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Abstract

Data attribution methods, which quantify the influence of individual training data
points on a machine learning model, have gained increasing popularity in data-
centric applications in modern AI. Despite a recent surge of new methods developed
in this space, the impact of hyperparameter tuning in these methods remains under-
explored. In this work, we present the first large-scale empirical study to understand
the hyperparameter sensitivity of common data attribution methods. Our results
show that most methods are indeed sensitive to certain key hyperparameters. How-
ever, unlike typical machine learning algorithms—whose hyperparameters can be
tuned using computationally-cheap validation metrics—evaluating data attribution
performance often requires retraining models on subsets of training data, making
such metrics prohibitively costly for hyperparameter tuning. This poses a critical
open challenge for the practical application of data attribution methods. To address
this challenge, we advocate for better theoretical understandings of hyperparam-
eter behavior to inform efficient tuning strategies. As a case study, we provide a
theoretical analysis of the regularization term that is critical in many variants of
influence function methods. Building on this analysis, we propose a lightweight
procedure for selecting the regularization value without model retraining, and
validate its effectiveness across a range of standard data attribution benchmarks.
Overall, our study identifies a fundamental yet overlooked challenge in the practical
application of data attribution, and highlights the importance of careful discussion
on hyperparameter selection in future method development.

1 Introduction

Data attribution methods quantify the contribution of individual training samples to a machine
learning model’s predictions or overall performance [22, 9]. These methods have been successfully
applied to a range of data-centric tasks in modern AI, including training data selection [37], mislabel
detection [22], and copyright compensation [7]. Recently, this field has witnessed a surge of novel
methods [11, 18, 30, 12, 29, 6, 3, 35], each promising improvements in efficiency, efficacy, or
theoretical soundness.

Despite this rapid progress, a crucial practical aspect remains largely underexplored: the hyperpa-
rameter sensitivity of data attribution methods. Existing benchmark studies [19, 8] largely adopt
the hyperparameter settings used in the original papers proposing the methods. While some of the
original papers include limited ablation studies, few of them offer practical guidance for hyperparam-
eter selection, and many methods include implicit tunable knobs that have received little scrutiny.
Moreover, the optimal hyperparameter choices can vary across datasets and models.
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Hyperparameter tuning is particularly challenging in data attribution due to the high computation costs
associated with common evaluation metrics. Standard evaluation metrics—such as Leave-One-Out
(LOO) correlation [22] and Linear Datamodeling Score (LDS) [29]—require retraining models
on subsets of the full training dataset for hundreds or even thousands of times. A conventional
hyperparameter search under such evaluation metrics is prohibitively expensive in practice.

In this work, we present the first systematic, large-scale empirical study of hyperparameter sensitivity
in data attribution. We benchmark a suite of popular data attribution methods across various datasets
and models with extensive hyperparameter sweeps. Our results confirm that most methods are
sensitive to certain key hyperparameters, and the optimal hyperparameter choices vary across experi-
mental settings. Our analysis also reveals other interesting novel findings regarding the interaction of
different hyperparameters. Our findings highlight hyperparameter tuning as a critical open challenge
in the practical application of data attribution.

As a first step towards addressing this challenge, we conduct a case study on selecting the regu-
larization term—a crucial hyperparamter in many influence function methods [22, 12]—without
costly retraining. We first provide a theoretical analysis of how the regularization term affects the
influence function performance in terms of LDS. Building on this analysis, we introduce a surrogate
indicator that enables selection of the regularization value without model retraining. We validate
the effectiveness of the proposed approach across multiple experimental settings, including several
variants of influence functions on different datasets and models.

To summarize, our contributions are as follows:

• We identify hyperparameter tuning as a critical but largely overlooked challenge in the practical
application of data attribution methods.

• We conduct the first comprehensive empirical study of hyperparameter sensitivity in data attribution,
benchmarking a range of widely used methods across diverse settings, confirming the necessity of
practical hyperparameter selection strategies.

• We provide a theoretical analysis of the regularization term in influence functions and propose an
efficient, retraining-free selection procedure with strong empirical performance.

These results advance both the understanding and practical deployment of data attribution methods,
encouraging a more systematic treatment of hyperparameters as integral components in future
methodological development.

2 Background

In this section, we provide the necessary background to contextualize our empirical study of hyperpa-
rameter sensitivity in Section 3 and the subsequent case analysis in Section 4.

2.1 Data Attribution Methods and Their Hyperparameters

In this work, we focus on the methods included in a recent benchmark study [8], which consists of
state-of-the-art efficient data attribution methods while omitting a family of game-theoretic methods
such as Data Shapley [11, 18].1 In the following, we introduce the notation, then review a set of most
widely-used data attribution methods as well as their major hyperparameters examined in our study.

Notation. Consider a multi-class classification problem with dataset S = {(xi, yi)}ni=1 ⊂ Z ,
where Z = X × Y , inputs xi ∈ X ⊂ Rd, and labels yi ∈ Y . We use a parameterized hypothesis
function h(·, θ) : X → ∆|Y|−1 with parameters θ ∈ Rp, which typically outputs class probabilities
via a softmax layer. The cross-entropy loss for a single example z = (x, y) is denoted by L(z, θ) =
ℓ(h(x, θ), y). The empirical risk at θ over a subset A ⊂ S of size a is RA(θ) :=

1
a

∑
z∈A L(z, θ).

For a given test example z′ = (x′, y′), following Park et al. [29], we define the model output function
as f(z′, θ) := ln p(z′,θ)

1−p(z′,θ) , where p(z′, θ) = exp(−L(z′, θ)) is the model’s predicted probability for
the correct class y′. We denote the parameter that minimizes RS as θ∗S .

1While these game-theoretic methods are theoretically principled, they are typically computationally expen-
sive and cannot scale up to even moderately large models.
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Data attribution methods. A data attribution method (or an attributor) is a function τ : Z×S → R
that, for a given test example z′ ∈ Z , assigns τ(z′, zi) to each training point zi ∈ S. A popular
attributor is the Influence Function (IF) attributor, introduced by Koh and Liang [22], which computes
the influence of a training example zi ∈ S on a test example z′ ∈ Z as

τIF(z
′, zi) := −∇θf(z

′, θ∗S)
⊤H−1

S ∇θL(zi, θ
∗
S), (1)

where HS := ∇2
θRS(θ

∗
S) is the Hessian of the empirical risk RS . To bypass the prohibitive

computation of HS , they also propose using efficient approaches to approximate H−1
S ∇θL(zi, θ

∗
S),

including conjugate gradient (CG) [27] and stochastic estimation method LiSSA [1]. For non-convex
models, HS is usually replaced with its regularized version HS + λIp in case of singularity [22],
where λ > 0 is a regularization term and Ip is the identity matrix of size p. To further handle non-
convexity and reduce computational costs, Grosse et al. [12] draw from second-order optimization
literature [26] and introduce the Generalized Gauss Newton matrix (GGN) and empirical Fisher
Information Matrix (FIM) to approximate HS , which are guaranteed to be positive semi-definite
(or even positive definite when a small regularization λIp is included), and only involve first-order
differentiation. We formally define the Influence Function attributor with FIM (IFFIM) as

τIFFIM,λ(z
′, zi) := −∇θf(z

′, θ∗S)
⊤(FS + λIp)

−1∇θL(zi, θ
∗
S), (2)

where FS is the empirical FIM defined as:

FS :=
1

n

∑
zi∈S

[∇θL(zi, θ
∗
S)∇θL(zi, θ

∗
S)

⊤] = Ezi∼S [∇θL(zi, θ
∗
S)∇θL(zi, θ

∗
S)

⊤]. (3)

The TRAK [29] and LoGra [6] attributors adopt similar forms2 while further introducing gradient
projections to accelerate computation. In this case, we have the following modified IFFIM attributor,
which takes a projection matrix P ∈ Rp×p̃ with projection dimension p̃ into consideration:

τIFFIM,λ,P (z
′, zi) := −∇θf(z

′, θ∗S)
⊤P (P⊤FSP + λIp̃)

−1P⊤∇θL(zi, θ
∗
S). (4)

Another popular method, TracIn [30], computes the influence of zi on z′ by tracing the entire
optimization process based on stochastic gradient descent. Mathematically, it works as if substituting
H−1

S with the identity matrix, while taking average across training model checkpoints weighted by the
learning rate: τTracIn(z′, zi) :=

∑
t ηt∇θf(z

′, θt)
⊤∇θL(zi, θt), where θt and ηt are the parameters

and learning rate at checkpoint t.

Major hyperparameters. We highlight some major hyperparameters that are shared across multiple
data attribution methods mentioned above.

• Regularization term λ: the regularization term λ for handling non-convexity is a common hyperpa-
rameter across many methods, including IF [22], TRAK [29], LoGra [6], etc.

• Projection dimension p̃: gradient projection is a common practice to reduce computational costs
in data attribution methods [33, 6, 29], making the projection dimension p̃ another common
hyperparameter.

• Training epoch: while, in principle, most data attribution methods rely on the optimal model
parameters θ∗S to calculate the attribution scores, one can also calculate the attribution scores using
an earlier model checkpoint θt in practice. This makes the training epoch of the checkpoint used to
calculate the attribution scores an implicit hyperparameter, whose impact is largely overlooked in
the literature.3

2.2 Evaluation Metrics for Data Attribution

Evaluation metrics for data attribution can be categorized into application-agnostic and application-
specific metrics.

The application-agnostic metrics include Leave-One-Out (LOO) correlation [22], Linear Datamod-
eling Score (LDS) [29], and Brittleness [16]. In general, these metrics measure the performance

2Appendix B.1 provides a detailed discussion on the relationship between TRAK and IFFIM.
3TracIn [30] explicitly uses multiple checkpoints as shown in the definition of τTracIn while TRAK [29] also

explores the effect of aggregating over different checkpoints in an ablation study.
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of data attribution methods by their ability to predict the model output when training on subsets of
the training data. As a result, they typically require hundreds or even thousands of model retraining
on subsets of the training dataset. While these metrics are widely used as principled evaluation
criteria for novel data attribution methods in research setup, they are prohibitively expensive for
hyperparameter tuning in practical applications.

The application-specific metrics rooted in individual downstream application scenarios. Two common
scenarios include noisy label detection and data selection [22, 11]. While these metrics are typically
less computationally demanding, they are restricted to specific applications and only provide a partial
picture of the quality of data attribution. Hyperparameter tuning in data selection also relies on
retraining the model on the selected data subset, which can be expensive for large-scale applications
such as large language models [37].

In this work, we focus on LDS, which is one of the most widely used evaluation metrics in recent
literature [29, 6, 8], for both the hyperparameter sensitivity study and the case study. Formally, LDS
is defined as following.

Definition 2.1 (Linear Datamodeling Score (LDS) [29]). Given an attributor τ and a test example
z′ ∈ Z , sample s subsets A = {A1, · · · , As}, where each Aj ⊂ S is sampled uniformly at random
with fixed size a. The Linear Datamodeling Score (LDS) of τ for z′ on A is defined as:

cs(τ, z
′, A) := SpearmanCorr

(
{f(z′, θ∗Aj

)}j∈[s],
{ ∑

z∈Aj

τ(z′, z)
}
j∈[s]

)
, (5)

where θ∗Aj
is the optimal model parameters learned on a subset Aj , the subset influence is modeled

as additive in individual influences [15], and SpearmanCorr is the Spearman correlation [34].

2.3 Related Work on Hyperparameter Sensitivity in Data Attribution

Finally, we review existing literature with dedicated discussions on the effect of hyperparameters in
data attribution. Koh et al. [23] examine the change in attribution quality when the regularization
strength λ is tuned in IF settings. They empirically observe an enhancement of the correlation
between the attributed influences and actual effects when λ is increased, and provide an upper bound
on the approximation error of IF which decreases with λ. Basu et al. [4] empirically study the effects
of neural network architectures and weight-decay during model training on IF attribution quality.
They reveal an increase in error when the network is deep or weight-decay is absent. Zhang and
Zhang [38] utilize techniques from Neural Tangent Kernel [17] to provide a theoretical lower bound
of the LOO counterfactual loss change for wide two layer ReLU networks with regularized mean-
square loss. Klochkov and Liu [21] leverage the spectral properties of Hessian to guide selection
of hyperparameters specific in LiSSA. However, to our knowledge, this work is the first systematic,
large-scale study on the hyperparameter sensitivity in data attribution that points out the unique
computational challenge for hyperparameter tuning in practice.

3 A Large-Scale Study of Hyperparameter Sensitivity in Data Attribution

3.1 Experimental Setup

Data attribution methods. We evaluate a range of data attribution methods, including IF and its
variants (CG and LiSSA) [22], TracIn [30], TRAK [29], and LoGra [6], introduced in Section 2.1.

Datasets and models. We perform empirical evaluations on three standard benchmark settings:
MNIST [25] with a multilayer perceptron (MLP), CIFAR-2 [24] with ResNet-9 [14], and Wiki-
Text2 [28] with the GPT2 [31], which consists of both image and text data with various model sizes.
We use the implementation from the dattri library [8] for the datasets and models.

Experiment design. We carry out the comprehensive study through multiple sub-experiments. For
each sub-experiment, we analyze the sensitivity of one or two hyperparameters while controlling
other hyperparameters to be fixed. We perform a grid search over the chosen hyperparameters within
the search space. We calculate LDS for each experiment under 50 independently retrained models.
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Hyperparameter selection and search space. We consider both the common hyperparameters
introduced in Section 2.1 and some critical method-specific hyperparameters. For TRAK, we
experiment with regularization, projection-dimension, and training-epoch. For TracIn, we search
for projection-dimension, normalization, and checkpoint-selection. For IF, we analyze regularization
and training-epoch, as well as max-iteration for the CG variant, and scaling and recursion-depth
for the LiSSA variant. For LoGra, we search for regularization, projection-dimension, and training-
epoch. We design the search space for each hyperparameter around its default value proposed by the
original papers. The detailed definitions and the search space of the hyperparameters are stated in
Appendix A.1.

3.2 Experimental Results

We summarize our findings and insights from the experimental results (Figure 1)4 as follows:
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Figure 1: Part of the experimental results of hyperparameter sensitivity analysis.

• Most attribution methods are sensitive to certain hyperparameters. Small changes in hyper-
parameters can lead to large variations in LDS performance, highlighting the sensitivity of most
methods to hyperparameter choices. For example, Figure 1a shows that increasing regularization
from 1e-4 to 1e-2 for IF (CG) leads to a 3× increase in LDS.

• The best hyperparameter choices vary across datasets and models. A configuration that
performs well for one setting (dataset and model) may not transfer to another setting, reinforcing
the need for hyperparameter tuning for each specific task. For example, Figure 1e shows that

4Some additional results are shown in Section A.2.
5IF (explicit) refers to the original definition of IF that explicitly inverts the Hessian. Only the last layer

parameters are used for IF (explicit) due to the memory limit.
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setting training-epoch as 5 on MNIST+MLP is the best hyperparameter choice while leading to
poor performance on CIFAR-2+ResNet-9.

• The impact of hyperparameters can be entangled. We find that the choice of one hyperparameter
can affect the sensitivity of LDS to others. As an example, the LDS of both TRAK and LoGra
becomes more sensitive to regularization for higher projection-dimension, as depicted in Figure 1b,
Figure 1c, and Figure 1f. Intuitively, higher projection-dimension implies that the Hessian or
empirical FIM is closer to being singular, which leads to more sensitive attribution scores. Interest-
ingly, the entanglement of regularization with projection-dimension addresses an open question in
TRAK [29]: it was unclear why, counter-intuitively, the LDS for TRAK decreases when projection-
dimension increases—our result suggests that this is due to an insufficient tuning of regularization.
Concretely, Figure 1b and Figure 1c indicate that when having a high projection-dimension (e.g.
8192), TRAK performs poorly with low regularization. However, a higher projection-dimension
ultimately leads to better LDS when regularization is tuned.

• Implicit hyperparameters, such as training-epoch, also play an important role. Figure 1e
illustrates the effect of a largely overlooked hyperparameter, the training-epoch. It turns out that the
training-epoch of the model used to calculate the attribution scores could significantly affect LDS.
However, it is counter-intuitive that a larger training-epoch could lead to worse LDS, which raises
an open question for future research.

4 A Case Study on the Regularization Term in Influence Function

In this section, we first analyze the problem of selecting the regularization term λ in influence
functions for maximizing LDS. Based on our analysis, we propose a surrogate indicator that instructs
a practical selection algorithm for λ without model retraining. Finally, we evaluate the proposed
selection algorithm on a variety of experimental settings, demonstrating that it empirically generalizes
well for multiple data attribution methods involving the regularization term.

4.1 Problem: Hyperparameter Selection of λ in Influence Function

We study the problem of selecting λ using the IFFIM version of influence function, τIFFIM,λ, as
defined in Eq.(2).

Hyperparameter selection as an optimization problem. Recall Definition 2.1, where we have
denoted LDS as cs(τ, z

′, A) for an attributor τ , a test sample z′, and samples of subsets A. The
hyperparameter selection problem can be formulated as the following optimization problem:

max
λ>0

cs(τIFFIM,λ, z
′, A).

However, directly analyzing this optimization problem poses several technical challenges. First, the
LDS objective is non-differentiable because it involves the discrete Spearman correlation. Second,
the LDS objective depends on the specific sample of subsets A, which is difficult to analyze. Third,
evaluating the LDS requires model retraining, which we aim to avoid.

Relaxing the LDS objective. To address the first two challenges, we propose the Population
Pearson LDS as a more tractable proxy for LDS.
Definition 4.1 (Population Pearson LDS). For an attributor τ and a test example z′ ∈ Z , the
Population Pearson LDS is defined using the Pearson correlation over all subsets A ⊂ S of size a:

cp(τ, z
′) := PearsonCorr

(
{f(z′, θ∗A)}A⊂S,|A|=a,

{∑
z∈A

τ(z′, z)
}
A⊂S,|A|=a

)
. (6)

Note that Spearman correlation is equivalent to the Pearson correlation of the rank-transformed
variables. Therefore, both statistics measure monotonic relationships and are generally expected to
be highly correlated [10]. The new objective, Population Pearson LDS, is differentiable and replaces
the sampled subsets A with all size a subsets of S, which makes it easier to analyze. Specifically, we
can define the partial derivative of cp with respect to λ as

ċp(λ; z
′) :=

∂cp(τIFFIM,λ, z
′)

∂λ
. (7)
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Analyzing the partial derivative ċp(λ; z
′). In our hyperparameter sensitivity experiments in

Section 3, we observe that, empirically, the LDS with respect to the regularization term λ often has a
uni-modal and concave shape. This observation turns our attention from the original maximization
problem to the analysis of the partial derivative ċp(λ; z

′). We first show in the following Lemma 4.2
that our empirical observation about the shape of the LDS as a function of λ is not a coincidence.
Lemma 4.2 (Monotonicity in Small λ; Informal). Assuming the test sample z′ follows a similar
distribution as the training data, under some technical assumptions deferred to Section B.4,6 with
high probability over the choice of test sample z′, there exists some C > 0 such that for 0 < λ < C,

ċp(λ; z
′) > 0.

Lemma 4.2 suggests that for a range of small λ starting from 0, cp as a function of λ is increasing.
With the observation regarding the shape of the LDS curve, ideally, we can solve for the optimal
hyperparameter λ∗ as the stationary point with ċp(λ

∗; z′) = 0. However, the partial derivative
ċp(λ

∗; z′) still involves quantities θ∗A for A ⊂ S, which require model retraining.

4.2 Analysis: A Sufficient Condition for Monotonicity in λ

Instead of directly solving for the stationary point, we derive a sufficient condition (Theorem 4.3)
for the derivative to be positive, which leads to a surrogate indicator that does not require model
retraining (see Definition 4.6 in Section 4.3). Before we state this condition, we first introduce some
key notations and their intuitive interpretations.

LOO weighted loss gradients. We let Da denote the uniform distribution of size a subsets of S. De-
fine gz′ := 1

n

∑n
i=1 αz′,i∇θL(zi, θ

∗
S) ∈ Rp, where αz′ ∈ Rn with αz′,i := EA∼Da

[f(z′, θ∗A)|zi ∈
A]−EA∼Da

[f(z′, θ∗A)]. As the name suggests, we point out that αz′,i can be interpreted as the LOO
influence of zi on z′ under certain conditions. Under this interpretation, gz′ becomes the sum of loss
gradients of training points weighted by their LOO influences on the test example z′. More details
can be found in Section B.2.

Other necessary notation. For simplicity of notation in our subsequent analysis, we let vz′ denote
the gradient ∇θf(z

′, θ∗S), and define several bilinear terms of vz′ , gz′ , or αz′ . They will be used to
measure and compare different θ update directions (see Theorem 4.3 and its interpretations below).
Denote tk,z′,λ := v⊤z′(FS + λIp)

−kFSvz′ . Further, we let rz′,λ := −v⊤z′(FS + λIp)
−1gz′ and

oz′,λ := α⊤
z′(JJ⊤ + nλIn)

−1αz′ , where J ∈ Rn×p has its ith row being ∇θL(zi, θ
∗
S)

⊤. The
relationship between (FS + λIp)

−1 and (JJ⊤ + nλIn)
−1 is embodied in Lemma B.3. Intuitively,

these terms define semi-inner products of vz′ , (FS + λIp)
−1vz′ , gz′ and αz′ weighted by matrices

related to the FIM.

Now we are ready to state a sufficient condition for the monotonicity of Population Pearson LDS.
Theorem 4.3 (Sufficient Condition for Positive Derivative). It suffices for ċp(λ; z′) > 0 if

rz′,λ√
oz′,λ · t1,z′,λ

>
t2,z′,λ√

t3,z′,λ · t1,z′,λ
. (8)

Intuition behind Theorem 4.3. Let’s first focus on RHS of Eq.(8). By observing the definition of
tk,z′,λ for k = 1, 2, 3, RHS can be viewed as the cosine “angle” between vz′ and (FS + λIp)

−1vz′ .
Here, (FS + λIp)

−1vz′ is related to the θ update direction in IFFIM, as in Eq. (2). When RHS
is small, this “angle” is overly large, suggesting a significant misalignment between the θ update
direction and the gradient descent direction direction. In this case, increasing λ helps intuitively
because it conditions the inverted matrix FS better, stabilizing the update direction. When the
“angle” is too small, FS is overshadowed by the regularization term λIp (as vz′ is roughly parallel to
(FS + λIp)

−1vz′), meaning that the attribution method may become dominated by regularization
and lose sensitivity to the underlying structure of data. Similarly, LHS of Eq. (8) measures the
“angle” between vz′ and the ground-truth direction that involves gz′ . Hence Theorem 4.3 is in essence
stating that when the “angle” between vz′ and (FS + λIp)

−1vz′ is of comparable level as the “angle”
between vz′ and the ground-truth direction, Population Pearson LDS could reach its maximum.

6This involves non-trivial technical assumptions that do not always strictly hold. But we have made intuitive
and empirical justifications about them.
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Remark 4.4 (Proof Sketch for Theorem 4.3). The detailed proof can be found in Section B.3. We
provide a proof sketch here. We start by expanding ċp(λ; z

′) with the definition of τIFFIM,λ. Then,
We draw connections between VarA∼Da [∇θRA(θ

∗
S)], a crucial term occurred in the expression of

ċp(λ; z
′), and FS . Further, we state a condition (Eq.(10)) equivalent to ċp(λ; z

′) > 0. Finally, we
derive Eq.(8) from Eq.(10) with Lemma B.3 and the generalized Cauchy-Schwarz inequality.

Remark 4.5 (Gradient Projection). A result similar to Theorem 4.3 can also be derived for IFFIM
attributor with gradient projection (see τIFFIM,λ,P in Eq. (4)). In this case, given the projection
matrix P , tk,z′,λ should be replaced with v⊤z′P (P⊤FSP +λIp̃)

−kP⊤FSPP⊤vz′ while rz′,λ should
be replaced with −v⊤z′P (P⊤FSP + λIp̃)

−1P⊤gz′ . Additionally, JJ⊤ + nλIn in the oz′,λ should
be replaced with JPP⊤J⊤ + nλIn. Please see more details in Section B.5.

4.3 Algorithm: The Surrogate-Indicator-Based Practical Selection

The surrogate indicator. The sufficient condition in Theorem 4.3 enables a practical selection
algorithm for λ based on the following surrogate indicator ξz′,λ.

Definition 4.6 (Surrogate Indicator). We define the surrogate indicator as

ξz′,λ :=
t2,z′,λ√

t3,z′,λ · t1,z′,λ
, (9)

which is the RHS of Eq.(8).

Note that the quantities tk,z′,λ for k = 1, 2, 3 only depends on model parameters θ∗S trained on the
full dataset S, thus ξz′,λ can be calculated without retraining. Moreover, both the LHS and the RHS
(ξz′,λ) of Eq.(8) are well normalized.

Proposition 4.7. If rz′,λ > 0, then LHS and RHS of Eq.(8) both lie in the interval [0, 1].

The practical selection algorithm. In principle, we need both the LHS and RHS of Eq. (8) to
evaluate the sufficient condition in Theorem 4.3. In practice, however, we find that using ξ̄T,λ :=
1
|T |

∑
z′∈T ξz′,λ = 0.5, where T is a validation dataset, as the criterion7 to select the regularization

term λ is uniformly effective across all the experimental settings. This yields a practical algorithm
(Algorithm 1) for selecting the hyperparameter λ without requiring model retraining.

Algorithm 1 Selecting λ with the surrogate indicator.

Input: A candidate set C of λ, a subset T ⊂ Z of test examples.
Output: A selected λ̂.

1: for λ ∈ C do
2: Compute ξz′,λ for all z′ ∈ T ;
3: ξ̄T,λ ← 1

|T |
∑

z′∈T ξz′,λ;
4: end for
5: λ̂← argminλ∈C |ξ̄T,λ − 0.5|;

4.4 Experiments: Validating the Proposed Surrogate-Indicator-Based Selection Algorithm

We present experiments validating the proposed algorithm for selecting the regularization term λ.

Experiment settings. Dataset, model, and projection dimension: We employ 6 experiment settings,
covering different datasets, model scales, and projection dimensions. First two settings apply Logistic
Regression models (LR) on MNIST dataset [25], where one utilizes random projection with dimension
512 and the other uses no projection. They are followed by two settings that apply MLP, with random
projection 512 and 4096 respectively. Finally, we have two relatively large models, including ResNet-
9 [14] on CIFAR-2 dataset [24], and MusicTransformer (MT) [2] on MAESTRO dataset [13]. We fix
the random projection dimension to be 4096 in the last two settings. We also conduct experiments

7In fact, setting the threshold as 0.4 or 0.6 is similarly effective. The ξz′,λ as a function of log λ looks like a
logistic function and it varies sharply when its value is around 0.5. See Section C.1 for visualizations.
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Figure 2: The plot of LDS versus λ on the IFFIM attributor. Each subplot corresponds to an
experiment setting. The red solid vertical line indicates the λ selected by our method. The gray dotted
lines indicate the eigenvalues of FS corresponding to the 10%, 30%, 50%, 70%, and 90% quantiles.
The quantiles are annotated in gray color near the x-axis.
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Figure 3: The plot of LDS versus λ on the TRAK attributor. Please see Figure 2 for the plotting setup.

on WikiText2 [28] with GPT2 [31], the results of which can be found in Section C.4. Attributor:
We experiment with the IFFIM attributor defined in Eq. (2) (or Eq. (4) with projection), and the
TRAK attributor [29]. Baseline selection method: We also compare the proposed algorithm against a
baseline method that selects λ based on the spectrum of FS since the main motivation of λ is to deal
with the singularity of FS . Specifically, the baseline method set λ to be the eigenvalue of FS at a
fixed quantile among {10%, 30%, 50%, 70%, 90%}.

Results. We demonstrate the experimental results on the IFFIM and TRAK respectively in Figure 2
and Figure 3. In each subplot, the blue curve represents the change in LDS with respect to λ. We mark

9



the λ chosen by the proposed algorithm by the red solid vertical line, and the baselines in the gray
dotted vertical lines. Overall, we observe that the λ chosen by the proposed algorithm generally leads
to good LDS value that is significantly better than λ = 0, and in many case it is close to the optimal
value. Moreover, while the proposed algorithm is based on an analysis of the IFFIM attributor, it
generalizes well to the TRAK attributor under various experiment settings with different projection
dimensions. In contrast, there is no single fixed quantile for spectrum-based baseline method that
consistently performs well, indicating that this naive heuristic is insufficient for selecting λ.

Downstream tasks performance. We also include an evaluation of our proposed algorithm on
downstream settings, and the detailed results are presented in Section C.5. We focus on the task of
data selection commonly used in data attribution literature [11], where we measure the performance
drop of models when the most positively influential training data are removed. We note here that a
larger drop signifies stronger attribution quality. In general, we observe that our proposed algorithm
achieves visible model performance drops, demonstrating its effectiveness in downstream tasks.

5 Discussion and Conclusion

This work brings attention to a fundamental yet overlooked challenge in data attribution: the uniquely
high computational cost associated with hyperparameter tuning. Unlike typical machine learning
models—where validation metrics can be cheaply computed—evaluating data attribution quality
often requires repeated retraining on data subsets, making standard hyperparameter tuning procedures
impractical. By systematically characterizing this issue, we contribute the first large-scale empirical
study on hyperparameter sensitivity in data attribution methods, and establish this hyperparameter
tuning bottleneck as a critical concern for their practical deployment.

Through extensive experiments across diverse methods, datasets, and models, we demonstrate that
many data attribution methods are indeed highly sensitive to hyperparameter configurations, with opti-
mal choices varying significantly across settings. For example, we show that some hyperparameters—
such as regularization and projection dimension—interact in nontrivial ways, amplifying sensitivity
and necessitating more careful tuning strategies. Moreover, implicit factors (such as training epoch)
matter; comparing attributions across checkpoints can be informative.

To mitigate the high computational cost of standard evaluation metrics, we focus on the regularization
parameter in influence function-based methods and propose a practical selection procedure based on
a theoretically motivated surrogate indicator. Our method avoids model retraining and shows robust
empirical performance across multiple benchmarks and attributors, making it a practically useful tool
for tuning one of the most critical hyperparameters in popular data attribution methods.

Limitations. Our theoretical analysis and surrogate-based tuning procedure focus specifically
on the regularization parameter in influence function methods. Extending similar ideas to other
hyperparameters or to alternative data attribution methods remains an important direction for future
research. Moreover, our empirical evaluation primarily relies on the LDS metric. While we believe
LDS provides a strong starting point for highlighting the practical challenges of hyperparameter
tuning, it would be valuable to investigate whether similar sensitivities arise under alternative
evaluation metrics.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have tried our best to ensure that the abstract and introduction accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have diligently ensured the accuracy of the theorem statements and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code is publicly available at https://github.com/TRAIS-Lab/
data-attribution-hp.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is publicly available at https://github.com/TRAIS-Lab/
data-attribution-hp.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of the experiments are discussed in Section 3, Section 4, Section A,
and Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments require retraining a number of models, which is too computa-
tionally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is provided in Appendix A.3 and
Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conducted in this paper adheres to its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper aims to advance the field of machine learning, and we do not
anticipate any immediate societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the datasets and included their licenses in Appendix A.3 and
Appendix C.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of the Hyperparameter Study

A.1 Hyperparameters Definitions

Apart from major hyperparameters described in Section 2.1, some additional hyperparameters are
considered in our hyperparameter sensitivity study. We provide their definitions as following:

• normalization (TracIn) [30]: We may normalize the per-example gradients in TracIn by
dividing their L2-norm. In other words, normalization=True means that τTracIn(z′, zi) :=∑

t ηt
∇θf(z

′,θt)
⊤

∥∇θf(z′,θt)⊤∥
∇θL(zi,θt)

∥∇θL(zi,θt)∥ .

• checkpoint-selection (TracIn) [30]: The checkpoints used to calculate τTracIn can be designed
in various way. In this paper, we select the last 10 epochs for different maximum training
epoch numbers.

• max-iteration (IF (CG)) [22]: This hyperparameter specifies the maximum number of steps
the conjugate gradient algorithm will take to attempt convergence. In the experiment, we do
not set stop criteria so that the algorithm will stop at the maximum number of iteration.

• scaling & recursion-depth & batch-size (IF (LiSSA)) [22]: The LiSSA algorithm for inverse
Hessian vector product (IHVP) is an iterative algorithm where each iteration t applies the
formula vt = g + (I − 1

η (H
t + λI))vt−1, and g is the target vector. The hyperparameters

scaling refers to η; recursion-depth indicates the maximum t where the iteration stops;
batch-size indicates how many data points are used to calculate the batch-wise hessian
matrix Ht.

Default values. In the following table, we list the default value of each hyperparameter. The default
value is used when other hyperparameters are searched. They are selected according to the default
value in original paper.

Table 1: Default values of hyperparameters.

TDA method Hyperparameter Name Default values

TRAK-10
regularization 0
pojection-dimension 512 (2048 for WikiText2+GPT2)
training-epoch 50 (3 for WikiText2+GPT2)

LoGra
regularization 1e-3
pojection-dimension 642

training-epoch 3

IF (explicit) regularization 1e-5
training-epoch 50

IF (CG)
regularization 1e-2
max-iteration 10
training-epoch 50

IF (LiSSA)

regularization 1e-3
scaling 5
recursion-depth 1000
batch-size 50
training-epoch 50

TracIn
normalization False
pojection-dimension None (i.e., no projection)
checkpoint-selection last 10 checkpoints
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A.2 Additional Results

In Figure 4, we present additional results not included in Figure 1 due to space limit in the main text.
These additional results confirm that most TDA methods are sensitive to certain hyperparameters.
Intriguingly, training-epoch is one of the most sensitive hyperparameter for most TDA methods.
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Figure 4: Study of hyperparameter sensitivity additional results.

A.3 Computational Resources and Dataset Licenses

The experiments for the hyperparameter sensitivity analysis are done on 4 A100 GPUs in around 100
hours, excluding model retraining (we reused some model checkpoints provided by the dattri library
to avoid extensive model retraining). For the dataset we use: MNIST-10 dataset holds CC BY-SA 3.0
license; CIFAR-10 dataset holds CC-BY 4.0 license; WikiText2 dataset holds CC BY-SA 3.0 license.
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B Omitted Details of the Theoretical Analysis in Section 4

B.1 Relationship between TRAK and IFFIM

As noted in Section 2.1, TRAK can be viewed as a variant of IFFIM with additional computational
tricks. This section demonstrates their similarity and distinctions in more details.

We first formally introduce the TRAK attributor without gradient projection as follows8.

τTRAK(z
′, zi) := ∇θf(z

′, θ∗S)
⊤(Φ⊤RΦ)−1∇θf(zi, θ

∗
S) · (1− pi),

where Φ ∈ Rn×p has its ith row being∇θf(zi, θ
∗
S)

⊤, R := diag{pi(1−pi)}ni=1, and pi := p(zi, θ
∗
S).

Compared to the IFFIM attributor in Eq. (2), there are two main differences. First, the right most
gradient term in TRAK is ∇θf(zi, θ

∗
S)(1 − pi) while its counterpart in IFFIM is −∇θL(zi, θ

∗
S).

Second, IFFIM has the empiricla FIM FS in the middle while TRAK has Φ⊤RΦ.

The right gradient term difference. We first show that ∇θf(zi, θ
∗
S)(1 − pi) is equivalent to

−∇θL(zi, θ
∗
S) as

−∇θL(zi, θ
∗
S) = −

∂ ln(1 + e−f )

∂f

∣∣∣∣∣
f=f(zi,θ∗

S)

∇θf(zi, θ
∗
S) = (1− p(zi, θ

∗
S))∇θf(zi, θ

∗
S).

The middle term difference. The middle term in TRAK can be written as

1

n
Φ⊤RΦ =

1

n

n∑
i=1

∇θf(zi, θ
∗
S)(pi(1− pi))∇θf(zi, θ

∗
S)

⊤.

Noting that pi(1 − pi) is the Hessian of cross-entropy loss with respect to model output, and the
whole 1

nΦ
⊤RΦ is known as the Gerneralized Gauss Newton (GGN) matrix [26].

Furthermore, Martens [26] has shown that 1
nJ

⊤J (the empirical FIM) and 1
nΦ

⊤RΦ (the GGN) both
reduce to the true FIM when S converges to the true underlying distribution of Z .

This comparison indicates that there is fundamental similarity between TRAK and IFFIM despite
superficial algorithmic differences.

B.2 LOO Weighted Loss Gradients

As suggested by Park et al. [29], we assume decreasing a by 1 does not shift the distribution of
f(z′, θ∗A), i.e.,

EA∼Da
[f(z′, θ∗A)|zi /∈ A] = EA∼Da−1

[f(z′, θ∗A)|zi /∈ A].

Then, by rewriting the RHS, we have

EA∼Da [f(z
′, θ∗A)|zi /∈ A] = EA∼Da

[f(z′, θ∗A\{zi})|zi ∈ A],

and hence

αz′,i = EA∼Da
[f(z′, θ∗A)|zi ∈ A]− EA∼Da

[f(z′, θ∗A)]

= EA∼Da [f(z
′, θ∗A)|zi ∈ A]

− Pr
A∼Da

[zi ∈ A]EA∼Da [f(z
′, θ∗A)|zi ∈ A]− Pr

A∼Da

[zi /∈ A]EA∼Da [f(z
′, θ∗A)|zi /∈ A]

= Pr
A∼Da

[zi /∈ A](EA∼Da
[f(z′, θ∗A)|zi ∈ A]− EA∼Da

[f(z′, θ∗A)|zi /∈ A])

= (1− a

n
)EA∼Da

[f(z′, θ∗A)− f(z′, θ∗A\{zi})|zi ∈ A],

which means that the weights αz′,i in gz′ can be interpreted as the LOO influence of zi on z′.

8In practical implementation, Park et al. [29] dropped the diagonal matrix R due to slightly improved
empirical performance, and projected Φ and the gradients to lower dimension for computational efficiency.
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B.3 Proof of Theorem 4.3

We prove Theorem 4.3 before Lemma 4.2 for better readability. We first establish several intermediate
results for Eq.(8).

Lemma B.1. We have
VarA∼Da

[∇θRA(θ
∗
S)] =

n− a

a(n− 1)
FS ,

where Da is defined in Section 4.2.

Proof. By the optimality of θ∗S , we know
∑

z∈S [∇θL(z, θ
∗
S)] = n · ∇θRS(θ

∗
S) = 0. We also have

EA∼Da
[
∑

z∈A∇θL(z, θ
∗
S)] = 0.

Now, because A is uniformly sampled size a subsets of S,

VarA∼Da [∇θRA(θ
∗
S)] = VarA∼Da [

1

a

∑
z∈A

∇θL(z, θ
∗
S)]

=
1

a2
EA∼Da

[(
∑
z∈A

∇θL(z, θ
∗
S))(

∑
z∈A

∇θL(z, θ
∗
S))

⊤]− 0

=
1

a2
(aEz∼S [∇θL(z, θ

∗
S)∇θL(z, θ

∗
S)

⊤] + EA∼Da
[
∑
z1∈A
z2∈A
z1 ̸=z2

∇θL(z1, θ
∗
S)∇θL(z2, θ

∗
S)

⊤]).

The second summand can be reduced to

EA∼Da
[
∑
z1∈A
z2∈A
z1 ̸=z2

∇θL(z1, θ
∗
S)∇θL(z2, θ

∗
S)

⊤])

=
1(
n
a

) ∑
A∈Da

∑
z1∈A
z2∈A
z1 ̸=z2

∇θL(z1, θ
∗
S)∇θL(z2, θ

∗
S)

⊤

=
1(
n
a

) ∑
z1∈S
z2∈S
z1 ̸=z2

(
n− 2

a− 2

)
∇θL(z1, θ

∗
S)∇θL(z2, θ

∗
S)

⊤

=
a(a− 1)

n(n− 1)

∑
z1∈S
z2∈S
z1 ̸=z2

∇θL(z1, θ
∗
S)∇θL(z2, θ

∗
S)

⊤

=
a(a− 1)

n(n− 1)
((
∑
z∈S

∇θL(z, θ
∗
S))(

∑
z∈S

∇θL(z, θ
∗
S))

⊤ −
∑
z∈S

∇θL(z, θ
∗
S)∇θL(z, θ

∗
S)

⊤)

= − a(a− 1)

n− 1
Ez∼S [∇θL(z, θ

∗
S)∇θL(z, θ

∗
S)

⊤],

where A ∈ Da means A is a size a subset of S.

Finally, by the definition of FS ,

VarA∼Da [∇θRA(θ
∗
S)] =

1

a2
(a · FS −

a(a− 1)

n− 1
· FS) =

n− a

a(n− 1)
FS .

Lemma B.1 facilitates analyzing the variance of
∑

z∈A τIFFIM,λ(z
′, z) in Eq.(6), thereby enabling

verification of the following equivalent condition of ċp(λ; z′) > 0.
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Proposition B.2. For a test example z′, ċp(λ; z′) > 0 is equivalent to

rz′,λ · t3,z′,λ > (−∇θf(z
′, θ∗S)

⊤(FS + λIp)
−2gz′) · t2,z′,λ. (10)

Proof. We first simplify
∑

z∈A τIFFIM,λ(z
′, z) in Eq.(6):∑

z∈A

τIFFIM,λ(z
′, z) = −

∑
z∈A

∇θf(z
′, θ∗S)

⊤(FS + λIp)
−1∇θL(z, θ

∗
S)

= −a · ∇θf(z
′, θ∗S)

⊤(FS + λIp)
−1∇θRA(θ

∗
S).

Three terms are involved when we expand the definition of cp(τIFFIM,λ). The first is the numerator:

EA∼Da
[
∑
z∈A

τIFFIM,λ(z
′, z) · (f(z′, θ∗A)− EA′∼Da

[f(z′, θ∗A′)])]

= EA∼Da
[−a∇θf(z

′, θ∗S)
⊤(FS + λIp)

−1∇θRA(θ
∗
S) · (f(z′, θ∗A)− EA′∼Da

[f(z′, θ∗A′)])],

where the component that depends on A is

EA∼Da
[∇θRA(θ

∗
S) · (f(z′, θ∗A)− EA′∼Da

[f(z′, θ∗A′)]]

=
1(
n
a

) ∑
A∈Da

(f(z′, θ∗A)− EA′∼Da
[f(z′, θ∗A′)])

1

a

∑
z∈A

∇θL(z, θ
∗
S)

=
1

a
(
n
a

) n∑
i=1

(
∑

A∈Da

Jzi ∈ AK(f(z′, θ∗A)− EA′∼Da
[f(z′, θ∗A′)]))∇θL(zi, θ

∗
S)

=
1

a
(
n
a

) n∑
i=1

(
n− 1

a− 1

)
EA∼Da

[f(z′, θ∗A)− EA′∼Da
[f(z′, θ∗A′)]|zi ∈ A]∇θL(zi, θ

∗
S)

=
1

n

n∑
i=1

EA∼Da [f(z
′, θ∗A)− EA′∼Da [f(z

′, θ∗A′)]|zi ∈ A]∇θL(zi, θ
∗
S)

=
1

n

n∑
i=1

αz′,i∇θL(zi, θ
∗
S) = gz′ .

Note that we apply a
(
n
a

)
= n

(
n−1
a−1

)
.

The second term is the variance of
∑

z∈A τIFFIM,λ(z
′, z):

VarA∼Da
[
∑
z∈A

τIFFIM,λ(z
′, z)]

= VarA∼Da
[−a · ∇θf(z

′, θ∗S)
⊤(FS + λIp)

−1∇θRA(θ
∗
S)]

= a2 · ∇θf(z
′, θ∗S)

⊤(FS + λIp)
−1VarA∼Da [∇θRA(θ

∗
S)](FS + λIp)

−1∇θf(z
′, θ∗S)

=
a(n− a)

n− 1
· ∇θf(z

′, θ∗S)
⊤(FS + λIp)

−1FS(FS + λIp)
−1∇θf(z

′, θ∗S),

where we apply the identity Lemma B.1.

The third term is the variance of f(z′, θ∗A), which, together with a in the numerator and a(n−a)
n−1 in the

variance of
∑

z∈A τIFFIM,λ(z
′, z), are omitted because they do not depend on λ. To summarize, so

far we have shown that ċp(λ; z′) > 0 is equivalent to

∂

∂λ

−∇θf(z
′, θ∗S)

⊤(FS + λIp)
−1gz′√

∇θf(z′, θ∗S)
⊤(FS + λIp)−1FS(FS + λIp)−1∇θf(z′, θ∗S)

∣∣∣∣∣
λ

> 0.

By direct calculation, the left hand side is

(−∇θf(z
′, θ∗S)

⊤(FS + λIp)
−1gz′)(∇θf(z

′, θ∗S)
⊤(FS + λIp)

−3FS∇θf(z
′, θ∗S))

− (−∇θf(z
′, θ∗S)

⊤(FS + λIp)
−2gz′)(∇θf(z

′, θ∗S)
⊤(FS + λIp)

−2FS∇θf(z
′, θ∗S))

(∇θf(z′, θ∗S)
⊤(FS + λIp)−1FS(FS + λIp)−1∇θf(z′, θ∗S))

3/2
.
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When the positive denominator is dropped, we obtain the desired formula.

Before we move to the proof of next result, we first introduce a useful matrix transformation lemma.

Lemma B.3. For matrix X ∈ Rn×p, non-negative integer k, and λ > 0, we have

(X⊤X + λIp)
−kX⊤ = X⊤(XX⊤ + λIn)

−k.

Proof. Note that

X⊤(XX⊤ + λIn) = X⊤XX⊤ + λX⊤ = (X⊤X + λIp)X
⊤.

If we left multiply (X⊤X + λIp)
−1 and right multiply (XX⊤ + λIn)

−1 on both sides, we derive

(X⊤X + λIp)
−1X⊤ = X⊤(XX⊤ + λIn)

−1.

By applying the equality k times on (X⊤X + λIp)
−kX⊤ to “push X⊤ through” the inverted matrix,

we complete the proof.

Proof of Theorem 4.3. Because FS is a positive semi-definite matrix, so is (FS + λIp)
−kFS for any

positive integer k. As a result,

tk,z′,λ = ∇θf(z
′, θ∗S)

⊤(FS + λIp)
−kFS∇θf(z

′, θ∗S) ≥ 0.

In fact, tk,z′,λ = 0 ⇔ FS∇θf(z
′, θ∗S) = 0 implies t2,z′,λ = 0 which results in an undefined cp.

Therefore, tk,z′,λ > 0. Further, by the premise, we have

rz′,λ >
t2,z′,λ√

t3,z′,λ · t1,z′,λ

√
oz′,λ · t1,z′,λ > 0.

Without loss of generality, we only consider the case where −∇θf(z
′, θ∗S)

⊤(FS + λIp)
−2gz′ > 0,

because otherwise Eq. (10) holds automatically as its left hand side would be positive while right
hand side would be non-positive, which guarantees ċp(λ; z′) > 0 by Proposition B.2.

We proceed by rewriting Eq.(10) with Lemma B.3. By setting X = J/
√
n, we have

t3,z′,λ =
1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−3J∇θf(z
′, θ∗S),

−∇θf(z
′, θ∗S)

⊤(FS + λIp)
−2gz′ = − 1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−2αz′ ,

where we apply the fact that FS = 1
nJ

⊤J = X⊤X and gz′ = 1
nJ

⊤αz′ by their definitions. Then,
note that√

t3,z′,λ · oz′,λ

=

√
(
1

n
∇θf(z′, θ∗S)

⊤J⊤(
1

n
JJ⊤ + λIn)−3J∇θf(z′, θ∗S))(

1

n
α⊤
z′(

1

n
JJ⊤ + λIn)−1αz′)

≥ − 1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−2αz′ = −∇θf(z
′, θ∗S)

⊤(FS + λIp)
−2gz′ > 0,

(11)

by applying the generalized Cauchy-Schwarz inequality on −( 1nJJ
⊤ + λIn)

−1J∇θf(z
′, θ∗S) and

αz′ with inner product defined by positive definite matrix 1
n (

1
nJJ

⊤ + λIn)
−1. Now, we finish the

proof by observing that Eq.(10) is derived directly by multiplying Eq.(8) with Eq.(11) and rearranging
terms.
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B.4 Assumptions and Proof of Lemma 4.2

We base the discussion of Lemma 4.2 on Eq.(8). For simplicity, we first eliminate
√
t1,z′,λ on both

sides to state the following sufficient condition for ċp(λ; z′) > 0:

rz′,λ√
oz′,λ

>
t2,z′,λ√
t3,z′,λ

. (12)

Now, for i = 1, 2, . . . ,max{n, p}, we let µi denote the ith largest eigenvalue of FS if i ≤ p, and 0
otherwise. We have the following result for µi:

Lemma B.4. For i = 1, 2, . . . , n, µi is the ith largest eigenvalue of 1
nJJ

⊤.

Proof. Write the singular value decomposition J = UΣV ⊤ with Σii = σi for i ∈ [min{n, p}].
As FS = 1

nJ
⊤J = 1

nV Σ⊤ΣV ⊤, we know σi =
√
n · µi for i ∈ [min{n, p}]. Further, 1

nΣΣ
⊤ =

diag{Ji ≤ min{n, p}K 1
nσ

2
i }ni=1 = diag{µi}ni=1 because µi = 0 for i > p. We finish the proof by

noting that 1
nJJ

⊤ = 1
nUΣΣ⊤U⊤.

To better establish a relationship between the spectrum of FS and cp(τIFFIM,λ), we first make the
following definition for convenience.

Definition B.5. For a vector v ∈ Rp and i ∈ [max{n, p}], let ṽi denote the ith component of v
under a chosen eigenbasis of FS , where eigenvalues are sorted in descending order if i ≤ p; ṽi = 0
otheriwise. Further, let ṽmin denote the component of v under the eigenbasis corresponding to the
minimal non-zero eigenvalue µmin of FS .

We then provide a result on the expectation of ∇̃θLi(z, θ
∗
S)

2, the square of the ith eigen-component
of ∇θL(z, θ

∗
S), when z ranges over S.

Lemma B.6. For i = 1, 2, . . . , p, we have

Ez∼S [∇̃θLi(z, θ
∗
S)

2] = µi.

Proof. We adapt the proof from [6]. Let’s write the eigen-decomposition of FS :

FS = V ΛV ⊤

where Λ = diag{µi}pi=1. Then

Λ = V ⊤FSV

= V ⊤Ez∼S [∇θL(z, θ
∗
S)∇θL(z, θ

∗
S)

⊤]V

= Ez∼S [V
⊤∇θL(z, θ

∗
S)∇θL(z, θ

∗
S)

⊤V ]

= Ez∼S

[[
∇̃θLi(z, θ

∗
S)∇̃θLj(z, θ

∗
S)
]p
i,j=1

]
.

We obtain the desired equality by comparing diagonal terms.

Next, we introduce an assumption regarding the concentration of distribution of ∇̃θLi(z
′, θ∗S)

2 when
the test example z′ is sampled.

Assumption B.7. Assume there exist constants 0 < C1 < C2 such that for i = 1, 2, . . . , n,

C1Ez∼S [∇̃θLi(z, θ
∗
S)

2] ≤ ∇̃θLi(z
′, θ∗S)

2 ≤ C2Ez∼S [∇̃θLi(z, θ
∗
S)

2], (13)

with high probability over the sample of z′ from the test distribution.

Assumption B.7 basically assumes that the distribution given by S represents the test distribution
well regarding the relative size of eigen-components. Then, we are able to derive an upper bound for
the RHS (right hand side) of Eq.(12).
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Proposition B.8. Under Assumption B.7, for all λ > 0, we have

RHS <
nC2

(1− p(z′, θ∗S))
√
C1

(µmin + λ)3/2

µmin
, (14)

with high probability over the sample of z′ from the test distribution.

Proof. It is known that the ith component of J∇θf(z
′, θ∗S) under the eigenbasis of 1

nJJ
⊤ is precisely

√
n · µi∇̃θf i(z

′, θ∗S) =

√
n · µi

p(z′, θ∗S)− 1
∇̃θLi(z

′, θ∗S),

for i = 1, 2, . . . , n. This can be shown by employing the singular value decomposition J = UΣV ⊤.
Under the eigenbasis of 1

nJJ
⊤,

U⊤J∇θf(z
′, θ∗S) = ΣV ⊤∇θf(z

′, θ∗S),

so the identity holds because Σii =
√
n · µi for i ∈ [min{n, p}] (see Lemma B.4) and µi = 0 for

i > p.

For the numerator, with high probability,

t2,z′,λ =
1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−2J∇θf(z
′, θ∗S)

=
1

n(1− p(z′, θ∗S))
2

n∑
i=1

(
√
n · µi∇̃θLi(z

′, θ∗S))
2

(µi + λ)2

≤ 1

(1− p(z′, θ∗S))
2

n∑
i=1

C2µ
2
i

(µi + λ)2

<
1

(1− p(z′, θ∗S))
2

n∑
i=1

Jµi ̸= 0KC2

≤ n

(1− p(z′, θ∗S))
2
C2.

For the denominator, with high probability,

t3,z′,λ =
1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−3J∇θf(z
′, θ∗S)

=
1

n(1− p(z′, θ∗S))
2

n∑
i=1

(
√
n · µi∇̃θLi(z

′, θ∗S))
2

(µi + λ)3

≥ 1

(1− p(z′, θ∗S))
2

n∑
i=1

C1µ
2
i

(µi + λ)3

≥ 1

(1− p(z′, θ∗S))
2

C1µ
2
min

(µmin + λ)3
.

We finish the proof by combining these two bounds.

We move to analyze the LHS (left hand side) of Eq.(12). Before that, we need two additional technical
assumptions.
Assumption B.9. Assume there exist constants C3 > 0 and εg > 0 such that for i = 1, 2, . . . , n,

g̃2z′,i ≤ C3µ
1+εg
i . (15)

Remark B.10. Because gz′ = 1
nJ

⊤αz′ , for µi equal to 0, g̃z′,i must also be 0, which can be easily
shown through the singular value decomposition of J . Hence, Assumption B.9 holds when C3 is
large enough. However, we note here that the sufficient condition for ċp(λ; z′) > 0 becomes tighter
when C3 is larger and εg is smaller (see Lemma B.15 for details).
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Assumption B.11. Assume αz′ is in the column space of J .
Remark B.12. A special case for this assumption is when J has rank n− 1, where the deducted 1
rank is because

∑n
i=1∇θL(zi, θ

∗
S) = 0. In this case, since

∑n
i=1 αz′,i = 0 by simple computation,

αz′ is in the column space of J .
Lemma B.13. Assume Assumption B.11 holds. For i ∈ [n], if µi = 0, then the ith component of αz′

under the eigenbasis of 1
nJJ

⊤ is also zero.

Proof. Write the singular value decomposition J = UΣV ⊤. Let αz′ = Jβ for some β ∈ Rp. Since
1
nJJ

⊤ = 1
nUΣΣ⊤U⊤, the ith component of αz′ under the eigenbasis of 1

nJJ
⊤ is

(U⊤αz′)i = (U⊤UΣV ⊤β)i = (ΣV ⊤β)i,

which is zero for µi = 0 by Lemma B.4.

Now we are ready to derive an upper bound for oz′,λ.
Proposition B.14. Under Assumption B.7, Assumption B.9, and Assumption B.11, for all λ > 0,

oz′,λ ≤
C3n

µ
1−εg
min

. (16)

Proof. Denote wz′,i as the ith component of αz′ under the eigenbasis of 1
nJJ

⊤ for i ∈ [n]. We
first show that for i ∈ [n], if µi = 0 then wz′,i = 0; if µi ̸= 0, (then i ≤ p by definition of µi)
wz′,i = g̃z′,i

√
n/µi. For µi = 0, Lemma B.13 guarantees that the component of αz′ is 0. For

µi ̸= 0, with the singular value decomposition of J in Lemma B.4,

g̃z′,i = (V ⊤ 1

n
V ⊤Σ⊤U⊤αz′)i =

1

n
σiwz′,i = wz′,i

√
µi

n
,

for i ∈ [min{n, p}], which gives the desired result. Therefore,

oz′,λ =
1

n
α⊤
z′(

1

n
J⊤J + λIn)

−1αz′ =

n∑
i=1

Jµi ̸= 0K
g̃2z′,i/µi

µi + λ
≤

n∑
i=1

Jµi ̸= 0K
C3µ

εg
i

µi + λ
≤ C3n

µ
1−εg
min

.

Finally, by combining all the results, we state the following formal version of Lemma 4.2.
Lemma B.15 (Formal version of Lemma 4.2). Assume Assumption B.7, Assumption B.9, and
Assumption B.11 hold. With high probability over the sample of z′ from the test distribution, rz′,0+ :=
limλ→0+ rz′,λ exists. Further assume rz′,0+ > 0. Then if µmin < Cµ where Cµ is some positive
value depending on z′, there exists some C > 0 such that for 0 < λ < C,

ċp(λ; z
′) > 0.

Proof. We first show that with high probability the limit exists. By expanding rz′,λ =
−∇θf(z

′, θ∗S)
⊤(FS + λIp)

−1gz′ under the eigenbasis of FS , with high probability, the absolute
value of the summation term corresponding to µi for i ∈ [min{n, p}] is

|−∇̃θf i(z
′, θ∗S)g̃z′,i

µi + λ
| ≤

√
C2C3

1− p(z′, θ∗S)

µ
1/2+(1+εg)/2
i

µi + λ
≤

√
C2C3

1− p(z′, θ∗S)
µ
εg/2
i .

Additionally, for i > n, g̃z′,i = 0 from the singular value decomposition of J . As a result,
limλ→0+ rz′,λ exists. As rz′,0+ > 0, there exists C∗ > 0 such that for all 0 < λ < C∗, rz′,λ >
1
2rz′,0+ . Now, let

Cµ := (
rz′,0+(1− p(z′, θ∗S))

√
C1

2nC2

√
n · C3

)2/εg > 0,
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and

C := min{C∗, (
rz′,0+(1− p(z′, θ∗S))

√
C1

2nC2

√
n · C3

)2/3µ
1−εg/3
min − µmin}.

By direct calculation, if µmin < Cµ, then C > 0. Further, when 0 < λ < C,

LHS ≥ rz′,λ√
n · C3

µ
(1−εg)/2
min >

rz′,0+

2
√
n · C3

µ
(1−εg)/2
min >

nC2

(1− p(z′, θ∗S))
√
C1

(µmin + λ)3/2

µmin
> RHS,

which implies ċp(λ; z′) > 0.

Remark B.16. Our analysis relies on the condition that µmin, the smallest non-zero eigenvalue
of FS , remains small. This assumption aligns with established analyses demonstrating eigenvalue
concentration near zero for both the FIM and Hessian in deep neural networks near convergence
[32, 20]. These results empirically justify our treatment of µmin.

We subsequently focus on a discussion of the positivity condition rz′,0+ > 0 which constitutes the
remainder of this section.

Discussion of rz′,0+ > 0. Here we show that, in the special case where z′ = zi ∈ S for some
i ∈ [n], we have rz′,0+ > 0. We write the singular value decomposition J = UΣV ⊤. Then by
Lemma B.4,

lim
λ→0+

rz′,λ = lim
λ→0+

− 1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−1αz′

= lim
λ→0+

1

n(1− pi)
∇θL(zi, θ

∗
S)

⊤J⊤(
1

n
JJ⊤ + λIn)

−1αz′

=
1

1− pi
lim

λ→0+
e⊤i

1

n
JJ⊤(

1

n
JJ⊤ + λIn)

−1αz′

=
1

1− pi
lim

λ→0+

n∑
j=1

µj

µj + λ
(U⊤ei)j(U

⊤αz′)j

=
1

1− pi

n∑
j=1

Jµj ̸= 0K(U⊤ei)j(U
⊤αz′)j ,

where ei is the ith standard basis vector. By Lemma B.13, µj = 0 implies (U⊤αz′)j = 0. Therefore,

rz′,0+ = lim
λ→0+

rz′,λ =
1

1− pi
e⊤i UU⊤αz′ =

αz′,i

1− pi
> 0,

because pi < 1 and αz′,i = αzi,i = EA∼Da
[f(zi, θ

∗
A)|zi ∈ A]− EA∼Da

[f(zi, θ
∗
A)] is the expected

change in model output of zi itself when zi is included in the training set, which is positive.

Empirical assessment of constants in assumptions. The results derived above are dependent
on the constants C1, C2, and C3 introduced in Assumptions B.7 and B.9. Here we provide a brief
discussion on the empirical behavior of these constants, showing that they generally stay around the
level of 0.1 to 10 instead of scaling with the smallest eigenvalue µmin. Note that, in this empirical
study, we compute C1 with respect to the smallest eigenvalue rather than all eigenvalues, which is
reasonable because the only C1 term that occurs in the theoretical derivation is the one related to
µmin. Further, due to computational limitations, we consider projection dimension 4096. We fix
εg = 0.5.

To empirically estimate these constants, we first diagonalize P⊤FSP to obtain its eigenvalues and
execute a data attribution pass with IFFIM to compute ∇θL(z

′, θ∗S) and gz′ for z′ in the test dataset.
Then, we follow Eq.(13) and Eq.(15) to obtain values of C1, C2, and C3 that satisfy these inequalities
for all or a given percentage of test examples. For ResNet-9 [14] on CIFAR-2 dataset [24], we find
that C3 = 0.4082 is enough for Eq. (15) to hold on all the test examples, and C1 = 0.3121 and
C2 = 51.9933 satisfy Eq.(13) on 90% of the test examples. In comparison, the smallest eigenvalue is
only about 10−4. For MusicTransformer [2] on MAESTRO dataset [13], we find that C3 = 0.0156
is enough for all test examples, and 90% of test examples yield C1 = 0.0518 and C2 = 21.5589.
In comparison, the smallest eigenvalue is only about 7× 10−5. These results suggest that, even in
highly non-convex settings, our assumptions tend to hold empirically.
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B.5 Effects of Gradient Projection

Our derivation does not rely on specific properties of J . When incorporating gradient projection
via Eq. (4), as outlined in Remark 4.5, the projection matrix P can be systematically applied to
all gradient terms. We now analyze how gradient projection affects µmin, the smallest non-zero
eigenvalue of FS (equivalently, of 1

nJJ
⊤. Under projection, this eigenvalue corresponds to the

smallest non-zero eigenvalue of 1
nJPP⊤J⊤.

In practical applications, gradient projection approximately preserves the dominant eigenvalues of FS .
Consequently, when FS exhibits vanishingly small (but non-zero) eigenvalues near index min{n, p̃},
the projected matrix 1

nJPP⊤J⊤ retains a comparably small non-zero eigenvalue, validating the
critical condition in Lemma B.15.

Unlike Arnoldi-based method [33] that aims to preserve top eigenvalues by design, we resort to the
standard subspace embedding results [36] for random projection based methods [6, 29]: For common
choices of P (e.g. Gaussian random projection) and 0 < εrp, δ < 1, if p̃ = Θ((n + ln(1/δ))ε−2

rp ),
then with probability 1− δ, P satisfies that for any v ∈ Rn,

(1− εrp)∥J⊤v∥2 ≤ ∥P⊤J⊤v∥2 ≤ (1 + εrp)∥J⊤v∥2.

This implies, by min-max theorem,

(1− εrp)µi(JJ
⊤) ≤ µi(JPP⊤J⊤) ≤ (1 + εrp)µi(JJ

⊤),

where µi(·) stands for the ith biggest eigenvalue. This guarantees an approximation of top eigenvalues.

B.6 Proof of Proposition 4.7

Proof of Proposition 4.7. We utilize Lemma B.3 to obtain

tk,z′,λ =
1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−kJ∇θf(z
′, θ∗S),

rz′,λ = − 1

n
∇θf(z

′, θ∗S)
⊤J⊤(

1

n
JJ⊤ + λIn)

−1αz′ ,

where k = 1, 2, 3. Further,

oz′,λ =
1

n
α⊤
z′(

1

n
JJ⊤ + λIn)

−1αz′ .

We point out that LHS of Eq.(8) lying in [0, 1] is the direct result of applying the generalized Cauchy-
Schwarz inequality on −J∇θf(z

′, θ∗S) and αz′ with inner product defined by positive definite matrix
1
n (

1
nJJ

⊤ + λIn)
−1, assuming rz′,λ > 0. Similarly, the RHS of Eq.(8) is shown bounded when the

inequality is applied on −( 1nJJ
⊤ + λIn)

−1J∇θf(z
′, θ∗S) and −J∇θf(z

′, θ∗S) with the same inner
product. We use the fact that t2,z′,λ ≥ 0 as ( 1nJJ

⊤ + λIn)
−2 is positive semi-definite.

C Details and Extra Experiments of the Surrogate Indicator

C.1 Visualization of the Average Surrogate Indicator

To provide better insights about the proposed surrogate indicator, we present the curve of ξ̄T,λ as a
function of λ in Figure 5. In all experiment settings, empirically, ξ̄T,λ is a monotonic function of λ
with a transitional phase near ξ̄T,λ = 0.5, indicating a good sensitivity to λ around this value, and
supporting our choice of threshold in Algorithm 1.

C.2 Computational Resources and Dataset Licenses

The experiments for the surrogate indicator are done on an A40 GPU in around 10 hours, excluding
model retraining (we reused some model checkpoints provided by the dattri library to avoid extensive
model retraining). For the datasets we use: MNIST-10 dataset holds CC BY-SA 3.0 license; CIFAR-10
dataset holds CC-BY 4.0 license; MAESTRO dataset holds CC BY-NC-SA 4.0 license.
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Figure 5: The curve of ξ̄T,λ as a function of λ. Each subfigure corresponds to an experiment setting
outlined in Section 4.4.

C.3 Effects of Different Subset Fractions

We provide an extended analysis of how the subset fraction a/|S| influences the surrogate indicator,
considering values in {0.25, 0.5, 0.75}, where 0.5 corresponds to the setting used in earlier experi-
ments. Figure 6 illustrates the surrogate indicator’s behavior for each subset fraction, shown in green
(0.25), blue (0.5), and violet (0.75). While the magnitude of the LDS varies with the subset fraction,
its overall trend as a function of λ remains similar across different values of subset fraction. This
consistency suggests that the surrogate indicator is robust to changes in subset size across different
experimental settings.

C.4 Additional Experiments on WikiText2 with GPT2

Here, we demonstrate additional experiments on the large setting WikiText2 [28] with GPT2 [31].
We fix projection dimension 4096, and apply the surrogate indicator to find proper regularization
strengths. We investigate both the IFFIM and the LoGra [6] attributors. The results are illustrated in
Figure 7.

C.5 Experiments on Downstream Settings

We investigate various settings, including Logistic Regression models (LR) on MNIST dataset [25],
ResNet-9 [14] on CIFAR-2 [24] dataset, and MusicTransformer (MT) [2] on MAESTRO dataset [13].
We conduct the experiments with training data removal rate 10%, 30%, and 50%. For methods we use
for data removal, we have Random (random removal), IFFIM Default and TRAK Default (IFFIM
and TRAK attributors with default regularization 0), and IFFIM Selected and TRAK Selected
(IFFIM and TRAK attributors with selected regularization by our algorithm). For reference, we also
include Full, which stands for test performance without removal. We repeat the experiments with
10 different seeds and report the mean values as well as their standard errors for better statistical
significance. The results are presented in Table 2, Table 3, and Table 4. We notice that when removing
10% of the training data, most methods lead to insignificant model performance decrease, likely due
to redundancy in the datasets. However, we observe that our methods (IFFIM Selected and TRAK
Selected) generally outperform baselines (Random, IFFIM Default, and TRAK Default) across
different settings and the differences are statistically significant.
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Figure 6: Experiment results with different values of subset fraction. Green, blue, and violet curves
illustrate LDS-λ relationship with subset fraction 0.25, 0.5, and 0.75, respectively.
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Figure 7: The plot of LDS versus λ on the WikiText2 with GPT2 setting. The left plot shows the
results with the IFFIM attributor while the right plot demonstrates the results with the LoGra attributor.
The red solid vertical line indicates the λ selected by our method.

D Code Availability

Our code is publicly available at https://github.com/TRAIS-Lab/data-attribution-hp.
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Table 2: Data selection performance on MNIST+LR settings. Values in the table are means and
standard errors of test accuracies. Experiments are repeated with 10 different seeds. Lower accuracies
indicate better attribution performance.

Removal rates 10% 30% 50%

Full 88.63%± 0.03% 88.63%± 0.03% 88.63%± 0.03%
Random 88.52%± 0.03% 88.06%± 0.05% 87.60%± 0.06%
IFFIM Default 88.44%± 0.05% 87.77%± 0.08% 87.58%± 0.10%
IFFIM Selected 87.66%± 0.04% 84.50%± 0.04% 81.53%± 0.06%
TRAK Default 88.53%± 0.06% 87.92%± 0.11% 86.88%± 0.29%
TRAK Selected 87.30%± 0.04% 83.84%± 0.05% 80.12%± 0.08%

Table 3: Data selection performance on CIFAR-2+ResNet-9 settings. Values in the table are means
and standard errors of test accuracies. Experiments are repeated with 10 different seeds. Lower
accuracies indicate better attribution performance.

Removal rates 10% 30% 50%

Full 75.04%± 0.53% 75.04%± 0.53% 75.04%± 0.53%
Random 74.20%± 0.59% 71.86%± 0.33% 68.64%± 0.38%
IFFIM Default 74.36%± 0.38% 72.42%± 0.47% 67.84%± 1.16%
IFFIM Selected 74.36%± 0.38% 72.42%± 0.47% 67.84%± 1.16%
TRAK Default 74.06%± 0.52% 71.68%± 0.40% 69.30%± 0.49%
TRAK Selected 71.24%± 0.52% 64.14%± 0.47% 56.30%± 0.70%

Table 4: Data selection performance on MAESTRO+MT settings. Values in the table are means
and standard errors of test losses. Experiments are repeated with 10 different seeds. Higher losses
indicate better attribution performance. Note that we only include TRAK here, as IF has been shown
to exhibit poor attribution performance in this complex setting [8].

Removal rates 10% 30% 50%

Full 4.30± 0.01 4.30± 0.01 4.30± 0.01
Random 4.32± 0.01 4.38± 0.01 4.67± 0.02
TRAK Default 4.35± 0.01 4.40± 0.01 4.68± 0.01
TRAK Selected 4.40± 0.01 4.52± 0.01 4.83± 0.02
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