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Abstract

Neural-based machine translation (MT) eval-001
uation metrics are progressing fast. However,002
they are often hard to interpret and might pro-003
duce unreliable scores when human references004
or assessments are noisy or when data is out-005
of-domain. Recent work leveraged uncertainty006
quantification techniques such as Monte Carlo007
dropout and deep ensembles to provide confi-008
dence intervals, but these techniques (as we009
show) are limited in several ways. In this010
paper, we introduce more powerful and effi-011
cient uncertainty predictors for capturing both012
aleatoric and epistemic uncertainty, by training013
the COMET metric with new heteroscedastic re-014
gression, divergence minimization, and direct015
uncertainty prediction objectives. Our experi-016
ments show improved results on WMT20 and017
WMT21 metrics task datasets and a substantial018
reduction in computational costs. Moreover,019
they demonstrate the ability of our predictors020
to identify low quality references and to reveal021
model uncertainty due to out-of-domain data.022

1 Introduction023

Trainable neural-based MT evaluation metrics,024

such as COMET or BLEURT (Rei et al., 2020a;025

Sellam et al., 2020a), are becoming increasingly026

successful (Freitag et al., 2021b). For system com-027

parison, they surpass or complement traditional lex-028

ical metrics such as BLEU (Papineni et al., 2002),029

and at a segment level, they show higher corre-030

lations with human judgments, with and without031

access to references (Kepler et al., 2019; Thompson032

and Post, 2020; Ranasinghe et al., 2020).033

However, MT evaluation metrics need a measure034

of confidence over their quality predictions, so that035

they can be better contextualized and interpreted.036

Indeed, neural-based MT evaluation models are037

prone to multiple sources of epistemic and aleatoric038

uncertainty, often over- or under-estimating MT039

quality, specially when applied to new domains040

or languages. Recently, Glushkova et al. (2021)041
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Figure 1: Epistemic uncertainty caused by out-of-
domain data. We show sharpness (average uncertainty)
on two English-German test sets from the WMT21 met-
rics task: an in-domain dataset (News) and an out-of-
domain dataset (TED talks). Our proposed method that
handles epistemic uncertainty (DUP) exhibits higher
uncertainty on the out-of-domain dataset, as expected.
HTS, which detects aleatoric, but not epistemic uncer-
tainty, has similar uncertainty in both datasets, and the
MCD baseline, surprisingly, has the opposite behavior.

proposed uncertainty-aware MT evaluation by 042

combining COMET with two simple uncertainty 043

quantification methods based on model variance, 044

Monte Carlo (MC) dropout (Gal and Ghahramani, 045

2016) and deep ensembles (Lakshminarayanan 046

et al., 2017). However, these two methods have 047

two important shortcomings: 048

• They are costly in terms of inference time (MC 049

dropout) or training time (deep ensembles). 050

• They are not able to distinguish between differ- 051

ent sources of uncertainty. For example, it is 052

impossible to infer whether the uncertainty stems 053

from a noisy and ambiguous reference, an out-of- 054

distribution example, or noisy annotations. More 055

fundamentally, they are highly model-dependent 056

and cannot distinguish between aleatoric and 057

epistemic uncertainty (as illustrated in Figs. 1–2). 058

In this paper, we address the limitation above by 059

investigating more powerful (and efficient) uncer- 060

tainty quantification methods: direct uncertainty 061
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Figure 2: Aleatoric uncertainty caused by noisy references. We show a low quality reference (A) and a high
quality reference (B) for an English-German translation. Errors in reference A are annotated in dark red; reference
B has a perfect MQM score of 0 (no errors). Our two proposed methods that handle aleatoric (data) uncertainty,
HTS and KL, are more uncertain when given the low-quality reference, as expected. The previously proposed MCD
method (Glushkova et al., 2021) behaves in the opposite way. Full dataset statistics are shown in Figure 4.

prediction (Jain et al., 2021), a two-step approach062

which uses supervision over the quality predic-063

tion errors; heteroscedastic regression, which es-064

timates input-dependent aleatoric uncertainty and065

can be combined with MC dropout (Kendall and066

Gal, 2017); and divergence minimization, which067

can estimate aleatoric uncertainty from annotator068

disagreements, when multiple annotations are avail-069

able for the same example.070

We evaluate our newly proposed uncertainty esti-071

mators on 16 language pairs from the WMT20 and072

WMT21 metrics shared task, using two types of073

human annotations: direct assessments (DA) and074

multi-dimensional quality metric scores (MQM).075

The experiments show that our estimators com-076

pare favourably against model variance baselines,077

while being considerably faster. We also show that,078

contrarily to the baselines, our proposed methods079

are effective at detecting potentially incorrect refer-080

ences and out-of-distribution examples in the data.1081

2 Related Work082

MT evaluation Traditional metrics for MT eval-083

uation, including BLEU (Papineni et al., 2002),084

METEOR (Lavie and Denkowski, 2009), and085

CHRF (Popović, 2015) are based on lexical086

overlap. More recent metrics leverage large087

pretrained models, both unsupervised, such as088

BERTSCORE (Zhang et al., 2019), YISI (Lo, 2019)089

and PRISM (Thompson and Post, 2020), or fine-090

tuned on human annotations, such as COMET (Rei091

1Our code will be made publicly available.

et al., 2020a) and BLEURT (Sellam et al., 2020b). 092

In recent studies it has become increasingly ev- 093

ident that supervised metrics exhibit higher cor- 094

relations with human judgements (Mathur et al., 095

2020; Freitag et al., 2021a) and lead to a much 096

more reliable way to assess MT quality (Kocmi 097

et al., 2021). Nonetheless, all these metrics output 098

a single point estimate, with the exception of UA- 099

COMET (Glushkova et al., 2021), which returns a 100

confidence interval along with a quality estimate. 101

Our work builds upon UA-COMET by proposing 102

improved uncertainty quantification. 103

Uncertainty quantification Epistemic (model) 104

uncertainty represents the limitations of the 105

model’s knowledge (Der Kiureghian and Ditlevsen, 106

2009). Uncertainty quantification methods such 107

as Gaussian processes (Williams and Rasmussen, 108

1996) can capture epistemic uncertainty (Postels 109

et al., 2021; van Amersfoort et al., 2021). Beck et al. 110

(2016) pioneered the use of Gaussian processes for 111

quality estimation, yet these methods are hard to 112

integrate into the powerful neural network architec- 113

tures underlying state-of-the art MT evaluation sys- 114

tems. In contrast, ensemble-based methods for es- 115

timating model variance are more easily applicable 116

– this includes MC dropout (Gal and Ghahramani, 117

2016) and Deep Ensembles (Lakshminarayanan 118

et al., 2017). Recently, Raghu et al. (2019), Hu 119

et al. (2021), and Jain et al. (2021) have shown that 120

it is possible to predict the out-of-sample error by 121

training a direct epistemic uncertainty predictor on 122

the errors of the main model. To the best of our 123

2



knowledge, direct uncertainty prediction have not124

been examined on MT evaluation (or other NLP125

tasks). Contrary to epistemic uncertainty, aleatoric126

(data) uncertainty corresponds to the irreducible127

amount of prediction error(s), which is due to the128

noise present in the observed data. Kendall and Gal129

(2017) propose the use of heteroscedastic variance130

in the loss function. Wang et al. (2019) propose a131

test-time augmentation-based aleatoric uncertainty.132

They compare and combine it with epistemic uncer-133

tainty, and show that it provides more representa-134

tive uncertainty estimates than dropout-based ones135

alone. Our paper takes inspiration on these tech-136

niques to estimate aleatoric noise in MT evaluation.137

Annotator disagreement Several approaches138

have been proposed to understand and model an-139

notator bias (Cohn and Specia, 2013; Hovy and140

Yang, 2021) and to leverage annotator disagree-141

ment in NLP applications (Sheng et al., 2008; Plank142

et al., 2014, 2016; Jamison and Gurevych, 2015;143

Pavlick and Kwiatkowski, 2019). Recently, soft-144

label multi-task learning objectives for classifica-145

tion tasks have been proposed by Fornaciari et al.146

(2021). Our Kullback-Leibler divergence mini-147

mization objective may be regarded as an exten-148

sion of this approach for regression tasks, replacing149

(softmax) categoricals by Gaussian distributions.150

Uncertainty in NLP There are several works151

applying uncertainty quantification techniques to152

NLP, most commonly for (structured) classification153

tasks. Fomicheva et al. (2020) uses MC dropout154

to model MT confidence, and Malinin and Gales155

(2020) studies structured uncertainty estimation156

in autoregressive tasks, including MT and speech157

recognition. Ye et al. (2021) models uncertainty in158

performance prediction of NLP systems. Mielke159

et al. (2019) applies heteroscedastic models to as-160

sess language difficulty, whereas Friedl et al. (2021)161

estimates aleatoric uncertainty in scientific peer re-162

viewing. While our paper focus on a regression163

task, some of our techniques might apply more164

broadly to these problems.165

3 Uncertainty in MT Evaluation166

3.1 MT evaluation167

Throughout, we denote by s a sentence in a source168

language, by t a translation into a target language,169

and by R a set of reference translations. A segment-170

level MT evaluation system MQ (also called a171

“translation quality metric”) is a system that takes as172

input a triple ⟨s, t,R⟩ and outputs a quality score 173

q̂ ∈ R, reflecting how accurate t is as a translation 174

of s. When R = ∅, the metric MQ is called 175

reference-less; otherwise it is reference-based. 176

Current state-of-the-art evaluation metrics, such 177

as COMET (Rei et al., 2020a) or BLEURT (Sellam 178

et al., 2020a), are trained with supervision on cor- 179

pora annotated with human judgments q∗ ∈ R, 180

such as direct assessments (DA; Graham et al. 181

2013) or scores from multi-dimensional quality 182

metric annotations (MQM; Lommel et al. 2014). 183

This supervision encourages their predicted quality 184

scores to approximate the human perceived quality, 185

q̂ ≈ q∗, in a way that generalizes to unseen data. 186

3.2 Sources of uncertainty 187

While neural-based MT systems are more accu- 188

rate than traditional lexical-based metrics such as 189

BLEU, they are less transparent and may produce 190

unreliable scores for out-of-domain inputs or when 191

references are noisy (Rei et al., 2020b; Freitag et al., 192

2021b). Our goal is to mitigate this problem by 193

quantifying the uncertainty associated with their 194

predicted scores. This uncertainty can come from 195

several sources: 196

• Aleatoric (data) uncertainty is primarily caused 197

by noise in the data. Frequent sources of noise 198

are inaccurate or inconsistent ground truth qual- 199

ity scores q∗ (usually noticeable from low inter- 200

annotator agreement scores) and noisy reference 201

translations R, which can mislead the MT evalu- 202

ation system (Freitag et al., 2020). 203

• Epistemic (model) uncertainty reflects lack 204

of knowledge from the model itself. This 205

may be caused by limited training data, out-of- 206

distribution examples (e.g., new languages, new 207

domains, or diverse scoring schemes), or by com- 208

plex, highly non-literal, translations which may 209

trigger weak spots in the MT evaluation model. 210

Recently, Glushkova et al. (2021) proposed 211

an uncertainty-aware evaluation metric (UA- 212

COMET) by experimenting with two simple uncer- 213

tainty quantification techniques, MC dropout (Gal 214

and Ghahramani, 2016) and deep ensembles (Lak- 215

shminarayanan et al., 2017). Both techniques com- 216

pute estimates based on model variance – they es- 217

timate uncertainty by running multiple versions of 218

the system (either produced on-the-fly with stochas- 219

tic dropout noise or by using separate models 220

trained with different seeds), and then computing 221
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the mean µ̂ and variance σ̂2 of the predicted scores.222

When given a triple ⟨s, t,R⟩ as input, instead of223

returning a point estimate q̂, UA-COMET treats the224

quality score as a random variable Q, modeled as a225

Gaussian distribution pQ(q) = N (q; µ̂, σ̂2). After226

a calibration step, the variance parameter of the227

Gaussian σ̂2 is used as the uncertainty estimate.228

4 Improving Uncertainty-Aware MT229

Evaluation230

A limitation of UA-COMET is that it relies on231

model variance techniques which often produce232

poor estimates of uncertainty and conflate aleatoric233

and epistemic uncertainty, making it hard to ac-234

curately represent uncertainty related to out-of-235

distribution samples (Jain et al., 2021; Zhang et al.,236

2021). We therefore examine alternate methods to237

learn aleatoric and epistemic uncertainty directly238

from the available data. We assume that for each239

of the training scenarios and learning objectives240

described in the following sections, we can learn241

to predict the uncertainty of quality estimates q̂ ei-242

ther as the noise variance σ in the case of aleatoric243

uncertainty, or as the generalization error ϵ in the244

case of epistemic (and total) uncertainty.245

4.1 Predicting aleatoric uncertainty246

Rather than a property of the model, aleatoric un-247

certainty is a property of the data distribution and248

thus it can be learned as a function of the data249

(Kendall and Gal, 2017). It corresponds to uncer-250

tainty induced due to noise and inconsistencies. In251

the case of MT evaluation, we identify low qual-252

ity references and inconsistent human annotations253

as the main sources of aleatoric uncertainty. The254

uncertainty associated with each data instance can255

vary: references have shown to be of different qual-256

ity levels (Freitag et al., 2020), while the quality257

scores depend largely on the annotators and tend to258

have high disagreement (Toral, 2020).259

Heteroscedasticity A common assumption in re-260

gression problems (of which MT evaluation is an261

example) is that the noise in the data has constant262

variance throughout the dataset – i.e., that the data263

is homoscedastic. The mean squared error loss,264

for example, corresponds to the maximum likeli-265

hood criterion under Gaussian noise with fixed vari-266

ance. However, this is not a suitable assumption in267

several problems, including MT evaluation, where268

real data is often heteroscedastic – for example,269

complex sentences requiring specific background270

knowledge may be subject to larger annotation er- 271

rors (higher disagreement among annotators) and 272

higher chance for noisy references than simpler 273

sentences. Therefore, the aleatoric uncertainty will 274

likely be larger for those cases. 275

Heteroscedastic regression We model aleatoric 276

uncertainty as observation noise by training a 277

model to predict not only a quality score for each 278

triple, but also a variance estimate σ̂2 for this score. 279

Under our heteroscedastic assumption, we assume 280

that the variance is specific to each data sample and 281

can be learned as a function of the data. We follow 282

Le et al. (2005) and Kendall and Gal (2017) and in- 283

corporate σ̂2 as part of the training objective, while 284

learning the MT evaluation model parameters. 285

Formally, let x := ⟨s, t,R⟩ denote an input 286

triple, as described in §3. Our heteroscedastic 287

uncertainty-aware MT evaluation system MHTS
Q 288

is a neural network that takes x as input and 289

outputs a mean score µ̂(x) and a variance score 290

σ̂2(x) – in practice, this is done by taking a 291

COMET model and changing the output layer 292

to output two scores (µ̂(x) and log σ̂2(x)) in- 293

stead of one (q̂(x)). This predicted mean 294

and variance parametrize a Gaussian distribution 295

p̂Q(q|x; θ) = N (q; µ̂(x; θ), σ̂2(x; θ)), where θ 296

are the model parameters. Given a training set 297

D = {(x1, q∗1), . . . , (xN , q∗N )}, the maximum like- 298

lihood training criterion amounts to maximize 299

1

N

N∑
i=1

logN (q∗i ; µ̂(xi, θ), σ̂
2(xi, θ))︸ ︷︷ ︸

pQ(q∗i |xi;θ)

= (1) 300

= − 1

N

N∑
i=1

LHTS(µ̂(xi, θ), σ̂
2(xi, θ); q

∗
i ) + const., 301

where LHTS denotes the heteroscedastic loss: 302

LHTS(µ̂, σ̂
2; q∗) =

(q∗ − µ̂)2

2σ̂2
+

1

2
log σ̂2. (2) 303

We can see that, if σ̂2 was constant and not esti- 304

mated, the heteroscedastic loss LHTS would revert 305

to a standard squared loss; however, since this vari- 306

ance is predicted by the model and changes with 307

the input, the model is trained to make a trade-off: 308

the σ̂2 term in the denominator down-weights ex- 309

amples where the target q∗ is assumed unreliable, 310

decreasing the impact of highly noisy instances (a 311

form of weighted least squares), while the log σ̂2 312

term penalizes the model if it overestimates the 313

variance. We show in §5.5 how this variance can 314

be used to detect possibly noisy references. 315
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KL divergence minimization While het-316

eroscedastic uncertainty allows to estimate317

the observation noise, when we have multiple318

annotations for the same example we may have319

additional information on data uncertainty reflected320

in annotator disagreement. We assume that321

annotator disagreement in this case can be used as322

a proxy to data uncertainty.323

Similarly to the estimation of heteroscedastic324

variance with the LHTS objective, we assume that325

we can learn the variance σ̂(x; θ) as an estima-326

tor of aleatoric uncertainty alongside the rest of327

the model, but now leveraging the supervision328

coming from the annotator disagreement – we329

denote this system by MKL
Q . We model the an-330

notator scores as another Gaussian distribution331

p∗Q(q | x) = N (q;µ∗(x), σ∗(x)), where µ∗(x) is332

the sample mean and σ∗(x) the sample variance of333

the annotator scores for the example x, used as tar-334

gets for our model predictions. We formalize this335

as a Kullback-Leibler (KL) divergence objective be-336

tween the target distribution p∗Q and the predicted337

distribution p̂Q, which has the following closed338

form for Gaussian distributions:339

LKL(µ̂, σ̂
2;µ∗, σ∗2) = KL(p∗Q∥p̂Q)340

=
(µ∗ − µ̂)2 + σ∗2

2σ̂2
+

1

2
log

σ̂2

σ∗2 − 1

2
. (3)341

Note that Eq. 3 is a generalization of Eq. 2: if we342

assume a fixed zero-limit variance σ∗2 → 0, we343

recover Eq. 2 up to a constant.344

4.2 Predicting epistemic uncertainty345

Epistemic (model) uncertainty can be observed346

mainly on out-of-sample and out-of-distribution347

instances, and manifests as the reducible general-348

ization error of the model – in the presence of infi-349

nite training data and suitable model and learning350

algorithm, epistemic uncertainty could be reduced351

to zero (Postels et al., 2021; Jain et al., 2021). We352

outline two procedures to estimate epistemic and353

total uncertainty, one combining MC dropout with354

the heteroscedastic loss (Kendall and Gal, 2017),355

and another which estimates uncertainty directly as356

the generalization error (Jain et al., 2021).357

Heteroscedastic MC dropout Given a way to es-358

timate aleatoric uncertainty σ̂, e.g., using Eqs. 2 or359

3, we can combine it with an estimator of epistemic360

uncertainty to obtain the total uncertainty over a361

sample. Assuming we have access to an MT eval-362

uation model that is able to predict both a quality363

score q̂ and an aleatoric uncertainty estimate σ̂ – 364

such as the system MHTS
Q described in §4.1 – we 365

can use a stochastic strategy such as MC dropout or 366

deep ensembles to obtain a set Q = {q̂1, . . . , q̂M} 367

of quality estimates and Σ = {σ̂2
1, . . . , σ̂

2
M} of 368

variance estimates. Assuming Q is a sample drawn 369

from a Gaussian distribution, the sample variance 370

can be used as an estimator of epistemic uncer- 371

tainty, and the sample mean of Σ can be used as an 372

estimator of aleatoric uncertainty (Kendall and Gal, 373

2017). We can then estimate the total uncertainty 374

over the M samples as the sum of epistemic and 375

aleatoric uncertainties: 376

Ûtotal = Var[Q] + E[Σ] (4) 377

=
1

M

M∑
j=1

q̂2j −

 1

M

M∑
j=1

q̂j

2

︸ ︷︷ ︸
epistemic

+
1

M

M∑
j=1

σ̂2
j︸ ︷︷ ︸

aleatoric

. 378

For the experiments presented in §5 we use this 379

strategy with MC dropout applied to a model 380

trained with heteroscedastic regression. 381

Direct prediction of total uncertainty An alter- 382

native is to consider the total uncertainty Ûtotal as 383

an approximation of the generalization error of 384

the MT evaluation model MQ. In this case, assum- 385

ing access to MQ’s predictions q̂ and the ground 386

truth quality scores q∗ on a new (unseen) set of sam- 387

ples, we could learn to predict the total uncertainty 388

directly as the error ϵ between the model predic- 389

tions q̂ and the true scores q∗, using the strategy 390

recently proposed by Jain et al. (2021). 391

As opposed to the previously described uncer- 392

tainty estimation approaches, direct uncertainty pre- 393

diction (DUP) is a two-step process, as we need to 394

first obtain the model MQ that generates the pre- 395

dictions q̂ that will allow us to estimate the target 396

errors in a second stage. Hence, we need access to 397

two distinct datasets on which two separate models 398

have to be trained. We assume a dataset DQ where 399

MQ is trained (we use the vanilla COMET system), 400

and another, disjoint dataset DE where we train a 401

second system ME to predict the uncertainty/error 402

of MQ’s predictions. For this purpose, we use 403

MQ to annotate DE with quality estimates q̂, and 404

then we calculate the ground truth error ϵ∗ as the 405

distance to the human quality scores q∗ for each 406

segment in DE, ϵ∗ = |q̂− q∗|. We use ϵ∗ as the tar- 407

get to train ME, given inputs ⟨s, t,R, q̂⟩. Letting 408

ϵ̂ correspond to the uncertainty predicted by ME 409
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on a given input, we consider three possible loss410

functions for ME:411

LE
ABS(ϵ̂; ϵ

∗) = (ϵ∗ − ϵ̂)2 (5)412

LE
SQ(ϵ̂; ϵ

∗) = ((ϵ∗)2 − ϵ̂2)2 (6)413

LE
HTS(ϵ̂; ϵ

∗) =
(ϵ∗)2

2ϵ̂2
+

1

2
log(ϵ̂)2. (7)414

Losses LE
ABS and LE

SQ are variations of the mean415

squared error loss, using as argument either the416

absolute error ϵ̂ or the squared error ϵ̂2. Instead,417

LE
HTS is inspired by the heteroscedastic loss of418

Eq. 2, where the model is discouraged from pre-419

dicting too high uncertainty values because of the420

term log(ϵ̂)2, while it will still try to predict high ϵ̂421

values for the samples where the MT quality score422

is not close to the human evaluation. Therefore,423

this choice is akin to a two-step approach to het-424

eroscedastic regression: one step to train the “mean”425

predictor and another step for training the variance426

predictor given the mean predictions, where the427

two steps are performed on different partitions of428

the dataset, DQ and DE.429

5 Experiments430

5.1 Experimental Setup431

We follow Glushkova et al. (2021) and use COMET432

(v1.0) as the underlying architecture for our MT433

evaluation models, trained on the data from the434

WMT17-WMT19 metrics shared task (Freitag435

et al., 2021b). We consider two types of human436

judgments: direct assessments (DA) and multi-437

dimensional quality metric scores (MQM).438

Experiments on DA scores We create a test439

partition with 20% of the WMT20 data (32,173440

triplets).2 All single-step models are trained on441

the data from the WMT17-WMT19 metrics shared442

task (WMT1719) and use the remaining 80% of443

WMT20 as a development set for calibration. For444

DUP models, WMT1719 is used to train the first445

step model MQ and the 80% split of WMT20446

is used as follows: 70% to train DUP’s second447

step model ME and 10% as development set. The448

data encompasses 16 language pairs (listed in Ta-449

bles 4–5 in App. A), which we aggregate into two450

groups, EN-XX (out-of-English) and XX-EN (into-451

English). We report results for each group, as well452

2We ensure that triplets with the same source sentence or
from the same document do not appear in the other sets so that
these sets are disjoint. All sets are balanced with respect to the
percentage of source segments available from each language
pair. The splits will be made publicly available.

as the balanced average across all language pairs 453

(AVG). 454

Experiments on MQM scores We fine-tune all 455

models on the entire WMT20 MQM dataset, which 456

consists of MQM annotations for English-German 457

(EN-DE) and Chinese-English (ZH-EN). For DUP 458

we finetune the ME model on WMT20. For testing 459

and calibration we use WMT21 metrics shared task 460

dataset, which contains MQM annotations for the 461

same language pairs, but also with an addition of 462

English-Russian (EN-RU). We split the WMT21 463

MQM data into two halves, where 50% is used as 464

a development set for calibrating all models, and 465

50% is used as the test set. We also provide the 466

performance on the same WMT21 test set without 467

any finetuning on MQM scores in the App. B. 468

Models As baselines, we use MC dropout 469

(MCD) model with 100 dropout runs, and a deep 470

ensemble (DE) of 5 independent COMET models. 471

We experiment with the following models: an het- 472

eroscedastic COMET model MHTS
Q trained with 473

the loss in Eq. 2 (HTS), its combination with MC 474

dropout as described in Eq. 4 (HTS+MCD), and 475

the direct uncertainty prediction model described 476

in §4.2 (DUP) using the three losses in Eqs. 5– 477

7. For the DUP models, we use vanilla COMET 478

as MQ and a system with the same architecture 479

for ME which receives as an additional feature 480

the predicted quality score q̂ from MQ. This ex- 481

tra feature is added by inserting a bottleneck layer 482

between two feed-forward layers in the original 483

vanilla COMET architecture (see App. C). Finally, 484

for the experiment with MQM scores, where multi- 485

ple annotators for the same examples are available, 486

we also experiment with the model MKL
Q using the 487

objective in Eq. 3 (KL).3 488

Evaluation For both types of human judge- 489

ments (DA and MQM), in all the experiments, 490

we report the same performance indicators as 491

Glushkova et al. (2021): the predictive Pearson 492

score r(µ̂, q∗) (PPS), the uncertainty Pearson score 493

r(|q∗ − µ̂|, σ̂) (UPS), the negative log-likelihood 494

− logN (q∗; µ̂, σ̂2) (NLL), the expected calibra- 495

tion error (ECE), and the sharpness (Sha.), i.e., the 496

average predicted variance in the test set. These in- 497

dicators are described in detail in App. D; they 498

3Unlike the other models, the KL model is trained directly
on the WMT20 MQM dataset (instead of being just fine-tuned
there), since the WMT data with direct assessments does not
include information on annotator disagreement that is used as
target for the KL model training.
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PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓
E

N
-X

X DUP LE
ABS 0.633 0.134 1.019 0.013 0.295

DUP LE
SQ 0.633 0.140 1.022 0.012 0.315

DUP LE
HTS 0.633 0.146 1.021 0.014 0.293

X
X

-E
N DUP LE

ABS 0.287 0.081 1.471 0.017 0.527

DUP LE
SQ 0.287 0.084 1.470 0.017 0.534

DUP LE
HTS 0.287 0.086 1.473 0.017 0.524

A
V

G DUP LE
ABS 0.446 0.104 1.265 0.015 0.414

DUP LE
SQ 0.446 0.108 1.262 0.014 0.427

DUP LE
HTS 0.446 0.112 1.266 0.015 0.411

Table 1: Comparison of different losses for the DUP
method in segment-level DA prediction.

assess both quality prediction accuracy (PPS),499

uncertainty-related accuracy (UPS, ECE and Sha.),500

and the two combined in a single score (NLL).501

5.2 Loss function for DUP502

We first compare the performance of the three afore-503

mentioned losses for DUP (see Eqs. 5–7 in §4.2)504

on the segment-level DA data. According to the505

results in Table 1, all three losses perform simi-506

larly, with a slight advantage to LE
HTS. We thus507

run the rest of the experiments using this loss as a508

representative of DUP.509

5.3 Comparison of uncertainty methods510

The results of the DA and MQM experiments are511

shown in Tables 2–3. As expected, the PPS values512

(which do not measure uncertainty, but accuracy of513

the quality predictions) are similar for all methods,514

since they are based either on a vanilla COMET515

model, or on an ensemble of COMET models, with516

an advantage for the DE method which benefits517

from the ensemble effect. While HTS and KL518

have modified objectives that learn the mean and519

the variance simultaneously, they do not seem to520

improve the quality predictions. We focus our anal-521

ysis in the uncertainty prediction, assessed by the522

other four indicators (UPS, NLL, ECE, and Sha.)523

For the DA experiments, we observe that our524

two proposed methods, HTS and DUP, are consis-525

tently better than the baseline estimates (MCD and526

DE) for all uncertainty metrics (UPS, ECE, and527

Sha.) except NLL. The significant drop in NLL528

might be explained by the fact that DUP tends529

to underestimate the variance, and this is severely530

penalized by NLL (see App. D). Applying MC531

dropout to MHTS
Q (HTS+MCD) seems to improve532

UPS and ECE, compared to MHTS
Q (HTS) alone,533

but it produces less sharp uncertainty estimates and534

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-X
X

MCD 0.601 0.128 0.616 0.032 0.673
DE 0.631 0.134 0.522 0.086 0.461
HTS 0.617 0.172 0.911 0.026 0.377
HTS+MCD 0.609 0.323 0.994 0.017 0.516
DUP 0.633 0.145 1.021 0.013 0.293

X
X

-E
N

MCD 0.286 0.019 1.033 0.073 1.432
DE 0.296 0.044 0.943 0.086 1.131
HTS 0.278 0.079 1.441 0.011 0.566
HTS+MCD 0.276 0.176 1.323 0.011 0.600
DUP 0.287 0.086 1.473 0.017 0.524

A
V

G

MCD 0.435 0.071 0.816 0.053 1.083
DE 0.455 0.090 0.728 0.086 0.813
HTS 0.435 0.119 1.189 0.020 0.466
HTS+MCD 0.429 0.254 1.167 0.013 0.528
DUP 0.446 0.112 1.266 0.015 0.411

Table 2: Results for segment-level DA predictions.
Underlined numbers indicate the best result for each
evaluation metric in each language pair.

negatively impacts the predictive accuracy of the 535

model. DUP on the other hand seems to outper- 536

form other methods and gets more informative and 537

“tight” uncertainty intervals. Additionally, as we 538

can see in Figure 1, the sharpness increases for out- 539

of-domain data in the case of DUP and captures 540

nicely the increased epistemic uncertainty in such 541

cases. In contrast, we can see that variance based 542

epistemic uncertainty predictors cannot accurately 543

represent the domain shift, while aleatoric uncer- 544

tainty (HTS) remains the same. We provide a more 545

extended analysis of this aspect in the App. E. 546

The findings on DA data are further supported by 547

the MQM results, and we can see that the models 548

achieve good performance for the EN-RU language 549

pair, which is not available in the WMT20 MQM 550

data used for fine-tuning. We also see that the KL 551

model, despite having access to significantly less 552

training data (see §5.1), achieves results that are 553

close to DUP, specially for the pairs EN-DE and 554

ZH-EN where it was trained. 555

5.4 Computational cost 556

We now turn to the computational cost associated 557

with the different uncertainty quantification meth- 558

ods, both in terms of training and inference runtime. 559

In Figure 3, we present the inference and training 560

times for each of the discussed models. The large 561

inference times for MCD and HTS+MCD stem 562

from the need to run 100 runs (the optimal number 563

according to Glushkova et al. (2021)); for DE, 5 564

models are ensembled, increasing training and in- 565

ference costs 5-fold (for training details see Tab. 7 566

in App. C). In contrast, HTS, KL, and DUP have 567

much lighter costs (with higher costs for DUP due 568
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PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓
E

N
-D

E

MCD 0.358 0.185 0.631 0.085 0.952
DE 0.402 0.116 0.671 0.019 1.034
HTS 0.342 0.303 2.001 0.029 0.200
HTS+MCD 0.334 0.301 1.564 0.027 0.296
KL 0.358 0.239 2.500 0.049 0.188
DUP 0.374 0.255 2.373 0.045 0.20

Z
H

-E
N

MCD 0.618 0.237 0.944 0.101 1.032
DE 0.628 0.239 0.869 0.025 0.894
HTS 0.599 0.340 1.445 0.038 0.487
HTS+MCD 0.603 0.357 1.314 0.037 0.544
KL 0.587 0.316 1.564 0.036 0.990
DUP 0.616 0.346 1.290 0.012 0.492

E
N

-R
U

MCD 0.364 0.213 0.69 0.09 1.11
DE 0.376 0.281 0.363 0.06 1.087
HTS 0.336 0.302 2.564 0.075 0.15
HTS+MCD 0.357 0.349 1.622 0.051 0.355
KL 0.353 0.275 4.046 0.044 0.15
DUP 0.371 0.331 2.477 0.046 0.206

A
V

G

MCD 0.463 0.215 0.775 0.093 1.038
DE 0.482 0.222 0.643 0.036 0.997
HTS 0.441 0.317 1.976 0.048 0.296
HTS+MCD 0.448 0.34 1.485 0.039 0.414
KL 0.447 0.282 2.664 0.042 0.492
DUP 0.469 0.317 1.981 0.032 0.317

Table 3: Results for segment-level MQM predictions.
Underlined numbers indicate the best result for each
evaluation metric in each language pair.

to the need to train/run a second system).569

5.5 Identification of noisy references570

As mentioned in §3.2, low quality references are571

a primary source of aleatoric uncertainty. Thus,572

we expect the uncertainty predictors that model573

aleatoric uncertainty (HTS and KL) to be more574

sensitive to erroneous references compared to the575

other uncertainty predictors. To verify this hy-576

pothesis and investigate the potential of aleatoric577

uncertainty predictors to detect noisy references,578

we conduct an experiment on the WMT21 MQM579

EN-DE dataset, which includes 4 references, each580

annotated with MQM scores by a human annota-581

tor (Freitag et al., 2021b). We can thus use these582

MQM scores as indicators of how good references583

are. For each ⟨s, t⟩ pair in the test split, we se-584

lect the best reference rgood and the worst refer-585

ence rbad based on the respective MQM scores.586

We retain only the ⟨s, t, {rgood, rbad}⟩ for which587

|MQM(rgood)−MQM(rbad)| > 10,, so that there588

is a considerable quality difference between the ref-589

erences.4 We then apply the uncertainty predictors590

on the selected triples ⟨s, t, rgood⟩ and ⟨s, t, rbad⟩591

and obtain the predicted uncertainties, as shown592

in Figure 2. For each ⟨s, t⟩ pair, we check which593

4An MQM penalty of 10 points corresponds to at least 2
major errors (Freitag et al., 2021a).

Time (min)

Vanilla COMET

MCD

DE

HTS 

HTS + MCD

KL

DUP

0 1000 2000 3000

Train on WMT 1719 Finetuning on MQM 2020
Inference on MQM 2021

Figure 3: Combined training, fine-tuning and inference
times for the experiments reported in Table 3. All exper-
iments were performed on a server with 4 Quadro RTX
6000 (24GB), 12 Intel Xeon Silver 4214@2.20GHz
CPUs, and 256 Gb of RAM; time calculated for train-
ing/inference on a single GPU.

0.00%

25.00%

50.00%

75.00%

100.00%

HTS

KL

DUP

MCD

Figure 4: Percentage of correctly recognized higher
reference quality (rgood versus rbad) by different uncer-
tainty predictors on the EN-DE dataset.

reference leads to the lowest predicted uncertainty 594

and compute how often that reference coincides 595

with rgood. In Figure 4, we can see that both the 596

HTS and the KL predictors are much more suc- 597

cessful in choosing the correct reference compared 598

to MCD (HTS in particular is correct > 82% of 599

the time versus 38% for MCD). This confirms the 600

hypothesis that HTS and KL are more effective at 601

capturing aleatoric uncertainty. 602

6 Conclusions 603

We explored the potential of different uncertainty 604

predictors to capture different sources of uncer- 605

tainty in MT evaluation. We demonstrated that 606

methods modeling heteroscedasticity are useful for 607

detecting noisy references as a source of aleatoric 608

uncertainty, and that the direct epistemic predic- 609

tion method reflects well the increased epistemic 610

uncertainty under a domain shift. Our proposed 611

predictors, besides providing more informative un- 612

certainty estimates than MC dropout and deep en- 613

semble methods, are also considerably cheaper in 614

terms of computational costs. 615
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A DA experiments899

Results per language pair are presented in Tables 4900

and 5.901

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-C
S

MCD 0.702 0.108 0.587 0.055 0.432
DE 0.753 0.119 0.561 0.089 0.446
HTS 0.71 0.195 0.807 0.004 0.353
HTS+MCD 0.676 0.335 0.88 0.008 0.388
DUP 0.718 0.132 0.987 0.007 0.559

E
N

-D
E

MCD 0.432 0.21 0.562 0.019 0.592
DE 0.479 0.198 0.365 0.08 0.348
HTS 0.632 0.253 0.925 0.021 0.326
HTS+MCD 0.612 0.386 0.924 0.004 0.369
DUP 0.655 0.166 1.045 0.031 0.272

E
N

-J
A

MCD 0.697 0.192 0.596 0.013 0.581
DE 0.714 0.128 0.425 0.09 0.348
HTS 0.672 0.197 0.8 0.057 0.406
HTS+MCD 0.669 0.249 1.048 0.03 0.52
DUP 0.698 0.153 0.85 0.009 0.158

E
N

-P
L

MCD 0.624 0.097 0.834 0.038 1.078
DE 0.66 0.092 0.783 0.089 0.704
HTS 0.628 0.073 1.281 0.008 0.349
HTS+MCD 0.631 0.189 0.969 0.004 0.397
DUP 0.62 0.046 1.551 0.008 0.316

E
N

-R
U

MCD 0.519 0.124 0.587 0.036 0.562
DE 0.544 0.142 0.541 0.086 0.444
HTS 0.493 0.163 0.877 0.005 0.385
HTS+MCD 0.497 0.37 1.05 0.017 0.637
DUP 0.512 0.229 0.863 0.013 0.287

E
N

-T
A

MCD 0.639 0.031 0.832 0.041 1.18
DE 0.656 0.078 0.772 0.088 0.704
HTS 0.623 0.185 1.112 0.005 0.485
HTS+MCD 0.617 0.231 1.223 0.038 0.921
DUP 0.641 0.172 1.164 0.016 0.348

E
N

-Z
H

MCD 0.592 0.131 0.313 0.024 0.282
DE 0.612 0.178 0.207 0.082 0.235
HTS 0.566 0.139 0.58 0.083 0.337
HTS+MCD 0.562 0.504 0.865 0.02 0.38
DUP 0.586 0.122 0.688 0.011 0.11

Table 4: Results for segment-level DA prediction for
En-Xx LPs. Underlined numbers indicate the best result
for each evaluation metric in each language pair.

B MQM experiments902

Results without fine-tuning on the MQM data are903

presented in Table 6. For these experiments we use904

the models trained on the WMT DA data (perfor-905

mance for these models is also reported in Table 2).906

We can see that without further finetuning on MQM907

scores all models with the exception of the ones908

based on variance (MCD and DE) have a signifi-909

cant drop in performance.910

C Model implementation and parameters911

Table 7 shows the hyperparameters used to912

train the following uncertainty prediction mod-913

els: MCD, DE, HTS, KL and DUP. For deep914

ensembles we trained 4 models with different915

seeds and as a fifth model we used the wmt- 916

comet-da available at https://github.com/ 917

Unbabel/COMET (in the table we refer to it as 918

Vanilla COMET). 919

D Performance indicators 920

We briefly describe below each of the metrics re- 921

ported for the experiments of this paper, provide 922

the formulas for each one and the motivation for 923

using them. For all described metrics we assume 924

access to a test set D = {⟨sj , tj ,Rj , q
∗
j ⟩}

|D|
j=1, con- 925

sisting of samples paired with their ground truth 926

quality scores. 927

Calibration Error To estimate how well- 928

calibrated the methods are we compute ex- 929

pected calibration error (ECE; Naeini et al. 2015; 930

Kuleshov et al. 2018), which is defined as: 931

ECE =
1

M

M∑
b=1

|acc(γb)− γb|, (8) 932

where each b is a bin representing a confidence 933

level γb, and acc(γb) is the fraction of times the 934

ground truth q∗ falls inside the confidence interval 935

I(γb): 936

acc(γb) =
1

|D|
∑

⟨s,t,R,q∗⟩∈D

1(q∗ ∈ I(γb)). (9) 937

We use this metric with M = 100, similarly to 938

previous works. 939

Negative log-likelihood The negative log- 940

likelihood (NLL) captures both accuracy- and 941

uncertainty-related performance, since it essen- 942

tially considers the log-likelihood of the true 943

quality score q∗ based on the distribution estimated 944

by the predicted variance (uncertainty). Thus it 945

penalizes predictions that are accurate but have 946

too high uncertainty (since they will become flat 947

distributions with low probability everywhere), and 948

even more severely incorrect predictions with high 949

confidence, but is more lenient with predictions 950

that are inaccurate but have high uncertainty. 951

NLL = − 1

|D|
∑

⟨s,t,R,q∗⟩∈D

log p̂(q∗ | ⟨s, t,R⟩).

(10) 952

Note that it is possible to calculate the optimal 953

fixed variance that minimizes NLL by: 954

σ2
fixed =

1

|D|

|D|∑
j=1

(q∗j − µ̂j)
2. (11) 955
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Sharpness To ensure informative uncertainty es-956

timation, confidence intervals should not only be957

calibrated, but also sharp. We measure sharp-958

ness using the predicted variance σ̂2, as defined959

in Kuleshov et al. (2018):960

sha(p̂Q) =
1

|D|
∑

⟨s,t,R⟩∈D

σ̂2. (12)961

Pearson correlations The predictive Pearson962

score (PPS), evaluates the predictive accuracy of963

the system – it is the Pearson correlation r(q∗, q̂)964

between the ground truth quality scores q∗ and the965

system predictions q̂ in the dataset D. The uncer-966

tainty Pearson score (UPS) r(|q∗ − q̂|, σ̂), mea-967

sures the alignment between the prediction errors968

|q∗ − q̂| and the uncertainty estimates σ̂.969

E Uncertainty on OOD examples970

We provide the comparison of the sharpness971

value, representing the quantified uncertainty for972

in-domain (ID) data (WMT21 news data with973

MQM annotations) and out-of-domain (OOD) data974

(WMT21 TEDTalks data with MQM annotations)975

in Figure 5. Sharpness as explained in App. D, is976

an indicator of the overall estimated confidence of977

a model over a given dataset. Thus we want to ex-978

amine whether the estimated confidence intervals979

for the OOD data are representative of the expected980

increase in epistemic uncertainty.981

Looking at the sharpness variation per language982

pair, we can see that for EN-DE and EN-RU, where983

the aleatoric uncertainty is relatively low as indi-984

cated by the low HTS values, the sharpness in-985

creases significantly for the DUP model. This be-986

haviour however does not hold for cases where987

aleatoric uncertainty is higher (ZH-EN). We specu-988

late that this could be attributed to the fact that DUP989

is trained to capture total uncertainty, instead of990

only epistemic, and thus it is sensitive to increased991

noise in the data. Further experiments would be992

needed to verify this hypothesis.993

Across language pairs, the values for HTS re-994

main the same for ID and OOD, while for MCD995

we have the opposite effect than what was expected:996

sharpness drops significantly for OOD data in all997

language pairs. This further supports our claim that998

uncertainty predictors relying on model variance999

are not optimal to represent epistemic uncertainty.1000

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

C
S
-E

N

MCD 0.194 0.035 0.912 0.052 1.463
DE 0.208 0.052 0.903 0.086 1.064
HTS 0.197 0.041 1.378 0.012 0.503
HTS+MCD 0.195 0.229 1.276 0.006 0.502
DUP 0.198 0.057 1.446 0.016 0.539

D
E

-E
N

MCD 0.203 0.005 0.825 0.065 1.075
DE 0.215 -0.011 0.734 0.081 0.855
HTS 0.189 0.018 1.416 0.01 0.306
HTS+MCD 0.163 0.148 1.107 0.014 0.463
DUP 0.211 0.019 1.336 0.013 0.501

JA
-E

N

MCD 0.339 0.058 1.579 0.065 1.702
DE 0.348 0.107 0.966 0.088 1.059
HTS 0.338 0.189 1.306 0.009 0.731
HTS+MCD 0.339 0.215 1.322 0.007 0.611
DUP 0.333 0.157 1.365 0.019 0.502

K
M

-E
N

MCD 0.46 -0.084 1.06 0.09 1.104
DE 0.466 -0.014 1.029 0.094 1.061
HTS 0.447 0.151 1.245 0.008 0.742
HTS+MCD 0.452 0.143 1.263 0.015 0.836
DUP 0.453 0.144 1.24 0.011 0.608

P
L

-E
N

MCD 0.275 0.011 0.98 0.067 1.659
DE 0.282 0.003 0.985 0.081 1.323
HTS 0.269 0.03 1.598 0.01 0.562
HTS+MCD 0.268 0.139 1.424 0.008 0.502
DUP 0.277 0.074 1.641 0.01 0.591

P
S
-E

N

MCD 0.321 0.048 1.093 0.094 1.24
DE 0.327 0.034 1.085 0.096 1.201
HTS 0.291 0.034 1.331 0.006 0.754
HTS+MCD 0.297 0.11 1.315 0.013 0.849
DUP 0.322 0.054 1.298 0.012 0.658

R
U

-E
N

MCD 0.214 0.012 0.926 0.061 1.79
DE 0.233 0.05 0.889 0.079 1.226
HTS 0.219 0.056 1.767 0.021 0.418
HTS+MCD 0.209 0.161 1.520 0.013 0.493
DUP 0.223 0.039 1.839 0.029 0.38

TA
-E

N

MCD 0.276 0.07 0.966 0.085 1.25
DE 0.282 0.104 0.98 0.084 1.219
HTS 0.277 0.134 1.471 0.011 0.511
HTS+MCD 0.284 0.25 1.300 0.016 0.642
DUP 0.27 0.132 1.56 0.027 0.422

Z
H

-E
N

MCD 0.29 0.014 0.952 0.073 1.598
DE 0.303 0.069 0.916 0.085 1.172
HTS 0.282 0.067 1.454 0.011 0.572
HTS+MCD 0.278 0.186 1.377 0.006 0.504
DUP 0.293 0.093 1.531 0.019 0.517

Table 5: Results for segment-level DA prediction for
Xx-En LPs. Underlined numbers indicate the best result
for each evaluation metric in each language pair.

13



0.00

0.25

0.50

0.75

1.00

1.25

DUP HTS MCD

News TEDTalks

(a) EN-DE

0.00

0.25

0.50

0.75

1.00

1.25

DUP HTS MCD

News TEDTalks

(b) EN-RU

0.00

0.25

0.50

0.75

1.00

1.25

DUP HTS MCD

News TEDTalks

(c) ZH-EN

Figure 5: Sharpness for in-domain (blue) News WMT21 MQM data and out-of-domain (red) TEDTalks WMT21
MQM data. We show changes in sharpness values on each language pair separately, for the DUP, HTS and MCD
models finetuned on News WMT20 MQM data.

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E

MCD 0.295 0.134 0.577 0.069 1.019
DE 0.332 0.104 0.644 0.021 1.03
HTS 0.326 0.094 0.039 2.567 0.274
HTS + MCD 0.291 0.126 1.502 0.021 0.356
DUP 0.302 0.038 2.248 0.054 0.241

Z
H

-E
N

MCD 0.441 0.115 0.956 0.081 1.321
DE 0.457 0.14 0.911 0.025 1.143
HTS 0.436 0.082 0.013 1.615 0.595
HTS + MCD 0.433 -0.006 1.42 0.013 0.637
DUP 0.434 0.17 1.814 0.05 0.469

E
N

-R
U

MCD 0.306 0.14 0.563 0.069 1.242
DE 0.318 0.117 0.684 0.078 1.332
HTS 0.337 0.134 0.021 2.035 0.306
HTS + MCD 0.333 -0.042 1.492 0.016 0.459
DUP 0.290 0.139 2.238 0.045 0.35

A
V

G

MCD 0.356 0.129 0.722 0.074 1.215
DE 0.377 0.123 0.763 0.042 1.179
HTS 0.289 0.079 0.012 1.34 0.341
HTS + MCD 0.286 -0.017 1.076 0.011 0.41
DUP 0.272 0.115 1.489 0.035 0.306

Table 6: Results for segment-level MQM prediction.
Underlined numbers indicate the best result for each
evaluation metric in each language pair.
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Hyperparameter MCD/DE/Vanilla COMET HTS/KL DUP

Encoder Model XLM-R (large) XLM-R (large) XLM-R (large)
Optimizer Adam Adam Adam
No. frozen epochs 0.3 0.3 0.3
Learning rate 3e-05 3e-05 3e-05
Encoder Learning Rate 1e-05 1e-05 1e-05
Layerwise Decay 0.95 0.95 0.95
Batch size 4 4 4
Loss function Mean squared error LHTS / LKL LE

HTS [LE
ABS / LE

SQ]
Dropout 0.15 0.15 0.15
Hidden sizes [3072, 1024] [3072, 1024] [3072, 1024]
Encoder Embedding layer Frozen Frozen Frozen
Bottleneck layer size - - 256
FP precision 32 32 32
No. Epochs (training) 2 2 2
No. Epochs (fine-tuning) 1 1 1

Table 7: Hyperparameters used to train uncertainty prediction methods.
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