
Under review as a conference paper at ICLR 2024

NON-STATIONARY CONTEXTUAL BANDIT LEARNING
VIA NEURAL PREDICTIVE ENSEMBLE SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world applications of contextual bandits often exhibit non-stationarity due
to seasonality, serendipity, and evolving social trends. While a number of non-
stationary contextual bandit learning algorithms have been proposed in the liter-
ature, they excessively explore due to a lack of prioritization for information of
enduring value, or are designed in ways that do not scale in modern applications
with high-dimensional user-specific features and large action set, or both. In this pa-
per, we introduce a novel non-stationary contextual bandit algorithm that addresses
these concerns. It combines a scalable, deep-neural-network-based architecture
with a carefully designed exploration mechanism that strategically prioritizes col-
lecting information with the most lasting value in a non-stationary environment.
Through empirical evaluations on two real-world recommendation datasets, which
exhibit pronounced non-stationarity, we demonstrate that our approach significantly
outperforms the state-of-the-art baselines.

1 INTRODUCTION

Contextual bandit learning algorithms have seen rapid adoptions in recent years in a numder of
domains (Bouneffouf and Rish, 2019), from driving personalized recommendations (Li et al., 2010)
to optimizing dyanmic advertising placements (Schwartz et al., 2017). The primary objective of these
algorithms is to strategically select actions to acquire information about the environment in the most
cost-effective manner, and use that knowledge to guide subsequent decision-making. Thanks in part
to the historical development in this field, many of these algorithms are designed for a finite-horizon
experiment with the environment remaining relatively stationary throughout.

Figure 1: NeuralPES Regret in Nonsta-
tionary Contextual Bandits

However, real-world environments are rife with non-
stationarity (Ditzler et al., 2015; Elena et al., 2021), as
a result of seasonality (Keerthika and Saravanan, 2020;
Hwangbo et al., 2018), serendipity (Kotkov et al., 2016;
2018), or evolving social trends (Abdollahpouri et al.,
2019; Cañamares and Castells, 2018). To make matters
worse, many practical contextual bandit systems, such as
these commonly used in a recommendation engine, oper-
ate in a continuous manner over a long, or even indefinite
time horizon, further exposing the learning algorithm to
non-stationarity that is bound to manifest over its lifetime.
Indeed, when applied to non-stationary environments, tra-
ditional contextual bandit learning algorithms designed
with stationarity in mind are known to yield sub-optimal
performance (Trovo et al., 2020; Russac et al., 2020).

The goal of this paper is to study the design of contextual bandit algorithms that not only success-
fully navigate a non-stationary environment, but also scale to real-world production environments.
Extending classic bandit algorithms to a non-stationary setting has received sustained attention in
recent years (Kocsis and Szepesvári, 2006; Garivier and Moulines, 2008; Raj and Kalyani, 2017;
Trovo et al., 2020). A limitation in these existing approaches, however, is that they are designed
to explore new information by only decaying past information, which could introduce excessive
exploration. As pointed out by Liu et al. (2023), exploration designs intended for stationary envi-
ronments tend to focus on resolving the uncertainty surrounding an action’s current quality, and as

1

Under review as a conference paper at ICLR 2024

such, suffer sub-optimal performance for failing to prioritize collecting information that would be
of more enduring value in a non-stationary environment. In response, Liu et al. (2023) proposed
the predictive sampling algorithm that takes information durability into account, and demonstrated
an impressive performance improvement over existing solutions. However, the predictive sampling
algorithm, among many nonstationary contextual bandit learning algorithm we discuss in the related
work section, suffers from their scalability and does not scale with modern deep learning systems.

In this work, we take a step towards solving large-scale nonstationary contextual bandit problems by
introducing Neural Predictive Ensemble Sampling (NeuralPES), the first non-stationary contextual
bandit learning algorithm that is scalable with modern neural networks and effectively explores
in a non-stationary envrionment by seeking lasting information. Theoretically, we establish that
NeuralPES emphasizes the acquisition of lasting information, information that remains relevant
for a longer period of time. Empirically, we validate the algorithm’s efficacy in two real-world
recommendation datasets, spanning across 1 week and 2 months of time, respectively, and exhibiting
pronounced non-stationarity. Our findings reveal that our algorithm surpasses other state-of-the-
art neural contextual bandit learning algorithms, encompassing both stationary and non-stationary
variants. As a spoiler for our empirically results, see Figure 1 for the average regret of our agent
compared to other baselines on an AR(1) nonstationary contextual bandit environment.

2 RELATED WORK
Non-Stationary Bandit Learning. A large number of non-stationary bandit learning algorithms
rely on heuristic approaches to reduce the effect of past data. These heuristics include maintaining
a sliding window Cheung et al. (2019; 2022); Garivier and Moulines (2008); Russac et al. (2020);
Srivastava et al. (2014); Trovo et al. (2020), directly discounting the weight of past rewards by
recency Bogunovic et al. (2016); Garivier and Moulines (2008); Russac et al. (2020); Kocsis and
Szepesvári (2006), restarting the algorithm periodically or with a fixed probability at each time Auer
et al. (2019a); Allesiardo et al. (2017); Besbes et al. (2019); Bogunovic et al. (2016); Wei et al. (2016);
Zhao et al. (2020), restarting upon detecting a change point Abbasi-Yadkori et al. (2022); Allesiardo
and Féraud (2015); Auer et al. (2019b); Allesiardo et al. (2017); Besson and Kaufmann (2019); Cao
et al. (2019); Chen et al. (2019); Ghatak (2021); Ghatak et al. (2021); Hartland et al. (2006); Liu
et al. (2018); Luo et al. (2018); Mellor and Shapiro (2013), and more complex heuristics (Gupta
et al., 2011; Kim and Tewari, 2020; Raj and Kalyani, 2017; Viappiani, 2013). These algorithms
adapt stationary bandit learning algorithms like Thompson sampling (TS) (Thompson, 1933), Upper
Confidence Bound (UCB) (Lai and Robbins, 1985), and exponential-weight algorithms (Rexp3)
(Auer et al., 2002; Freund and Schapire, 1997) using aforementioned heuristics to reduce the impact
of past data and encourage continual exploration. However, they often lack intelligent mechanisms
for seeking lasting information during exploration. While predictive sampling (Liu et al., 2023) seeks
for lasting information, it does not efficiently scale.

Deep Neural Network-Based Bandit Algorithms. In practical applications of bandit learning, both
the set of contexts and the set of actions can be large. A number of algorithms (Gu et al., 2021; Jia
et al., 2022; Kassraie and Krause, 2022; Riquelme et al., 2018; Salgia, 2023; Su et al., 2023; Xu
et al., 2022; Zhang et al., 2020; Zhou et al., 2020; Zhu and Van Roy, 2023b) utilize the capacity
of deep neural networks to generalize across actions and contexts. These algorithms are designed
for stationary environments. While Allesiardo et al. (2014) proposes a deep neural-network based
algorithm for non-stationary environments, it does not intelligently seek for lasting information.

3 CONTEXTUAL BANDITS
This section formally introduces contextual bandits, and other related concepts and definitions. We
first introduce contextual bandits.
Definition 1 (Contextual Bandit). A contextual bandit E with a finite set of contexts C and a finite
set of actions A is characterized by three stochastic processes: the reward process {Rt}t∈N with state
space R|C| ×R|A|, the contexts {Ct}t∈N with state space C, and the sequence of available action sets
{At}t∈N with state space 2A. We use E = ({Rt}t∈N, {Ct}t∈N, {At}t∈N) to denote the bandit.

At each timestep t ∈ N, an agent is presented with context Ct and the set of available actions At.
Upon selecting action a ∈ At, the agent observes a reward of Rt+1,Ct,a.

3.1 LINEAR CONTEXTUAL BANDITS

In many practical applications, both the context set and the action set are large. To enable effective
generalization across these sets, certain structural assumptions on how the rewards are generated

2

Under review as a conference paper at ICLR 2024

come into play. In this regard, the reward Rt,c,a can be described as a function of a feature vector
ϕ(c, a), which captures relevant contextual information in context c ∈ C and action information in
action a ∈ A. To exemplify this structure, let us introduce the linear contextual bandit.
Example 1 (Linear Contextual Bandit). A linear contextual bandit is a contextual bandit with
feature mapping ϕ : C × A → Rd, a stochastic process {θt}t∈N with state space Rd. For all t ∈ N,
c ∈ C, and a ∈ At, the reward Rt,c,a satisfies that E[Rt,c,a|ϕ, θt] = ϕ(c, a)⊤θt.
3.2 POLICY AND PERFORMANCE

Let H denote the set of all sequences of a finite number of action-observation pairs. Specifically,
the observation at timestep 0 consists of only the initial context and available action set, and each
following observation consists of a reward, a context, and an available action set. We refer to the
elements of H as histories. We next introduce a policy.
Definition 2. A policy π : H → P(A) is a function that maps each history in H to a probability
distribution over the action set A.

A policy π assigns, for each realization of history h ∈ H, a probability π(a|h) of choosing an action
a for all a ∈ A. We require that π(a|h) = 0 for a /∈ At, where At is the available action set
defined by h. For any policy π, we use Aπt to denote the action selected at time t by an agent that
executes policy π, and Hπ

t to denote the history generated at timestep t as an agent executes policy
π. Specifically, we let Hπ

0 be the empty history. We let Aπt be such that P(Aπt ∈ ·|Hπ
t) = π(·|Hπ

t)
and that Aπt is independent of {Ct}t∈N, {Rt}t∈N, and {At}t∈N conditioned on Hπ

t , and let Hπ
t+1 =

(C0,A0, A
π
0 , R1,C0,Aπ0

, . . . , Aπt , Rt+1,Ct,Aπt
, Ct+1,At+1).

For all policies π, all bandits E = ({Rt}t∈N, {Ct}t∈N, {At}t∈N), and T ∈ N, the expected cumula-
tive reward and the long-run average expected reward are

Return(E;T ;π) =

T−1∑
t=0

E
[
Rt+1,Ct,A

π
t

]
; Return(E;π) = lim sup

T→+∞

1

T
Return(E;T ;π).

The average expected reward is particularly useful in evaluating agent performance when both the
reward process {Rt}t∈N and the context process {Ct}t∈N are stationary stochastic processes. In such
cases, Return(E ;π) = E

[
Rt+1,Ct,Aπt

]
, which is independent of t.

4 NEURAL PREDICTIVE ENSEMBLE SAMPLING

In this section, we introduce a novel algorithm for non-stationary contextual bandit learning. The
algorithm has several salient features below. See visualization of the architecture in Fig. 2

Use Deep Neural Network Ensemble as Uncertainty Representation for Exploration. In contex-
tual bandit learning, an agent should intelligently balance exploration and exploitation. Thompson
sampling (TS) (Thompson, 1933) stands as one of the most popular bandit learning algorithms,
backed by well-established theoretical guarantees (Agrawal and Goyal, 2012; Russo and Van Roy,
2014) and good empirical performance (Chapelle and Li, 2011; Zhu and Van Roy, 2023b). To
adopt TS in complex settings, Ensemble sampling (Lu and Van Roy, 2017) is introduced an efficient
approximation and is also compatible with deep neural networks. Importantly, ensemble sampling has
shown both theoretical effectiveness and superior empirical performance with neural networks (Lu
et al., 2018; Qin et al., 2022; Osband et al., 2016). Therefore, we adopt a deep ensemble architecture.

Seek Out Lasting Information. In a non-stationary environment, a continuous stream of new
information emerges. As an agent strives to balance between exploration and exploitation, an
important consideration involves prioritizing the acquisition of information that remains relevant
for a longer period of time (Liu et al., 2023). We introduce an algorithm that effectively prioritizes
seeking such lasting information. Notably, our algorithm, NeuralPES, avoids the introduction of
assumptions on how the rewards are generated or that of additional tuning parameters to adjust the
extent of exploration. Indeed, it determines the exploration extent by training a deep neural network.
To our knowledge, NeuralPES is the first algorithm that both suitably prioritizes seeking lasting
information and scales to complex environments of practical interest.
4.1 NEURAL ENSEMBLE SAMPLING

Before delving into the specific design of our algorithm, let us introduce a baseline algorithm which
can be thought of as a deep neural network-based TS. This algorithm is referred to as the Neural
Ensemble Sampling (NeuralEnsembleSampling).

At each timestep t ∈ N, a NeuralEnsembleSampling agent (See Algorithm 1):

3

Under review as a conference paper at ICLR 2024

Figure 2: Visualization of three components of NeuralPES: reward, sequence, and predictive model.

1. Trains an ensemble of M reward models, updating weights using stochastic gradient descent.

2. Samples m ∼ unif({1, ...,M}), and uses the m-th reward model to predict a reward at the
next timestep R̂t+1,Ct,a.

3. Selects an action that maximizes R̂t+1,Ct,a.

Algorithm 1: NeuralEnsembleSampling
1 Input: Horizon T , number of particles in each ensembleM , loss function L, replay buffer sizeK, sequence model input size L, number

of gradient steps τ, τseq, step sizes α, αseq, minibatch sizesK′,
2 Initialize: Let replay buffer B = ∅, and randomly initialize weights ψ1:M , w1:M,0, and wseq

1:M,0,
3 for t = 0, 1, . . . , T − 1 do
4 form = 1, 2, . . . ,M do
5 Let (ψm, wm,t)← TrainRewardNN(B,L, ψm, wm,t−1, τ, α,K

′)
6 sample: m ∼ unif({1, ...,M})
7 select: At ∈ argmaxa∈At f(wm,t; b(ψm;Ct, a))

8 observe: Rt+1,Ct,At , Ct+1,At+1

9 update: Update B to keep the most recentK tuples of context, action, reward, and timestep data.

Algorithm 2: TrainRewardNN
1 Input: Replay buffer B, loss function L, base network weights

ψ, last-layer weights w, number of gradient steps τ , step size
α, minibatch sizeK′.

2 for i = 0, 1, . . . , τ − 1 do
3 sample: a minibatch B′ of sizeK′ from replay buffer B
4 update (ψ,w) following Equation 1

5 return: ψ, w

Algorithm 3: TrainSequenceNN
1 Input: Replay buffer B, sequence model weights wseq,

historical last-layer weights w1:t−1, number of gradient
steps τ , step size α, number of future steps x.

2 for i = 0, 1, . . . , τ − 1 do
3 sample: j ∼ unif({L, ..., t− 1})
4 update wseq following Equation 2

5 return: wseq

The Reward Model Figure 2 presents a visualization of the ensemble of reward models. The
ensemble has M particles, each consists of a base network b defined by weights ψm, and last layer f
defined by weights wm,t. Each particle in the ensemble is a reward model that aims to predict the
reward Rt+1,c,a given context and action pair (c, a). Specifically, at each timestep t ∈ N, the m-th
reward model predicts f(wm,t; b(ψm; c, a)).

We maintain a replay buffer B of the most recent K tuples of context, action, reward, and timestep
data. At each timestep, the network weights w1:M and ψ1:M are trained via repeatedly sampling a
minibatch B′ of size K ′, and letting

(ψm, wm)← (ψm, wm)− α
∑

(c,a,r,j)∈B′
∇(ψm,wm)L(f(wm; b(ψm; c, a)), r) (1)

for each m ∈ [M]. Note that we use wm,t to denote the last-layer weight of the m-th particle at the
t-th timestep; when it is clear that we are considering a single timestep, we drop the subscript t.

4.2 PREDICTING FUTURE REWARD VIA SEQUENCE MODELING

Given the non-stationarity of the environment, a natural choice to adapt to the changing dynamics is
to predict future reward model weights via sequence models, and use the predictive future reward
model to select actions. We refer to this agent as the Neural Sequence Ensemble agent

At each timestep t ∈ N, a Neural Sequence Ensemble agent proceeds as the following:

1. Trains an ensemble of M reward models and an ensemble of M sequence models through
updating their weights using stochastic gradient descent.

4

Under review as a conference paper at ICLR 2024

2. Samples m ∼ unif({1, ...,M}), uses the m-th sequence model to predict a future reward
model one step ahead of time based on past reward models, and uses this predicted future
model to predict a reward at the next timestep R̂t+1,Ct,a.

3. Selects an action that maximizes R̂t+1,Ct,a.

The Sequence Model Figure 2 presents a visualization of the ensemble of the sequence models as
well. The ensemble consists of M particles. Each particle is a sequence model implemented as a
recurrent neural network that aims to predict future reward model weights wm,t+1 given historical
oneswm,t−L+1:t. At each timestep t ∈ N, them-th sequence model predicts f seq(wseq

m,t;wm,t−L+1,t).
The network weights wseq

m are trained via repeatedly sampling j from {L, ..., t− 1} and letting

w
seq
m ← w

seq
m − α∇wseq

m
LMSE(f

seq
(w

seq
m ;wm,j−L+1:j), wm,j+1). (2)

4.3 NEURAL PREDICTIVE ENSEMBLE SAMPLING

Let us now present NeuralPES. A key distinction between this algorithm and NeuralEnsemble lies
in its ability to prioritize information that maintains relevance over a longer period of time. This is
achieved through incorporating a new model which we refer to as the predictive model. Specifically,
the predictive model is designed to take a function of a context-action pair (c, a) and a future
reward model as input. Its purpose is to generate a prediction for the upcoming reward Rt+1,c,a.
When maintaining an ensemble of predictive models for exploration, an agent can suitably prioritize
information based on how lasting the information is.

At each timestep t ∈ N, a NeuralPES agent (see Algorithm 4):

1. Trains an ensemble of M reward models, an ensemble of M sequence models, and an
ensemble of M predictive models

2. Samples m ∼ unif({1, ...,M}), and uses the m-th sequence model to predict a future
reward model two steps ahead of time based on past models.

3. Takes this predicted future model as part of input to the m-th predictive model, and predicts
a reward at the next timestep R̂t+1,Ct,a.

4. Selects an action that maximizes R̂t+1,Ct,a.

Algorithm 4: NeuralPES
1 Input: Horizon T , number of particles in each ensembleM , loss function L, replay buffer sizeK, sequence model input size L,

number of gradient steps τ, τseq, τpred, step sizes α, αseq, αpred, minibatch sizesK′, K′′.
2 Initialize: Let replay buffer B = ∅, and randomly initialize weights ψ1:M , w1:M,0, wseq

1:M,0, and wpred
1:M,0

3 for t = 0, 1, . . . , T − 1 do
4 form = 1, 2, . . . ,M do
5 Let (ψm, wm,t)← TrainNN(B,L, ψm, wm,t−1, τ, α,K

′)
6 Let wseq

m,t ← TrainSequenceNN(B, wseq
m,t−1, wm,1:t−1, τseq, αseq, 2)

7 Let wpred
m,t ← TrainPredictiveNN(B,L, wpred

m,t−1, ψm, wm,1:t−1, τpred, αpred, K
′′)

8 sample: m ∼ unif({1, ...,M})
9 roll out: ŵm,t+2 = fseq(wseq

m,t;wm,t−L+1:t)

10 select: At ∈ argmaxa∈At
∑M
i=1 f

pred(wpred
i,t ; (ŵm,t+2 ⊙ b(ψm;Ct, a))

11 observe: Rt+1,Ct,At , Ct+1,At+1

12 update: Update B to keep the most recentK tuples of context, action, reward, and timestep data.

Algorithm 5: TrainPredictiveNN
1 Input: Replay buffer B, loss function L, base network weights ψ, historical last-layer weights w1:t−1, number of gradient steps τ , step

size α, minibatch sizeK′′.
2 for i = 0, 1, . . . , τ − 1 do
3 sample: a minibatch B′′ of sizeK′′ from replay buffer B
4 update: wpred ← wpred − α

∑
(c,a,r,j)∈B′′ ∇wpredL(fpred(wpred;wj+2 ⊙ b(ψ; c, a)), r)

5 return: wpred

The Predictive Model Figure 2 also presents a visualization of the ensemble of the predictive models.
The ensemble consists of M particles. Each particle in the ensemble is a predictive model that aims
to predict the next reward Rt+1,c,a provided context-action pair (c, a) and a future reward model of
two timesteps ahead of time. Specifically, at each timestep t ∈ N, the m-th predictive model aims to
predict Rt+1,c,a by taking an intermediate representation, i.e., ŵm,t+2 ⊙ b(ψ; c, a), as input.

5

Under review as a conference paper at ICLR 2024

We maintain a replay buffer B of the most recent K tuples of context, action, reward, and timestep
data. The network weights wpred

1:M are trained via repeatedly sampling a minibatch B′′ of size K ′′

w
pred
m ← w

pred
m − α

∑
(c,a,r,j)∈B′′

∇
w

pred
m
L(fpred

(w
pred
m ;wm,j+2 ⊙ b(ψm; c, a)), r) (3)

for each m ∈ [M]. Note that we use wpred
m,t to denote the last-layer weight of the m-th particle at the

t-th timestep; when it is clear that we are considering a single timestep, we drop the subscript t.

Regularization to Address Loss of Plasticity To address the loss of plasticity, we regularize each
particle’s weight towards its initial weight in the last layer of the reward model ensemble and the
predictive model ensemble Kumar et al. (2023). (1) and (3) now becomes

(ψm, wm)← (ψm, wm)− α
∑

(c,a,r,j)∈B′
∇(ψm,wm) {L(f(wm; b(ψm; c, a)), r) + ∥wm − wm,0∥2} .

w
pred
m ← w

pred
m − α

∑
(c,a,r,j)∈B′′

∇
w

pred
m

{
L(fpred

(w
pred
m ;wm,j+2 ⊙ b(ψm; c, a)), r) + ∥wpred

m − wpred
m,0 ∥2

}
.

(4)

4.4 THEORETICAL INSIGHTS AND ANALYSIS

We provide intuition and evidence that NeuralPES’s prioritizes the acquisition of lasting information.

4.4.1 NEURALPES PRIORITIZES LASTING INFORMATION

We focus on comparing NeuralPES and NeuralEnsemble in linear contextual bandits. In such contexts,
NeuralPES can be viewed as a neural network-based implementation of an algorithm which we refer
to as linear predictive sampling (LinPS); NeuralEnsemble can be viewed as a neural network-based
implementation of TS. In a linear contextual bandit, a LinPS agent carries out the following three-step
procedure at each timestep, and a TS agent carries out a similar procedure, replacing θt+2 with θt+1:

1. samples θ̂t+2 from the posterior P(θt+2 ∈ ·|Ht), and ϕ̂t from the posterior P(ϕ ∈ ·|Ht).

2. estimates the reward R̂t+1,Ct,a = E[Rt+1,Ct,a|Ht, ϕ = ϕ̂t, θt+2 = θ̂t+2],

3. and selects an action that maximizes the sample At ∈ argmaxa∈At R̂t+1,Ct,a.

The procedures are carried out by approximating P(θt+1 ∈ ·|Ht) using the ensemble of the last
layers of the reward models, approximating P(ϕ ∈ ·|Ht) using the ensemble of the base models,
approximating P(θt+2 ∈ ·|Ht) utilizing the sequence models; the reward estimation step of LinPS
utilizes the predictive models.

To compare the behaviors of NeuralPES and NeuralEnsemble, we can compare LinPS with TS. It
is worth noting that both algorithms trade off exploration and exploitation in a similar fashion, yet
TS trades off between optimizing the immediate reward and learning about ϕ and θt+1 and LinPS
trades off between optimizing the immediate reward and learning about ϕ and θt+2. If θt+1 = θt
for all t ∈ N, then the environment is stationary and the two algorithms are equivalent. In general,
compared with θt+1, θt+2 better represents valuable information that is helpful for making future
decisions. Aiming to learn about θt+2, LinPS strategically prioritizes information that is still valuable
in the next timestep and does not acquire information for which its value immediately vanishes.

4.4.2 THEORETICAL ANALYSIS

Next, we present a regret analysis that offers further evidence of LinPS’s effectiveness in prioritizing
lasting information. In particular, we demonstrate that LinPS excels in environments where a
substantial amount of information is transient. This success stems from its strategic approach to
acquire less of such information. We assume that the action set is known and remains unchanged,
At = A for all t ∈ N, and that ϕ is known. We first introduce the notion of regret.
Definition 3 (Regret). For all policies π and T ∈ N, the regret and long-run average regret
associated with a policy π over T timesteps in a linear contextual bandit is Regret(T ;π) =∑T−1
t=0 E

[
Rt+1,∗ −Rt+1,Ct,Aπt

]
, and Regret(π) = lim supT→+∞

1
T Regret(T ;π), respectively,

where Rt+1,∗ = maxa∈A E[Rt+1,Ct,a|θt].

We use Regret(T) and Regret to denote the regret of LinPS and present a regret bound on LinPS.
Theorem 1. (LinPS Regret Bound) In a linear contextual bandit, suppose {θt}t∈N is a reversible
Markov chain. For all T ∈ N, the regret and the long-run average regret of LinPS is upper-bounded

by Regret(T) ≤
√

d
2T [I(θ2; θ1) + (T − 1)I(θ3; θ2|θ1)] and Regret ≤

√
d
2 I(θ3; θ2|θ1).

6

Under review as a conference paper at ICLR 2024

The key proof idea essentially follows from that of (Liu et al., 2022) and (Russo and Van Roy, 2016).
For the sake of completeness, we include the proof in the appendix.

It is worth noting that when θt+1 = θt for all t ∈ N0, we have Regret(T) ≤
√

d
2TH(θ1). We

recover a regret bound for TS in a stationary linear contextual bandit. In the other extreme, if θt
changes very frequently, say if {θt}t∈N is an i.i.d. sequence each with non-atomic distribution, then
the regret of LinPS is zero that LinPS achieves optimal. This suggests that when information about
θt is not lasting, LinPS stops acquiring this information and is optimal.

To specialize the bound to a particular example, we introduce linear contextual bandits with abrupt
changes. Similar models were introduced by (Mellor and Shapiro, 2013) and (Liu et al., 2023).
Example 2 (Linear Contextual Bandit with Abrupt Changes). For all i ∈ [d], let qi ∈ [0, 1], and
{Bt,i}t∈N be an i.i.d. sequence of Bernoulli r.v.’s each with success probability qi. For all i ∈ [d], let
{βt,i}t∈N be an i.i.d. sequence. Consider a linear contextual bandit where for all i ∈ [d], θ1,i = β1,i,
and {θt,i}t∈N transitions according to θt+1,i = Bt,iβt+1,i + (1−Bt,i)θt,i.

Corollary 1. (LinPS Regret Bound in Example 2) For all T ∈ N, the regret and long-run
average regret of LinPS in a linear contextual bandit with abrupt changes is upper-bounded by

Regret(T) ≤
√

d
2T

[∑d
i=1(1− qi)H(θ1,i) + (T − 1)

∑d
i=1 [2H(qi) + qi(1− qi)H(θ1,i)]

]
, and

Regret ≤
√

d
2

∑d
i=1 [2H(qi) + qi(1− qi)H(θ1,i)], where H(qt,i) denotes to the entropy of of a

Bernoulli random variable with success probability qt,i.

We can use Theorem 1 to investigate how the performance of LinPS depends on various key parameters
of the bandit. On one hand, when qi = 0 for all i ∈ [d], i.e., when the environment is stationary,

the bound becomes
√

d
2TH(θ1), which recovers a sublinear regret bound for TS in a stationary

environment. On the other hand, as the qi’s approach 1, the regret bound approaches 0, suggesting
that LinPS performs well. Recall that this is a setting where θt are redrawn frequently, and the
information associated with θt is not enduring. Our regret bound further confirms that LinPS
continues to excel in such environments.

We consider another example, which models bandits with "smooth" changes. Similar bandits have
been introduced by (Burtini et al., 2015; Gupta et al., 2011; Kuhn et al., 2015; Kuhn and Nazarathy,
2015; Liu et al., 2023; Slivkins and Upfal, 2008).
Example 3. [AR(1) Linear Contextual Bandit] Let γ ∈ [0, 1]d, with its i-th coordinate denoted
γi. Consider a linear contextual bandit where {θt,i}t∈N transitions independently according to
an AR(1) process with parameter γi: θt+1,i = γiθt,i +Wt+1,i, where {Wt,i}t∈N is a sequence of
i.i.d. N (0, 1− γ2i) r.v.’s and θ1,i ∼ N (0, 1).

Applying Theorem 1 to an AR(1) linear contextual bandit, we establish the following result.
Corollary 2. (LinPS Regret Bound in AR(1) Linear Contextual Bandit) For all T ∈ N,
the regret and long-term average regret of LinPS in an AR(1) linear contextual bandit is upper-

bounded by Regret(T) ≤
√

d
4T

[∑d
i=1 log

(
1

1−γ2
i

)
+

∑T−1
t=1

∑d
i=1 log (1 + γ2i)

]
,Regret(T) ≤√

d
4

∑d
i=1 log (1 + γ2i) if γi < 1 for all i ∈ [d].

The regret bound suggests that LinPS prioritizes the acquisition of lasting information. Specifically,
when γi = 0 for all i ∈ [d], information about all θt,i’s lose their usefulness immediately. In such
contexts, LinPS achieves 0 regret and is such optimal. In addition, the regret of LinPS remains small
when γi is small for each i ∈ [d], suggesting that the algorithms consistently performs well when
information about θt,i’s are not durable.

5 EXPERIMENTS

In this section, we introduce AR(1) contextual logistic bandit experiment and two experiments built
on real-world data. Among the two real-world dataset experiments, one leverages one-week user
interactions on Microsoft News website in time order and the other is built on Kuai’s short-video
platform’s two-month user interaction data in time order. We consider Neural Ensemble (Osband

7

Under review as a conference paper at ICLR 2024

Algorithm AR(1) Average Reward MIND 1-week Average CTR Kuai 2-month Average Rating

Neural Ensemble 0.5683± 0.0025 0.1503± 0.0013 1.2614± 0.0017
Window Neural Ensemble 0.5688± 0.0025 0.1513± 0.0012 1.3187± 0.0023

Neural LinUCB 0.5684± 0.0020 0.1468± 0.0015 1.2798± 0.0020
Window Neural LinUCB 0.5730± 0.0031 0.1482± 0.0020 1.3172± 0.0023

Neural Linear 0.5701± 0.0027 0.1467± 0.0016 1.2690± 0.0020
Window Neural Linear 0.5741± 0.0029 0.1492± 0.0015 1.3171± 0.0026

NeuralPES 0.5850± 0.0023 0.1552± 0.0013 1.3421± 0.0016

Table 1: Empirical Experiment Results

et al., 2016), Neural LinUCB (Xu et al., 2022) and Neural Linear (Riquelme et al., 2018) and their
sliding window versions (Cheung et al., 2019; 2022; Garivier and Moulines, 2008; Russac et al.,
2020; Srivastava et al., 2014; Trovo et al., 2020) (to address nonstationarity in environments) as
our baselines for comparison. All experiments are performed on AWS with 1 A100 40GB GPU
per experiment, each with 8 CPUs, and each experiment repeated over 20 distinct seeds. To scale
the experiments to the large scale experiments, we learn every batch of interactions instead of per
interaction, more details in Appendix B.0.1. Constrained by computation, we do not consider Neural
UCB (Zhou et al., 2020) and Neural TS (Zhang et al., 2020), given their computation requirement of
inverting square matrices with dimensions equal to neural network parameter count.

5.1 AR(1) CONTEXTUAL LOGISTIC BANDIT

Following Example 3, An AR(1) contextual logistic bandit changes its reward function to Rt,c,a ∼
Bernoulli

(
σ
(
ϕ(c, a)⊤θt

))
, all others the same. We set number of actions to 10, and d = 10,

γi = 0.99i. Each entry in θ is initialized with N (0, 0.01). Hyperparameters of the agents are
presented in Appendix B.0.2. The average reward is presented in Table 1, and Figure 3a.

(a) AR(1) Nonstationary Contextual
Bandit Average Reward

(b) Microsoft News 1-Week Experi-
ment Average CTR

(c) Microsoft News Day of Week
Nonstationary CTR

(d) KuaiRec 2-Month Experiment
Average Rating

(e) KuaiRec 2-Month Ablation Ex-
periment

Figure 3: Empirical Results and Ablations

5.2 MICROSOFT NEWS DATASET EXPERIMENTS

We leverage the MIND dataset (Wu et al., 2020) to carry out the first real-world dataset experiment.
MIND is collected from real user interactions with Microsoft News website and its public training
and validation set covers the interactions from November 9 to November 15, 2019. Each row of the
MIND dataset is presented as in Table 2. In this dataset, since every recommendation’s groundtruth
feedback is provided at a single timestamp, no counterfactual evaluation is needed. In this experiment,
we feed the rows in the order of interaction timestamp to the agent for action selection to resemble
the real-world nonstationarity in user preferences. The nonstationarity presented in this dataset is
commonly observed as day of week patterns in real-world recommender systems. To visualize the
nonstationarity in user behavior within a week, see Figure 3c to see daily average click-through rate
(CTR) in the dataset to see a week of day pattern in the dataset.

8

Under review as a conference paper at ICLR 2024

Table 2: MIND Dataset Illustration
Impression ID User ID Time User Interest History News with Labels

91 U397059 11/15/2019 10:22:32 AM N106403 N71977 N97080 N129416-0 N26703-1 N120089-1 N53018-0

We sample 10,000 users from the dataset and asks candidate agents to select news recommendations
sequentially according to the time order of the interactions that happened in the dataset. Hyperparam-
eters of the agents are presented in Appendix B.0.2. Features for each recommendation is derived by
average pooling over the entity embeddings of each news recommendation provided by the dataset
and features for each user as average pooling over features of their clicked articles. Both user and
recommendation features are of size 100. The average CTR of news recommendations offered by
candidate agents over 1 week is presented in Table 1, and Figure 3b, where NeuralPES outperforms
all baselines. Note that since we present interactions to users sequentially according to time order,
the figure presents natural day of week seasonality from the dataset.

5.3 KUAIREC DATASET EXPERIMENT

While the MIND dataset offers a setup to empirically test agents’ performance under day of week
nonstationarity, the short duration of the dataset naturally limits the possibility of observing long-term
agent behaviors under nonstationarity. In this experiment, we make slight modifications to the
KuaiRec dataset Gao et al. (2022) to offer a 2-month-long real-world experiment. Every row of
KuaiRec offers a user ID, the timestamp, a video ID of a recommended video, and a rating derived
from the user’s watch duration. The dataset also offers daily features of each user and each video
candidate, of dimensions 1588 and 283 respectively. In our transformed dataset, we grouped every
12 hours of recommendation to a user into a contextual bandit format where each row contains a
user ID, the 12-hour window, set of videos alongside with their corresponding ratings, sorted by the
12-hour window start time. The agent’s goal is to select the best recommendation to each user in each
window in the order of occurrence in the real-world. Hyperparameters of the agents are presented in
Appendix B.0.2. The average rating of news recommendations offered by candidate agents over 2
months is presented in Table 1 and see Figure 3d and we see NeuralPES outperforms all baselines.

5.4 ABLATION STUDIES

5.4.1 REGULARIZATION FOR CONTINUAL LEARNING

To facilitate continual learning and avoid loss of plasticity, we leverage regularization trick introduced
in Eq.4 to ensure the agent continues to learn while the environment changes. See Figure 3e. The
algorithm with regularization consistently outperforms its version without regularization.

5.4.2 IMPORTANCE OF PREDICTIVE MODEL

We compare NeuralPES’ performance against its version without the Predictive Model, Neural
Sequence Ensenble, introduced in Section 4.2. See Figure 3e. Without the Predictive Model, the
agent crashes in its performance because in nonstationary environments, the environment changes
are mostly unpredictable and the predictive model is responsible for determining whether a piece of
information from the sequence model prediction lasts in the future.

6 CONCLUSION AND FUTURE WORK

There are a few lines of future work that can extend on top of this work. First of all, this work does not
consider context and state evolution as a result of actions, as mentioned in Zhu and Van Roy (2023a);
Xu et al. (2023); Chen et al. (2022). As these state transition kernels can also be nonstationary, it
calls for future extension of this work to address nonstationarities in reinforcement learning problems.
Furthermore, to enhance the quality of future reward parameter predictions, attention mechanisms
(Vaswani et al., 2017) can be potentially leveraged to further improve the performance of the models.

In this paper, we introduced a novel non-stationary contextual bandit learning algorithm, NeuralPES,
which is scalable with deep neural networks and is designed to seek enduring information. We
theoretically demonstrated that the algorithm effectively prioritizes exploration for enduring infor-
mation. Additionally, through empirical analysis on two extensive real-world datasets spanning one
week and two months respectively, we illustrated that the algorithm adeptly adapts to pronounced
non-stationarity and surpasses the performance of leading stationary neural contextual bandit learning
algorithms, as well as their non-stationary counterparts. We aspire that the findings and the algorithm
delineated in this paper will foster the adoption of NeuralPES in real-world systems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Abbasi-Yadkori, Y., Gyorgy, A., and Lazic, N. (2022). A new look at dynamic regret for non-stationary
stochastic bandits. arXiv preprint arXiv:2201.06532.

Abdollahpouri, H., Burke, R., and Mobasher, B. (2019). Managing popularity bias in recommender
systems with personalized re-ranking. arXiv preprint arXiv:1901.07555.

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings.

Allesiardo, R. and Féraud, R. (2015). Exp3 with drift detection for the switching bandit problem. In
2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages 1–7.
IEEE.

Allesiardo, R., Féraud, R., and Bouneffouf, D. (2014). A neural networks committee for the contextual
bandit problem. In Neural Information Processing: 21st International Conference, ICONIP 2014,
Kuching, Malaysia, November 3-6, 2014. Proceedings, Part I 21, pages 374–381. Springer.

Allesiardo, R., Féraud, R., and Maillard, O.-A. (2017). The non-stationary stochastic multi-armed
bandit problem. International Journal of Data Science and Analytics, 3:267–283.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002). The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77.

Auer, P., Chen, Y., Gajane, P., Lee, C.-W., Luo, H., Ortner, R., and Wei, C.-Y. (2019a). Achieving
optimal dynamic regret for non-stationary bandits without prior information. In Conference on
Learning Theory, pages 159–163. PMLR.

Auer, P., Gajane, P., and Ortner, R. (2019b). Adaptively tracking the best bandit arm with an unknown
number of distribution changes. In Conference on Learning Theory, pages 138–158. PMLR.

Besbes, O., Gur, Y., and Zeevi, A. (2019). Optimal exploration-exploitation in a multi-armed-bandit
problem with non-stationary rewards. Stochastic Systems, 9(4):319–337.

Besson, L. and Kaufmann, E. (2019). The generalized likelihood ratio test meets KLUCB: an
improved algorithm for piece-wise non-stationary bandits. Proceedings of Machine Learning
Research vol XX, 1:35.

Bogunovic, I., Scarlett, J., and Cevher, V. (2016). Time-varying gaussian process bandit optimization.
In Artificial Intelligence and Statistics, pages 314–323. PMLR.

Bouneffouf, D. and Rish, I. (2019). A survey on practical applications of multi-armed and contextual
bandits. arXiv preprint arXiv:1904.10040.

Burtini, G., Loeppky, J. L., and Lawrence, R. (2015). Improving online marketing experiments with
drifting multi-armed bandits. In ICEIS (1), pages 630–636.

Cañamares, R. and Castells, P. (2018). Should i follow the crowd? a probabilistic analysis of
the effectiveness of popularity in recommender systems. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pages 415–424.

Cao, Y., Wen, Z., Kveton, B., and Xie, Y. (2019). Nearly optimal adaptive procedure with change
detection for piecewise-stationary bandit. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 418–427. PMLR.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. Advances in neural
information processing systems, 24.

Chen, M., Xu, C., Gatto, V., Jain, D., Kumar, A., and Chi, E. (2022). Off-Policy Actor-critic for
Recommender Systems. In Proceedings of the 16th ACM Conference on Recommender Systems,
pages 338–349.

10

Under review as a conference paper at ICLR 2024

Chen, Y., Lee, C.-W., Luo, H., and Wei, C.-Y. (2019). A new algorithm for non-stationary contextual
bandits: Efficient, optimal and parameter-free. In Conference on Learning Theory, pages 696–726.
PMLR.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. (2019). Learning to optimize under non-stationarity.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1079–1087.
PMLR.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. (2022). Hedging the drift: Learning to optimize under
nonstationarity. Management Science, 68(3):1696–1713.

Ditzler, G., Roveri, M., Alippi, C., and Polikar, R. (2015). Learning in nonstationary environments:
A survey. IEEE Computational Intelligence Magazine, 10(4):12–25.

Elena, G., Milos, K., and Eugene, I. (2021). Survey of multiarmed bandit algorithms applied to
recommendation systems. International Journal of Open Information Technologies, 9(4):12–27.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139.

Gao, C., Li, S., Lei, W., Chen, J., Li, B., Jiang, P., He, X., Mao, J., and Chua, T.-S. (2022). Kuairec:
A fully-observed dataset and insights for evaluating recommender systems. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management, pages 540–550.

Garivier, A. and Moulines, E. (2008). On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415.

Ghatak, G. (2021). A change-detection-based Thompson sampling framework for non-stationary
bandits. IEEE Transactions on Computers, 70(10):1670–1676.

Ghatak, G., Mohanty, H., and Rahman, A. U. (2021). Kolmogorov–smirnov test-based actively-
adaptive thompson sampling for non-stationary bandits. IEEE Transactions on Artificial Intelli-
gence, 3(1):11–19.

Gu, Q., Karbasi, A., Khosravi, K., Mirrokni, V., and Zhou, D. (2021). Batched neural bandits. arXiv
preprint arXiv:2102.13028.

Gupta, N., Granmo, O.-C., and Agrawala, A. (2011). Thompson sampling for dynamic multi-armed
bandits. In 2011 10th International Conference on Machine Learning and Applications and
Workshops, volume 1, pages 484–489. IEEE.

Hartland, C., Gelly, S., Baskiotis, N., Teytaud, O., and Sebag, M. (2006). Multi-armed bandit,
dynamic environments and meta-bandits.

Hwangbo, H., Kim, Y. S., and Cha, K. J. (2018). Recommendation system development for fashion
retail e-commerce. Electronic Commerce Research and Applications, 28:94–101.

Jia, Y., Zhang, W., Zhou, D., Gu, Q., and Wang, H. (2022). Learning neural contextual bandits
through perturbed rewards. arXiv preprint arXiv:2201.09910.

Kassraie, P. and Krause, A. (2022). Neural contextual bandits without regret. In International
Conference on Artificial Intelligence and Statistics, pages 240–278. PMLR.

Keerthika, K. and Saravanan, T. (2020). Enhanced product recommendations based on seasonality
and demography in ecommerce. In 2020 2nd International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), pages 721–723. IEEE.

Kim, B. and Tewari, A. (2020). Randomized exploration for non-stationary stochastic linear bandits.
In Conference on Uncertainty in Artificial Intelligence, pages 71–80. PMLR.

Kocsis, L. and Szepesvári, C. (2006). Discounted UCB. In 2nd PASCAL Challenges Workshop,
volume 2, pages 51–134.

11

Under review as a conference paper at ICLR 2024

Kotkov, D., Konstan, J. A., Zhao, Q., and Veijalainen, J. (2018). Investigating serendipity in
recommender systems based on real user feedback. In Proceedings of the 33rd annual acm
symposium on applied computing, pages 1341–1350.

Kotkov, D., Wang, S., and Veijalainen, J. (2016). A survey of serendipity in recommender systems.
Knowledge-Based Systems, 111:180–192.

Kuhn, J., Mandjes, M., and Nazarathy, Y. (2015). Exploration vs exploitation with partially observable
gaussian autoregressive arms. EAI Endorsed Transactions on Self-Adaptive Systems, 1(4).

Kuhn, J. and Nazarathy, Y. (2015). Wireless channel selection with reward-observing restless multi-
armed bandits. Chapter to appear in “Markov Decision Processes in Practice”, Editors: R.
Boucherie and N. van Dijk.

Kumar, S., Marklund, H., and Van Roy, B. (2023). Maintaining plasticity via regenerative regulariza-
tion. arXiv preprint arXiv:2308.11958.

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4–22.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide
web, pages 661–670.

Liu, F., Lee, J., and Shroff, N. (2018). A change-detection based framework for piecewise-stationary
multi-armed bandit problem. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Liu, Y., Kuang, X., and Van Roy, B. (2022). Understanding the concept of nonstationarity.

Liu, Y., Van Roy, B., and Xu, K. (2023). Nonstationary bandit learning via predictive sampling. In
International Conference on Artificial Intelligence and Statistics, pages 6215–6244. PMLR.

Lu, X. and Van Roy, B. (2017). Ensemble sampling. Advances in neural information processing
systems, 30.

Lu, X., Wen, Z., and Kveton, B. (2018). Efficient online recommendation via low-rank ensemble
sampling. In Proceedings of the 12th ACM Conference on Recommender Systems, pages 460–464.

Luo, H., Wei, C.-Y., Agarwal, A., and Langford, J. (2018). Efficient contextual bandits in non-
stationary worlds. In Conference On Learning Theory, pages 1739–1776. PMLR.

Mellor, J. and Shapiro, J. (2013). Thompson sampling in switching environments with Bayesian
online change detection. In Carvalho, C. M. and Ravikumar, P., editors, Proceedings of the Sixteenth
International Conference on Artificial Intelligence and Statistics, volume 31 of Proceedings of
Machine Learning Research, pages 442–450, Scottsdale, Arizona, USA. PMLR.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via bootstrapped dqn.
Advances in neural information processing systems, 29.

Qin, C., Wen, Z., Lu, X., and Van Roy, B. (2022). An analysis of ensemble sampling. Advances in
Neural Information Processing Systems, 35:21602–21614.

Raj, V. and Kalyani, S. (2017). Taming non-stationary bandits: A bayesian approach. arXiv preprint
arXiv:1707.09727.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling. arXiv preprint arXiv:1802.09127.

Russac, Y., Cappé, O., and Garivier, A. (2020). Algorithms for non-stationary generalized linear
bandits. arXiv preprint arXiv:2003.10113.

Russo, D. and Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243.

12

Under review as a conference paper at ICLR 2024

Russo, D. and Van Roy, B. (2016). An information-theoretic analysis of thompson sampling. The
Journal of Machine Learning Research, 17(1):2442–2471.

Salgia, S. (2023). Provably and practically efficient neural contextual bandits. In International
Conference on Machine Learning, pages 29800–29844. PMLR.

Schwartz, E. M., Bradlow, E. T., and Fader, P. S. (2017). Customer acquisition via display advertising
using multi-armed bandit experiments. Marketing Science, 36(4):500–522.

Slivkins, A. and Upfal, E. (2008). Adapting to a changing environment: the Brownian restless bandits.
In COLT, pages 343–354.

Srivastava, V., Reverdy, P., and Leonard, N. E. (2014). Surveillance in an abruptly changing world
via multiarmed bandits. In 53rd IEEE Conference on Decision and Control, pages 692–697. IEEE.

Su, Y., Wang, X., Le, E. Y., Liu, L., Li, Y., Lu, H., Lipshitz, B., Badam, S., Heldt, L., Bi, S.,
et al. (2023). Value of exploration: Measurements, findings and algorithms. arXiv preprint
arXiv:2305.07764.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294.

Trovo, F., Paladino, S., Restelli, M., and Gatti, N. (2020). Sliding-window Thompson sampling for
non-stationary settings. Journal of Artificial Intelligence Research, 68:311–364.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Viappiani, P. (2013). Thompson sampling for Bayesian bandits with resets. In International
Conference on Algorithmic Decision Theory, pages 399–410. Springer.

Wei, C.-Y., Hong, Y.-T., and Lu, C.-J. (2016). Tracking the best expert in non-stationary stochastic
environments. Advances in neural information processing systems, 29.

Wu, F., Qiao, Y., Chen, J.-H., Wu, C., Qi, T., Lian, J., Liu, D., Xie, X., Gao, J., Wu, W., et al. (2020).
Mind: A large-scale dataset for news recommendation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 3597–3606.

Xu, P., Wen, Z., Zhao, H., and Gu, Q. (2022). Neural contextual bandits with deep representation and
shallow exploration. In International Conference on Learning Representations.

Xu, R., Bhandari, J., Korenkevych, D., Liu, F., He, Y., Nikulkov, A., and Zhu, Z. (2023). Optimizing
long-term value for auction-based recommender systems via on-policy reinforcement learning.

Zhang, W., Zhou, D., Li, L., and Gu, Q. (2020). Neural thompson sampling. arXiv preprint
arXiv:2010.00827.

Zhao, P., Zhang, L., Jiang, Y., and Zhou, Z.-H. (2020). A simple approach for non-stationary linear
bandits. In International Conference on Artificial Intelligence and Statistics, pages 746–755.
PMLR.

Zhou, D., Li, L., and Gu, Q. (2020). Neural contextual bandits with ucb-based exploration. In
International Conference on Machine Learning, pages 11492–11502. PMLR.

Zhu, Z. and Van Roy, B. (2023a). Deep exploration for recommendation systems. In Proceedings of
the 17th ACM Conference on Recommender Systems, pages 963–970.

Zhu, Z. and Van Roy, B. (2023b). Scalable neural contextual bandit for recommender systems. Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge Management
(CIKM ’23).

13

Under review as a conference paper at ICLR 2024

A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

We first present a general regret bound that applies to any agent.

Theorem 2. (General Regret Bound) In a linear contextual bandit, suppose {θt}t∈N is a
Markov chain. For all policies π and T ∈ N, the regret is upper-bounded by Regret(T ;π) ≤√∑T−1

t=0 Γπt

[
I(θ2; θ1) +

∑T−1
t=1 I(θt+2; θt+1|θt)

]
, where Γπt =

E[Rt+1,∗−Rt+1,Ct,A
π
t
]
2

I(θt+2;Aπt ,Rt+1,Ct,A
π
t
|Hπt)

.

Proof. For all policies π and T ∈ N,

Regret(T ;π) =

T−1∑
t=0

E[Rt+1,∗ −Rt+1,Ct,Aπt
]

=

T−1∑
t=0

√√√√Γπt

T−1∑
t=0

I
(
θt+2;Aπt , Rt+1,Ct,Aπt

|Ht

)

≤

√√√√T−1∑
t=0

Γπt

T−1∑
t=0

I
(
θt+2;Aπt , Rt+1,Ct,Aπt

|Ht

)
, (5)

where the inequality follows from Cauchy-Schwartz.

Next, observe that for all t ∈ N,

T−1∑
t=0

I
(
θt+2;A

π
t , Rt+1,Ct,Aπt

|Hπ
t

)
=

T−1∑
t=0

[
I (θt+2; θt+1|Hπ

t)− I
(
θt+2; θt+1|Hπ

t+1

)]
= I(θ2; θ1) +

T−1∑
t=1

[I (θt+2; θt+1|Hπ
t)− I (θt+1; θt|Hπ

t)]

≤ I(θ2; θ1) +
T−1∑
t=1

[I (θt+2, θt; θt+1|Hπ
t)− I (θt+1; θt|Hπ

t)]

= I(θ2; θ1) +
T−1∑
t=1

I (θt+2; θt+1|Hπ
t , θt)

= I(θ2; θ1) +
T−1∑
t=1

I (θt+2; θt+1|θt) (6)

where the first equality follows from θt+2 ⊥ Hπ
t+1|θt+1. By (5) and (6), we complete the proof.

To apply Theorem 2 and derive a regret bound specifically for LinPS in linear contextual bandits, we
establish the subsequent result, bounding ΓπLinPS

t , which we will also refer to as Γt for brevity.

Lemma 1. In a linear contextual bandit, suppose {θt}t∈N is a reversible Markov chain. For all
t ∈ N, the information ratio associated with LinPS satisfies Γt ≤ d

2 , where the information ratio for

any policy π is defined as Γπt =
E[Rt+1,∗−Rt+1,Ct,A

π
t
]
2

I(θt+2;Aπt ,Rt+1,Ct,A
π
t
|Hπt)

.

Proof. We use At to denote AπLinPS
t , Ht to denote HπLinPS

t .

14

Under review as a conference paper at ICLR 2024

For all t ∈ N0, and h = (c0, a0, r1, ..., rt−1, c) ∈ Ht, we have

E[Rt+1,∗ −Rt+1,Ct,At
|Ht = h] = E

[
max
a∈A

E[Rt+1,c,a|θt]−Rt+1,c,At
|Ht = h

]
= E

[
max
a∈A

E[Rt+1,c,a|θt+2]−Rt+1,c,At
|Ht = h

]
= E

[
Rt+1,c,A∗

t,c
−Rt+1,c,At

|Ht = h
]
, (7)

where the second equality follows from the reversibility of {θt}t∈N, and A∗t,c is defined as A∗t,c =
argmaxa∈A E[Rt+1,c,a|θt+2].

In addition, for all t ∈ N0, and h = (c0, a0, r1, ..., rt−1, c) ∈ Ht, we have

I
(
θt+2;At, Rt+1,Ct,At

|Ht = h
)
= I

(
θt+2;At, Rt+1,c,At

|Ht = h
)

≥ I
(
A∗t,c;At, Rt+1,c,At

|Ht = h
)
, (8)

where the inequality follows from the data-processing inequality.

Note that E[Rt+1,c,a|Ht = h, θt+1] = E[Rt+1,c,a|θt+1] = ϕ(c, a)⊤θt+1. By Proposition 2 of
(Russo and Van Roy, 2016), we have

E
[
Rt+1,c,A∗

t,c
−Rt+1,c,At

|Ht = h
]2

≤ d

2
I
(
A∗t,c;At, Rt+1,c,At

|Ht = h
)
.

This, together with (7) and (8), implies that

E[Rt+1,∗ −Rt+1,Ct,At
|Ht = h]2 ≤ d

2
I
(
θt+2;At, Rt+1,Ct,At

|Ht = h
)
. (9)

Therefore, for all t ∈ N,

E
[
Rt+1,∗ −Rt+1,Ct,At

]2
= E

[
E
[
Rt+1,∗ −Rt+1,Ct,At

|Ht

]]2
≤ E

[
E
[
Rt+1,∗ −Rt+1,Ct,At

|Ht

]2]
=
d

2
I
(
θt+2;At, Rt+1,Ct,At

|Ht

)
,

where the inequality follows from Jensen’s inequality, and the last equality follows from (9).

Then Theorem 1 follows directly from Theorem 2 and Lemma 1.

Theorem 1. (LinPS Regret Bound) In a linear contextual bandit, suppose {θt}t∈N is a reversible
Markov chain. For all T ∈ N, the regret and the long-run average regret of LinPS is upper-bounded

by Regret(T) ≤
√

d
2T [I(θ2; θ1) + (T − 1)I(θ3; θ2|θ1)] and Regret ≤

√
d
2 I(θ3; θ2|θ1).

Proof. For all T ∈ N, the regret of LinPS is upper-bounded by

Regret(T ;π) ≤

√√√√T−1∑
t=0

Γt

[
I(θ2; θ1) +

T−1∑
t=1

I(θt+2; θt+1|θt)

]

=

√√√√d

2
T

[
I(θ2; θ1) +

T−1∑
t=1

I(θt+2; θt+1|θt)

]

=

√
d

2
T [I(θ2; θ1) + (T − 1)I(θ3; θ2|θ1)],

where the first inequality follows from Theorem 2, the first equality follows from Lemma 1, and the
last equality follows from stationarity.

15

Under review as a conference paper at ICLR 2024

A.2 PROOF OF COROLLARY 1

Corollary 1 follows directly from Theorem 1 and Lemma 8 of (Liu et al., 2023).

A.3 PROOF OF COROLLARY 2

Corollary 2. (LinPS Regret Bound in AR(1) Linear Contextual Bandit) For all T ∈ N,
the regret and long-term average regret of LinPS in an AR(1) linear contextual bandit is upper-

bounded by Regret(T) ≤
√

d
4T

[∑d
i=1 log

(
1

1−γ2
i

)
+

∑T−1
t=1

∑d
i=1 log (1 + γ2i)

]
,Regret(T) ≤√

d
4

∑d
i=1 log (1 + γ2i) if γi < 1 for all i ∈ [d].

Proof. We use h to denote differential entropy. If γi < 1 for all i ∈ [d], then

I(θ3; θ2|θ1) =
d∑
i=1

I(θ3,i; θ2,i|θ1,i)

=

d∑
i=1

[h(θ3,i|θ1,i)− h(θ3,i|θ2,i, θ1,i)]

=

d∑
i=1

[h(θ3,i|θ1,i)− h(θ3,i|θ2,i)]

=

d∑
i=1

[
1

2
log

(
2πe(γ2i + 1)(1− γ2i)

)
− 1

2
log

(
2πe(1− γ2i)

)]

=

d∑
i=1

1

2
log

(
γ2i + 1

)
.

In addition, if γi < 1 for all i ∈ [d], then

I(θ2; θ1) =
d∑
i=1

I(θ2,i; θ1,i) =
d∑
i=1

[h(θ2,i)− h(θ2,i|θ1,i)] =
d∑
i=1

log

(
1

1− γ2i

)
.

Applying Theorem 1, we complete the proof.

B IMPLEMENTATION

B.0.1 EXTENSION TO IMPROVE SCALABILITY

Instead of generating w1:M ensemble every time step, w1:M can be generated everyK steps to further
improve scalability of the method. In this case, the reward model f(wm,⌊ tK ⌋; b(ψ; c, a)) represent a
posterior sample of the average reward of context-action pair c, a in the current K-step window. The
sequence model, f seq(wseq

m,j ;wm,j−L+1:j) predicts wm,j+1. Leveraging the sequence model for two
step rollouts to obtain ŵm,j+1 and ŵm,j+2, the predictive model then predicts the average reward of
context-action pair c, a in the current K-step window conditioned on future reward by computing
f pred(wpred

m,⌊ tK ⌋
; ŵm,⌊ tK ⌋+1 ⊙ b(ψ; c, a)). The agent samples m ∼ unif({1, . . . ,M}) and takes action

with
At ∈ argmax

a∈A
f pred(wpred

m,⌊ tK ⌋
; ŵm,⌊ tK ⌋+1 ⊙ b(ψ; c, a))

B.0.2 EXPERIMENT HYPERPARAMETERS

NeuralPES’s training intervals for AR(1), Microsoft News and Kuai are set to 100, 200 and 1200
respectively. All NeuralPES agents use a lookback reward parameter window of 10.

AR(1) Contextual Logistic Bandit Experiment Hyperparameters - Table 3

16

Under review as a conference paper at ICLR 2024

Algorithm NN Arch Sliding Window LR Sequence Model Reg Coeff Pred Model Arch

Neural Ensemble -50 - 25 - 10- 50,000 0.0001 N/A N/A N/A
Window Neural Ensemble -50 - 25 - 10- 10,000 0.0001 N/A N/A N/A

Neural LinUCB -50 - 25 - 10- 50,000 0.0001 N/A N/A N/A
Window Neural LinUCB -50 - 25 - 10- 10,000 0.0001 N/A N/A N/A

Neural Linear -50 - 25 - 10- 50,000 0.0001 N/A N/A N/A
Window Neural Linear -50 - 25 - 10- 10,000 0.0001 N/A N/A N/A

NeuralPES -50 - 25- 10,000 0.0001 GRU 1-layer, 25 hidden 0.05 -10-

Table 3: AR(1) Hyperparameter

Algorithm NN Arch Sliding Window LR Sequence Model Reg Coeff Pred Model Arch

Neural Ensemble -256 - 128- 66,000 0.0001 N/A N/A N/A
Window Neural Ensemble -256 - 128- 20,000 0.0001 N/A N/A N/A

Neural LinUCB -256 - 128- 66,000 0.0001 N/A N/A N/A
Window Neural LinUCB -256 - 128- 20,000 0.0001 N/A N/A N/A

Neural Linear -256 - 128- 66,000 0.0001 N/A N/A N/A
Window Neural Linear -256 - 128- 20,000 0.0001 N/A N/A N/A

NeuralPES -256 - 128- 20,000 0.0001 GRU 1-layer, 128 hidden 0.05 -10-

Table 4: AR(1) Hyperparameter

Microsoft News 1-Week Experiment Hyperparameters - Table 4

KuaiRed 2-Month Experiment Hyperparameters - Table 5

Algorithm NN Arch Sliding Window LR Sequence Model Reg Coeff Pred Model Arch

Neural Ensemble -512 - 128- 140,000 0.0001 N/A N/A N/A
Window Neural Ensemble -512 - 128- 20,000 0.0001 N/A N/A N/A

Neural LinUCB -512 - 128- 140,000 0.0001 N/A N/A N/A
Window Neural LinUCB -512 - 128- 20,000 0.0001 N/A N/A N/A

Neural Linear -512 - 128- 140,000 0.0001 N/A N/A N/A
Window Neural Linear -512 - 128- 20,000 0.0001 N/A N/A N/A

NeuralPES -512 - 128- 20,000 0.0001 GRU 1-layer, 128 hidden 0.001 -10-

Table 5: AR(1) Hyperparameter

17

	Introduction
	Related Work
	Contextual Bandits
	Linear Contextual Bandits
	Policy and Performance

	Neural Predictive Ensemble Sampling
	Neural Ensemble Sampling
	Predicting Future Reward via Sequence Modeling
	Neural Predictive Ensemble Sampling
	Theoretical Insights and Analysis
	NeuralPES Prioritizes Lasting Information
	Theoretical Analysis

	Experiments
	AR(1) Contextual Logistic Bandit
	Microsoft News Dataset Experiments
	KuaiRec Dataset Experiment
	Ablation Studies
	Regularization for Continual Learning
	Importance of Predictive Model

	Conclusion and Future Work
	Technical Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2

	Implementation
	Extension to Improve Scalability
	Experiment Hyperparameters

