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Abstract

Search is an important technique in program synthesis that allows for adaptive
strategies such as focusing on particular search directions based on execution
results. Several prior works have demonstrated that neural models are effective
at guiding program synthesis searches. However, a common drawback of those
approaches is the inability to handle iterative loops, higher-order functions, or
lambda functions, thus limiting prior neural searches from synthesizing longer
and more general programs. We address this gap by designing a search algorithm
called LAMBDABEAM that can construct arbitrary lambda functions that compose
operations within a given DSL. We create semantic vector representations of the
execution behavior of the lambda functions and train a neural policy network to
choose which lambdas to construct during search, and pass them as arguments to
higher-order functions to perform looping computations. Our experiments show
that LAMBDABEAM outperforms neural, symbolic, and LLM-based techniques in
an integer list manipulation domain.

1 Introduction

Program synthesis involves finding a program meeting a given specification of what the program
should do [21, 18]. When the specification is in the form of input/output examples, known as
programming by example (PBE), combinatorial search has been an especially popular technique [2,
30, 3, 32, 4, 27, 33]. Learning can also play a key role in PBE, because well-designed search
algorithms can learn to adapt to information collected during the ongoing search, such as execution
results or other analyses of candidate programs considered so far. This information can be used to
prune redundant parts of the search space or focus on parts deemed more promising. For example,
DeepCoder [3] and TF-Coder [32] use neural models to define a search space that is explored
by traditional non-neural search, while BUSTLE [27], CROSSBEAM [33], and Execution-Guided
Synthesis [7] use neural models to guide the search process itself. However, those prior works are
unable to generate programs with arbitrary looping computations, whether implemented via loop
control structures or through the use of higher-order functions with arbitrary lambda functions.1 Even
though large language models (and other sequence models) can output programs with loops and are
very effective at synthesizing programs from natural language [6], PBE demands a more systematic
search strategy that adapts to valuable information like execution results during the search.

1DeepCoder [3] supports higher-order functions but only a small set of hardcoded lambda functions.
Execution-Guided Synthesis [7] supports variable-free while loops, but not loops with an iteration variable.
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The fundamental question explored in this paper is whether a neural program synthesis search policy
can learn to reason about lambdas and higher-order functions, which would enable the synthesis
of arbitrary looping computations that were not previously possible with neural synthesis search
techniques that rely on intermediate expression evaluation. Previous work [27, 33] has shown that
neural models can effectively guide search when every candidate program can be evaluated to produce
a concrete value for the model to inspect, allowing it to make decisions based on comparisons between
explored values and the desired output. Lambda functions however are extremely different: they
represent plans of functionality to be performed later, without specifying the context in which this
functionality will be used. As a result, reasoning about lambdas requires a more abstract form of
planning. Without knowing how the lambda might be used later, the search policy must understand the
different behaviors of lambdas, predict whether a lambda will be useful for a given task to prioritize
search directions, and recognize when and how to use lambdas within higher-order functions to
actually perform useful computations.

In order to design a neural search algorithm that handles lambdas and higher-order functions, we
address some key difficulties. One challenge is in the algebraic representation and subsequent
manipulation of lambdas. We want to represent “practically equivalent” lambdas like λx. x + 1,
λy. y + 1, and λx, y. x + 1 in a canonical way to prune the search space. If λx. x + 1 is their
canonical representation, then how can we reuse that lambda to create a new lambda such as
λx, y. (x+ 1)× (y + 1) where the “◦+ 1” functionality is used in different ways? We address this
challenge by defining a new MERGE operation that combines lambda expressions into larger ones
while allowing for variable renaming and adhering to other representational constraints, therefore
enabling a bottom-up search algorithm to systematically build larger lambdas from existing ones.

A second difficulty is in the encoding of lambdas when used as inputs to neural models. A naive
representation would be to encode the code tokens, but slight changes in the code could lead to drastic
differences in the lambda’s behavior. Instead, we introduce a method of encoding lambdas that more
directly reflects their execution semantics. We do this using property signatures [26] in a way agnostic
to how the lambda is used later (i.e., what inputs are given to the lambda by a higher-order function),
but still analyzing the lambda’s behavior in the context of the current PBE task. One conclusion of
our work is that this encoding does enable neural models to reason about lambdas effectively.

We present a new neural synthesis search method called LAMBDABEAM, which combines our
solutions to these challenges within the search framework of the recent work CROSSBEAM [33].
CROSSBEAM performs a bottom-up search applying DSL operations to previously-explored values,
using a neural search policy to choose the operation’s arguments with a pointer network. Thus,
in LAMBDABEAM, the neural policy is able to reason about lambdas by choosing which ones to
construct and when to use them, such that the search direction is tailored to the synthesis task.

We demonstrate the effectiveness of LAMBDABEAM in the DeepCoder [3] domain of integer list
manipulation. We extend the DeepCoder DSL by adding many first-order operations, keeping its
higher-order functions, and replacing its limited set of hardcoded lambda functions with arbitrary
lambdas using compositions of other DSL operations. Using a benchmark suite containing 100
natural hand-crafted evaluation tasks and 100 synthetically-generated tasks, we experimentally show
that LAMBDABEAM outperforms prior approaches including state-of-the-art symbolic search, neural
sequence models trained from scratch, and a 62 billion parameter large language model (LLM).
We release our LAMBDABEAM code and trained model checkpoints at https://github.com/
ellisk42/LambdaBeam.

2 Background

Programming By Example Programming by Example (PBE) is the task of synthesizing programs
that satisfy a given set of input/output (I/O) examples. In this task, we have a domain-specific
language (DSL) L describing a space of programs, and a set of example inputs I = {I1, . . . , IN}
and corresponding outputs O = {O1, . . . , ON}. The goal is to find a program P ∈ L such that
P (Ii) = Oi for all i ∈ {1, . . . , N}. The DSL L describes atomic values (constants and input
variables) and operations that can be applied to arguments to produce new values. Programs in L are
arbitrarily-nested compositions of operations applied to atomic values or other such compositions.

λ-Calculus The lambda calculus [10, 28] is a formalism for universal computation. A lambda
calculus term is either a variable, function application, or a lambda abstraction. Lambda abstractions
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Figure 2: Diagram of the LAMBDABEAM model architecture, closely mirroring that of CROSSBEAM.

define new functions by introducing new lexically-scoped variables, as well as a function body (which
is itself a term). We consider lambda abstractions that are allowed to introduce multiple variables
at once (we do not “Curry” our lambdas). Terms in the lambda calculus are constructed recursively
from smaller terms, resulting in tree-like structures like in Figure 3(a). We extend λ-calculus with
domain-specific primitives (add, sort, map, filter, etc.) as well as a basic type system known as
simply-typed lambda calculus; see [28] for details.

Property Signatures During a neural program synthesis search, many different expressions are
encountered, possibly including lambda functions with arbitrary input and output types. How might
a neural model learn to reason about these expressions? One option is to represent expressions
as source code and apply standard text encoders like recurrent neural networks or Transformers.
However, two expressions with similar source code might have very different execution behavior, or
two syntactically distinct expressions might have identical semantics. An alternative approach that is
more semantically aware is based on property signatures [26, 27], inspired by property-based testing
in the programming languages literature [16]. Unary properties describe a single value by mapping
it to a boolean, such as whether a list is sorted, or whether a string is empty. Binary properties can
describe the relationship between the input and output of a PBE task, such as whether the input and
output lists have the same length. In either case, given a list of k property functions, we can evaluate
all property functions to form a vector of length k called a property signature. Each element of the
signature is either True, False, or N/A.2 This vector may be used as input to a deep neural network.
Furthermore, given multiple executions of an expression (e.g., over different examples), we can
identify how often each property holds, leading to a more granular representation.

CROSSBEAM Our work LAMBDABEAM builds upon the prior work CROSSBEAM [33]. Both
systems have a similar overall structure, illustrated in Figure 1 with differences shown in red. The core

2A property might be not applicable (N/A) if it does not apply to the types of objects currently under
consideration, or if the property is inconclusive because the code execution resulted in an error.
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Figure 3: Different ways of representing the lambda expression λv1. map(λu. v1 + u2, sort(x)),
where x is an input variable. The model predicts blue term pointers and variables, the search tries
every red operation, and unshaded code tokens in (b) are known from the other shaded tokens.

idea in CROSSBEAM is to use a neural policy network to guide a bottom-up search over programs,
where execution results of explored expressions provide a powerful signal for the policy to guide the
search by exploring new expressions whose values are closer to the intended output.

In CROSSBEAM, a table stores the expressions explored so far in search, along with their execution
values when run on the I/O examples. As diagrammed in Figure 2, the Value Module encodes each
explored value into a vector that is stored in a matrix ES . Meanwhile, the I/O Module encodes the
I/O examples into an analogous vector eIO. Then, the Search Context Summary Module combines
the value encodings ES and the I/O encoding eIO to produce a latent “summary” ec of the search
context so far. From this, the Argument Selector Module, which is a recurrent pointer network [35],
predicts an argument list for a DSL operation via a sequence of pointers into the table of explored
values, thus generating a new expression to explore. By structuring the search in this way, the neural
policy is able to take a “hands on” role during search, using information in the search context to
choose which programs should be explored next.

The network is trained on-policy using imitation learning. Each item in the training set consists of a
set of I/O examples and a target program. During training, we run the search algorithm on the I/O
examples where at each step the policy network proposes values to explore by predicting argument
lists for DSL operations. We then apply a softmax loss that encourages the policy network to make
predictions that would lead to progress according to the target program, instead of other argument
lists that the policy network actually proposed.

During evaluation, getting argument lists via beam search as in training can lead to the search stalling
if all new values are semantically equivalent to values already seen, since beam search is deterministic
if the value set is unchanged. To address this, during evaluation CROSSBEAM randomly samples
different argument lists using UniqueRandomizer [31] to avoid duplicate samples.

3 The LAMBDABEAM Approach

3.1 Building λ-Terms

LAMBDABEAM constructs terms in the lambda calculus during its search. A natural design choice is
to construct terms in a way that avoids considering semantically equivalent expressions. For example,
the terms (λx, y. x− y), (λa, b. a− b), and (λy, x. y − x) are all capable of expressing exactly the
same computations, so there should be a single canonical way of building this family of terms.

An important aspect of our canonicalization of semantically equivalent expressions is to enforce
that every term constructed during search has no free variables (but terms may include variables
referring to the inputs given in the I/O examples). Enforcing this property means that we can treat
every term we build during search as an ordinary program, and run it on different inputs to probe its
input-output behavior. However, the most straightforward way of building lambda terms bottom-up
violates this important property. Consider the term t5 = (λv1. map(λu. v1 + u2, sort(x))) whose
tree structure is illustrated in Figure 3(a), and where x refers to an input variable. This has subterms
such as λu. v1 + u2, where the variable v1 occurs free. As v1 is free, it is unclear what the semantics
of this expression should be. Constructing the expression with v1 free would also introduce a spurious
redundancy with λv1, u. v1 + u2. During search, we would like to keep only a canonical version of
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those two terms to better prune the search space, which in this case would be t3 = λv1, v2. v1 + v22 ,
which as shown in Figure 3(b) can be used to construct the larger term t5.

To build terms bottom-up while maintaining desired constraints such as that every intermediate
program has no free variables, we define an operator for algebraically combining smaller terms to
build larger programs. This operator, which we call MERGE, takes as input a primitive DSL function
f and a list of terms a1 . . . aK constructed earlier during search, and it returns a new term that applies
f to a1 . . . aK . MERGE does extra bookkeeping to ensure that every function (both f and any ak
that are lambda terms) is called with the correct number of arguments, and that the final output of
MERGE has no free variables. The function f can be a higher-order function, such as map, or a
normal first-order function, such as addition and subtraction.

Additional arguments to MERGE specify how to unify lambda arguments (if any) that appear in
a1 . . . aK . To evaluate MERGE on f and a1 . . . aK , we first apply each lambda argument ak to a
tuple of variable names, denoted ik. This gives a name to each argument of each ak. By reusing the
same name across different ak’s, the same variable can be shared across arguments. For instance, if
the function f is multiplication (×), and we are merging with the arguments a1 = (λv. v + 1) and
a2 = (λv. v− 1), then we can share the variable by setting i1 = i2 = [v1], giving (λv. v+ 1)(v1)×
(λv. v− 1)(v1) = (v1 + 1)× (v1− 1). Alternatively, if we set i1 = [v1] and i2 = [v2], then merging
gives a different program, (v1 + 1)× (v2 − 1). These tuples of variable names, {ik}Kk=1, are also
input to MERGE, because they determine how variable names are unified across arguments. Finally
MERGE runs f on the arguments {ak(ik)}Kk=1, pads the expression with lambdas at the beginning to
bind any new free variables, and lastly canonicalizes variable naming and variable ordering.

Special care is needed for the arguments of higher-order functions like map, which themselves need
to be functions. So far, each argument ak(ik) evaluates to a concrete value, not a function. To handle
higher-order functions, MERGE automatically adds extra lambdas to each function-valued argument.
These extra lambdas have variables denoted u1, u2, . . .. All other variables used to unify variables
across arguments are denoted v1, v2, . . .. Although this may seem ad-hoc at first, this convention
actually corresponds to a well-known canonicalization of typed lambda forms known as η-long
normal form [28]. Putting everything together, MERGE is defined as

MERGE (f, a1, i1, a2, i2, . . . ) = λv1v2... . f (λu1u2...u`1 . a1(i1), λu1u2...u`2 . a2(i2), . . .)

where {v1, v2, . . .} =
⋃
k

ik − {uj}max{`1,`2,... }
j=1 (1)

where `k is the arity of the kth argument to f . For example, the higher-order function map first
takes a function expecting one argument, so `1 = 1, followed by a list (not a function) expecting no
arguments, so `2 = 0. We also enforce that |ik| = arity(ak). The MERGE operation is complete, in
the sense that we can use it to generate any PBE solution within the DSL (see Appendix A).

Fundamentally, our neural model predicts the inputs to MERGE. It scans through its different operators
(functions f ), and for each operator, generates arguments ak by pointing into the set of explored
values, and variables ik by emitting special tokens corresponding to v1, u1, v2, u2, etc. Figure 3(b)
and (c) illustrate how a nontrivial lambda expression is built step by step, with the tokens emitted by
the neural model highlighted in blue. In this figure, each call to MERGE in the third column returns
the term that appears in the middle column, e.g., MERGE(square , v1 , [ ]) returns λv1. square(v1 )
and so on. Critically, MERGE makes sure that (1) every intermediate term that the model builds along
the way can be evaluated so that the neural model can inspect its progress, and also (2) intermediate
terms are generated with every function application, giving fine-grained feedback to the model.

We define the weight of an expression to be the number of nodes in its tree representation using the
MERGE operator. More specifically, atomic terms like variable names and literal constants have
weight 1, and a term constructed with MERGE has weight 1 (for the operation) plus the sum of the
weights of all terms and variables in the MERGE call. For example, in Figure 3(b), terms t1 through
t5 have weights 1, 2, 5, 2, and 10 respectively.

3.2 Learning over λ-Expressions

One core technical challenge is how to encode lambda expressions to allow neural models to reason
about them. In LAMBDABEAM we solve this by constructing a new generalization of property
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signatures which is designed to represent lambda expressions and non-lambda expressions using
similar sets of properties.

Non-lambda expressions can be evaluated to produce a single result per I/O example. However, we
cannot evaluate lambda expressions in the same way, because we do not know how the lambda
expression will be used in the eventual solution, so we do not know what its arguments will
be. For instance, if x is an input list, the expressions zipwith(λu1, u2. u1 + u2, x, sort(x)) and
scanl1(λu1, u2. u1 + u2, x) use the same lambda expression λu1, u2. u1 + u2 but for different sets
of (u1, u2) arguments. Thus, in order to describe the lambda expression’s execution behavior, we run
the lambda on a fixed set of canonical argument tuples based on the number of arguments and their
types. These argument tuples are held constant across training and evaluation so that the model can
learn from consistent signals.

In our experiments, we hardcoded the canonical argument tuples without changing them afterward,
trying to cover common values and a variety of scenarios. For instance, our integer arguments include
those between −3 and 5 inclusive, and other integers with varying combinations of magnitude,
sign, even/odd parity, primality, and so on. There is also a tradeoff in the number of canonical
argument tuples, where having more leads to finer-grained execution information but more time spent
running lambdas during search. In our experiments, we use 16 canonical argument tuples for each
combination of tuple length and argument types in our DSL. Note that the lambda expression can
refer to inputs from the I/O examples. Instead of running the lambda on each argument tuple for each
example, for efficiency, we run on each argument tuple once, under the context of one I/O example
which is changed per argument tuple in a round-robin fashion.

To represent a lambda f , we evaluate it on each canonical argument tuple ti with I/O example (I,O).
First we evaluate f on ti, yielding a result ri = f(ti, I). Then we use a signature of unary properties
to describe ri. Second, we use a signature of binary properties to compare ri and O; intuitively, this
helps the model learn about what work remains. Similarly, we use the binary properties to compare
ri and tij , for each argument tij ∈ ti. By concatenating these, we obtain a single property vector
for each tuple ti. Finally, we then reduce the property vectors across the runs of the lambda, i.e.,
computing for each property the fraction of runs where it is applicable and the fraction of applicable
runs where it is True. Encoding non-lambda expressions is similar, except that we use I/O examples
(Ii, Oi) in place of the canonical tuples. Note that the reduced property signatures for lambda and
non-lambda expressions have different formats and different lengths, and hence they are embedded
by separate parts of the neural model (Section 3.3).

The properties used in our property signatures come from combinatorially combining hand-designed
features as “building blocks” to create a rich space of properties that describe individual objects as
well as comparisons between two objects. Appendix B contains more details.

3.3 LAMBDABEAM Model and Search

To guide the bottom-up search over lambda and non-lambda expressions, we generally follow the
design of the neural policy network in CROSSBEAM [33], with the following major changes:

Value Module We maintain a set of explored values S which contains variable tokens for construct-
ing lambdas, lambda expressions, and non-lambda expressions including constants and input variables.
The Value Module embeds each element of S forming a matrix of embeddings ES ∈ R|S|×d. Ele-
ments of S are embedded as follows. A variable token is embedded as a vector of trainable parameters.
Note that the set of such variable tokens is fixed and determined by the DSL.3 A lambda expression
is embedded by s + z, where s is the property signature of this lambda function encoded by an
MLP, and z is an embedding of the weight of this value. Non-lambda expressions are embedded like
lambda expressions except using a different MLP to encode their property signatures.

Argument Selector Module Given an operator op, we use an operator-specific LSTMop to select
the arguments using a pointer mechanism [35] from the encoded value matrixES , in an autoregressive
way. In addition to selecting arity(op) arguments, for an argument ak that is a lambda expression, we
also need to predict the variables ik as required for MERGE, where ik is a tuple of arity(ak) variable
tokens. All of the ak and ik predictions are done as a single autoregressive sequence. Furthermore,

3The higher-order functions in our DSL expect lambdas with at most 2 variables. Thus, it is unnecessary to
create lambdas with 3+ variables, so the only variables needed for MERGE are v1, v2, u1, and u2.
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for convenience we predict all of the ak arguments first, followed by the ik variable tuples which are
constrained (via masking and padding) to include exactly arity(ak) variable tokens.

Search with Restarts We also change the inference time search procedure. Recall that CROSS-
BEAM uses random sampling during evaluation, making the search nondeterministic. In LAMBDA-
BEAM, instead of performing one synthesis search until timeout, we restart the search from scratch
whenever the search has run for a certain amount of time without finding a solution. Even though
this discards work done in previous searches, in practice this helps LAMBDABEAM solve more tasks
because it may be otherwise difficult to recover from exploring the wrong search direction.

4 Experiments

In this section, we experimentally evaluate the effectiveness of LAMBDABEAM, comparing to prior
neural and symbolic approaches in an integer list manipulation domain.

4.1 Integer List Manipulation DSL

To measure a synthesizer’s ability to create and use lambda expressions, we create a domain-specific
language (DSL) that emphasizes lambda expressions and higher-order functions. Specifically, the DSL
from DeepCoder [3] includes higher-order functions and has been used in subsequent work [37, 34].
However, DeepCoder’s DSL only contains a hardcoded set of lambda functions and is not expressive
enough to fully exercise LAMBDABEAM’s ability to create arbitrary lambda expressions. Therefore,
we extend DeepCoder’s DSL by allowing lambda expressions to include arbitrary compositions of
DSL operations, and replacing the hardcoded lambda functions with DSL operations and literal
constants that enable a superset of the original functionality. For example, DeepCoder’s original
DSL includes hardcoded lambdas such as (λx. x− 1), (λx, y. x− y), and (λx, y. max{x, y}). By
introducing first-order functions including subtract and max, and constant literals including 0 and
1, we can create the hardcoded lambdas as well as lambdas like (λx.max{x, 0− x}) that were not
possible in the original DeepCoder DSL. Additionally, we add a new if-then-else operation, which
further enriches our space of possible programs. The full DSL contains 23 first-order operations, 5
higher-order operations, and 6 integer literals, described fully in Appendix C. In our DSL, all integers
are in the range [−256, 255] as in DeepCoder, and lists have lengths in the range [0, 10].

4.2 Experimental Setup

Training Data Similar to previous works including CROSSBEAM, we create synthetic training
data by generating random tasks within our DSL. This is done by performing exhaustive bottom-up
searches starting from random inputs and enumerating programs in order of increasing weight, and
then sampling a subset of the resulting programs to serve as training tasks. Each task has between 2
and 5 I/O examples and between 1 and 3 input variables, and we sample tasks such that approximately
80% of them use lambdas in the ground-truth program. We used a time limit of 1 hour per data
generation search (reaching programs of weight at most 12), sampling up to 1600 tasks per search,
and performing enough searches parallelized across cloud CPU workers such that training uses less
than 1 epoch over the dataset. We furthermore removed from the training dataset all programs that
would solve any of our 200 evaluation tasks, described below.

Evaluation Tasks For evaluation, we use 100 handwritten evaluation tasks plus 100 synthetically
generated tasks, with a time limit of 10 minutes per task. The handwritten tasks include all 9 “example
programs” from Appendix A of the DeepCoder paper [3], plus other tasks that we created from
scratch by brainstorming many natural but varied tasks that we could solve using our DSL (near
the end of this process, it became quite difficult to come up with new tasks that were not merely
slight variations of existing ones). Handwritten tasks include between 1 and 3 input variables, 3
I/O examples if the output is a list or 5 I/O examples if the output is an integer, and a handwritten
ground-truth solution that has minimal weight to our knowledge. When creating I/O examples, we
aimed to make the examples informative but reasonably succinct with lists of length at most 10.
Every DSL operation is used in the solution for at least 4 handwritten tasks, and every higher-order
operation is used in at least 10. For the 100 synthetic tasks, we sampled distinct random programs
using the same procedure as for generating training data, except also enforcing that we have exactly
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10 tasks of each weight between 3 and 12 inclusive. Appendix D contains example handwritten and
synthetic tasks, along with LAMBDABEAM’s solutions for them.

Approaches Our experiments compare several approaches:

1. LAMBDABEAM with random restarts: We trained the LAMBDABEAM model using on-policy
training as in CROSSBEAM. The model has about 13 million trainable parameters and was
trained on about 6.5 million tasks, which took about a week of training using 8 V100 GPUs. See
Appendix E for more details on the model architecture and training. During evaluation, we use
only 1 V100 GPU and perform random restarts every 6 seconds on the handwritten tasks, or every
30 seconds on the synthetic tasks, both chosen from a coarse search over restart frequencies. We
run this approach for 5 trials using different randomness for the UniqueRandomizer sampling
method carried over from CROSSBEAM.

2. LAMBDABEAM without random restarts: We use the LAMBDABEAM approach without random
restarts as an ablation, also for 5 trials with different randomness for UniqueRandomizer sampling.

3. Enumeration: We run the same exhaustive bottom-up enumerative synthesis algorithm that was
used to create the training data. We use 5 trials with different random orderings of DSL operations,
which changes the enumeration order of programs with the same weight.

4. RobustFill [12]: This approach treats the synthesis problem as a sequence to sequence prediction
task from the I/O examples to the program tokens. Specifically, we train a plain 3-layer LSTM-
based encoder-decoder model on our synthetic training dataset, using approximately the same
number of trainable parameters and training tasks as for the LAMBDABEAM model. We get model
predictions via a single beam search of size 65536 which nearly exhausts the GPU memory and
evaluate all resulting programs on the I/O examples. Since the beam search is deterministic, we
perform 5 trials by re-training the model with different initializations.

5. λ2 [15]: This is a state-of-the-art symbolic program synthesizer that handles lambda functions
and higher-order functions. We implemented our DSL within the λ2 framework (using the more
extensible version provided by the λ2 authors). λ2 is deterministic so we only use 1 trial.

6. Python-Finetuned LLM: We try asking a pretrained large language model (LLM) to solve our
evaluation tasks using Python code. Specifically, we use PaLM 62B that was trained for longer
as described in Appendix F of Chowdhery et al. [9], with further fine-tuning on general Python
code. The prompt contains natural language instructions and 2 examples of an I/O specification
followed by Python code that solves the task (for 2 new tasks), and then the I/O specification of
the evaluation task we wish to solve.4 We repeatedly draw batches of 16 independent samples with
temperature sampling and run those programs on the I/O examples, until a solution is found or
timeout is reached. We ran the LLM using 16 accelerators so this approach uses significantly more
compute than the others over the same time limit. We repeat for 3 trials with different randomness
for temperature sampling.

4.3 Results

Figure 4 plots the synthesis performance of the various methods over time. Notably, LAMBDABEAM
with restarts is the best approach for both handwritten and synthetic tasks. The gap is wider on the
handwritten tasks where LAMBDABEAM with restarts solves 67.2 out of 100 tasks on average, which
is 24% more tasks than the next best method λ2. Figure 5 plots the various approaches’ success rates
for different task weights, which can be used as a measure of task difficulty. As expected, we observe
that all methods perform worse on harder tasks with larger weight, but that LAMBDABEAM with
restarts generally achieves higher success rates on the difficult tasks compared to other methods. This
means that our approach scales better to larger programs compared to the other methods, except the
LLM which has a more constant but lower success rate overall.5

4In preliminary experiments, we found that providing 3 few-shot examples in the prompt led to slower
sampling without much change in program quality. On the other hand, using only 1 example led to noticeably
worse program quality. We also tried asking for programs within our DSL via few-shot examples, but this was
not as successful because the LLM was not trained on our DSL.

5The LLM predicts Python code instead of using our DSL, so the weight according to our DSL is an
inaccurate measure of the complexity of the corresponding Python code. Furthermore, difficulty for the LLM is
more closely correlated with how “natural” the task is, i.e., its similarity to programs in the LLM’s training data.
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Figure 4: Synthesis results over time for various methods on the handwritten and synthetic evaluation
tasks. Shaded areas represent the minimum and maximum across trials for that method.

Figure 5: Success rates of various methods broken down by the task weight (i.e., the smallest known
weight of a solution). Task weights are bucketed such that each group contains at least 15 tasks.

Running LAMBDABEAM with random restarts helps overall but more so for the handwritten tasks.
We believe this is because the synthetic evaluation tasks have the same distribution as the training
tasks while the handwritten tasks are different. So, for the handwritten tasks, exploring the wrong
part of the search space early on might cause further mistakes that lead the search astray, while the
model may be better trained to stay on track for the synthetic tasks. This would also explain why
more frequent restarts are effective for the handwritten tasks. We note that random restarts would not
be possible for λ2, enumeration, or RobustFill’s beam search, and would not help the LLM where
each sample is already independent.

We also identify false positives by running solutions on 2 held-out test cases per task, generated mostly
synthetically with some manual editing. The results are in Figure 6, showing that LAMBDABEAM
with restarts has the highest number of true positive solutions on handwritten tasks by a margin of
nearly 8 tasks, while barely losing to Enumeration on synthetic tasks.6 While symbolic approaches
(Enumeration and λ2) have fewer false positives due to focusing on small solutions, we observe that
LAMBDABEAM has the fewest false positives among the neural approaches. The LLM produces many
false positives on the synthetic tasks where the ground-truth solutions are less similar to programs
seen during its training, and in fact many of its false positive solutions are if-elif-else chains that
hardcode the examples in some way (which is feasible to implement in Python but not in our DSL).
Finally, we note that some false positive solutions could be transformed into true positives with a
postprocessing step, e.g., one that attempts to simplify or minimize subtrees of the solution. In this
sense, false positive solutions may still be useful for synthesis, and LAMBDABEAM with restarts
achieves the highest number of total positive solutions by a wide margin.

Appendix F contains analysis showing some of the differences in distributions between the hand-
written and synthetic evaluation tasks, which helps to contextualize the experimental results. For
example, lambda expressions are used in 85% of the handwritten tasks but only 53% of the synthetic
tasks. The median task weight is 9 for handwritten tasks and only 7.5 for synthetic tasks. These
comparisons suggest that the handwritten tasks are harder than the synthetic tasks on average, which

6The synthetic tasks have randomly-generated I/O examples that are overall less informative than those in the
handwritten tasks, and the “correct” solution is not chosen to be natural but rather is one with minimal weight
by construction. Enumeration has an unfair advantage here, being the only method in our comparison that is
guaranteed to find a minimal weight solution.
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Figure 6: True positive versus false positive solutions measured using held-out test cases.

is also reflected in the overall performance in Figure 4. We observe that LAMBDABEAM achieves a
greater performance gap over the other approaches on the handwritten tasks versus on the synthetic
tasks, which is a promising trend because the handwritten tasks are both harder and more natural.

Although LAMBDABEAM resolves CROSSBEAM’s limitations of not handling lambdas or looping
computations, some other limitations are carried over. On-policy training is slow due to performing
search during training, but this could be addressed with an initial training phase of off-policy teacher
forcing. At evaluation time, even with UniqueRandomizer sampling to avoid duplicate argument
lists within one sampling phase, our approach still encounters many duplicate values across sampling
phases and across restarts. Finally, our DSL is small compared to general programming languages.

5 Related Work

Machine learning for program synthesis has been an active area [17, 18, 1]. Within programming
by example, deep learning architectures for sequences, like LSTMs and Transformers, have been
particularly effective [12]. Our work builds upon CROSSBEAM [33], which itself combines three lines
of research in program synthesis. The first are learned search strategies for program synthesis, that is,
using a learned policy or value function to guide search [36, 20, 13], or multi-level strategies that
combine the results of search over different spaces [25, 22, 19, 34]. The second are execution-guided
neural synthesis methods, which guide the search over partial programs by evaluating them [37, 13,
7, 27, 8]. Finally, CROSSBEAM’s use of imitation learning to train the policy is inspired by work in
learning to search [11, 29, 5] and beam-aware training [23, 24].

In contrast, we are unaware of previous work that synthesizes helper functions, such as lambda
functions, during neural program synthesis. The original DeepCoder DSL contains only a small
set of predefined lambda functions. Even within symbolic program synthesis, λ2 is one of the few
examples of work that synthesizes lambda expressions [15]. To control the size of the search space,
λ2 employs type-directed synthesis, but we handle more general domains where the type system is not
informative enough to reduce the search space sufficiently. DreamCoder [14] can also infer ad-hoc
helper functions like λ2, but its neural network provides no fine-grained guidance on how to compose
those lambdas. Because DreamCoder is an algorithm for enriching an impoverished DSL to improve
a neurally-guided program search, one could combine DreamCoder’s DSL enrichment process
with LAMBDABEAM’s search strategy. Other work reuses fragments of code from partially-correct
solutions [30, 34], but these are executable portions of straightline code, not lambda functions.

Our integer manipulation domain is inspired by DeepCoder [3] and subsequent work [37, 34].

6 Conclusion

We introduced the first neural search method for programming by example that is able to synthesize
intermediate helper functions (lambdas) by resolving two key difficulties. First, we algebraically
represent lambda expressions in a canonical way and construct new lambdas with the MERGE operator
that enforces desirable representational constraints. Second, we encode arbitrary lambda functions as
inputs to a neural network by using property signatures to analyze the lambda’s execution semantics.
With these innovations, LAMBDABEAM learns a neural policy to drive a bottom-up search over
programs. We experimentally show that LAMBDABEAM outperforms symbolic search, a sequence
model, and a pretrained code LLM with 62 billion parameters.
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Appendices
A Completeness of MERGE

The MERGE operation is complete in the sense that it can generate all possible solutions in the
domain-specific language (DSL) for a programming-by-example (PBE) problem.

We formalize our DSL in a subset of the lambda calculus. Let X = {x1, . . . , xm} be the set of input
variables for the PBE task, V be a countable set of variables that is disjoint from X , F be the set of
primitive functions in the DSL, and C be a set of constants in the DSL. Then, our lambda calculus is:

T ::= x | v | c | f(t1, . . . , tk) | λv1...vn. t
for x ∈ X , c ∈ C, f ∈ F ,

v, v1, . . . , vn ∈ V,
t, t1, . . . , tk ∈ T.

Let M be the set of terms obtainable by repeatedly applying MERGE (including the initial terms
usable by MERGE):

M ::= x | λv. v | c | MERGE(f,a1, i1, . . . ,ak, ik)

for x ∈ X , v ∈ V, c ∈ C, f ∈ F ,
a1, . . . ,ak ∈M,

i1, . . . , ik ∈ V∗.

We restate the definition

MERGE (f,a1, i1,a2, i2, . . . ) = λv1v2... . f (λu1u2...u`1 . a1(i1), λu1u2...u`2 . a2(i2), . . .)

where {v1, v2, . . .} =
⋃
k

ik − {uj}max{`1,`2,... }
j=1

From this definition, it is clear that M ⊆ T , i.e., MERGE is closed within the lambda calculus.
However, M 6= T because MERGE imposes certain constraints, e.g., λv. x is in T but cannot be
constructed by MERGE. To precisely describe the constraints resulting from MERGE, we introduce
the following definitions:

• Terms x ∈ X , v ∈ V , and c ∈ C are atomic.
• A term s = λv1...vn. t (possibly with n = 0 such that s is not a lambda expression) has exact

lambda variables if FreeVars(t)−X = {v1, . . . , vn}. Note that s having exact lambda variables
implies that FreeVars(s) ⊆ X .

• A term typechecks if every function application has the correct arity for every argument, e.g.,
Map(t1, t2) expects t1 to have arity 1, while t2 should have arity 0.

We now let S = {s ∈ T | s has exact lambda variables and typechecks}.
The completeness of MERGE, in the sense that it can generate all solutions s to PBE problems (once
the input variables x1, . . . , xm are bound), follows from the two claims below.

Claim 1. If p = λx1...xm. s is a solution to a PBE problem, such that p(x1, . . . , xm) = y for all
I/O examples (x1, . . . , xm)→ y in the PBE specification, then s ∈ S. That is, S is broad enough to
cover all solutions to PBE problems.

Proof. To ensure that p = λx1...xm. s is a valid solution program, we must have FreeVars(s)−X =
∅ (so there are no unbound variables), s must have arity 0 (since all inputs x1, . . . , xm are already
bound), and s must typecheck to avoid runtime errors. Together, these imply that s ∈ S.

Claim 2. S ⊆M . That is, MERGE can create any term in S, including all solutions to PBE problems.
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Proof. Let s be any term in S. We will proceed by induction on the depth of s.

As the base case, if s is atomic, then s = x or s = c, so s is immediately in M . Note that s cannot be
v because v does not have exact lambda variables.

Then, we assume the inductive hypothesis that any term in S, with depth less than that of s, is in M .
There are two inductive cases to consider: either s = λv1...vn. f(t1, . . . , tk) where n might be 0,
or s = λv1...vn. t where n > 0 and t is atomic. Because s has exact lambda variables, the latter
scenario is only possible if s = λv. v, which is immediately in M .

The remaining case is s = λv1...vn. f(t1, . . . , tk). Consider any tj for 1 ≤ j ≤ k. We will construct
aj and ij such that MERGE(f,a1, i1, . . . ,ak, ik) = s.

• If tj is atomic, then either tj = x, tj = v, or tj = c. If tj = v, then set aj = λv. v and ij = [v];
otherwise, set aj = tj and ij = [ ], the empty tuple. In each case, aj ∈M . Because s typechecks,
we know that the j-th argument to f expects arity 0, so in the MERGE definition, `j = 0 and thus
the j-th argument to f expands to aj(ij) = tj in each case.7

• If tj is not atomic, then let tj = λu1...u`j . r, where `j is the expected arity of the j-th argument
to f (because s typechecks). Let {v′1, . . . , v′d} = FreeVars(r)−X . Set aj = λv′1...v

′
d. r and ij =

[v′1, . . . , v
′
d], so that when applying MERGE, the j-th argument to f expands to λu1...u`j . aj(ij) =

λu1...u`j . r = tj . Furthermore, aj has exact lambda variables by construction, and it typechecks
because r typechecks, so aj ∈ S and aj ∈M by the inductive hypothesis.

With these choices of aj and ij , when expanding MERGE(f,a1, i1, . . . ,ak, ik) according to the
definition, the j-th argument to f becomes tj , and the lambda variables

⋃
k ik − {uj}

max{`1,`2,... }
j=1

are exactly FreeVars(f(t1, . . . , tk)) = {v1, . . . , vn} since s has exact lambda variables. Therefore,
s = λv1...vn. f(t1, . . . , tk) = MERGE(f,a1, i1, . . . ,ak, ik), so s ∈M .

B More Details on Property Signatures

Here we describe in more detail the properties we use to encode lambda and non-lambda values. We
define the following helper functions to organize the properties.

First, TypeProperties(x) represents the type of x as a boolean one-hot list. In our DSL, this returns
a tuple of 5 booleans, representing whether x is a lambda, boolean, int, list, or None (which is used to
indicate an error, e.g., signaling that an index is out of bounds).

Next, we define BasicProperties(x) to evaluate hand-designed “basic” properties that describe
objects of each different type in the DSL. This returns a fixed-length vector of property results (each
being True, False, or N/A). Note that, if x has type τ , then all properties for type τ evaluate to True
or False, while all properties for all other types τ ′ 6= τ evaluate to N/A. For our DSL, we use the
following basic properties:

• For boolean x: x itself.
• For integer x: whether x equals −1, 0, 1, and 2; whether x is positive and negative; whether x is

even; whether x is 0 and 1 modulo 3; and whether |x| is less than 5, 10, 20, 35, 50, 75, and 100.
• For list x: whether x is sorted, whether x is sorted in reverse, and whether x contains all unique

elements.

Then, Relevant(x) returns related objects that are relevant to understanding x. For our DSL, this is
only x itself for integer and boolean x, but for list x, the “relevant” objects are: x itself; the length
of x; the number of distinct elements in x; the max, min, range, and sum of x; and the first and last
elements of x (defaulting to 0 if x is empty).

This culminates in ObjectSignature(x) which takes a single DSL object x and returns a fixed-length
vector of property results, containing TypeProperties(x) followed by BasicProperties(r) for each
r ∈ Relevant(x). For example, these properties include “assuming x is an int, is x is even?” (a basic

7In practice for simplicity, when tj = v, we simply set aj = tj and ij = [ ] as in the other cases, even
though aj = v does not have exact lambda variables.
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property applied to x) as well as “assuming x is a list, are there an even number of elements in x?” (a
basic property applied to an object relevant to x). By applying basic properties to relevant objects in
this compositional way, we reduce the effort needed to specify a large number of properties.

We furthermore encode comparisons between two objects. We define ComparisonProperties(x, y)
which evaluates hand-designed properties for comparing two objects x and y of the same type, for
each different type in the DSL. This returns a fixed-length vector of property results, where a property
for comparing type τ evaluates to N/A if x and y are not of type τ . For our DSL, we use the following
comparison properties:

• For boolean x and y: whether x = y.
• For integer x and y: whether x = y, x < y, and x > y; whether x is a factor of y and vice versa;

and whether |x− y| is less than 2, 5, 10, and 20.
• For list x and y: whether x = y; whether x is longer, shorter, or equal length compared to y;

whether the lengths differ by at most 1; whether all xi < yi for xi, yi ∈ zip(x, y) and similarly
for other comparisons ≤, >, ≥, =, and 6=; whether x and y contain the same set of elements; and
whether x contains a subset of elements compared to y and vice versa.

These properties are used in ComparisonSignature(x, y) which computes a fixed-length list of prop-
erty results for any two DSL objects x and y of any type, containing ComparisonProperties(rx, y)
for all rx ∈ Relevant(x) where type(rx) = type(y), and ComparisonProperties(x, ry) for all
ry ∈ Relevant(y) where type(ry) = type(x). Thus, “assuming x is an int and y is a list, is x a
factor of the length of y?” is one resulting property. As usual, if x and y do not match the types
assumed by the property, then the property evaluates to N/A.

In the I/O Module of the neural policy (as in CROSSBEAM [33]), we use property signatures to encode
a set of I/O examples. For each example ({I1, . . . , In}, O) we concatenate ObjectSignature(O)
with ObjectSignature(Ii) and ComparisonSignature(Ii, O) for all 1 ≤ i ≤ n. Then, we reduce
these across I/O examples, computing for each property the fraction of examples where it is applicable
(not N/A), and the fraction of examples where it is True among those where it is applicable (defaulting
to 0.5 if it is N/A for all examples).

In the Value Module of the neural policy, we use property signatures to encode a value (lambda or
non-lambda expression) that was found during search. To encode a lambda expression, we run it on
canonical input tuples as described in Section 3.2. For each run of the lambda on canonical input tuple
ti = (ti,1, . . . , ti,m) using an I/O example (I,O) where the lambda evaluates to a result ri, we con-
catenate ObjectSignature(ri), ComparisonSignature(ri, O), and ComparisonSignature(ti,j , ri)
for all 1 ≤ j ≤ m, and then reduce these across the runs of the lambda. To encode a non-lambda
expression during search, for each I/O example (I,O) where the expression evaluates to a result r, we
concatenate ObjectSignature(r) with ComparisonSignature(r,O), and then reduce these across
I/O examples. Note that the signatures for values found during search do not contain comparisons to
the I/O example inputs, because what ultimately matters is whether the value is useful for creating
the output later, not how the value was created from the inputs.

In our implementation, encoding the set of I/O examples results in a property signature of length
1230, encoding a lambda expression results in a property signature of length 558, and encoding a
non-lambda expression results in a property signature of length 359.

C Extension of the DeepCoder DSL

As mentioned in Section 4.1, we extended the DSL from DeepCoder [3]. Atomic terms in the DSL
include variable names and the constant literals −1, 0, 1, 2, 3, and 4. The DSL contains 23 first-order
and 5 higher-order operations, listed below with type annotations and Python implementations:

# 23 first-order operations

def Add(x: int, y: int) -> int:
return x + y

def Subtract(x: int, y: int) -> int:
return x - y

def Multiply(x: int, y: int) -> int:
return x * y
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def IntDivide(x: int, y: int) -> int:
return x // y

def Square(x: int) -> int:
return x ** 2

def Min(x: int, y: int) -> int:
return min(x, y)

def Max(x: int, y: int) -> int:
return max(x, y)

def Greater(x: int, y: int) -> bool:
return x > y

def Less(x: int, y: int) -> bool:
return x < y

def Equal(x: int, y: int) -> bool:
return x == y

def IsEven(x: int) -> bool:
return x % 2 == 0

def IsOdd(x: int) -> bool:
return x % 2 != 0

def If(c: bool, x: int, y: int) -> int:
return x if c else y

def Head(xs: list) -> int:
return xs[0]

def Last(xs: list) -> int:
return xs[-1]

def Take(n: int, xs: list) -> list:
return xs[:n]

def Drop(n: int, xs: list) -> list:
return xs[n:]

def Access(n: int, xs: list) -> int:
return xs[n]

def Minimum(xs: list) -> int:
return min(xs)

def Maximum(xs: list) -> int:
return max(xs)

def Reverse(xs: list) -> list:
return list(reversed(xs))

def Sort(xs: list) -> list:
return sorted(xs)

def Sum(xs: list) -> int:
return sum(xs)

# 5 higher-order operations

def Map(f: Callable[[int], int], xs: list) -> list:
return [f(x) for x in xs]

def Filter(f: Callable[[int], bool], xs: list) -> list:
return [x for x in xs if f(x)]

def Count(f: Callable[[int], bool], xs: list) -> int:
return len([x for x in xs if f(x)])

def ZipWith(f: Callable[[int, int], int], xs: list, ys: list) -> list:
return [f(x, y) for x, y in zip(xs, ys)]

def Scanl1(f: Callable[[int, int], int], xs: list) -> list:
ys = [xs[0]]
for n in range(1, len(xs)):

ys.append(f(ys[n-1], xs[n]))
return ys
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D Example Tasks

This section contains selected example problems from our 100 handwritten and 100 synthetic
evaluation tasks. Each task is given a name for convenience purposes only, which is not used by any
method in our experiments.

D.1 Handwritten Task “map:replace”

This task has 3 inputs (x, f, and r), 3 examples demonstrating the task (“in x, find instances of f and
replace them with r”), and a handwritten ground-truth solution using a relatively complicated lambda
function:

inputs_dict = {
'x': [[7, 2, 4, 6, 4, 2, 5],

[-6, -3, 4, 3, -5, -3, 2, 1, 5],
[18, 48, 27, 26, 27, 27, 28, 17, 27, 33]],

'f': [4, -3, 27],
'r': [-1, 7, 99],

}
outputs = [[7, 2, -1, 6, -1, 2, 5],

[-6, 7, 4, 3, -5, 7, 2, 1, 5],
[18, 48, 99, 26, 99, 99, 28, 17, 99, 33]]

solution = 'Map(lambda u1: If(Equal(u1 , f), r, u1), x)'

In inputs dict, each of the entries for x, f, and r is a list of length 3, which contains the input for
each of the 3 examples. Similarly, outputs is a list containing the output for each example. solution
is our handwritten solution.

LAMBDABEAM + Restarts finds the same solution of weight 10 in each of the 5 trials, taking a
median time of 202 seconds:

Map(lambda u1: (lambda v1: If(( lambda v1: Equal(f, v1))(v1), r, v1))(u1), x)

The solution looks complicated due to the MERGE operation causing lots of variable renames (i.e.,
ak(ik) in the MERGE definition). We have implemented an algorithm to simplify the solution by
statically resolving these renames. In this case, the solution simplifies to

Map(lambda u1: If(Equal(f, u1), r, u1), x)

which is essentially identical to the ground-truth solution.

D.2 Handwritten Task “multi:multiply odds”

This task has 1 input and uses multiple higher-order functions to compute a running product of only
the odd elements:

inputs_dict = {
'x': [[3, 5, 8, 2, 1],

[5, 2, 1, 3, 3, 1, 4],
[3, -4, -1, 8, 2, 0, -3, 0, 9, -1]],

}
outputs = [[3, 15, 15],

[5, 5, 15, 45, 45],
[3, -3, 9, 81, -81]]

solution = 'Scanl1(lambda u1 , u2: Multiply(u1, u2), Filter(lambda u1: IsOdd(u1), x))'

In each of the 5 trials, LAMBDABEAM + Restarts finds the same solution of weight 11 that simplifies
to the ground-truth solution, taking a median time of 75 seconds.

D.3 Synthetic Task “synthetic:weight 9 function 7”

This task clips every element to the range [0, 4]:
inputs_dict = {

'x1': [[-9, -2, -10, -6, 0, -10, -6, 3, 1],
[-1, -5, 8, 5]]

}
outputs= [[0, 0, 0, 0, 0, 0, 0, 3, 1],

[0, 0, 4, 4]]
solution = 'Map(lambda u1: Min(4, Max(0, u1)), x1)'

LAMBDABEAM + Restarts finds a correct solution in all 5 trials with a median time of 38 seconds,
but the solutions are slightly different (the simplified solutions are listed):
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ZipWith(lambda u1, u2: Min(4, Max(0, u2)), x1 , x1)
ZipWith(lambda u1, u2: Min(4, Max(0, u1)), x1 , x1)
Reverse(ZipWith(lambda u1, u2: Min(4, Max(0, u2)), x1 , Reverse(x1)))
Reverse(Map(lambda u1: Min(4, Max(0, u1)), Reverse(x1))) # found in two trials

Note that these are not the shortest solutions, but nevertheless all of these solutions are equivalent to the
ground-truth solution. LAMBDABEAM’s solutions could benefit from a postprocessing simplification
step, as discussed in Section 4.3.

E More Details on LAMBDABEAM Architecture and Training

In our experiments, we used the following hyperparameters for the LAMBDABEAM model architecture
and training procedure. Refer to Figure 2 for a diagram showing how the different modules interact.

• I/O Module: this encodes a property signature of the I/O examples using a 2-layer ReLU-MLP
with hidden size and output size of 512.

• Value Module: this encodes each value’s property signature using a 2-layer ReLU-MLP with
hidden size of 512 and output (embedding) size of 256, with a layer-norm applied after each linear
projection. We use different MLPs for lambda and non-lambda expressions.

• Search Context Summary Module: this module needs to represent the entire search state at the
current stage, including the current operator to be expanded, the I/O specification, and the values
explored so far. We compute the average of the set of value embeddings, concatenate it with the
I/O embedding, and then apply a projection layer (denoted as MLPop in Figure 2, which projects
back to the embedding dimension) to get a vector representation. The model parameters used in
the projection layers are indexed by the operator (i.e., we use different sets of trainable parameters
for different operators).

• Argument Selector Module: we use an operator-specific 3-layer LSTM with hidden size of 256.
The prediction head is a 2-layer MLP with hidden size of 512.

• During training, we generate on-policy data with beam size 10, use an effective batch size of 32,
and use the Adam optimizer with a constant learning rate of 5× 10−4.

• During evaluation, we use UniqueRandomizer with beam size 10.

F Analysis of Handwritten and Synthetic Tasks

Table 1 shows some differences in the distributions between our handwritten and synthetic evaluation
tasks. This analysis may help contextualize the experimental results in Section 4.

For example, Figure 5 shows that the LLM solved abnormally many synthetic tasks in the 11-12
weight bucket. In fact, for synthetic tasks of weight 8 or more, every one of the LLM’s “solutions”
are actually false positives using some form of “if the input is 〈hardcoded〉 then return 〈hardcoded〉”
logic, which is easier to implement when the output is an integer as opposed to a list. Table 1 shows
that there are abnormally many synthetic tasks of weight 11-12 that have integer outputs, which helps
to explain the results.
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Table 1: Analysis of some differences in task distributions between the handwritten and synthetic
evaluation tasks. We show the number of tasks with each weight, the number of tasks using a lambda
expression in the ground truth solution, and the number of tasks where the desired output is an integer
(as opposed to a list). There may also be other axes where the handwritten and synthetic tasks have
different distributions.

100 Handwritten Tasks 100 Synthetic Tasks
Weight # Tasks With Lambda Int Output # Tasks With Lambda Int Output

3 0 – – 10 3 30% 2 20%
4 3 2 67% 2 67% 10 2 20% 6 60%
5 7 0 0% 3 43% 10 3 30% 5 50%
6 10 9 90% 4 40% 10 7 70% 3 30%
7 9 6 67% 7 78% 10 5 50% 5 50%
8 11 11 100% 4 36% 10 8 80% 2 20%
9 16 16 100% 3 19% 10 8 80% 3 30%

10 9 9 100% 1 11% 10 8 80% 3 30%
11 11 8 73% 5 45% 10 6 60% 7 70%
12 9 9 100% 3 33% 10 3 30% 7 70%
13 5 5 100% 2 40% 0 – –
14 3 3 100% 1 33% 0 – –
15 4 4 100% 1 25% 0 – –
16 2 2 100% 0 0% 0 – –
17 0 – – 0 – –
18 0 – – 0 – –
19 1 1 100% 0 0% 0 – –

Total 100 85 85% 36 36% 100 53 53% 43 43%
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