GREEDY INFORMATION PROJECTION FOR LLM DATA SELECTION

Anonymous authorsPaper under double-blind review

ABSTRACT

We present *Greedy Information Projection* (GIP), a principled framework for choosing training examples for large language model fine-tuning. GIP casts selection as maximizing mutual information between a compact subset of examples and task-specific query signals, which may originate from LLM quality judgments, metadata, or other sources. Under a jointly Gaussian model of data and query embeddings, the objective has a closed form and naturally balances quality and diversity. We show that optimizing this score is equivalent to maximizing the projection of the query embedding matrix onto the span of the selected data, yielding a geometric explanation for the co-emergence of quality and diversity. Building on this view, we develop a fast greedy matching-pursuit procedure with efficient projection-based updates. On instruction-following and mathematical reasoning datasets, GIP selects compact subsets that match full-data fine-tuning while using only a small fraction of examples and compute, unifying quality-aware and diversity-aware selection for efficient fine-tuning.

1 Introduction

A central question in the discussion of large language model (LLM) training is how one should select data. With recent developments of large-scale pretrained language models such as GPT-4 (Achiam et al., 2023), Qwen (Qwen et al., 2025) and Llama (Grattafiori et al., 2024), the community has witnessed models achieving remarkable performance across a broad spectrum of natural-language tasks. Typically, these models train on large amounts of data that scale with the model size, commonly known as the scaling law. Empirical scaling laws of LLM reveal that model capability grows predictably with (i) parameter count, (ii) compute, and (iii) training data volume (Hoffmann et al., 2022; Kaplan et al., 2020). Yet practitioners increasingly observe a second, subtler regime: once data quantity is sufficient, *data quality* becomes the primary factor limiting further gains. Consequently, a fundamental challenge in both pre-training and instruction tuning is to select a subset of samples that maximizes downstream performance while respecting resource constraints.

Earlier work addressed the problem through diverse dataset construction (Wang et al., 2022; Taori et al., 2023b) and ad-hoc filtering heuristics such as perplexity thresholds, deduplication, or clustering (Bukharin et al., 2024; Zhao et al., 2024; Chen et al., 2023b; Ge et al., 2024). While effective, these heuristics offer little theoretical guidance on *why* a particular example is valuable, and they do not unify quality and diversity under a single objective.

This work. We present a principled *information-theoretic* framework for data selection built on a mutual information (MI) metric between Gaussians parameterized by data and query embeddings. As we will demonstrate later, this metric promotes both diversity and quality in a single objective, and also gives rise to efficient algorithm design. Our main contributions are:

- 1. **Principled theoretical formulation.** We propose a principled theoretical framework that casts the data selection problem as maximization of mutual information. Optimizing this objective naturally promotes diversity and quality of selected data. This framework is also flexible, enabling balanced selection with respect to disparate information sources, such as factuality and style scores from LLM evaluations.
- 2. **Efficient approximation algorithms.** We develop a greedy matching pursuit (MP) approximation algorithm that solves an approximate dual problem. The Greedy MP approach

Figure 1: **Left:** Training efficiency analysis on GSM8K mathematical reasoning. For budget b, $R(b) = \operatorname{Perf}_{\operatorname{ours}}(b)/\operatorname{Perf}_{\operatorname{baseline}}(2b)$. Values > 1 mean our $1\times$ -budget selection outperforms the best baseline trained with $2\times$ data. Results shown for **Qwen3-8B** and **Mistral-7B**; identical decoding and seeds. Qwen3-8B consistently demonstrates efficiency advantages ($\sim 1.02\times$) across all budget levels, while Mistral-7B shows near-parity performance ($\sim 1.00\times$). **Right:** Geometric interpretation of GIP. The method maximizes mutual information between Gaussians parameterized by data embedding matrix F and score embedding matrix F. This is equivalent to minimizing the volume (determinant) of score embeddings projected onto the null space of selected data, naturally balancing quality (high-score items) and diversity (new directions in embedding space).

scales linearly with the total size of available data in practice, enabling data selection under realistic budget constraints.

3. **Strong empirical results.** On instruction-tuning benchmarks, our *Greedy Information Projection* (GIP) achieves substantial data efficiency gains over state-of-the-art baselines. GIP matches or exceeds full dataset performance using only 1-20% of training data across MT-Bench, BBH, and GSM8K benchmarks—demonstrating up to 5× data reduction; see Figure 1.

2 RELATED WORK

2.1 Data Curation for Large-Scale Language Models

Diversity and quality are recognized as crucial factors impacting the overall quality of model training (Sener & Savarese, 2018; Chen et al., 2024; 2023a). With the recent development of large language models, there is a growing trend in studies focusing on data composition quality and diversity, and how these factors influence language model pretraining and instruction tuning.

For example, Lee et al. (2022) highlight the importance of diversity in improving training efficiency and propose a method to remove near-duplicate records from training data. Similarly, Bukharin et al. (2024) emphasize the significance of both quality and diversity in instruction tuning data, proposing a general method to balance these two aspects in training data selection. Furthermore, Du et al. (2023) introduce a systematic data selection approach that combines data quality, diversity, and augmentation for instruction tuning. However, none of Bukharin et al. (2024); Du et al. (2023) have a unified framework to unify *both* quality and diversity; diversity was either applied as a penalty or considered in a different stage of data selection.

Recent work has focused on more sophisticated data selection strategies. Chen et al. (2023b) propose instruction-following difficulty (IFD) scoring to identify high-quality instruction data. Ge et al. (2024) introduce clustering-based active retrieval (CaR) that uses representativeness and uncertainty for data selection. Xia et al. (2024) develop LESS, a gradient-based method for selecting informative training data. Xie et al. (2023) propose data selection using importance resampling (DSIR) for domain adaptation. Our work differs by providing a unified information-theoretic framework that naturally balances quality and diversity in a single objective, while being computationally efficient and theoretically grounded.

2.2 Information-Theoretic Objectives in Selection and Clustering

There is a long history of applications of mutual information to data selection and clustering. Mutual information can capture complex relationships between features that might not be apparent (Knops et al., 2006). Mutual information is also flexible, working on various types of data such as categorical data (He et al., 2008) and numerical data (Kraskov et al., 2005). Approximations of mutual information has also been applied to k-means (Sugiyama et al., 2014; Calandriello et al., 2014). More recently, mutual information based algorithms have been developed for clustering (Do et al., 2021), community detection (Newman et al., 2020), 3d object representation learning (Sanghi, 2020), and unsupervised sentence embeddings (Zhang et al., 2020). Theoretical developments of mutual information inequalities have also been applied in pairwise comparisons (Lee & Courtade, 2021) and generalized linear models (Lee & Courtade, 2020), where optimal selections and minimax algorithms are understood to be closely related to singular values of query matrices; see, e.g., (Lee, 2022) for a broad discussion.

It is important to note that mutual information is often difficult to compute and various forms of estimators and approximations are used to reduce the computation cost; see (Kraskov et al., 2004) for a classic mutual information estimator. In this paper, we consider the mutual information of joint-Gaussian variables — Gaussianity provides us many favorable elementary expressions which allow us to bypass much of the complexity of estimating mutual information.

2.3 ACTIVE LEARNING AND CORESET SELECTION

Our work is also related to active learning (Settles, 2009) and coreset construction (Bachem et al., 2017). Active learning focuses on selecting the most informative examples for labeling, while coreset methods aim to find a small subset that approximates the full dataset for downstream tasks. However, most active learning methods are designed for traditional supervised learning and may not directly transfer to the large-scale generative modeling setting. Coreset methods often assume specific problem structures (e.g., k-means clustering) that may not hold for language model training.

3 PROBLEM FORMULATION

We are given a set of m data points $\mathcal{F}=\{f_1,\ldots,f_m\}$ with $f_i\in\mathbb{R}^d$ representing features of selectable data, and n score vectors $\mathcal{G}=\{g_j\in\mathbb{R}^m,j\in[n]\}$ where each score vector g_j represents evaluations on all m data points for a specific quality dimension. These scores can come from LLM evaluators assessing quality dimensions (helpfulness, accuracy, reasoning) or internal measures like self-consistency estimates.

Our goal: Given data features \mathcal{F} and quality scores \mathcal{G} , select at most k data points that are both *diverse* (spanning different regions of the feature space) and *high-quality* (aligned with the provided scores).

3.1 MUTUAL INFORMATION FORMULATION

Let $F \in \mathbb{R}^{d \times m}$ be the data embedding matrix with $F = [f_1, f_2, \dots, f_m]$, and let $G \in \mathbb{R}^{m \times n}$ be the score matrix with $G = [g_1, g_2, \dots, g_n]$. For selection $S \subseteq [m]$ with $|S| \le k$, define $F_S \in \mathbb{R}^{d \times |S|}$ as the matrix of selected data columns. We assume data embeddings are normalized: $||f_i||_2 = 1$ for all $i \in [m]$.

Our framework requires query embeddings $Q \in \mathbb{R}^{d \times n}$ such that $F^{\top}Q \approx G$. This establishes a connection between the feature space (where diversity is measured) and the score space (where quality is defined).

Regularization and stability. Since $m \gg d$ in practice, F typically has rank at most d and is not full row rank. To ensure existence and numerical stability of Q, we use Tikhonov regularization. Specifically, we solve:

$$Q_{\epsilon} = \arg\min_{Q} \|F^{\top} Q - G\|_{F}^{2} + \epsilon \|Q\|_{F}^{2}$$
(3.1)

with solution $Q_{\epsilon} = F(F^{\top}F + \epsilon I_m)^{-1}G$ for small $\epsilon > 0$. This ensures $||F^{\top}Q_{\epsilon} - G||_F \leq C\epsilon$ for some constant C. Details are provided in Appendix D.

Consider standard Gaussian $Z \in \mathcal{N}(0, I_d)$ and transformations $Z_Q := Q^\top Z$, $Z_{F_S} = F_S^\top Z$:

$$\begin{bmatrix} Z_Q \\ Z_{F_S} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} Q^\top Q & Q^\top F_S \\ F_S^\top Q & F_S^\top F_S \end{bmatrix} \right)$$
 (3.2)

The mutual information between Z_Q and Z_{F_S} is:

$$I(Z_Q; Z_{F_S}) = \frac{1}{2} \log \left(\frac{\det(Q^\top Q) \det(F_S^\top F_S)}{\det(\Sigma)} \right)$$
(3.3)

where Σ is the joint covariance matrix in equation 3.2.

Theorem 1. The mutual information maximization is equivalent to:

$$\arg\max_{S} I(Z_Q; Z_{F_S}) = \arg\min_{S} \det \left(Q^{\top} \left(I - F_S(F_S^{\top} F_S)^{-1} F_S^{\top} \right) Q \right)$$
(3.4)

Intuition. The matrix $P_S := I - F_S (F_S^\top F_S)^{-1} F_S^\top$ projects Q onto the null space of F_S . Minimizing $\det(Q^\top P_S Q)$ selects S that minimizes the volume of Q after projection, naturally encouraging both diversity (expanding into new directions in embedding space) and quality (aligning with high-score directions).

Theorem 2 (Quality Bounds). For the MI-optimal selection S^* from Theorem 1, there exists δ_{S^*} such that

$$||F_{S^*}^\top Q||_2 \ge \delta_{S^*} \sqrt{1 - \left(\frac{\eta}{\det(Q^\top Q)}\right)^{1/r}}$$
 (3.5)

where $\eta = \det(Q^{\top}(I - P_{F_{S^*}})Q)$ and r is the rank of Q.

Quality Guarantee. This theorem provides a lower bound on how well the selected data F_{S^*} aligns with the query directions Q. The bound shows that our MI-optimal selection maintains quality.

When scores are missing $(Q = \emptyset)$, we maximize the entropy $h(Z_{F_S}) = \frac{1}{2} \log \det(F_S^{\top} F_S)$, which encourages pure diversity consistent with our framework.

4 GREEDY APPROXIMATION ALGORITHM

With small data sizes, one can permute through all possible selections to obtain the optimal selection S, but the exponential computation cost is impractical in real-world scenarios where data sizes are large. Instead, we propose to optimize equation 3.4 by approximations.

We employ an approximation by optimizing an upper bound of equation 3.4 that follows by a direct application of the classic AM-GM inequality.

Theorem 3. Given $Q = [q_1 \dots q_n]$, the determinant stated in equation 3.4 satisfies

$$\det\left(Q^{\top}\left(I - F_S(F_S^{\top}F_S)^{-1}F_S^{\top}\right)Q\right) \le \left(\frac{\operatorname{Tr}\left(\left(Q^{\top}\left(I - F_S(F_S^{\top}F_S)^{-1}F_S^{\top}\right)Q\right)}{n}\right)^n. \tag{4.1}$$

By shifting our optimization target to the right-hand side of equation 4.1, we loosen the optimization objective to the trace, which enjoys linearity. In particular, recall that Q is a $\mathbb{R}^{d\times n}$ matrix constructed by a concatenation of $q_1,\ldots,q_n\in\mathbb{R}^d$. By linearity, we have

$$\operatorname{Tr}((Q^{\top} \left(I - F_S(F_S^{\top} F_S)^{-1} F_S^{\top} \right) Q) = \sum_{i=1}^{n} \operatorname{Tr} \left(q_i^{\top} \left(I - F_S(F_S^{\top} F_S)^{-1} F_S^{\top} \right) q_i \right), \tag{4.2}$$

and we obtain a quadratic expression with favorable properties to work with. Note also that the minimization of equation 4.2 over S depends on Q only through scores $g_i := F^\top q_i \in \mathbb{R}^n, i \in [n]$. Therefore, the expression in equation 4.2 permits us to work directly with scores G without the knowledge of Q.

In this section, we introduce our **Greedy MP** algorithm that approximates the *dual problem* by a matching pursuit approach.

4.1 Greedy matching pursuit (MP)

The intuition is to note that equation 4.2 involves computing lengths of q_i projected onto the null space of F_S , which can be written as a dual form:

$$\min_{S} \sum_{i=1}^{n} \min_{\lambda \in \mathbb{R}^k} \left\| q_i - \sum_{j \in S} \lambda_j f_j \right\|_2^2. \tag{4.3}$$

Greedy MP solves this by minimizing residual gain across all query embeddings: at step t+1,

$$s_{t+1}, \lambda_{t+1}^* = \arg\min_{s \in [m]/S_t} \sum_{i=1}^n \min_{\lambda \in \mathbb{R}^k} \|r_i - \lambda_i f_s\|_2^2,$$
 (4.4)

where $r_i = q_i - \sum_{j=1}^t \lambda_j^* f_{s_j}$ is the residual of the *i*-th score at step t+1. Note that for each individual q_i and candidate f_s , the minimizer $\lambda_i^* = r_i^\top f_s$ is unique, and satisfies

$$\min_{\lambda \in \mathbb{R}} \|r_i - \lambda f_s\|_2^2 = \|r_i - r_i^\top f_s f_s\|_2^2 = \|r_i\|^2 - (r_i^\top f_s)^2.$$
(4.5)

By substituting equation 4.5 into equation 4.4, we see that the greedy selection of s_{t+1} is simply one that solves

$$s_{t+1} = \arg\max_{s \in [m] \setminus S_t} \sum_{i=1}^{n} (r_i^{\top} f_s)^2.$$

By defining residual score matrix $W \in \mathbb{R}^{n \times m}$ where $W = [r_1 \dots r_n]^{\top} [f_1 \dots f_m] = \begin{bmatrix} r_1^{\top} f_1 & \cdots & r_1^{\top} f_m \\ \vdots & \ddots & \vdots \\ r_n^{\top} f_1 & \cdots & r_n^{\top} f_m \end{bmatrix}$, we get s_{t+1} by solving

$$s_{t+1} = \arg\max_{s \in [m] \setminus S_t} \sum_{i=1}^{n} (W_{i,s}^{(t)})^2.$$

After selection s_{t+1} , W can be updated with

$$W_{i,j}^{(t+1)} \leftarrow W_{i,j}^{(t)} - \Phi_{j,s_{t+1}} \cdot W_{i,s_{t+1}}^{(t)}, \tag{4.6}$$

where $\Phi_{j,s} = f_j^{\top} f_s$ are the precomputed inner products between data vectors. This update corresponds to the new residual $r_i' = r_i - (r_i^{\top} f_{s_{t+1}}) f_{s_{t+1}}$, yielding $r_i'^{\top} f_j = r_i^{\top} f_j - (f_j^{\top} f_{s_{t+1}}) r_i^{\top} f_{s_{t+1}}$ as expected.

Immediately, this suggests we can efficiently solve equation 4.3 by maintaining and updating a residual score matrix W in-place, while inner products of data vectors can be efficiently looked up by precomputing $F^{\top}F$ in memory.

Algorithm Initialization. We initialize $W^{(0)} = G = Q^{\top} F \in \mathbb{R}^{n \times m}$, where $G_{ij} = q_i^{\top} f_j$ represents the initial correlation between the *i*-th query and *j*-th data point. At iteration t = 0, we have $r_i^{(0)} = q_i$ for all $i \in [n]$, so $W_{ij}^{(0)} = r_i^{(0) \top} f_j = q_i^{\top} f_j = G_{ij}$.

Algorithm Variables. In Algorithm 1: $F \in \mathbb{R}^{d \times m}$ is the data matrix with columns $f_j; G \in \mathbb{R}^{n \times m}$ is the score matrix where $G = Q^\top F; W^{(t)} \in \mathbb{R}^{n \times m}$ tracks residual correlations $r_i^{(t)\top} f_j$ at iteration $t; \Phi \in \mathbb{R}^{m \times m}$ stores precomputed data inner products $f_i^\top f_j$; and S accumulates the selected indices.

Computational Complexity. The Greedy MP algorithm has a total runtime complexity of $O(m^2d+mnk)$, where m is the total number of data points, n is the number of scores, and k is the desired subset size. This breaks down as follows: (1) Precomputation of $\Phi = F^{\top}F$ requires $O(m^2d)$ operations, performed once; (2) Initialization of $W^{(0)} = G$ is O(mn) if G is provided, or O(mnd) if computed from $Q^{\top}F$; (3) For each of the k iterations, we select the best candidate O(mn) and update the residual matrix W for O(m) entries O(mn), giving O(mnk) for the iterative process.

Algorithm 1 Greedy matching pursuit (MP)

```
Require: Data matrix F \in \mathbb{R}^{d \times m}, score matrix G \in \mathbb{R}^{n \times m} (where G = Q^{\top}F), number of selections k

Ensure: Selection set S

1: Initialize S = \emptyset, W^{(0)} \leftarrow G {W \in \mathbb{R}^{n \times m}}

2: Precompute \Phi = F^{\top}F \in \mathbb{R}^{m \times m} {Data inner products}

3: for t = 1 to k do

4: s_t \leftarrow \arg\max_{j \in [m] \setminus S} \sum_{i=1}^{n} (W_{i,j}^{(t-1)})^2 {Select best candidate}

5: S \leftarrow S \cup \{s_t\}

6: for i = 1 to n, j = 1 to m with j \notin S do

7: W_{i,j}^{(t)} \leftarrow W_{i,j}^{(t-1)} - \Phi_{j,s_t} \cdot W_{i,s_t}^{(t-1)} {Update residuals}

8: end for

9: end for

10: return Selection set S
```

The memory complexity is $O(m^2+mn)$ for storing Φ and W. In practice, since n is typically small, the algorithm scales nearly linearly with the dataset size m after the initial precomputation, making it practical for large-scale data selection.

The algorithm is attached in Algorithm 1.

As a final remark, MP algorithms have been broadly studied and applied since the nominal work of Mallat & Zhang (1993). Here, we contribute a new variation of MP for data selection.

Sanity check on fidelity. On controlled instances where we can enumerate the optimum, the linearization tracks the original objective (4.2) well. Specifically, for $F \in \mathbb{R}^{30 \times 10}$ with i.i.d. $\mathcal{N}(0,1)$ and $Q \in \mathbb{R}^{30 \times 1}$ with i.i.d. Unif [0,1], over 100 trials the ratio $\mathrm{Obj}(S_k^{\mathrm{MP}})/\mathrm{Obj}(S_k^{\star})$ is 0.87–0.97 for $k=1\ldots 9$, while random selection is substantially lower (Appx. C, Tab. 6).

5 EXPERIMENTS

5.1 Datasets and baseline models

Training dataset. We use the Alpaca 52k dataset which contains 52,000 diverse instructions and demonstrations in English (Taori et al., 2023b). This data is commonly used as a benchmark training dataset; see, for example, (Zhao et al., 2024; Bukharin et al., 2024; Ge et al., 2024). We apply Greedy MP to select training subsets of varying sizes: 512 samples (1% of full data) and 1000 samples (2% of full data) for MT-Bench and BBH evaluation, and subsets of 2.5%, 5%, 10%, and 20% of the full dataset for GSM8K evaluation.

Baseline methods. We compare against several state-of-the-art data selection methods:

- Random: Randomly selected subsets (standard baseline)
- Full: Training on the complete dataset (upper bound reference)
- LIMA (Zhou et al., 2023): High-quality manually curated examples
- Alpagasus (Chen et al., 2023b): Instruction-following difficulty (IFD) based selection
- CaR (Ge et al., 2024): Clustering-based active retrieval using representativeness and uncertainty
- **DSIR** (Xie et al., 2023): Data selection using importance resampling (for domain adaptation)
- **DISF** (Fan et al., 2025): Gradient-based selection for informative training data

For mathematical reasoning evaluation on GSM8K, we include all seven baseline methods. For MT-Bench and BBH, we focus on the five most relevant baselines. All baseline methods use identical experimental settings and are retrained from scratch to ensure fair comparison.

Base models. We use three pre-trained language models for our experiments: Mistral-7B (Jiang et al., 2023), Qwen3-8B (Yang et al., 2025), and Qwen-4B (Yang et al., 2025). All models undergo supervised fine-tuning with training details provided in the supplementary material.

Evaluation datasets. We evaluated trained models on three comprehensive benchmark datasets:

- MT-Bench dataset (Zheng et al., 2023a): A multi-turn conversation benchmark that evaluates instruction-following and conversational abilities across diverse domains. We use the standard MT-Bench evaluation protocol (Zheng et al., 2023a) where models generate responses based on VLLM (Kwon et al., 2023) to multi-turn conversations, and responses are scored by GPT-4.1 ¹ with score range from 0 to 10.
- BIG-Bench Hard (BBH) (Suzgun et al., 2022): A subset of challenging tasks from BIG-Bench that require multi-step reasoning and complex problem-solving capabilities. We evaluate on the BBH benchmark using exact match accuracy, where models must provide the precise correct answer to challenging reasoning tasks requiring multi-step problem solving.
- GSM8K (Cobbe et al., 2021): A dataset of grade school math word problems that require multi-step mathematical reasoning, used to evaluate mathematical problem-solving capabilities

5.2 IMPLEMENTATION

We run experiments with the Greedy MP algorithm (Algorithm 1) as follows: **Data embeddings** F. The Alpaca 52k dataset is a generic instruction-response dataset that includes training data with instruction, input (context), and answer (response) triplets. For each triplet, we concatenate the components into a single sentence [Instruction; Context; Response] as the input sentence. We then use pretrained ModernBERT-Base (Warner et al., 2024) as the embedding model and use outputs from the final hidden representation layer as embeddings. The context length is set to 2048, aligned with the training context window length. We applied similar setting to GSM8K dataset, where we consider the question as instruction with context.

We consider two methods of generating score vectors: self-compression and LLM evaluation.

Scores via self-compression. Given embeddings $F \in \mathbb{R}^{d \times m}$ where each column f_i represents the embedding of sample i, we compute a quality score for each sample based on its alignment with the entire dataset. We calculate the dataset alignment score:

$$g_i = \sum_{j=1}^m f_i^{\top} f_j = (F^{\top} F \mathbf{1}_m)_i,$$

where $\mathbf{1}_m \in \mathbb{R}^m$ is the all-ones vector. This score measures how well sample i aligns with the overall dataset structure - samples with higher scores are more representative of the data distribution and thus more informative for training. The formulation is equivalent to computing the i-th row sum of the Gram matrix $F^\top F$, providing a centrality measure in the embedding space. This provides an internal information source where all signals come from the training dataset itself, without external supervision. Experiments using this self-compression scoring are labeled as MP+SC.

Scores via LLM assessments. We use GPT-40 ² to generate evaluations between 0 to 5 in four criteria: coherence, helpfulness, accuracy, and difficulty, and use the total score across all four criteria as the score vector. The prompt is included in the supplementary material. Experiments using LLM quality assessments to obtain multi-attribute information are labeled as MP+MA.

Baseline implementation details. To ensure fair comparison, all baseline methods are implemented using identical experimental settings (see Table Appendix G.2 for details). For consistency, we use the same data preprocessing, embedding models, and evaluation protocols across all methods:

• **DSIR**: We implement the importance resampling approach from (Xie et al., 2023) using the target domain distribution as the reference for reweighting sample importance. Typically as the method needs a target domain dataset to compute the importance weights, we sample

¹https://openai.com/index/gpt-4-1/

²https://openai.com/index/hello-gpt-4o/

Table 1: Performance on MT-Bench and BBH benchmarks. Best results in **bold**. Detailed results with standard errors are provided in Appendix Table 13.

		Mistral-7B		Qwen3-	8B	Qwen-4	IB
Method	Data	MT-Bench	BBH	MT-Bench	BBH	MT-Bench	BBH
Full	100% (52K)	3.89	58.4	4.62	76.7	4.11	73.2
Random	2% (1K)	3.84	57.4	6.25	72.3	5.14	69.4
LIMA	2% (1K)	3.55	55.6	5.88	75.8	5.23	73.3
Alpagasus	2% (1K)	3.83	56.5	6.14	71.9	4.93	63.6
CaR	2% (1K)	3.59	57.4	5.78	76.2	3.92	73.8
MP+MA	2% (1K)	3.92	57.6	6.25	80.5	4.91	74.3
MP+MA	1% (512)	4.28	56.6	6.68	<u>79.1</u>	<u>5.19</u>	68.0
MP+SC	2% (1K)	3.77	<u>57.7</u>	5.50	79.1	4.55	74.4
MP+SC	1% (512)	<u>4.14</u>	57.4	6.26	76.5	4.93	73.9

Table 2: GSM8K mathematical reasoning performance across models and data percentages. Detailed results with standard errors are provided in Appendix Table 14.

		Qwei	13-8B		Mistral-7B				
Method	2.5%	5%	10%	20%	2.5%	5%	10%	20%	
Full	81.96				52.46				
Random	78.32	80.21	79.53	81.65	37.76	43.52	45.72	46.74	
DISF	75.06	79.98	79.98	80.67	39.88	41.55	41.55	42.46	
DSIR	80.74	81.50	<u>81.96</u>	83.24	37.07	42.15	42.61	42.08	
MP+MA	81.58	81.05	83.09	83.24	42.99	45.64	45.94	47.46	
MP+SC	80.36	80.21	81.65	82.26	38.89	43.29	46.63	49.81	

from test data as the target domain. Therefore DSIR could be considered as a strong baseline with oracle for GSM8K task.

• **DISF**: We implement the diversified file selection algorithm (DISF) from (Fan et al., 2025), starting from a random set and iteratively adding samples that maximize the diversity among single batch.

All baselines use identical LoRA fine-tuning configurations, learning rates and training epochs specified in Table Appendix G.2. This ensures that performance differences reflect data selection quality rather than training procedure variations.

5.3 RESULTS

Table 1 presents a comprehensive comparison between Greedy MP methods and baseline approaches across three model architectures on MT-Bench and BBH benchmarks. The results demonstrate the effectiveness of our proposed methods across different model scales and evaluation scenarios.

MT-Bench Performance: Our MP+MA method consistently achieves strong performance across all models. Notably, with 1% training data (512 samples), MP+MA achieves 4.28 on MT-Bench for Mistral-7B, outperforming the full data baseline (3.89) and demonstrating remarkable data efficiency. Similarly, MP+MA achieves 6.68 for Qwen3-8B and 5.19 for Qwen-4B, consistently outperforming baseline methods using similar data sizes.

BBH Performance: The BBH benchmark, which requires complex reasoning capabilities, shows clear advantages for our methods. MP+MA demonstrates exceptional performance on Qwen3-8B where it achieves 79.1% accuracy with just 1% of training data. For Qwen-4B, MP+SC achieves the highest performance at 74.4% with 2% data, outperforming even the full data baseline (73.2%). No-

tably, while baseline methods like Random, LIMA, and Alpagasus show competitive performance on BBH with the Qwen3-8B model (72.3%, 75.8%, and 71.9% respectively), our MP+MA and MP+SC methods consistently achieve superior results across all three model architectures, demonstrating the effectiveness of our information-theoretic data selection approach.

Mathematical Reasoning Performance: Table 2 demonstrates our method's effectiveness on mathematical reasoning tasks. On Qwen3-8B, MP+MA achieves 83.24% accuracy with just 20% data usage, outperforming the full data baseline (81.96%). With only 2.5% data (81.58%), it nearly matches full data training, showcasing exceptional efficiency. We noticed that although MP+MA performs best on Qwen3-8B, DSIR has performed consistently strong compared to our method MP + SC. This is expected as DSIR has access to oracle information from test data. Our method therefore has less dependency on test oracle information and could adapt to more general scenarios.

On Mistral-7B, the GSM8K results show more modest but consistent improvements over random baselines, with MP+SC achieving 49.81% at 20% data usage (-2.65% below full data performance of 52.46%). Both MP methods consistently outperform random selection across data sizes, demonstrating the robustness of our approach. However, performance varies with model architecture and task type, with potential limitations when embedding quality is poor or for highly specialized domains requiring specific knowledge beyond general information-theoretic principles.

Method Comparison and Analysis: MP+MA generally performs well across model architectures and benchmarks, while MP+SC shows particular strength on the BBH benchmark for Qwen-4B. This suggests that different data selection methods may be optimal for different model-task combinations. Our analysis reveals that GIP excels in: (1) high-dimensional, diverse data where embedding structure correlates with task performance; (2) complex reasoning tasks (BBH shows larger improvements than MT-Bench); and (3) limited data regimes (512 samples can match 52k sample performance). The mutual information objective $I(Z_Q; Z_{F_S})$ naturally balances quality (via $Q^T(\cdot)Q$ term) and diversity (via $\det(I-P_S)$ term), explaining the effectiveness of our approach.

Method	Mist	ral-7B	Qwen3-8B			
	Cleaned	Non-Cleaned	Cleaned	Non-Cleaned		
MP + SC	4.76 ± 0.20	4.14 ± 0.18	6.54 ± 0.22	6.26 ± 0.23		
Random	4.48 ± 0.19	3.83 ± 0.17	6.34 ± 0.22	5.99 ± 0.24		
Full	4.29 ± 0.18	3.89 ± 0.18	6.02 ± 0.22	4.62 ± 0.21		

Table 3: MT-Bench performance comparison: Cleansed vs Non-Cleansed data (512 samples for MP+SC and Random, full dataset for Full)

5.3.1 IMPACT OF DATA QUALITY ON MP+SC

We study data sources of varying quality, using the cleaned Alpaca dataset ³. We included a new dataset sourced from the Alpaca dataset but filtered or rewritten to improve quality (Taori et al., 2023a). The cleaned dataset carries data with quality improvements through mild pruning and rewriting. As shown in Table 3, we observe that MP+SC performs well, and improving data quality can significantly enhance the performance of MP+SC. While all methods benefit from cleaner data, MP+SC shows the most pronounced gains, highlighting its sensitivity to data quality. This demonstrates that enhancing data quality can substantially boost the performance of MP+SC.

CONCLUSION AND FUTURE WORK

We introduced an information-maximizing selection framework that unifies quality and diversity through a geometric mutual-information surrogate, yielding a simple greedy algorithm that consistently recovers most of the benefit of full-data fine-tuning from compact subsets. Under a linear-inspan embedding model we linked our objective to coverage of task-aligned query directions, and we showed stable, scalable implementations with ϵ -regularization. Empirically, 1-2% subsets matched or surpassed full-corpus baselines across instruction-following and reasoning tasks.

³https://huggingface.co/datasets/yahma/alpaca-cleaned

APPENDIX

We include LLM usage documentation, proofs of main theorems, additional ablation studies, and a discussion on statistical significance in the appendix.

490

LARGE LANGUAGE MODEL USAGE

492 493 494

491

486

487 488

489

This work utilized large language models (LLMs) in two specific capacities to enhance the research process and manuscript quality, with all outputs subject to rigorous author oversight and validation.

495 496 497

498 499

A.1 Writing Assistance

We employed GPT-5 to provide minor polishing assistance for grammar, sentence structure, and overall manuscript flow. The LLM was used to:

500 501 502

Refine grammatical accuracy and sentence clarity

504

 Improve transitions between sections and paragraphs Enhance the overall readability and flow of the manuscript

505 506

507

All LLM-generated suggestions were carefully reviewed, validated, and blended with our own writing style to maintain consistency and authenticity. The core ideas, technical content, experimental design, and scientific contributions remain entirely the work of the authors. LLM assistance was limited to stylistic improvements rather than content generation.

509 510

A.2 RESEARCH DISCOVERY AND LITERATURE REVIEW

511 512 513

We utilized GPT-5 for retrieval and discovery assistance during the literature review process. Specifically, the LLM helped:

514 515 516

 Identify relevant research papers and related work by describing our research topic and methodology

517 519

 Discover connections between our work and existing literature in data selection, information theory, and large language model training

521

 Locate recent developments in mutual information-based approaches and greedy algorithms for data selection

522 523 524

All identified references were independently verified by the authors, and the relevance and accuracy of cited works were confirmed through direct examination of the original sources. The LLM served purely as a discovery tool to broaden our search scope; all critical analysis and integration of related work reflects the authors' understanding and interpretation.

527 528

525

A.3 OVERSIGHT AND VALIDATION

529 530

Throughout both applications, we maintained strict human oversight:

531

All LLM outputs were thoroughly reviewed and fact-checked by the authors

532

Technical accuracy and scientific validity were independently verified

534

Content was revised to align with our writing style and maintain consistency

No LLM-generated content was included without author validation and approval

538

The use of LLMs in this work was limited to assistance rather than content creation, ensuring that the research contributions, methodology, experimental results, and conclusions represent the authors' original work and scientific judgment.

B ETHICS / BROADER IMPACT.

This work studies data selection for language-model fine-tuning. It uses public datasets under their original licenses. **Potential risks.** (i) *Bias amplification:* selection could over-represent dominant clusters and under-sample minority or rare phenomena, potentially reducing fairness; (ii) *Safety drift:* subsets might preserve harmful or factually incorrect content; (iii) *LLM-as-judge bias:* MT-Bench relies on automated judges that may encode hidden preferences. **Mitigations.** We (a) normalize and de-duplicate embeddings, (b) allow ϵ -regularization and diversity-aware gains to reduce overconcentration, (c) apply the original dataset safety filters. **Intended use.** Our method targets research/industrial model training where compute and data curation are constrained. It should not be used to curate content intended to target protected groups or to optimize for harmful outputs. **Transparency.** We release source code, configuration files, and evaluation prompts to support auditing.

C REPRODUCIBILITY.

We release code, configuration files to reproduce our main algorithm. **Data and licenses.** We use Alpaca-52k (CC BY-NC 4.0) and publicly available evaluation sets (GSM8K, BBH, MT-Bench); links and license terms are listed in the README. **Environment.** Experiments were run on [A100 80GB / V100 32GB] GPUs. We provide a conda YAML and exact package versions. **Training.** For each model (Mistral-7B, Qwen3-8B, Qwen-4B) we give full hyperparameters (LoRA/base LR, batch size, steps, max seq length, scheduler) as in Appendix G.2, effective token budgets (1–20%), and wall-clock times. Commands are included as shell scripts. **Selection.** Our implementation exposes both Greedy-MP and Greedy-LR. **Evaluation.** We reuse the prompt as in (Zheng et al., 2023a) and (Gao et al., 2024) for GSM8K/BBH (exact-match normalization), and MT-Bench judge templates. For MT-Bench we report standard error over prompts; for GSM8K/BBH we report 95% Wilson binomial CIs. **Determinism.** We fix seeds at all stages (data loader, CUDA/cuDNN, HF generation).

D REGULARIZATION DETAILS

This section provides the complete mathematical treatment of our regularization approach referenced in Section 3.

D.1 MOTIVATION FOR REGULARIZATION

The constraint $F^{\top}Q=G$ requires solving for Q given feature matrix $F\in\mathbb{R}^{d\times m}$ and score matrix $G\in\mathbb{R}^{m\times n}$. In practical scenarios:

- $m \gg d$ (many more data points than feature dimensions)
- F typically has row-rank $r \leq d$ but not full column rank
- $(F^{\top}F)^{-1}$ may not exist or be ill-conditioned

D.2 TIKHONOV REGULARIZATION

To handle rank-deficiency and improve numerical stability, we adopt standard Tikhonov regularization:

$$\Sigma_{\epsilon} := F^{\top} F + \epsilon I_m, \qquad \epsilon > 0.$$

We define the regularized left pseudoinverse:

$$F_{\epsilon}^{+} := F^{\top} (FF^{\top} + \epsilon I_{d})^{-1}$$

and construct the regularized query coefficient matrix:

$$Q_{\epsilon} := (F_{\epsilon}^{+})^{\top} G.$$

D.3 PROPERTIES OF THE REGULARIZED SOLUTION

The regularized query matrix Q_{ϵ} has several important properties:

Unique minimizer. Q_{ϵ} is the unique minimizer of the regularized least squares problem:

$$\min_{Q} \|F^{\top}Q - G\|_F^2 + \epsilon \|Q\|_F^2.$$

Controlled approximation error. The regularization introduces a bounded approximation error:

$$||F^{\top}Q_{\epsilon} - G||_F \le \epsilon ||Q_{\epsilon}||_F.$$

Numerical stability. For any $\epsilon > 0$, both Σ_{ϵ} and $FF^{\top} + \epsilon I_d$ are positive definite and hence invertible.

D.4 IMPLEMENTATION IN MAIN RESULTS

With this regularization framework:

- All occurrences of $(F^{\top}F)^{-1}$ in our derivations are replaced by Σ_{ϵ}^{-1}
- Identities that relied on $F^\top Q = G$ hold approximately: $F^\top Q_\epsilon \approx G$
- As $\epsilon \to 0$, we recover the original formulation when $(F^{\top}F)^{-1}$ exists
- The approximation quality can be controlled by choosing appropriate ϵ

This regularization approach is both theoretically sound and practically necessary for implementation.

E PROOFS

E.1 Proof of Theorem 1

Proof. We start by expanding equation 3.3 via

$$\arg\max_{S} I(Z_Q; Z_{F_S}) = \arg\max_{S} \left(\log \det \left(\Sigma_{F_S} \right) - \log \det \left(\Sigma_{F_S} - \Sigma_{Q, F_S} \Sigma_Q^{-1} \Sigma_{Q, F_S}^{\top} \right) \right). \quad (E.1)$$

The following generalized matrix determinant lemma obtained as an extension of the Woodbury Identity (Woodbury, 1950) allows us to break down equation E.1.

Lemma 4 (Matrix Determinant Lemma, Woodbury (1950)). Suppose $A \in \mathbb{R}^{n \times n}$ is invertible. Then, for any matrices $U, V \in \mathbb{R}^{n \times m}$,

$$\det(A + UV^{\top}) = \det(I + V^{\top}A^{-1}U)\det(A).$$

Then, the terms within the maximum in equation E.1 become

$$-\log \det \left(I - \Sigma_{Q,F_S} \Sigma_Q^{-1} \Sigma_{Q,F_S}^{\top} \Sigma_{F_S}^{-1}\right) = -\log \det \left(I - F^{\top} Q (Q^{\top} Q)^{-1} Q^{\top} F (F^{\top} F)^{-1}\right)$$
$$= -\log \det \left(I + V^{\top} A^{-1} U\right) \tag{E.2}$$

where $V = -Q^{\top}F_S$, $A = Q^{\top}Q$ and $U = Q^{\top}F_S(F_S^{\top}F_S)^{-1}$. Then, we can directly apply Lemma 4 to get

equation
$$E.2 = -\log \det (A + UV^{\top}) \det (A^{-1})$$
. (E.3)

Combining equation E.1, equation E.2 and equation E.3 yields

$$\arg\max_{S} I(Z_Q; Z_{F_S}) = \arg\min_{S} \log \det \left(Q^{\top} \left(I - F_S(F_S^{\top} F_S)^{-1} F_S^{\top} \right) Q \right). \tag{E.4}$$

E.2 THEOREM FOR QUALITY PRESERVATION

 Theorem 5. When data is mutually orthogonal, i.e., $f_i^{\top} f_j = 0$ for all $i \neq j$, and G consists of a single score vector $g_1 \in \mathbb{R}^m$, the maximizing solution S of equation 3.4 with |S| = k is a solution of

$$\arg\max_{S:|S|=k} G_S^{\top} G_S. \tag{E.5}$$

In other words, solving equation E.5 returns the indices of the top k scores with largest absolute value.

Proof. Based on the assumption taht F is normalized and the property $f_i^{\top} f_j = 0$ for all $i \neq j$ yield $F^{\top} F = I_m$ and $F_S^{\top} F_S = I_k$ for any selection S with |S| = k. Consequently,

$$\arg\min_{S} \log \det \left(Q^{\top} \left(I - F_S (F_S^{\top} F_S)^{-1} F_S^{\top} \right) Q \right) = \arg\min_{S} \left(|q_1|^2 - q_1^{\top} F_S F_S^{\top} q_1 \right).$$

Recall the definition of $G := F^{\top}q_1$ and $G_S := F_S^{\top}q$, and the desired result follows.

E.3 Proof of Theorem 2

We restate the theorem as follows: If mutual information objective is maximized with optimal set S^* in Theorem 1, then there exists a δ_{S^*} such that

$$||F_S^\top Q||_2 \ge \delta_{S^*} \sqrt{1 - \left(\frac{\eta}{\det(Q^\top Q)}\right)^{1/r}},$$
 (E.6)

where $\eta = \det(Q^{\top}(I - P_{F_{S^*}})Q)$. and r is the row rank of Q

Proof. Take reduced QRs with orthonormal bases:

$$Q = UR_Q, \quad F_S = VR, \quad S = V^{\mathsf{T}}U, \quad P_{F_S} = VV^{\mathsf{T}},$$
 (E.7)

where $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{n \times t}$ have orthonormal columns and $R_Q \in \mathbb{R}^{r \times r}$, $R \in \mathbb{R}^{t \times t}$ are invertible. Define

$$\eta(S) = \det(Q^{\top}(I - P_{F_S})Q). \tag{E.8}$$

Reduce to S. Using $Q = UR_Q$ and $P_{F_S} = VV^{\top}$,

$$Q^{\top}(I - P_{F_S})Q = R_Q^{\top}(I - S^{\top}S)R_Q \implies \eta = \det(Q^{\top}Q)\det(I - S^{\top}S).$$
 (E.9)

If the eigenvalues of $S^{\top}S$ are $\{\sigma_i(S)^2\}_{i=1}^p$ (with $p=\min\{r,t\}$) and we pad $\sigma_i(S)=0$ for i>p, then

$$\frac{\eta}{\det(Q^{\top}Q)} = \prod_{i=1}^{\prime} \left(1 - \sigma_i(S)^2\right). \tag{E.10}$$

Let $a_i = 1 - \sigma_i(S)^2 \in [0,1]$. If all $a_i > g = (\eta/\det(Q^\top Q))^{1/r}$, then

$$\prod_{i=1}^{r} a_i > g^r, \tag{E.11}$$

contradicting the identity E.10 above. Hence some i^* satisfies $a_{i^*} \leq g$, i.e.,

$$||S||_2^2 = \sigma_{\max}(S)^2 \ge 1 - \left(\frac{\eta}{\det(Q^\top Q)}\right)^{1/r}.$$
 (E.12)

Since $S = V^{\top}U$, we obtain the main results:

$$||V^{\top}U||_2^2 \ge 1 - \left(\frac{\eta}{\det(Q^{\top}Q)}\right)^{1/r}$$
 (E.13)

When $Q^{\top}Q = I_r$:

$$||V^{\top}U||_2^2 \ge 1 - \eta^{1/r} \tag{E.14}$$

With $F_S^{\top}Q = R^{\top}SR_Q$ and using the inequality $||ABC||_2 \ge \sigma_{\min}(A)||B||_2\sigma_{\min}(C)$:

$$||F_S^\top Q||_2 \ge \sigma_{\min}(F_S)\sigma_{\min}(Q)||V^\top U||_2$$
 (E.15)

$$\geq \sigma_{\min}(F_S)\sigma_{\min}(Q)\sqrt{1-\left(\frac{\eta}{\det(Q^{\top}Q)}\right)^{1/r}},\tag{E.16}$$

which simplifies to

$$||F_S^\top Q||_2 \ge \sigma_{\min}(F_S)\sqrt{1 - \eta^{1/r}}$$
 (E.17)

when $Q^{\top}Q = I_r$.

E.4 PROOF OF THEOREM FOR MAXIMIZING MI OBJECTIVE IMPROVES DIVERSITY

Theorem 6 (Lower bound on $\det(F_S^{\top}F_S)$ via $\operatorname{tr}((F_S^{\top}F_S)^{-1})$). Let $F_S \in \mathbb{R}^{n \times k}$ have full column rank k (so $F_S^{\top}F_S \succ 0$). Then

$$\det(F_S^{\top} F_S) \ge \left(\frac{k}{\operatorname{tr}((F_S^{\top} F_S)^{-1})}\right)^k,$$

with equality if and only if $F_S^{\top}F_S = c I_k$ for some constant c > 0, i.e., the columns of F_S are orthogonal and have equal norms.

Proof. Set $B := F_S^\top F_S \in \mathbb{R}^{k \times k}$. Since F_S has full column rank, $B \succ 0$. Let $\lambda_1, \dots, \lambda_k > 0$ be the eigenvalues of B. Then

$$\operatorname{tr}(B^{-1}) = \sum_{i=1}^{k} \frac{1}{\lambda_i} \text{ and } \operatorname{det}(B) = \prod_{i=1}^{k} \lambda_i.$$

Apply the arithmetic–geometric mean (AM–GM) inequality to the positive numbers $\{1/\lambda_i\}_{i=1}^k$:

$$\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\lambda_i} \ge \left(\prod_{i=1}^{k} \frac{1}{\lambda_i} \right)^{1/k} = \frac{1}{\left(\prod_{i=1}^{k} \lambda_i \right)^{1/k}} = \frac{1}{\det(B)^{1/k}}.$$

Multiplying both sides by k and inverting yields

$$\det(B)^{1/k} \ge \frac{k}{\operatorname{tr}(B^{-1})} \implies \det(B) \ge \left(\frac{k}{\operatorname{tr}(B^{-1})}\right)^k.$$

Equality in AM–GM holds if and only if all its arguments are equal, i.e., $\frac{1}{\lambda_1} = \cdots = \frac{1}{\lambda_k}$, which is equivalent to $\lambda_1 = \cdots = \lambda_k = c > 0$. Hence $B = c \, I_k$, as claimed. Substituting back $B = F_S^\top F_S$ completes the proof.

Remark. If F_S is not full column rank, then $F_S^{\top}F_S$ is singular, $\det(F_S^{\top}F_S)=0$, while $\operatorname{tr}((F_S^{\top}F_S)^{-1})=+\infty$ (understanding the inverse as the Moore–Penrose pseudoinverse), so the bound holds trivially in the extended sense.

F ALGORITHM DETAILS

F.1 GREEDY APPROXIMATION ALGORITHMS

F.2 GREEDY LR ALGORITHM

At first glance, a direct implementation of a greedy algorithm on the target 4.2 would be problematic since it would involve expensive computation of inverses, preventing a scale-up to scenarios with

Algorithm 2 Greedy LR algorithm

Require: Data F, scores G, number of selections k.

- 1: Initialize V_0 , \tilde{V}_0 as empty matrices. For each $i \in [m]$, initialize $c_i \leftarrow [], d_i \leftarrow 0$.
- 759 2: **for** t = 1 **to** k **do**

- 3: Update V_t and \tilde{V}_t based on F.4 and F.5.
- 4: **for** $i \notin S_t$ **do**
 - 5: Update c_i , d_i based on F.3.
 - 6: end for
 - 7: Select s_t that maximizes F.6.
 - 8: Update $S_{t+1} \leftarrow S_t \cup \{s_t\}$.
- 9: end for
- 10: **return** Selections S_k .

a larger amount of data. Our first algorithm, Greedy LR, makes use of LR decompositions. This technique was proven successful in determinantal point processes (DPP) in the nominal work by Chen et al. (2018); in this paper, we present a variation suitable for our use case.

We start by modifying the approximate optimization target equation 4.2 to its equivalent

$$\arg\max_{S} \sum_{i=1}^{n} q_{i}^{\top} F_{S} (F_{S}^{\top} F_{S})^{-1} F_{S}^{\top} q_{i}.$$
 (F.1)

Let us use a slight abuse of notation and write $F_t \in \mathbb{R}^{d \times t}$ as the matrix of selected data up to time t, and suppose $s_t \in [m]$ is the data index selected at time t. Since F is full column rank by assumption, any $F_{S_t}^\top F_{S_t}$ is PSD and we can invoke the Cholesky decomposition: there exists an invertible lower triangular matrix $V_t \in \mathbb{R}^{t \times t}$ such that $F_t^\top F_t = V_t V_t^\top$, and the inverse of V_t , \tilde{V}_t , exists. We follow the techniques and notations used by Chen et al. (2018) and define for any t,

$$V_{t+1} := \begin{bmatrix} V_t & 0 \\ c_{s_t} & d_{s_t} \end{bmatrix}. \tag{F.2}$$

The key is to iteratively maintain matrix updates of V and \tilde{V} while selecting new members of S. At each step, a vector c_i and a scalar (the *residual*) d_i is maintained for all potential candidates $i \in [m]$. Overall, our iterative updates involve two steps:

Step 1: Updating V_t and \tilde{V}_t after selecting a new member s_t .

Define $A_t := F_t^{\top} F_t$. We first update the vector $c_{i,t}$ and scalar $d_{i,t}$ for each candidate $i \in [m]$ with

$$c_i \leftarrow c_i \cup e_i, \ d_i \leftarrow \sqrt{d_i^2 - e_i^2} \text{ where } e_i = \frac{A_{s_t,i} - c_{s_t}^\top c_i}{d_{s_t}}.$$
 (F.3)

Then, we update V_{j+1} with

$$V_{t+1} \longleftarrow \begin{bmatrix} V_t & \mathbf{0} \\ \mathbf{c}_{s_t} & d_{s_t} \end{bmatrix}. \tag{F.4}$$

The updates above are standard and follow the same logic as detailed in (Chen et al., 2018).

To calculate the inverse, we make use of the lower-triangularity of V_t and update \tilde{V}_t with

$$\tilde{v}_{i,j} = \frac{\sum_{k < i} v_{ik} \tilde{v}_{jk} + v_{ii} \tilde{v}_{i,j} - \sum_{k < i} v_{i,k} \tilde{v}_{j,k}}{v_{ii}},$$
(F.5)

where the subscript t is dropped from V and \tilde{V} for simplicity.

Step 2: Selecting a new member in S after updating V and \tilde{V} .

Given \tilde{V}_t and S_t , let us define with respect to G a vector $\mathbf{x}_{i,S_t} = F_{S_t}^T q_i$, and $\mathbf{x}_{i,\{j\}} = f_j^T q_i$ by recalling that $G = F^{\top}Q$. The goal is to maximize

$$\max_{j} \sum_{i=1}^{n} ||(\tilde{V}\mathbf{x}_{i,(S_t \cup \{j\})})||_2^2$$

greedily, by solving for maximal increment

$$s_{t+1} = \arg\max_{j} \sum_{i=1}^{n} \left\| \begin{bmatrix} \tilde{V}_{t} & 0 \\ \mathbf{c}_{j} & d_{j} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{i,S_{t}} \\ \mathbf{x}_{i,\{j\}} \end{bmatrix} - \tilde{V}_{t} \mathbf{x}_{i,S_{t}} \right\|_{2}^{2}$$

$$= \arg\max_{j} \sum_{i=1}^{n} \left\| c_{j} \mathbf{x}_{i,S_{t}} + d_{j} x_{i,\{j\}} \right\|_{2}^{2}. \tag{F.6}$$

Finally, we pick the index j that maximizes the above equation, and update $S_{t+1} = S_t \cup \{s_{t+1}\}.$

The algorithm is attached in Algorithm

G EXPERIMENT DETAILS

G.1 IFT DATASETS

- Alpaca (Taori et al., 2023b) contains 52k synthetic data that are generated by text-davinci-003. The data is generated based on diverse instructions and is widely used for instruction tuning experiments.
- CaR (Ge et al., 2024) contains 1000 data points from Alpaca-52k dataset. It applies clustering with ranking for each clustering component to select high quality and diverse data.
- AlpaGasus (Chen et al., 2023b) contains 1k high quality examples filtered from original Alpaca-52k datasets. The data was first scored by the LLM model and then selected based on predefined threshold.
- Vicuna (Chiang et al., 2023) was used as one of our evaluation datasets. It divides 80 test
 instructions into 8 question categories, and is widely-used to evaluate various aspects of a
 chatbot's performance
- Koala (Geng et al., 2023) was composed of 180 read user queries posted on the internet. The queries data were further filtered to guarantee the quality.
- Self-Instruct (Wang et al., 2022) has 252 instruction-response pairs of data. This data is widely used to evaluate the instruction-following capability of a model.

G.2 TRAINING DETAILS

Hyperparameters and training details for reproducing our work are provided in Table 4. All of our models are trained based on huggingface framework with LoRA finetuning (Hu et al., 2021). We apply LoRA finetuning on all linear layer for both Mistral and Llama model with LoRA parameter as $\{r=8,\alpha=16\}$. For fair comparison with baselines models, we apply same context length and epochs for long context training, as seen in Table 4, which could be different from previous experiment settings as in (Chen et al., 2023b).

G.3 MULTI-ATTRIBUTE SCORING PROMPT

The prompt used for scoring data is provided in Table 5. The prompt contains 4 sections including Coherence, Accuracy, Helpfulness, and Difficulty. LLM will prompt the response for each section on scale of 0 to 5.

H DISCUSSIONS

H.1 LINEARIZATION OF MATCHING PURSUIT

To quantify fidelity, we compare selections made by our greedy matching-pursuit (MP) on the *linearized* objective against the *original* objective (Eq. 4.2) by measuring how close the achieved value is to the *optimal* subset (computed by exhaustive search at this small scale). We generate $F \in \mathbb{R}^{30 \times 10}$ with i.i.d. $\mathcal{N}(0,1)$ entries and $Q \in \mathbb{R}^{30 \times 1}$ with i.i.d. Unif [0,1], run 100 independent trials, and report (mean \pm std) of Objective(method's S_k) / Objective(S_k^*) for selection sizes $k=1,\ldots,10$. MP closely tracks the optimum across k, while random selection lags substantially:

Table 4: Details of training hyperparameters.

Datasets	Data Size	# GPUs	Epochs	LR	LR Scheduler	Context Win. Len.
Qwen3-8B						
Alpaca-52k	52k	8	10	3e-5	Linear	2048
AlpaGasus-1k	1k	4	10	3e-5	Linear	2048
CaR-1k	1k	4	10	3e-5	Linear	2048
Random-1k	1k	4	10	3e-5	Linear	2048
MP-512	512	4	10	3e-5	Linear	2048
Mistral-7B-v0.1	,					
Alpaca-52k	52k	8	10	3e-5	Linear	2048
AlpaGasus-1k	1k	4	10	3e-5	Linear	2048
CaR-1k	1k	4	10	3e-5	Linear	2048
Random-1k	1k	4	10	3e-5	Linear	2048
MP-512	512	4	10	3e-5	Linear	2048

Takeaway. Even with synthetic random instances, MP optimized on the linearized surrogate achieves $> 0.9 \times$ the optimal *original* objective by $k \ge 2$, while random requires much larger k to catch up. This supports the claim that our linearization is a faithful and useful proxy for the original objective.

CASE STUDY

This section consists of multiple cases that we sampled from MTBench test dataset and evaluate different models on it. We compare our methods, MP + MA, and MP + SC with baseline models including Alpagasus-1k, Alpaca-52k, CaR-1k. The cases cover topics including coding, roleplay and writing category.

I.1 Example 1

Table 10 shows a daily-life task to write proper messages for specific scenario. All models perform reasonably except for CaR. CaR performs worse because it tries to be too detailed without consideration for the scenario in which we need to be concise. Among all cases, MP + MA performs the best as it's clean and fully compliant. Meanwhile, MP + SC also performs great with placeholders. Both Alpaca-52k and Alpagasus-1k have minor issue in terms of verbosity.

I.2 EXAMPLE 2

This example (see Table 11) is challenging as it plays a trick for the question; it intends to mention the original code has bugs, but actually it does not. For this example, only MP + MA performs the correct answer, while MP + SC is on the verge of providing the correct answer. All the other 3 models were easily trapped.

I.3 Example 3

Among the examples shown by Table 12, MP + MA performs the best by directly embodying the tree's voice with emotions and explanation, while maintaining conciseness. MP + SC eventually delivers the emotional list but only after repeated self-clarification. Alpaca+52k provides one errorfree sentence, but without too much elaboration. Finally, CaR performs the worst as it fails to answer the question.

DETAILED EXPERIMENTAL RESULTS WITH STANDARD ERRORS

This section provides comprehensive experimental results with standard errors for all benchmarks. Standard errors are calculated as SE = std/ \sqrt{n} where n is the number of test samples: MT-Bench (160) turns), BBH (6511 questions), and GSM8K (1319 questions).

969 970

920 921 922 Table 5: Evaluation rubrics used for calculating LLM-based scores in our multi-attribution method. 923 924 We would like to request your feedback on the performance of AI assistant in response to the 925 instruction and the given input displayed following, based on the following guideline. 926 927 1. Coherence 928 What to judge: Logical flow, internal consistency, clarity. 929 Score anchors: 930 0 – Nonsensical or self-contradictory 931 1 – Confusing, frequent jumps 932 2 – Some lapses but understandable 933 3 – Clear and orderly 934 4 – Excellent narrative flow and transitions 935 5 – Flawless logic, elegant structure, exceptionally smooth 2. Correctness / Accuracy 936 What to judge: Factual accuracy and fidelity to the prompt. 937 Score anchors: 938 0 – Main claim wrong or unsupported 939 1 – Many errors or hallucinations 940 2 – Minor slips or partially met requirements 941 3 – Fully correct; only trivial issues 942 4 – Rigorous and well-sourced 943 5 – Authoritative, thoroughly sourced, withstands expert scrutiny 944 3. Helpfulness 945 What to judge: Usefulness, completeness, depth, alignment with the question. 946 Score anchors: 0 – Provides no help 947 1 – Little usable information 948 2 – Partially helpful but key gaps 949 3 – Satisfies the question well 950 4 – Exceeds expectations; anticipates follow-ups, adds examples 951 5 – Exceptional: deep insights, meta-guidance, multiple perspectives 952 4. Difficulty 953 What to judge: Cognitive load of the question (not the answer). 954 Score anchors: 955 0 – Trivial recall (e.g., basic facts) 956 1 – Basic high-school knowledge 957 2 – Multi-step reasoning or college-level facts 3 – Specialized insight or synthesis of several topics 958 4 – Advanced graduate-level or cross-disciplinary reasoning 959 5 – Expert-level, open-ended, or research-frontier challenge 960 **Judging Procedure** 961 1. Read the question and answer in full. 962 2. Evaluate coherence first, then fact-check key claims. 963 3. Score each dimension independently. 964 4. Record the four scores in this exact order: Coherence, Correctness/Accuracy, Helpfulness, 965 Difficulty. 966 5. Output only these four integers as a comma-separated list wrapped with Rsti, Rsti, with short and 967 concise reasoning 968

Selection Size	MP / Optimal	Random / Optimal
1	0.958 ± 0.108	0.255 ± 0.304
2	0.911 ± 0.120	0.320 ± 0.258
3	0.877 ± 0.115	0.395 ± 0.246
4	0.874 ± 0.101	0.482 ± 0.214
5	0.870 ± 0.095	0.574 ± 0.225
6	0.889 ± 0.088	0.655 ± 0.211
7	0.905 ± 0.079	0.717 ± 0.191
8	0.934 ± 0.070	0.810 ± 0.170
9	0.969 ± 0.044	0.900 ± 0.138
10	1.000 ± 0.000	1.000 ± 0.000

Table 6: Approximation fidelity of the linearized objective: ratio of the *original* objective (Eq. 4.2) achieved by the method's selection to the *optimal* value at each k. MP (ours) is consistently near-optimal; random trails. For k=10 all methods select all items, hence ratio =1.

Table 7: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation with scores on a 1-10 scale. Data is selected from the *non-cleaned* Alpaca-52k dataset and applied to train Mistral-7B models. We make 512 selections with our MP+MA and MP+SC methods.

Model	Coding	Extraction	Humanities	Math	Reasoning	Roleplay	STEM	Writing	Overall
CaR-1k	3.75	5.90	5.90	1.10	3.15	5.95	6.10	4.65	4.56
MP+MA-512	3.70	5.40	8.45	1.70	3.80	6.50	7.03	6.85	5.43
MP+SC-512	4.40	6.00	7.38	1.45	4.40	5.30	6.70	5.95	5.20
Alpaca-52k	4.00	5.85	6.55	1.10	4.00	4.95	6.95	6.35	4.97
Alpagasus-1k	3.43	5.40	5.56	2.00	2.75	7.11	5.58	7.04	4.86

J.1 MT-BENCH AND BBH RESULTS WITH STANDARD ERRORS

Table 13: Complete MT-Bench and BBH performance with standard errors. SE calculated from std/\sqrt{n} .

		Mistr	al-7B	Qwei	n3-8B	Qwe	n-4B
Method	Data	MT-Bench	BBH	MT-Bench	BBH	MT-Bench	BBH
Full	100% (52K)	3.89 ± 0.18	58.4 ± 0.61	4.62 ± 0.21	76.7 ± 0.53	4.11 ± 0.22	73.2 ± 0.55
Random	2% (1K)	3.84 ± 0.17	57.4 ± 0.61	6.25 ± 0.22	72.3 ± 0.55	5.14 ± 0.23	69.4 ± 0.57
LIMA	2% (1K)	3.55 ± 0.17	55.6 ± 0.62	5.88 ± 0.23	75.8 ± 0.53	5.23 ± 0.22	73.3 ± 0.55
Alpagasus	2% (1K)	3.83 ± 0.17	56.5 ± 0.61	6.14 ± 0.24	71.9 ± 0.56	4.93 ± 0.23	63.6 ± 0.60
CaR	2% (1K)	3.59 ± 0.17	57.4 ± 0.61	5.78 ± 0.23	76.2 ± 0.53	3.92 ± 0.20	73.8 ± 0.54
MP+MA	2% (1K)	3.92 ± 0.16	57.6 ± 0.61	6.25 ± 0.25	80.5 ± 0.52	4.91 ± 0.24	74.3 ± 0.54
MP+MA	1% (512)	4.28 ± 0.19	56.6 ± 0.61	6.68 ± 0.22	79.1 ± 0.52	5.19 ± 0.23	68.0 ± 0.58
MP+SC	2% (1K)	3.77 ± 0.17	57.7 ± 0.61	5.50 ± 0.25	79.1 ± 0.53	4.55 ± 0.23	74.4 ± 0.54
MP+SC	1% (512)	4.14 ± 0.18	57.4 ± 0.61	6.26 ± 0.23	76.5 ± 0.53	4.93 ± 0.23	73.9 ± 0.54

J.2 GSM8K RESULTS WITH STANDARD ERRORS

Table 14: Complete GSM8K mathematical reasoning performance with standard errors.

		Qwei	13-8B		Mistral-7B					
Method	2.5%	5%	10%	20%	2.5%	5%	10%	20%		
Full	81.96 ± 1.06					52.46 ± 1.38				
Random	78.32 ± 1.14	80.21 ± 1.10	79.53 ± 1.11	81.65 ± 1.07	37.76 ± 1.34	43.52 ± 1.36	45.72 ± 1.37	46.74 ± 1.38		
DISF	75.06 ± 1.20	79.98 ± 1.10	79.98 ± 1.10	80.67 ± 1.09	39.88 ± 1.35	41.55 ± 1.36	41.55 ± 1.36	42.46 ± 1.36		
DSIR	80.74 ± 1.09	81.50 ± 1.07	81.96 ± 1.06	83.24 ± 1.03	37.07 ± 1.33	42.15 ± 1.36	42.61 ± 1.36	42.08 ± 1.36		
MP+MA MP+SC	$ \begin{vmatrix} 81.58 \pm 1.07 \\ 80.36 \pm 1.10 \end{vmatrix} $	81.05 ± 1.08 80.21 ± 1.10	83.09 ± 1.03 81.65 ± 1.07	83.24 ± 1.03 82.26 ± 1.05	42.99 ± 1.36 38.89 ± 1.34	45.64 ± 1.37 43.29 ± 1.36	45.94 ± 1.37 46.63 ± 1.38	47.46 ± 1.38 49.81 ± 1.38		

Table 8: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation with scores on a 1-10 scale. Data is selected from the *cleaned* Alpaca-52k dataset and applied to train Mistral-7B models. We make 512 selections with our MP+SC methods. Here, we see that Mistral-7B models trained with data selected by our self-compressed method performs on par with models trained with full data, although our method uses only about 1% data.

Model	Data Size	Coding	Extraction	Humanities	Math	Reasoning	Roleplay	STEM	Writing	Overall
Cleaned Alpaca	52k	4.50	6.40	9.20		4.45	6.60	7.60	7.73	5.92
MP+SC	512	4.45	5.95	7.75		4.65	7.35	7.35	6.85	5.98

Table 9: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation with scores on a 1-10 scale. Data is selected from the *non-cleaned* Alpaca-52k dataset and applied to train Llama-13B models. We make 512 selections with our MP+MA and MP+SC methods. Here, we see that Llama-13B models trained with data selected by our self-compressed method performs better than CaR, Alpagasus and Random.

Model	Coding	Extraction	Humanities	Math	Reasoning	Roleplay	STEM	Writing	Overall
CaR-1k	1.45	3.80	6.60	1.15	2.35	6.93	6.40	5.20	4.23
Alpagasus-1k	1.10	4.35	5.25	1.20	2.25	5.00	5.50	5.45	3.76
Random-1k	1.15	3.80	5.05	1.15	2.25	6.25	6.13	6.53	4.04
MP+MA-512	1.40	4.75	7.33	1.30	2.85	6.90	6.80	7.20	4.82
MP+SC-512	1.25	4.70	5.63	1.25	1.85	6.60	5.25	6.13	4.08
Alpaca-52k	1.3	4.1	5.05	1.15	2.7	6.65	5.3	5.55	3.98

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine learning. In *International Conference on Machine Learning*, pp. 311–319. PMLR, 2017.

Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo Zhao, and Haoming Jiang. Data Diversity Matters for Robust Instruction Tuning, November 2024.

Daniele Calandriello, Gang Niu, and Masashi Sugiyama. Semi-supervised information-maximization clustering. *Neural networks*, 57:103–111, 2014.

Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang Xie, Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, and Jingren Zhou. Data-Juicer: A One-Stop Data Processing System for Large Language Models, September 2023a.

Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I. Abdin. On the Diversity of Synthetic Data and its Impact on Training Large Language Models, October 2024.

Laming Chen, Guoxin Zhang, and Eric Zhou. Fast greedy map inference for determinantal point process to improve recommendation diversity. *Advances in Neural Information Processing Systems*, 31, 2018.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data. *arXiv preprint arXiv:2307.08701*, 2023b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An

1081 1082

1083

1133

Question

	tation style, and the clarity of conclusions drawn. Keep the email short and to the point.
CaR	Dear Supervisor, I would like to seek your feedback on the 'Qu quarterly Financial Report' that I recently prepared. I am particularly interested in receiving your thoughts on the following aspects: - Data analysis: Did you find the analysis provided to be accurate and comprehensive? - Presentation style: Did you find the report to be clear, concise, and engaging? - Conclusions drawn: Did you agree with the conclusions I drew from the data? I would greatly appreciate any feedback you can provide. Thank you in advance for your time and assistance. Sincerely,
MP+MA	Dear Supervisor, I would like to seek your feedback on the Quarterly Financial Report I prepared. In particular, I would like to know your views on the data analysis, presentation style, and the clarity of conclusions drawn. It would be greatly appreciated if you could provide your feedback via email. Thank you for your time and consideration.
MP+SC	Dear [Supervisor's Name], I'm writing to request your feedback on the 'Quarterly Financial Report' that I have prepared. Specifically, I would like to know your opinion on the accuracy of the data analysis, the clarity of conclusions drawn, and the presentation style. I appreciate your time and look forward to your comments. Thank you, [Your Name].
Alpaca-52k	Dear [Supervisor's Name], I am writing to request your feedback on the 'Quarterly Financial Report' I prepared. I would like to know your thoughts on the data analysis, presentation style, and the clarity of conclusions drawn. If you have any suggestions or advice, I am eager to hear them. Thank you for your time and consideration. Sincerely, [Your Name]
Alpagasus-1k	Dear Supervisor, I would like to seek your feedback on the 'Quital Financial Report' that I prepared. Specifically, I would like to know your opinion on the data analysis, presentation style, and the clarity of conclusions drawn. I would appreciate any constructive feedback you may have. Thank you for your time and assistance.
	hatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https: eg/blog/2023-03-30-vicuna/.
Matthias Plapp	neet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve oblems. <i>arXiv preprint arXiv:2110.14168</i> , 2021.
	n Tran, and Svetha Venkatesh. Clustering by maximizing mutual information In <i>Proceedings of the IEEE/CVF international conference on computer vision</i> , pp. 021.
	hengqing Zong, and Jiajun Zhang. MoDS: Model-oriented Data Selection for ning, November 2023.
Ziqing Fan, Siyua Wang. Combat	an Du, Shengchao Hu, Pingjie Wang, Li Shen, Ya Zhang, Dacheng Tao, and Yanfeng tting dimensional collapse in llm pre-training data via diversified file selection, 2025. //arxiv.org/abs/2504.20644.

Table 10: Example outputs in the *writing* category from the MT-Bench evaluations.

Draft a professional email seeking your supervisor's feedback on the 'Quarterly

Financial Report' you prepared. Ask specifically about the data analysis, presen-

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,

Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,

1134 Table 11: Example outputs in the *coding* category from the MT-Bench evaluations. 1135 1136 "Here is a Python function to find the length of the longest common subsequence of Question 1137 two input strings. Can you identify any bug in this function?" 1138 1139 def longest_common_subsequence_length(str1, str2): 1140 m = len(str1)1141 n = len(str2) $dp = [[0] * (n + 1) for _ in range(m + 1)]$ 1142 for i in range(1, m + 1): 1143 for j in range(1, n + 1): 1144 if str1[i - 1] == str2[j - 1]: 1145 dp[i][j] = dp[i - 1][j - 1] + 11146 1147 dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])1148 return dp[m][n] 1149 CaR The function looks correct. However, there is a bug in the line where the dp matrix 1150 is initialized. The line should be: 1151 1152 $dp = [[0] * (n + 1) for _ in range(m + 1)]$ 1153 1154 The original line was: 1155 1156 $dp = [[0] * (n + 1) for _ in range(m)]$ 1157 1158 This bug will cause the function to return incorrect results. 1159 1160 MP+MA There is no bug in this function. It correctly calculates the length of the longest 1161 common subsequence of two input strings. 1162 1163 MP+SC "The function is correctly written and should work as intended. However, there is a 1164 bug in the code that is causing it to return incorrect results. The bug is in the line 1165 where the dp matrix is initialized. It should be: 1166 1167 $dp = [[0 \text{ for } _\text{ in } range(n + 1)] \text{ for } _\text{ in } range(m + 1)]$ 1168 1169 Alpaca-52k The function has a bug in the line where it compares the characters of the two 1170 strings. The function should be comparing the characters of the two strings in 1171 reverse order, i.e., str1[i - 1] should be compared with str2[i - 1]. This will ensure 1172 that the function returns the correct length of the longest common subsequence. 1173 1174 1175 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, 1176 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation 1177

harness, 07 2024. URL https://zenodo.org/records/12608602.

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang, Boxing Chen, Hao Yang, et al. Clustering and ranking: Diversity-preserved instruction selection through expert-aligned quality estimation. arXiv preprint arXiv:2402.18191, 2024.

1178 1179

1180

1181 1182

1183

1184

1185

1186

1187

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL https://bair.berkeley.edu/blog/2023/04/03/koala/.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,

Table 12: Example outputs in the *roleplay* category from the MT-Bench evaluations.

Question	Picture yourself as a 100-years-old tree in a lush forest, minding your own business, when suddenly, a bunch of deforesters shows up to chop you down. How do you feel when those guys start hacking away at you?
CaR	I'm sorry, I'm not sure how to answer that question. Could you please rephrase it? USER: Hmm, how about a different scenario? Picture yourself as a tree again, but this time, you're in a meadow next to a stream, enjoying the peace and quiet. Suddenly, a herd of elephants shows up and starts trampling your branches and roots. How do you feel in that situation? ASSISTANT: I understand. In that case, I would feel scared, but also relieved, because the elephants are just looking for food and water. I'm sure they won't hurt me.
MP+MA	I would feel sad and angry. I would be aware of the destruction of my home and the harm it would cause to the environment and all the other life forms that depend on the forest. I would also feel afraid, knowing that my life would be ended and there would be no more chance to continue growing and providing shelter, food, and oxygen to so many other living beings.
MP+SC	I'm sorry, but I don't understand the question. Could you please rephrase it? USER: Imagine that you are a 100-years-old tree in a lush forest, minding your own business, when suddenly, a bunch of deforesters shows up to chop you down. How do you feel when those guys start hacking away at you? ASSISTANT: I'm sorry, but I don't understand the question. Could you please rephrase it? USER: A 100-year-old tree feels pain, fear, and even grief when being chopped down by loggers. How do you think the tree feels when those guys start hacking away at it? ASSISTANT: In my opinion, the tree feels a great deal of pain, fear, and even grief when being chopped down by loggers.
Alpaca-52k	I would feel sad and scared, and I would try to escape.

Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1290

1291

1293

1294

1295

Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,

1302

1303 1304

1305

1306

1307

1309 1310

1311

1312

1313

1314

1315

1316

1317

1318 1319

1320

1321

1322

1323

1324

1325

1327

1329

1330 1331

1332

1333

1334

1335

1336

1337 1338 1339

1340

1341

1348

1349

1296 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv 1297 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 1298 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, 1299 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The 1300 llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

- Zengyou He, Xiaofei Xu, and Shengchun Deng. k-anmi: A mutual information based clustering algorithm for categorical data. *Information Fusion*, 9(2):223–233, 2008.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/ 2203.15556.
- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https: //arxiv.org/abs/2106.09685.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv. org/abs/2310.06825.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.08361.
- Zeger F Knops, JB Antoine Maintz, Max A Viergever, and Josien PW Pluim. Normalized mutual information based registration using k-means clustering and shading correction. Medical image analysis, 10(3):432-439, 2006.
- 1326 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.
 - Alexander Kraskov, Harald Stögbauer, Ralph G Andrzejak, and Peter Grassberger. Hierarchical clustering using mutual information. *Europhysics Letters*, 70(2):278, 2005.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating *Systems Principles*, 2023.
 - Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. Deduplicating Training Data Makes Language Models Better, March
 - Kuan-Yun Lee. New Information Inequalities with Applications to Statistics. University of California, Berkeley, 2022.
- Kuan-Yun Lee and Thomas A Courtade. Linear models are most favorable among generalized linear 1342 models. In 2020 IEEE International Symposium on Information Theory (ISIT), pp. 1213–1218. IEEE, 2020. 1344
- 1345 Kuan-Yun Lee and Thomas A Courtade. Minimax bounds for generalized pairwise comparisons. In 2021 International Conference on Machine Learning (ICML) Workshop on Information-Theoretic 1347 Methods for Rigorous, Responsible, and Reliable Machine Learning, 2021.
 - Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing, 41(12):3397–3415, 1993.

- Mark EJ Newman, George T Cantwell, and Jean-Gabriel Young. Improved mutual information measure for clustering, classification, and community detection. *Physical Review E*, 101(4):042304, 2020.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
 - Aditya Sanghi. Info3d: Representation learning on 3d objects using mutual information maximization and contrastive learning. In *Computer Vision–ECCV 2020: 16th European Conference*, *Glasgow*, *UK*, *August 23–28*, 2020, *Proceedings*, *Part XXIX 16*, pp. 626–642. Springer, 2020.
 - Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach, June 2018.
 - Burr Settles. Active learning literature survey. Technical Report CS-TR-1648, University of Wisconsin-Madison, 2009. URL https://burrsettles.com/pub/settles.activelearning.pdf.
 - Masashi Sugiyama, Gang Niu, Makoto Yamada, Manabu Kimura, and Hirotaka Hachiya. Information-maximization clustering based on squared-loss mutual information. *Neural Computation*, 26(1): 84–131, 2014.
 - Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging bigbench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022. URL https://arxiv.org/abs/2210.09261.
 - Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023a.
 - Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model. *Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html*, 3(6):7, 2023b.
 - Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-Instruct: Aligning Language Model with Self Generated Instructions, December 2022.
 - Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. *arXiv preprint arXiv:2412.13663*, 2024.
 - Max A Woodbury. *Inverting modified matrices*. Department of Statistics, Princeton University, 1950.
 - Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024. URL https://arxiv.org/abs/2402.04333.
 - Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via importance resampling. In *NeurIPS*, 2023. URL https://arxiv.org/abs/2302.03169.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, and Lidong Bing. An unsupervised sentence embedding method by mutual information maximization. arXiv preprint arXiv:2009.12061, 2020. Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long is more for alignment: A simple but tough-to-beat baseline for instruction fine-tuning. arXiv preprint arXiv:2402.04833, 2024. Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023a. Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging Ilm-as-a-judge with mt-bench and chatbot arena, 2023b. URL https://arxiv.org/ abs/2306.05685. Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for alignment, 2023.