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ABSTRACT

Recent advances in self-supervised learning (SSL) using large models to learn
visual representations from natural images are rapidly closing the gap between
the results produced by fully supervised learning and those produced by SSL on
downstream vision tasks. Inspired by this advancement and primarily motivated
by the emergence of tabular and structured document image applications, we
investigate which self-supervised pretraining objectives, architectures, and fine-
tuning strategies are most effective. To address these questions, we introduce
REGCLR, a new self-supervised framework that combines contrastive and regu-
larized methods and is compatible with the standard Vision Transformer (Doso-
vitskiy et al., 2021) architecture. Then, REGCLR is instantiated by integrating
masked autoencoders (He et al., 2022) as a representative example of a contrastive
method and enhanced Barlow Twins as a representative example of a regularized
method with configurable input image augmentations in both branches. Several
real-world table recognition scenarios (e.g., extracting tables from document im-
ages), ranging from standard Word and Latex documents to even more challeng-
ing electronic health records (EHR) computer screen images, have been shown to
benefit greatly from the representations learned from this new framework, with
detection average-precision (AP) improving relatively by 4.8% for Table, 11.8%
for Column, and 11.1% for GUI objects over a previous fully supervised baseline
on real-world EHR screen images.

1 INTRODUCTION

Many self-supervised learning (SSL) methods for learning visual representation without supervision
(or labels) have been proposed in recent years (Zhang et al., 2016; Noroozi & Favaro, 2016; Gidaris
et al., 2018; Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021; He et al., 2022). Indeed,
the potentially practical benefits of avoiding the high cost of human annotations and moving away
from human-defined and language-dependent label categories strongly motivate this direction. In
particular, the most common framework is to use abundant unlabeled images to pretrain rich visual
representations and then transfer them to supervised downstream tasks with much fewer annotated
ones.

Tables are the most prevalent means of representing and communicating structured data in a wide
range of document images, such as financial statements, scientific papers, and electronic medical
health documents. Despite the explosive growth of the number of these document images (Vashisth
et al., 2022), most SSL approaches have so far been proposed in the context of the natural image
domain, with little attention paid to tabular and structured document image domains. Even the most
advanced systems (e.g., Prasad et al. (2020); Agarwal et al. (2021)) are largely dependent on object
detection models that have been trained on human-labeled natural images.

Table objects are a compact representation that humans can easily understand. However, this is
not true for machines since, unlike classic object detection classes, they might have widely disparate
sizes, types, styles, and aspect ratios. In other words, table structure varies greatly between document
domains (e.g., Word vs GUI screen), and a large variety of table styles are feasible even within the
same document format (e.g., borderless vs bordered).
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More importantly, object detection models trained for natural images (e.g., Faster R-CNN or YOLO)
retrained for table can work well locally while ignoring the overall style of tables that is important
to the table (Burdick et al., 2020). In that regard, very few works have started exploring SSL ap-
proaches to the problem of tabular rich document image domains. DiT (Li et al., 2022), for example,
directly employs BERT-style BEiT (Bao et al., 2021) to pretrain in a self-supervised manner on IIT-
CDIP dataset (Lewis et al., 2006) of 42 million document images and then fine-tune on a couple of
classification and detection tasks.

However, to the best of our knowledge, there are several open research problems in developing
SSL methods, particularly for tabular and structured document image domains, that require further
study. Finding simple but effective self-supervised pretraining objectives, architectures, and fine-
tuning strategies are examples of this. Keeping those questions in mind, our paper makes two main
contributions:

• First, we introduce REGCLR, a new self-supervised framework that combines contrastive-
based masked image modeling (MIM)1 and regularized methods and is Vision Transformer
(ViT) compatible. It is then instantiated by coupling masked autoencoders (MAE) and en-
hanced Barlow Twins (eBT) with configurable image augmentations; in principle, the MAE
loss is augmented with the eBT loss as a regularization (prior) term. In fact, this simple
SSL training loss objective is highly effective in reducing the capacity of learned/trained
latent representation, especially in the balanced direction of MAE and eBT loss. MAE loss
chooses to ignore irrelevant details, while eBT loss pushes relevant details to latent vectors
(i.e., minimizing the ignored details), which is highly important for tabular representation
learning.

• Second, we pretrain REGCLR on two distinct domains of document image datasets with
rich tabular structures, the publicly accessible TableBank (Li et al., 2019) and more chal-
lenging internal EHRBank, and then validate the higher sample efficiency of the learned
tabular representations in finetuning with TableBank and the superior detection perfor-
mance with EHRBank in various practical downstream settings. A recent MIMDet (Fang
et al., 2022) framework is used to extract multiscale features from the pretrained ViT en-
coder and decoder to use as a detection backbone without the need for architecture redesign
or changes. By leveraging MIMDet, REGCLR outperforms the latest and purely supervised
convolutional neural network (CNN) baseline by large margins.

2 REGCLR DESCRIPTION

2.1 INFORMATION THEORETIC FORMULATION

Problem Motivation and Notations In order to build a new unified SSL framework that incorpo-
rates the best of both worlds of MIM-based contrastive and regularized self-supervised approaches,
we adopt an information-theoretic perspective to pose the problem. The main question is well ex-
pressed in the following quote from Yan Lecun’s recent positional paper (LeCun, 2022, p. 23).

[LeCun (2022)] —It is important to note that contrastive and regularized methods
are not incompatible with each other, and can be used simultaneously on the same
model. How would regularized methods apply to the standard architectures?—

To begin with, let X be the input image, (X1,X2,X3) be the augmented or varied views of the image,
and (Y1,Y2,Y3) be the corresponding hidden/latent representation. Our goal is to learn the best repre-
sentation Y that retains as much information about the input image X as possible given a reasonable
representation constraint. The information bottleneck (IB) framework (Slonim et al., 2006) can be a
good constraint to use in this case. To use the IB principle, denote n be the number of samples, d be
the feature dimension, and Z2,Z3 ∈ Rn×d be the projected features.

The role of the IB constraint is to compress X2 into Z2 while preserving the information about Z3,
and similarly X3 into Z3 while keeping the information about Z2. To put it another way, the constraint

1We follow Yan LeCun’s broader classification of contrastive methods introduced in (LeCun, 2022), which
includes recent standard approaches (e.g., SimCLR (Chen et al., 2020)), MIM family (e.g., MAE (He et al.,
2022)), and even Generative Adversarial Networks.
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Figure 1: REGCLR’s self-supervised pretraining. REGCLR is consisted of two branches: MAE
and eBT. MAE branch uses weak augmentation and masking to obtain X1 and then follows procedure
introduced in MAE (He et al., 2022) to compute reconstructed loss for unmasked patches as LMAE
to obtain X ′

1. In the eBT branch, strong augmentation is applied twice to get X2 and X3. Through the
same ViT encoder used in the MAE branch, the encoded images are then projected into features Z2
and Z3. The proposed loss LeBT computes three correlation matrices between Z2 and Z3, attempting
to make each matrix near to an identity matrix. REGCLR’s overall self-supervised pretraining is
performed by jointly minimizing LMAE and LeBT through optimizing both ViT encoder and decoder.

seeks to compress X2 and X3 as much as possible, while also making Z2 and Z3 as informative about
each other as possible. For simplicity, we assume that Z2 and Z3 are two jointly multivariate Gaussian
variables with zero means and covariance matrices of K2,K3 ∈Rd×d that are full rank. Note that |K|
denotes the determinant of K, λ1,λ2, ...,λn are the eigenvalues of K, || · ||F is the Frobenius norm,
and h is the differential entropy.

Training Loss Design From an information theoretic perspective, the problem can be written as an
optimization problem in particular as:

argmax
θ

I(X1;Y1|θ)− I(Z2;X2|θ)− I(Z3;X3|θ)+αI(Z2;Z3|θ). (1)

Equivalently, if we omit θ for brevity, the target function L to minimize can be expressed as:

L= h(X1|Y1)︸ ︷︷ ︸
L1

+(1−α)h(Z2)+(1−α)h(Z3)+αh(Z2,Z3)︸ ︷︷ ︸
L2

,
(2)

this equality follows from the fact that h(X1) is a constant when the input distribution is fixed and
h(Z2|X2) = h(Z3|X3) = 0. It has previously been shown (Vincent et al., 2008) that minimizing the
expected reconstruction error equates to maximizing a lower bound on the first loss term L1 in (2).
This holds true even when Y is a function of a corrupted input (e.g., masked out image). Therefore,
for example, the mean squared error (MSE) between the augmented image X1 and the reconstructed
version X ′

1 denoted as LMAE can be used as the equivalent loss function of L1.

We can further express the remaining three loss terms L2 in (2) as2

log
(
|K2|

)
+ log

(
|K3|

)
+β log

(
|K23|

)
, (3)

where β ≜
(

α

1−α

)
. Then, log

(
|K|
)

can be upper bounded to be computationally convenient to use
as follows:

log
(
|K|
)
= log

(
n

∏
i=1

λi

)
=

n

∑
i=1

logλi <
n

∑
i=1

λ
2
i = ||K||2F . (4)

Combining (4) with (3), we obtain the further simplified version of L2 as

||K2||2F + ||K3||2F +β ||K23||2F . (5)

2Recall that the entropy of an d dimensional Gaussian variable is h(Z) = 1
2 log

(
(2πe)d |K|

)
.
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Figure 2: REGCLR’s detection via ViT backbone. The MIMDet architecture is leveraged
by REGCLR, as described in Section 2.2, to transfer both the pretrained ViT encoder and decoder
to detection with Cascade Mask R-CNN without requiring the ViT network redesign. In MIMDet, a
randomly initialized ConvStem replaces the pretrained large kernel PatchStem, and the ConvStem’s
intermediate features can directly be used as higher resolution inputs for a standard feature pyramid
network.

Figure 3: Visualization of the MAE branch’s reconstruction for a TableBank Word test set ex-
ample (with a masking ratio of 75%). The MAE arm reconstructs the table’s structure as well as the
most of the masked boundaries, demonstrating that it can learn tabular semantic information from
only unmasked patches while ignoring irrelevant document details (the eBT arm, on the other hand,
is anticipated to keep the ignored details to a minimum).

Since Z2 and Z3 are zero means, the cross-covariance matrix K23 becomes the cross-correlation
matrix R23 assuming normalization without loss of generality. Similarly, auto-covariance matrices
KZ2 and K3 become the auto-correlation matrices R2 and R3, respectively. Because there is a trivial
solution of zero matrices when minimizing (5), we can circumvent this trivial solution by urging
the diagonal terms to be 1 and all the off-diagonal terms to be zero. Hence, the resulting objective
denoted as LeBT is given by

LeBT = ν1 ∑
i

(
1−R2,ii

)2
+ν1 ∑

i

(
1−R3,ii

)2
+ν2 ∑

i

(
1−R23,ii

)2

+µ1 ∑
i

∑
j ̸=i

(
R2,i j

)2
+µ1 ∑

i
∑
j ̸=i

(
R3,i j

)2
+µ2 ∑

i
∑
j ̸=i

(
R23,i j

)2
,

(6)

where ν1, ν2, µ1 and µ2 are hyper-parameters controlling diagonal and off-diagonal terms of each
matrix. We use µ1 = 0.5, µ2 = 1.0, ν1 = 0.00255 and ν2 = 0.0051 to balance between auto-correlation
and cross-correlation terms during training. After introducing LMAE and LeBT, the overall training
loss is now straightforward to compose as:

LREGCLR = LMAE +LeBT. (7)

2.2 REGCLR FRAMEWORK

Self-Supervised Pretraining One possible instantiation is to use the new objective, LREGCLR in (7),
for self-supervised pretraining, and build the model with two branches, MAE and eBT, as shown
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Table 1: TableBank and EHRBank dataset statistics. TableBank includes Word and Latex docu-
ment image sets, while internally curated EHRBank has EHR screen images in the form of tables,
table columns, and GUI elements sets. Because labeling all GUI elements in the EHR images is
more costly, we have fewer samples in the GUI dataset. Note that the unlabeled EHRBank Screen-
shot dataset (shown in the last row) is used only for pretraining.

Train Val Test

TableBank Word 73,383 2,735 2,281
TableBank Latex 187,199 7,265 5,719

EHRBank Table 1,917 411 209
EHRBank Column 1,194 255 208
EHRBank GUI 157 38 157

EHRBank Screenshot (unlabeled) 28,121

in Figure 1. For the MAE branch, we choose to apply weak augmentation to the input image and
then randomly mask out the selected patches. Only unmasked patches are fed into the ViT encoder,
and subsequently the masked patches are reconstructed by the Vit decoder using the MSE calculated
over the masked patches as the loss function LMAE per the original MAE design (see Figure 3 for
an example of image visualization).

Secondly, the eBT branch operates on the cross embedding of the input image’s two strongly aug-
mented versions X2 and X3. In contrast to the previous instantiation of the IB principle presented in
BT loss Zbontar et al. (2021), which computes only the cross-correlation matrix, LeBT computes a
cross-correlation matrix as well as two auto-correlation matrices bringing these three matrices close
to the identity ones. We believe that this is a more natural and fundamental improvement over BT
loss because augmented images typically carry a significant amount of input image information,
implying that the conditional independence assumption of the BT loss (Zbontar et al., 2021, Figure
6) that leads to minimizing I(Z2;X2|θ) while maximizing I(Z3;X3|θ) is suboptimal.

Detection via ViT Backbone For detection, as illustrated in Figure 2, we combine a ViT encoder
and decoder pretrained in a self-supervised manner with MIMDet (Fang et al., 2022) to serve as
the detection backbone and leverage Cascade Mask R-CNN (Cai & Vasconcelos, 2019), which is
the common architecture in supervised state-of-the-art systems (e.g., Prasad et al. (2020); Agarwal
et al. (2021)). Compared to previous representative approaches of adapting vanilla ViT for object
detection (e.g. Li et al. (2021)), MIMDet replaces the pretrained patchify stem (PatchStem) with
a compact convolutional stem (ConvStem) without further upsampling or redesigns, resulting in a
ConvNet-ViT hybrid multi scale feature extractor that requires far fewer epochs in the fine-tuning
procedure.

3 EXPERIMENTS

3.1 DATASETS

TableBank Dataset TableBank is a publicly available image-based table dataset for Word and Latex
documents on the Internet. It contains 417K high-quality tables labeled with weak supervision split
across Word and Latex sets. Note that the Word document set contains English, Chinese, Japanese,
Arabic, and other languages, whereas the Latex document set is primarily in English. Details of the
data split can be found in Table 1 and one can refer to the top row of Figure 5 for image samples
with annotated bounding boxes.

EHRBank Dataset Beyond the TableBank dataset, we systematically curated an internal dataset
of screen images from real-world EHR systems, which consists of screenshots collected by bots
as they navigate the EHR systems of ten US health systems from various EHR providers.3 These
screens were then carefully selected to include essential template screens and labeled by an internal
team of labelers, including tables, table columns, and other GUI elements4. Details of the dataset’s

3The collection and use of this EHRBank dataset required HIPPA compliance training.
4Appendix A contains brief descriptions of all twelve classes of GUI elements labeled.
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composition can be found in Table 1. For the Column dataset, we further cropped these images to
just tables, removing examples that were occluded from overlays. Visual examples of these datasets
with human-annotated bounding boxes can be found in the first column of Figure 6.

In addition to the aforementioned supervised dataset with labeled objects, we also collected a unla-
beled Screenshot dataset from the worklogger system of a single US health system, which records
videos of hospital staff interacting with the EHR system. We randomly sampled screen recordings
from the database, then the randomly sampled frames from the randomly sampled videos. The
frames were then split into two because most staff members had a dual monitor set up, and these
frames were labeled by the same internal team of labelers, and frames without tables or columns or
corrupted due to the splitting process were removed. This dataset contains 28,121 PNG images with
a resolution of 1920x1080, which represent 10.8% of the volume of the TableBank Train set.

3.2 SETTINGS

Pretraining For TableBank experiments, we pretrain REGCLR on the combined train set of 260,582
document images from the Word and Latex sets. For EHRBank experiments, we have an unsuper-
vised screenshot set of 28,121 images to be used for pretraining. For both experiments, we used
adaptive binarization, random resize cropping, and random horizontal flipping as a weak augmen-
tation to train the MAE branch. For a strong augmentation to train the eBT arm, we further add
smudge transformation and dilation, which are introduced in (Prasad et al., 2020). The input images
are resized to 224 by 224 in size, and the pretraining phase takes 500 epochs to complete with a
batch size of 80.

Table 2: Results of table detection on the TableBank test set (in AP and AP75). MAE denotes
the representative SSL pretraining baseline, while ResNet (He et al., 2016) stands for the purely
supervised baseline using the ResNet-152 backbone, with Cascade Mask R-CNN. The bold value
represents the best (highest) value for each column metric. All baselines are outperformed by the
proposed REGCLR.

Word Latex

AP AP75 AP AP75

ResNet (supervised baseline) 95.42 95.78 97.32 98.62
MAE (self-supervised baseline) 95.94 96.16 97.63 98.70
REGCLR (our method) 96.03 96.22 97.68 98.75
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Figure 4: Benefits of REGCLR in low labeled data regimes (Left) Word set and (Right) Latex
set. Each datapoint in the graph represents the number of labeled subsets of 1k, 2k, 5k, 10k, and
20k. REGCLR begins performing best after a 2-3% subset of labeled train data is provided for fine-
tuning.
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(a) (b) (c) (d)

Figure 5: TableBank test set examples (a-b) Word test set and (c-d) Latex test set. The top row
depicts examples with annotated boundaries, while the bottom row presents the corresponding de-
tection predictions by REGCLR .

Our encoder and decoder model uses the ViT base backbone of a 12-layer Transformer with 12 self-
attention heads. Our implementation of pretraining is built on the repo provided in MAE (He et al.,
2022), and the projector is implemented as a 2 layer multilayer perceptron with 1024 dimensional
output. Overall, pretraining on TableBank uses 4 Nvidia A100 GPUs for 20 hours, and pretraining
on EHRBank uses 4 Nvidia V100 GPUs for 40 hours.

Fine-tuning For both experiments, we use MIMDet method to adapt pretrained ViT weights to
detection. For all experiments except table detection in EHRBank dataset, the input is resized so
that the shortest side is between 480 and 800 pixels and the longest side is no more than 1333
pixels. For the table detection in EHRBank dataset, the input is resized so that it has the shortest
side between 307 and 512 pixels and the longest side no more than 853 pixels. We use adaptive
binarization as preprocessing for input images, and our implementation for fine-tuning is based on
the repo provided in MIMDet (Fang et al., 2022), with a 50% sampling ratio for both training and
inference.

Baselines We carefully chose an MAE as a representative self-supervised pretraining baseline and
ResNet with the ResNet-152 backbone as a fully supervised baseline. For a fair comparison, both
baselines, like REGCLR, use the Cascade Mask R-CNN architecture. All methods for TableBank
datasets are trained for 125,000 iterations with a batch size of 12. All methods for table detection in
the EHRBank datasets are trained for 10,000 iterations with a batch size of 16 in the experiments.
For other tasks in the EHRBank datasets, we train for 20,000 iterations with a batch size of 4.

3.3 RESULTS

TableBank Dataset The prediction results of the TableBank table detection are shown in Table 2
in AP (mAP @ IOU [0.50:0.95]) and AP75 (mAP @ IOU 0.75) with the results of two baselines.
We can see that our method REGCLR outperforms the other self-supervised and fully supervised
baselines. The visualization of the table detection predictions by REGCLR can be found in the
second row of Figure 5. We conduct further evaluations to better understand our method, REGCLR,
especially how it performs when the number of labeled data decreases, particularly in low labeled
data regimes.
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Table 3: Results of GUI elements detection on the EHRBank Table and Column test sets (in
AP and AP75). REGCLR performs best when pretraining with the EHRBank Screenshot dataset, in-
creasing AP scores relatively by 4.8% for Table and 11.8% for Column over the supervised baseline,
as seen by comparing the first and second rows. Interestingly, despite pretraining with approximately
10% volumes of TableBank, RegCLR fast approaches the best cross-domain transfer results from
TableBank to EHRBank in the last row.

Table Column

Pretrain on Method AP AP75 AP AP75

N/A ResNet 40.53 44.46 61.43 67.07

EHRBank Screenshot REGCLR 42.46 45.32 68.68 75.17
MAE 36.78 39.05 64.67 71.09

TableBank (cross-domain) REGCLR 40.96 43.47 67.77 75.06
MAE 43.99 48.77 69.83 77.29

Table 4: Results of GUI elements detection on the EHRBank GUI test set (Left) GUI elements
detection AP and AP75 in the GUI test set, and (Right) the detection AP of each GUI element class
in the test set. As shown in the left table, REGCLR outperforms the baselines in both AP and AP75
metrics on average. Specifically, REGCLR outperforms the baselines in eight of twelve categories,
while MAE performs even worse than ResNet in six.

ResNet MAE RegCLR

AP 43.37 45.69 48.17
AP75 48.25 50.80 54.10

ResNet MAE REGCLR

Button 38.42 33.02 33.13
Dropdown 48.02 44.33 43.14
Dropdown group 43.25 41.71 43.33
Horizontal scrollbar 25.12 36.88 38.78
Overlay 52.92 65.58 62.12
Tab 37.62 34.13 36.46
Tab group 29.94 30.35 32.77
Table 62.72 66.10 72.64
Table column 46.31 50.44 54.74
Text box 55.03 54.56 58.06
Text input group 42.82 41.38 44.87
Vertical scrollbar 37.28 47.32 52.00

To do so, we evaluate the test set when fine-tuning on the subsets of 1k, 2k, 5k, 10k, and 20k. Note
that all methods are trained for 10,000 iterations with a batch size of 12 for this experiment. As
shown in Figure 4, REGCLR outperforms the baselines soon after fine-tuning on a subset of 2-3%
labeled train set, AP scores improve quickly even with considerably fewer labeled images (i.e., less
than 10%) provided than the unlabeled set, and the gain decreases as more labeled data are added.

EHRBank Dataset We then evaluate REGCLR on internal EHRBank dataset which has higher
values in our production scenario. As shown in Table 3, when pretrained on unlabeled EHRBank,
our method outperforms the baselines in both Table and Column detection, increasing relative AP
scores by 4.8% and 11.8% respectively over the supervised baseline, as seen by comparing the first
and second rows. Furthermore, even though pretrained with only around 10% of the TableBbank
volume, REGCLR quickly approaches the best cross-domain transfer performance from TableBank
to EHRBank, as shown in the last row.

Additionally, it is worth noting that MAE performs worse than even ResNet on Table when pre-
trained on EHRBank (by comparing the first and third rows). It does, however, transfer bet-
ter than REGCLR in scenarios involving cross-domain transfer from public TableBank to pri-
vate EHRBank (by comparing the last two rows). In the future, we intend to investigate how
quickly detection performance improves as the unlabeled data volume scales, as well as how effec-
tively pretrained weights transfer across domains in the context of tabular rich images, so that they
can be applicable to other document format datasets (e.g., Word to GUI and vice versa).

Table 4 presents the results in GUI elements detection, in which our method pretrained
on EHRBank Screenshot again produces the highest overall detection scores compared to the base-

8



Under review as a conference paper at ICLR 2023

lines. This demonstrates that REGCLR can provide performance improvement even in more com-
plicated scenarios with a larger number of classes and possible occlusions between different GUI
elements. The performance variation across different GUI categories is also presented in the right
table of Table 4. Visualization of the predictions in the EHRBank can be found in Figure 6.

4 RELATED WORK

SSL Methods for Natural Images Learning good visual representation in a self-supervised manner
has been a rising paradigm in computer vision over the past few years. More recently, a few families
of approaches have emerged. i) Contrastive learning is trained to extract meaningful features by
mapping different images to distant points and the same image under various image augmentations
to close points in the feature space. As an example, SimCLR (Chen et al., 2020) defines the feature
distance by cosine similarity and utilizes InfoNCE proposed by (Oord et al., 2018) as a loss function.
ii) Self-distillation serves as another powerful approach that achieves effective representation learn-
ing while alleviating the need for large contrastive batch sizes that are often required for contrastive
methods. BYOL (Grill et al., 2020) simply minimizes the similarity loss between the encoder and its
momentum target version to achieve this. iii) Feature regularization methods, alternatively, optimize
over the auxiliary regularizing loss to directly learn features with desired properties. In this family,
Barlow Twins (Zbontar et al., 2021) minimizes off-diagonal terms in the covariance matrix between
two augmentations to obtain low redundancy representations.

Transformer Architecture for SSL Methods In addition to the advancement of the SSL algorithm,
the Transformer (Vaswani et al., 2017) architecture also presents itself as a powerful general archi-
tecture in computer vision. It brings advantages over CNN, which has dominated the field as a de
facto network structure since the emergence of deep learning. Using the ViT architecture, MAE (He
et al., 2022), in particular, generalizes masked language modeling (MLM) popular in natural lan-
guage processing to MIM in computer vision. MAE feeds unmasked patches to the transformer and
predicts masked patches as a pretext task. Despite its simplicity, MAE shows strong performance on
various computer vision tasks, and specifically, MAE has been found to produce features that better
support the downstream object detection task (Li et al., 2021) that was the inspiration for our study.

SSL Methods for Document Images Beyond natural images, self-supervised pre-training with
transformers is actively used in vision-based document AI tasks. In particular, DiT (Li et al., 2022),
which uses BEiT (Bao et al., 2021), demonstrates MIM’s potential to extract high-quality visual
representations from document images. LayoutLMv3 (Huang et al., 2022) further extends pretrain-
ing to a multimodal setup with unified text and image masking, including MLM for texts, MIM for
images, and a novel word-patch alignment that predicts whether the corresponding image patch for
any given word is masked. In the direction of multimodal pretraining for document images, VL-
CDoC (Bakkali et al., 2022) proposes using contrastive loss to align text and vision cues, producing
strong performance when both text and image are available. In the context of the images of medical-
health documents that we are interested in, DEXTER (PR et al., 2022) fine-tunes the TableBank
from pretrained MS COCO weights, while no SSL method is employed.

5 CONCLUSION

In this paper, we present REGCLR, a novel self-supervised framework for learning tabular repre-
sentation and downstream detections, which had received little attention than natural image domain.
Our brand-new framework combines contrastive and regularized self-supervised methods and has
been pretrained on both public and private domain tabular rich images. We demonstrate that REG-
CLR outperforms previous self-supervised pretraining and fully supervised baselines by a large
margin in various real-world contexts, with high sample efficiency for fine-tuning. It is left to future
study how quickly the quality of the representation learned by our method improves as the volume
of unlabeled images scales, which is a common and practical scenario in production. We believe
that this study is an important step towards semantic comprehension of real-world document images,
and it will be interesting to see how this vision-based framework can be expanded to include textual
content without manual data annotation.
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cdoc: Vision-language contrastive pre-training model for cross-modal document classification.
arXiv preprint arXiv:2205.12029, 2022.

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

Douglas Burdick, Alexandre V Evfimievski, Yannis Katsis, Marina Danilevsky, and Nancy Wang.
Ibm’s tutorial on table extraction and understanding for scientific and enterprise applications,
2020. URL https://researcher.watson.ibm.com/researcher/view_group.
php?id=10211.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019. ISSN
1939-3539. doi: 10.1109/tpami.2019.2956516. URL http://dx.doi.org/10.1109/
tpami.2019.2956516.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations (ICLR 2021), 2021.

Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying Shan, and Xinggang Wang. Unleash-
ing vanilla vision transformer with masked image modeling for object detection. arXiv preprint
arXiv:2204.02964, 2022.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A APPENDIX

EHRBank GUI Dataset: We collect and label GUI screenshots with twelve classes: button, drop-
down, drowdown group, overlay, tab, tab group, table, table column, text box, text input group,
horizontal scrollbar and vertical scrollbar.

• Button: Small, usually rectangle shape, clickable elements in the screen with or without
text.

• Overlay: A separate piece of user interface that appears to be the front layer (e.g., a popup
window).

• Dropdown and dropdown group: A clickable rectangle shape UI element or a group of such
UI elements that can be clicked to expand to multiple choice selection interface.

• Tab and tab group: A clickable rectangle shape UI element or a group of such UI elements
that can switch between different pages.

• Table and table column: Tabular element and column of such tabular element.
• Text box and text input group: Box that can type in text and group of such elements.
• Horizontal scrollbar and vertical: scrollbar: Horizontal and vertical draggable UI element

that can move the displaying window accordingly.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: EHRBank test set examples (a-b) Table test set, (c-d) Column test set, and (e-f) GUI
test set. The first column shows examples with human-annotated boundaries, while the second
column presents the corresponding detection predictions by REGCLR . All images are purposefully
scrubbed so that no PHI information about the patient is disclosed.
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