can similarly generate synthetic sequential
medical data. For a given medical record, we can use the generative capabilities of the pre-trained
CHIRon model to sample additional synthetic patient data.
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Figure 1: BERTScore and ROUGE metrics
as a function of the number of codes trun-
cated/generated. Error bars indicate boot-
strapped 95% confidence intervals.
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Figure 2: BERTScore cosine similarity heatmap
comparing contextualized embeddings for T = 10
true (x-axis) and predicted (y-axis) codes from an
example patient.

To quantitatively evaluate the generative performance, we adopt two established metrics from the
NLP community: the ROUGE [12] score and the BERTScore [27]. The ROUGE-1 score measures
the overlap of unigrams (single words/codes) between the reference sequence and the generated
sequence. The BERTScore is a method for computing the similarity between two sequences as
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the mean cosine similarity between contextualized embeddings from the reference sequence and
the generated sequences. Compared to the ROUGE score, the BERTScore penalizes a model less
for generating codes that are very similar terms of medical taxonomy but not exact matches – as
an example, if the model generates an ICD code “S92.812A” for a fracture of the left foot versus
“S92.901A” for a fracture of the right foot. Using these two metrics allows us to quantify how well
the model can generate medical codes both exactly and semantically.

In Figure 1 we show ROUGE scores and BERTScore metrics as we vary the number of trun-
cated/generated codes. Notably, the CHIRon code generation is more precise than it is sensitive. We
find that the accuracy of the generated codes decreases as we truncate more codes from the record.
This is expected – as more codes are truncated, more context is removed. In general, it is also more
difficult to predict codes that occur farther in the future. Numeric performance metrics can be found
in Appendix Table 5.

Figure 2 shows a BERTScore cosine similarity heatmap comparing contextualized embeddings from
true and generated codes for an example patient. BERTScore precision searches for the highest
similarity in each row, whereas BERTScore recall searches for the highest similarity in each column.
As expected, the similarity is highest when the codes are an exact match. However, because the
codes are contextualized, the same code at two different positions in the sequence can have different
embeddings (and therefore different similarity to the query code).

Disease classification The pre-trained CHIRon model was fine-tuned for five binary classification
tasks and compared with the baseline models. Figure 3 compares area under the ROC curve (AUROC)
and average precision (AP) metrics for all models across the five tasks. In four out of five classification
tasks, the GBT models were the strongest baseline, consistently outperforming both RETAIN and
Med-BERT+ in terms of both AUROC and AP by a statistically significant difference. The fine-tuned
CHIRon model achieved the highest AUROC and AP in four of the five classification tasks (CKD,
CKD-P, COPD, diabetes) by a statistically significant margin, and did as well as the GBT model in
the fifth task (dementia). See Appendix Tables 6, 7, 8, 9 and 10 for numeric results.
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Figure 3: Classification performance in terms of (a) area under the ROC curve (AUROC) and (b)
average precision (AP, or area under the precision-recall (PR) curve) for each model across all disease
outcomes. Error bars indicate bootstrapped 95% confidence intervals.

5 Discussion

In this work we developed CHIRon and showed that given sequential medical data the model is able
to effectively generate realistic synthetic sequences of additional medical codes. Additionally, we
found that fine-tuning this model for disease onset prediction achieves the best classification results
in four of the five outcomes compared to three strong baseline methods. We note several limitations.
We trained and validated the models on data from a single institution; in future work, we hope to
validate model generalization to external datasets for both the generation and classification tasks.
Additionally, due to the expensive nature of training large FMs, we were not able to conduct extensive
hyperparameter tuning – results may improve with further investigation.
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6 Appendix

6.1 Datasets and Cohort Selection

Datasets: The Optum de-identified dataset consists of de-identified administrative claims data such
as medical and pharmacy claims, laboratory (labs) results, enrollment records, and demographic
(age and sex only) information. Our cohorts included individuals with records occurring between 1
January 2014 and 31 December 2018. Individuals younger than 18 years or older than 89 years were
excluded from our analysis. For all individuals we extracted a list of all medical codes with their
corresponding timestamp and place-of-service information, and ordered the codes chronologically.

Diagnoses were coded using the International Classification of Diseases (ICD), Ninth and Tenth
Revisions, Clinical Modification (ICD-9-CM and ICD-10-CM). Any ICD-9 codes were mapped
ICD-10. Procedures were coded using the Current Procedural Terminology (CPT-4). For lab results,
we use the Logical Observation Identifier Names and Codes (LOINC) standardized system to identify
specific lab tests. Medications were grouped by generic name. American Medical Association
(AMA) place-of-service code information for each medical code was categorized as one of these six
categories: outpatient, inpatient, emergency, custodial, independent lab, home, or otherwise unknown.

The structured healthcare records were stored in a table with the following information:

• id: unique patient identifier

• enc_dt: date of encounter

• code_type: type of code - e.g., diagnosis (DIAG_ICD10), procedure (PROC_CPT4), etc.

• code: diagnosis (e.g., N18.1), procedure (e.g., 99214), etc.

• pos: place of service code

Pre-training cohort: We combined both the claims and clinical datasets into a single large dataset
to pre-train the transformer-based models. We required that individuals be enrolled for 3 or more
months, and have 6 or more days with encounters (diagnosis, procedure, lab, medication fill record)
to be included. Identical records from claims and clinical data datasets were de-duplicated. This
combined dataset included over 13.88 billion medical codes from 44,169,102 unique individuals. See
Table 1 for counts of individuals, total number of ICD codes, and unique number of ICD codes for
each dataset in our pre-training cohort.

Table 1: For each dataset we report the number of unique individuals, number of total ICD codes,
number of unique ICD codes, the median (IQR) number of codes per each individual, the median
(IQR) number of encounters per each individual, the median (IQR) age in years, and the percent
female.

Dataset Individuals Total
records

Unique
codes

Codes per
patient

Encounters
per patient

Age
(years)

Sex
(%F)

Claims 21,493,605 6.55B 7,615 164 (72-386) 35 (15-81) 51 (35-64) 57.3
EHR 25,669,520 7.52B 7,261 151 (69-337) 19 (9-42) 50 (34-63) 59.8
Combined 44,169,102 13.88B 7,922 165 (73-378) 26 (12-61) 51 (34-64) 58.5

Fine-tuning cohorts: For the classification cohorts used for fine-tuning the CHIRon model and
method comparison, we again leveraged the combined claims and clinical datasets. In the classifica-
tion, we required that individuals be enrolled for a minimum of two years to ensure a minimum time
window for outcomes to occur, and have 6 or more days with encounters.

Cases (positive labels) were defined as individuals who had at least two occurrences of any inclusion
code (see Table 2) between 7-365 days apart in any setting (inpatient, outpatient, etc.), or one
occurrence of a diagnosis code (see Table 2) in an inpatient setting (inpatient setting is more reliable).
We used the earliest occurrence of any inclusion code as the “index date”.

We excluded individuals if they met our exclusionary criteria: for CKD/CKD-P, if individuals had a
diagnosis code for acute and unspecified renal failure, other specified and unspecified diseases of
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Table 2: Medical codes used to define classification cohort cases. Case definition required at
occurrence of at least two of these codes within a 365-day period. For lab values, we report the
LOINC code and the lab result range that would count as evidence of the outcome (e.g., a LOINC
4548-4 (“Hemoglobin A1c/Hemoglobin.total in Blood”) result between 6.501% and 100% is evidence
of diabetes). ICD: International Classification of Diseases; CCSR: Clinical Classifications Software
Refined; ETG: Episode Treatment Group; CPT-4: Current Procedural Terminology; PCC: ; LOINC:
Logical Observation Identifier Names and Codes.

Outcome ICD CCSR ETG CPT-4 PCC LOINC
(min, max) lab range

CKD E11.21,
E11.29,
N08

GEN003 33914-3 (0,75),
62238-1 (0,75),
98979-8 (0,75)

CKD-P N18.32,
N18.3,
N18.5,
N18.6

33914-3 (0,45),
62238-1 (0,45),
98979-8 (0,45)

COPD RSP008 574, 576,
577, 605

Dementia 239000,
316400

99307,
99308,
99309,
99310

344

Diabetes END003,
END005

500-504,
513-515,
518, 520,
523, 841

1558-6 (126,1200),
2339-0 (150,1200),
2345-7 (150,1200),
27353-2 (150,1200),
4548-4 (6.501,100)

kidney and ureters, or kidney transplant status; for dementia, if individuals had a procedure code
indicating they were living in a skilled nursing facility or hospice; for diabetes if an individual had
any diagnosis codes that indicated Type-1 diabetes (see Table 3 for codes used).

We defined controls (negative labels) as individuals who had neither an inclusion code nor an exclusion
code over the entire period for which we have their clinical history. Controls were randomly selected
so that the final cohort had a case:control ratio of 1:5 (i.e., a 16.67% prevalence). Final cohort counts
can be found in Table 4.

The cohorts were split into train and test using a time-based split, such that individuals with the
most recent 20% were included in the test set and the remaining (earliest) 80% were used for model
training. The training set was further randomly split into training and validation sets, such that 70%
of the total data was used for model training and the remaining 10% was used for validation.

6.2 Preprocessing

Lab Results: Previous methods likely ignored lab results because they are noisy and need to
be converted into discrete tokens. However, lab results contain specific and objective information
about patient state, and can be used to more accurately phenotype patients for disease labeling. To
incorporate the labs into our modeling framework, we used the following tokenization procedure:

1. Select LOINC codes with at least 1000 observations.

2. Compute deciles for each LOINC code.

3. Drop LOINC codes where the max value for third decile is 0, to remove labs where a
significant number of results were zero-filled by an upstream data management process as
the result data was unavailable.
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Table 3: Medical codes used to exclude individuals from our classification cohorts. Any occurrence
of these codes would exclude an individual from being a case or control for each outcome. ICD:
International Classification of Diseases; CCSR: Clinical Classifications Software Refined; ETG:
Episode Treatment Group; CPT-4: Current Procedural Terminology; PCC: ; LOINC: Logical
Observation Identifier Names and Codes.

Outcome ICD CCSR ETG CPT-4 PCC LOINC (min, max)
lab range

CKD Z94.0 GEN002,
GEN006

CKD-P Z94.0 GEN002,
GEN006

COPD

Dementia 99307,
99308,
99309,
99310

Diabetes END004

Table 4: Classification cohort sizes and case counts. Using our case/control sampling procedure, each
cohort maintains a 1:5 case:control ratio (i.e., a prevalence of 16.67%).

Outcome Individuals Number of cases

CKD 2,427,678 404,613
CKD-P 382,632 63,772
COPD 3,197,016 532,836
Dementia 583,896 97,316
Diabetes 3,299,352 549,892

4. Fit an exponential function using the maximum values from first 9 deciles. Use this function
to compute the 10th decile.

5. Drop observations (tokens) which are more than 3× the predicted 10th decile (from Step 4).

Therefore, each lab result token used as input to our model denotes the decile of the lab result for that
specific test. For example, for a “Hemoglobin A1c/Hemoglobin. total in Blood” lab result (LOINC
4548-4) that fell into the 7th decile of the population distribution, we would denote the lab result
token as “LABS_LOINC_4548-4-7” where the decile is added as a suffix to the token ID.

Tokenization: We built a tokenizer similar to [19], where each token corresponds to a unique
medical code, using the Combined Dataset. Rather than use a vocabulary that included all 60,817
unique medical codes in the combined dataset, we selected codes that occurred in at least 1/1000
individuals, given that many codes are rare and only occur in a small subset of patients. This
prevalence-based filtering left us with a tokenizer vocabulary of 7,922 unique medical codes. Any
medical code that did not pass this prevalence-based threshold was not discarded but instead renamed
as a “rare code” that was specific to the type of medical code (e.g., “DIAG_ICD10_RARE_CODE”
or “PROC_CPT4_RARE_CODE”).

6.3 Model Development

CHIRon is a GPT-based model and we adopt a similar architecture and pre-training techniques as
GPT-2 and build on top of them.

Input Representation: A patient record consists of a series of encounters (i.e. visits), each
containing several medical code tokens including diagnosis, procedure, and medication codes as
well as tokenized lab results as explained above. Let xc = (c11, · · · , c1n1

, · · · , cK1, · · · , cKnK
) be
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the code sequence for patient X with K total visits where cij corresponds to the j-th code (token)
that occurred in visit i, i ∈ [K], j ∈ [ni] where ni is the total number of codes for visit i. For each
encounter, the information about its place of service (one of a total of 7 categories), its timestamp
which represents age of the patient in months at the time of encounter, and the visit number in clinical
history is available as well. Given the total code sequence has N codes, let the following denote the
context information sequences:

place of service: xs = (s1, · · · , s1︸ ︷︷ ︸
n1 count

, · · · , sK , · · · , sK︸ ︷︷ ︸
nK count

), si ∈ {0, 1, · · · , 6}

visit number: xv = (1, · · · , 1︸ ︷︷ ︸
n1 count

, · · · ,K, · · · ,K︸ ︷︷ ︸
nK count

),

age: xa = (a1, · · · , aN ),

position: xp = (1, · · · , N),

where xp corresponds to the position of codes in the sequence. Therefore, we represent a patient
X = {xc,xs,xv,xa,xp} as a collection of these sequences describing the medical record. Note
that the record is organized chronologically with random ordering of the codes inside a visit. The
tokenized code sequence is prepended with demographic tokens including a token ca for the patient
age (in years, binned into 5-year age groups – e.g., 20-24, 25-29, etc.) of the patient and a token cs
for patient sex (male or female): xc = (ca, cs, c11, . . . , cKnK

). Other context information sequences
are also padded at the beginning accordingly. We utilize five different embedding layers to construct
the final input sequence to the transformer model: (i) code embeddings Wc ∈ R|vocab|×m, (ii) visit
embeddings Wv ∈ Rmax visit size×m, (iii) place-of-service embeddings Ws ∈ R|pos|×m, (iv) time/age
embeddings Wa ∈ Rmax age×m and finally, (v) standard positional embeddings Wp ∈ Rmax seq length×m,
where m is the embedding size. Each element of the padded xc,xs,xv,xa, and xp sequences are
then one-hot encoded to the desired dimensions |vocab|, |pos|, max visit size, max age, max seq
length, and passed through the embedding layers. The output of the embedding layers are then added
up together to construct the input to the CHIRon transformer model.

Architecture and Hyperparameters for Pre-Training (PT): We implemented the CHIRon archi-
tecture using the HuggingFace transformers [23] package (v.4.25.1) and Pytorch [15] (v2.0.1). The
model contains a total of 6,392,832 parameters. For the transformer architecture of the CHIRon we
used 6 layers, 8 heads, and embedding dimensionality of 256. The maximum sequence length is set
to 512 and the inner feed forward layers have a dimension of 512. We also used the default attention
dropout ratio and initializer range. We used the AdamWeight decay optimizer [13] with coefficient
0.01 and trained the model for 5e6 steps with early stopping of patience 3 using 2 Nvidia Tesla V100
GPUs.

Architecture and Hyperparameters for Fine-Tuning (FT): In fine-tuning, the code sequence is
appended with a [CLS] token to use for classification. Our disease onset classification tasks are binary
classification and we put a logistic FFL prediction head on top of the final layer of CHIRon. The
fine-tuning transformer architecture is similar to the pretrain model. Starting from the pre-trained
model, we train a separate model for each condition for 20 epochs with early stopping of patience 3
and batch size 64 using a single Nvidia Tesla V100 GPU.

Generation Procedure: We used the transformers .generate() function for auto-regressive gen-
eration of new codes. We used greedy search for generation and suppressed the rare codes
“[CODE_TYPE_RARE_CODE]”. The generation of new codes takes place one code at a time,
i.e. the generated code at time t is used in the sequence for the generation of the code at time t+ 1.
We also make use of the other additional context information in the generation process and pad them
at each time step: place of service is padded with the unknown token and the other sequences such as
visit number and age of encounter (in months) are padded with their most recent value.

6.4 Model Comparisons

6.4.1 Gradient-boosted trees (GBT)

Gradient boosted trees (GBTs) which modeled the presence of codes, and not the sequence in which
they occurred, were trained as one of the baseline models. Each cell in the model matrix was

10



populated with the number of days a patient had a specific code. The demographic information was
added using binary columns. A threshold of 0.0001 was set for initial feature selection – i.e., a code
should appear in at least 10,000 patients to be included in the initial feature set. A two step approach
was implemented for tuning the models. In the first step 150 Optuna trials were run and the features
which had at least 1 split in 20% of those trials were selected for the second step. In the second step
300 Optuna trials were run on the pruned set of features. Average precision was the measure selected
for early stopping the boosted tree training runs and Optuna trial evaluation. Libraries used for this
comparison included lightgbm [9] (v3.3.5) and Optuna [1] (v3.1.0) for hyperparameter tuning.

6.4.2 RETAIN

RETAIN [5] is an interpretable two-level neural attention predictive model with applications to EHR
data. It considers both the visit-level and the variable-level influence of each visit through two sets
of attentions weight. It generates the attention vectors by running two RNNs backward in time
and then creates the final context vector to use for classification. For more details on the model
architecture see [5]. We used a Pytorch-lightning implementation of the original RETAIN code1

based on modifications done in this repo 2. We included the place of service, visit number, and
time/age at encounter as well as demographic information as additional features in the model. For
each condition, we trained a separate model for each of the three age brackets and data sources and
aggregated the results in Figure 3. We did a coarse grid search hyperparameter tuning of the diabetes
model and used the parameters for the rest of the RETAIN models.

6.4.3 Med-BERT

Med-BERT [19] is a BERT-based model that, instead of using text as input, learns contextualized
representations of sequentially-ordered medical codes. Similar to BERT [6] models, Med-BERT
can be pre-trained using an objective like masked language modeling on a large, general cohort of
patients, and then fine-tuned on a smaller, more specific cohort for downstream tasks, e.g., disease
onset prediction.

We implemented the Med-BERT architecture using the HuggingFace transformers [23] package
(v.4.25.1) and Pytorch [15] (v2.0.1) using the same hyperparameters as described in [19]. We then
pre-trained a Med-BERT model from scratch using the same preprocessing procedure such as not
using the [CLS] token for input representation as described in [19]. We used the same tokenizer as
the CHIRon model (described above in 6.2).

There are a few differences between the original Med-BERT [19] training and the Med-BERT
training results presented in this paper: (1) We only pre-train the Med-BERT on the masked language
modeling task. The original Med-BERT paper also includes a "prediction of prolonged length of
stay in hospital" task. To perform this, the authors only include inpatient admissions in their data.
However, we consider all types available encounters. (2) The original Med-BERT paper uses only
diagnosis codes. To provide a fair comparison between this model and our CHIRon model, we
trained two sets of Med-BERT models, one using only the diagnosis codes (ICD-10) in our data
(denoted “Med-BERT”), and one with also including the procedure and medication codes (denoted
“Med-BERT+”). Comparisons of the two models is included in Figure 4 and Tables 6,7,8,9, and 10.

To fine-tune the Med-BERT models, we attached a classification head to the pre-trained Med-BERT
model using the “Med-BERT_only (FFL)" head, in which a feed-forward layer (FFL) is added on
top of the first token’s embedding as in the original Med-BERT implementation 3. We fine-tuned
the model using a batch size of 64 for a maximum of 20 epochs, with early stopping if the model’s
validation loss does not decrease after 3 epochs.

The pre-training and fine-tuning cohorts that were used are the same as the cohorts used for CHIRon.

6.5 Evaluation

1https://github.com/mp2893/retain
2https://github.com/ast0414/pytorch-retain
3https://github.com/ZhiGroup/Med-BERT
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Table 5: Generative performance metrics as a function of the number of codes (NC) generated. The
BERTScore F1 metric is a measure of cosine similarity between the generated medical codes and
the true medical codes. The ROUGE-1 score measures the overlap of code unigrams (single codes)
between the generated medical codes and the true medical codes. Error bars indicate bootstrapped
95% confidence intervals.

BERTScore F1 BERTScore Precision BERTScore Recall ROUGE-1
NC

5 0.851 (0.849-0.853) 0.871 (0.870-0.873) 0.834 (0.832-0.835) 0.394 (0.390-0.399)
10 0.831 (0.829-0.833) 0.869 (0.867-0.870) 0.800 (0.798-0.802) 0.421 (0.417-0.424)
15 0.818 (0.816-0.819) 0.863 (0.861-0.865) 0.781 (0.779-0.783) 0.423 (0.420-0.427)
20 0.805 (0.804-0.807) 0.855 (0.853-0.856) 0.765 (0.763-0.767) 0.419 (0.416-0.423)
25 0.795 (0.793-0.796) 0.846 (0.845-0.848) 0.753 (0.751-0.755) 0.415 (0.412-0.419)
30 0.782 (0.781-0.784) 0.836 (0.834-0.837) 0.740 (0.738-0.742) 0.405 (0.401-0.408)
35 0.772 (0.770-0.773) 0.826 (0.824-0.827) 0.729 (0.727-0.731) 0.400 (0.396-0.403)
40 0.760 (0.759-0.762) 0.815 (0.814-0.816) 0.717 (0.715-0.719) 0.392 (0.389-0.396)
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Figure 4: Classification performance in terms of (a) area under the ROC curve (AUROC) and (b)
average precision (AP, or area under the precision-recall (PR) curve) for each model across all disease
outcomes. The Med-BERT model uses only diagnosis codes, as in the original paper, and Med-
BERT+ uses diagnosis codes, procedure codes, and medications. Error bars indicate bootstrapped
95% confidence intervals.

Table 6: Classification performance metrics for CKD
metric AUROC AP
model

CHIRon 0.779 (0.778-0.780) 0.603 (0.601-0.606)
GBT 0.764 (0.763-0.765) 0.571 (0.569-0.574)
RETAIN 0.745 (0.744-0.747) 0.551 (0.549-0.553)
Med-BERT+ 0.720 (0.718-0.721) 0.534 (0.532-0.536)
Med-BERT 0.678 (0.677-0.680) 0.475 (0.473-0.477)

Table 7: Classification performance metrics for CKD-P
metric AUROC AP
model

CHIRon 0.875 (0.872-0.878) 0.608 (0.599-0.616)
GBT 0.864 (0.861-0.867) 0.576 (0.567-0.584)
RETAIN 0.844 (0.840-0.847) 0.534 (0.525-0.543)
Med-BERT+ 0.786 (0.782-0.790) 0.436 (0.427-0.445)
Med-BERT 0.750 (0.745-0.754) 0.384 (0.375-0.392)
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Table 8: Classification performance metrics for COPD
metric AUROC AP
model

CHIRon 0.796 (0.794-0.797) 0.488 (0.485-0.491)
GBT 0.785 (0.783-0.786) 0.466 (0.463-0.469)
RETAIN 0.774 (0.773-0.776) 0.449 (0.446-0.452)
Med-BERT+ 0.786 (0.785-0.787) 0.468 (0.465-0.471)
Med-BERT 0.766 (0.764-0.767) 0.433 (0.430-0.436)

Table 9: Classification performance metrics for Dementia
metric AUROC AP
model

CHIRon 0.783 (0.780-0.786) 0.428 (0.421-0.435)
GBT 0.778 (0.775-0.782) 0.416 (0.410-0.423)
RETAIN 0.758 (0.755-0.762) 0.388 (0.381-0.395)
Med-BERT+ 0.725 (0.721-0.729) 0.369 (0.362-0.376)
Med-BERT 0.708 (0.704-0.712) 0.353 (0.346-0.360)

Table 10: Classification performance metrics for Diabetes
metric AUROC AP
model

CHIRon 0.801 (0.800-0.802) 0.502 (0.499-0.505)
GBT 0.780 (0.778-0.781) 0.459 (0.456-0.462)
RETAIN 0.768 (0.766-0.769) 0.439 (0.435-0.441)
Med-BERT+ 0.764 (0.763-0.766) 0.429 (0.426-0.432)
Med-BERT 0.742 (0.741-0.744) 0.396 (0.394-0.399)
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