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ABSTRACT

We present Greedy Information Projection (GIP), a principled framework for
choosing training examples for large language model fine-tuning. GIP casts
selection as maximizing mutual information between a compact subset of examples
and task-specific query signals, which may originate from LLM quality judgments,
metadata, or other sources. We formulate a mutual information framework from
data and query embeddings, the objective has a closed form and naturally balances
quality and diversity. We show that optimizing this objective is equivalent to
maximizing the projection of the query embedding matrix onto the span of the
selected data, yielding a geometric explanation for the co-emergence of quality
and diversity. Building on this view, we develop a fast greedy matching-pursuit
procedure with efficient projection-based updates. On instruction-following and
mathematical reasoning datasets, GIP selects compact subsets that match full-data
fine-tuning while using only a small fraction of examples and compute, unifying
quality-aware and diversity-aware selection for efficient fine-tuning.

1 INTRODUCTION

A central question in the discussion of large language model (LLM) training is how one should select
data. With recent developments of large-scale pretrained language models such as GPT-4 (Achiam
et al., 2023), Qwen (Qwen et al., 2025) and Llama (Grattafiori et al., 2024), the community has
witnessed models achieving remarkable performance across a broad spectrum of natural-language
tasks. Typically, these models train on large amounts of data that scale with the model size, commonly
known as the scaling law. Empirical scaling laws of LLM reveal that model capability grows
predictably with (i) parameter count, (ii) compute, and (iii) training data volume (Hoffmann et al.,
2022; Kaplan et al., 2020). Yet practitioners increasingly observe a second, subtler regime: once data
quantity is sufficient, data quality becomes the primary factor limiting further gains. Consequently, a
fundamental challenge in both pre-training and instruction tuning is to select a subset of samples that
maximizes downstream performance while respecting resource constraints.

Earlier work addressed the problem through diverse dataset construction (Wang et al., 2022; Taori
et al., 2023b) and ad-hoc filtering heuristics such as perplexity thresholds, deduplication, or clustering
(Bukharin et al., 2024; Zhao et al., 2024; Chen et al., 2023b; Ge et al., 2024). While effective, these
heuristics offer little theoretical guidance on why a particular example is valuable, and they do not
unify quality and diversity under a single objective.

This work. We present a principled information-theoretic framework for data selection built on a
mutual information (MI) metric between Gaussians parameterized by data and query embeddings.
As we will demonstrate later, this metric promotes both diversity and quality in a single objective,
and also gives rise to efficient algorithm design. Our main contributions are:

1. Principled theoretical formulation. We propose a principled theoretical framework that
casts the data selection problem as maximization of mutual information. Optimizing this
objective naturally promotes diversity and quality of selected data. This framework is also
flexible, enabling balanced selection with respect to disparate information sources, such as
factuality and style scores from LLM evaluations.

2. Efficient approximation algorithms. We develop a greedy matching pursuit (MP) approx-
imation algorithm that solves an approximate dual problem. The Greedy MP approach
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Figure 1: Left: GSM8K performance comparison on Qwen3-8B across different training data
percentages (2.5%, 5%, 10%, 20%). Our proposed methods MP+MA and MP+SC consistently
outperform baselines (Random, DSIR, DISF) and approach or exceed full dataset (100%) performance
with only 10-20% of training data, demonstrating significant data efficiency. Right: Geometric
interpretation of GIP. The method maximizes mutual information between Gaussians parameterized
by data embedding matrix F and score embedding matrix Q. This is equivalent to minimizing the
volume (determinant) of score embeddings projected onto the null space of selected data, naturally
balancing quality (high-score items) and diversity (new directions in embedding space).

scales linearly with the total size of available data in practice, enabling data selection under
realistic budget constraints.

3. Strong empirical results. On instruction-tuning benchmarks, our Greedy Information
Projection (GIP) achieves substantial data efficiency gains over state-of-the-art baselines.
GIP matches or exceeds full dataset performance using only 1-20% of training data across
MT-Bench, BBH, and GSM8K benchmarks—demonstrating up to 5× data reduction; see
Figure 1.

2 RELATED WORK

2.1 DATA CURATION FOR LARGE-SCALE LANGUAGE MODELS

Diversity and quality are recognized as crucial factors impacting the overall quality of model training
(Sener & Savarese, 2018; Chen et al., 2024; 2023a). With the recent development of large language
models, there is a growing trend in studies focusing on data composition quality and diversity, and
how these factors influence language model pretraining and instruction tuning.

For example, Lee et al. (2022) highlight the importance of diversity in improving training efficiency
and propose a method to remove near-duplicate records from training data. Similarly, Bukharin et al.
(2024) emphasize the significance of both quality and diversity in instruction tuning data, proposing a
general method to balance these two aspects in training data selection. Furthermore, Du et al. (2023)
introduce a systematic data selection approach that combines data quality, diversity, and augmentation
for instruction tuning. However, none of Bukharin et al. (2024); Du et al. (2023) have a unified
framework to unify both quality and diversity; diversity was either applied as a penalty or considered
in a different stage of data selection.

Recent work has focused on more sophisticated data selection strategies. Chen et al. (2023b) propose
instruction-following difficulty (IFD) scoring to identify high-quality instruction data. Ge et al. (2024)
introduce clustering-based active retrieval (CaR) that uses representativeness and uncertainty for
data selection. Xia et al. (2024) develop LESS, a gradient-based method for selecting informative
training data. Xie et al. (2023) propose data selection using importance resampling (DSIR) for
domain adaptation. Our work differs by providing a unified information-theoretic framework that
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naturally balances quality and diversity in a single objective, while being computationally efficient
and theoretically grounded.

2.2 INFORMATION-THEORETIC OBJECTIVES IN SELECTION AND CLUSTERING

There is a long history of applications of mutual information to data selection and clustering. Mutual
information can capture complex relationships between features that might not be apparent (Knops
et al., 2006). Mutual information is also flexible, working on various types of data such as categor-
ical data (He et al., 2008) and numerical data (Kraskov et al., 2005). Approximations of mutual
information has also been applied to k-means (Sugiyama et al., 2014; Calandriello et al., 2014).
More recently, mutual information based algorithms have been developed for clustering (Do et al.,
2021), community detection (Newman et al., 2020), 3d object representation learning (Sanghi, 2020),
and unsupervised sentence embeddings (Zhang et al., 2020). Theoretical developments of mutual
information inequalities have also been applied in pairwise comparisons (Lee & Courtade, 2021) and
generalized linear models (Lee & Courtade, 2020), where optimal selections and minimax algorithms
are understood to be closely related to singular values of query matrices; see, e.g., (Lee, 2022) for a
broad discussion.

It is important to note that mutual information is often difficult to compute and various forms of
estimators and approximations are used to reduce the computation cost; see (Kraskov et al., 2004)
for a classic mutual information estimator. In this paper, we consider the mutual information of
joint-Gaussian variables — Gaussianity provides us many favorable elementary expressions which
allow us to bypass much of the complexity of estimating mutual information.

2.3 ACTIVE LEARNING AND CORESET SELECTION

Our work is related to active learning (Settles, 2009) and coreset construction (Bachem et al., 2017),
which aim to select informative examples and compact subsets for downstream tasks, respectively
(e.g., DSIR (Xie et al., 2023) and DISF(Fan et al., 2025)). We build on this broader theme of data
efficiency, introducing an information-theoretic selection criterion that jointly considers quality and
diversity in the instruction-tuning setting.

3 PROBLEM FORMULATION

We are given a set of m data points F = {f1, . . . , fm} with fi ∈ Rd representing features of
selectable data, and n score vectors G = {gj ∈ Rm, j ∈ [n]} where each score vector gj represents
evaluations on all m data points for a specific quality dimension. These scores can come from LLM
evaluators assessing quality dimensions (helpfulness, accuracy, reasoning) or internal measures like
self-consistency estimates.

Our goal: Given data features F and quality scores G, select at most k data points that are both
diverse (spanning different regions of the feature space) and high-quality (aligned with the provided
scores).

3.1 MUTUAL INFORMATION FORMULATION

Let F ∈ Rd×m be the data embedding matrix with F = [f1, f2, . . . , fm], and let G ∈ Rm×n be the
score matrix with G = [g1, g2, . . . , gn]. For selection S ⊆ [m] with |S| ≤ k, define FS ∈ Rd×|S| as
the matrix of selected data columns. We assume data embeddings are normalized: ‖fi‖2 = 1 for all
i ∈ [m].

Our framework requires query embeddings Q ∈ Rd×n such that F>Q ≈ G. This establishes a
connection between the feature space (where diversity is measured) and the score space (where
quality is defined).

Regularization and stability. Since m � d in practice, F typically has rank at most d and is not
full row rank. To ensure existence and numerical stability of Q, we use Tikhonov regularization.
Specifically, we solve:

Qε = arg min
Q
‖F>Q−G‖2F + ε‖Q‖2F (3.1)
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with solution Qε = F (F>F + εIm)−1G for small ε > 0. This ensures ‖F>Qε − G‖F ≤ Cε for
some constant C. Details are provided in Appendix D.

Consider standard Gaussian Z ∈ N (0, Id) and transformations ZQ := Q>Z, ZFS
= F>S Z: Remark

(Gaussianity as a modeling device). We do not assume that raw data or query embeddings are
Gaussian. Gaussianity enters only via the auxiliary variable Z ∼ N (0, Id), used to derive a closed-
form, rotation-invariant mutual information surrogate based on the linear images through FS and
Q. [

ZQ
ZFS

]
∼ N

(
0,

[
Q>Q Q>FS
F>S Q F>S FS

])
(3.2)

The mutual information between ZQ and ZFS
is:

I(ZQ;ZFS
) =

1

2
log

(
det(Q>Q) det(F>S FS)

det(Σ)

)
(3.3)

where Σ is the joint covariance matrix in equation 3.2.
Theorem 1. The mutual information maximization is equivalent to:

arg max
S

I(ZQ;ZFS
) = arg min

S
det
(
Q>

(
I − FS(F>S FS)−1F>S

)
Q
)

(3.4)

Intuition. The matrix PS := I−FS(F>S FS)−1F>S projectsQ onto the null space of FS . Minimizing
det(Q>PSQ) selects S that minimizes the volume of Q after projection, naturally encouraging both
diversity (expanding into new directions in embedding space) and quality (aligning with high-score
directions).
Theorem 2 (Quality Bounds). For the MI-optimal selection S∗ from Theorem 1, there exists δS∗

such that

‖F>S∗Q‖2 ≥ δS∗

√
1−

(
η

det(Q>Q)

)1/r

(3.5)

where η = det
(
Q>(I − PFS∗ )Q

)
and r is the rank of Q.

Quality Guarantee. This theorem provides a lower bound on how well the selected data FS∗ aligns
with the query directions Q. The bound shows that our MI-optimal selection maintains quality.

When scores are missing (Q = ∅), we maximize the entropy h(ZFS
) = 1

2 log det(F>S FS), which
encourages pure diversity consistent with our framework.

4 GREEDY APPROXIMATION ALGORITHM

With small data sizes, one can permute through all possible selections to obtain the optimal selection
S, but the exponential computation cost is impractical in real-world scenarios where data sizes are
large. Instead, we propose to optimize equation 3.4 by approximations.

We employ an approximation by optimizing an upper bound of equation 3.4 that follows by a direct
application of the classic AM-GM inequality.
Theorem 3. Given Q = [q1 . . . qn], the determinant stated in equation 3.4 satisfies

det
(
Q>

(
I − FS(F>S FS)−1F>S

)
Q
)
≤

(
Tr((Q>

(
I − FS(F>S FS)−1F>S

)
Q)

n

)n
. (4.1)

By shifting our optimization target to the right-hand side of equation 4.1, we loosen the optimization
objective to the trace, which enjoys linearity. In particular, recall that Q is a Rd×n matrix constructed
by a concatenation of q1, . . . , qn ∈ Rd. By linearity, we have

Tr((Q>
(
I − FS(F>S FS)−1F>S

)
Q) =

n∑
i=1

Tr
(
q>i
(
I − FS(F>S FS)−1F>S

)
qi
)
, (4.2)
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and we obtain a quadratic expression with favorable properties to work with. Note also that the
minimization of equation 4.2 over S depends on Q only through scores gi := F>qi ∈ Rn, i ∈ [n].
Therefore, the expression in equation 4.2 permits us to work directly with scores G without the
knowledge of Q.

In this section, we introduce our Greedy MP algorithm that approximates the dual problem by a
matching pursuit approach.

4.1 GREEDY MATCHING PURSUIT (MP)

The intuition is to note that equation 4.2 involves computing lengths of qi projected onto the null
space of FS , which can be written as a dual form:

min
S

n∑
i=1

min
λ∈Rk

∥∥∥∥∥∥qi −
∑
j∈S

λjfj

∥∥∥∥∥∥
2

2

. (4.3)

Greedy MP solves this by minimizing residual gain across all query embeddings: at step t+ 1,

st+1, λ
∗
t+1 = arg min

s∈[m]/St

n∑
i=1

min
λ∈Rk

‖ri − λifs‖22 , (4.4)

where ri = qi−
∑t
j=1 λ

∗
jfsj is the residual of the i-th score at step t+1. Note that for each individual

qi and candidate fs, the minimizer λ∗i = r>i fs is unique, and satisfies

min
λ∈R

‖ri − λfs‖22 =
∥∥ri − r>i fsfs∥∥22 = ‖ri‖2 − (r>i fs)

2. (4.5)

By substituting equation 4.5 into equation 4.4, we see that the greedy selection of st+1 is simply one
that solves

st+1 = arg max
s∈[m]\St

n∑
i=1

(r>i fs)
2.

By defining residual score matrix W ∈ Rn×m where W = [r1 . . . rn]
>

[f1 . . . fm] =r
>
1 f1 · · · r>1 fm
...

. . .
...

r>n f1 · · · r>n fm

, we get st+1 by solving

st+1 = arg max
s∈[m]\St

n∑
i=1

(W
(t)
i,s )2.

After selection st+1, W can be updated with

W
(t+1)
i,j ←W

(t)
i,j − Φj,st+1 ·W

(t)
i,st+1

, (4.6)

where Φj,s = f>j fs are the precomputed inner products between data vectors. This update corre-
sponds to the new residual r′i = ri − (r>i fst+1

)fst+1
, yielding r′>i fj = r>i fj − (f>j fst+1

)r>i fst+1

as expected.

Immediately, this suggests we can efficiently solve equation 4.3 by maintaining and updating a
residual score matrix W in-place, while inner products of data vectors can be efficiently looked up
by precomputing F>F in memory.

Algorithm Initialization. We initialize W (0) = G = Q>F ∈ Rn×m, where Gij = q>i fj represents
the initial correlation between the i-th query and j-th data point. At iteration t = 0, we have r(0)i = qi

for all i ∈ [n], so W (0)
ij = r

(0)>
i fj = q>i fj = Gij .

Algorithm Variables. In Algorithm 1: F ∈ Rd×m is the data matrix with columns fj ; G ∈ Rn×m

is the score matrix where G = Q>F ; W (t) ∈ Rn×m tracks residual correlations r(t)>i fj at iteration
t; Φ ∈ Rm×m stores precomputed data inner products f>i fj ; and S accumulates the selected indices.

5
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Algorithm 1 Greedy matching pursuit (MP)

Require: Data matrix F ∈ Rd×m, score matrix G ∈ Rn×m (where G = Q>F ), number of
selections k

Ensure: Selection set S
1: Initialize S = ∅, W (0) ← G {W ∈ Rn×m}
2: Precompute Φ = F>F ∈ Rm×m {Data inner products}
3: for t = 1 to k do

4: st ← arg max
j∈[m]\S

n∑
i=1

(W
(t−1)
i,j )2 {Select best candidate}

5: S ← S ∪ {st}
6: for i = 1 to n, j = 1 to m with j /∈ S do
7: W

(t)
i,j ←W

(t−1)
i,j − Φj,st ·W

(t−1)
i,st

{Update residuals}
8: end for
9: end for

10: return Selection set S

Analysis of relaxation Although the greedy algorithm optimizes the relaxed objective, we studied
its approximation with respect to the original objective. We found that on controlled instances where
we can enumerate the optimum, the linearization tracks the original objective (4.2) well. (Appx. C,
Tab. 9).

The algorithm is attached in Algorithm 1. Notably MP algorithms have been broadly studied and
applied since the nominal work of Mallat & Zhang (1993). Here, we contribute a new variation of
MP for data selection.

4.2 COMPUTATIONAL COMPLEXITY AND PRACTICAL COSTS

The Greedy MP algorithm has a total runtime complexity of O(m2d+mnk), where m is the total
number of data points, n is the number of scores, and k is the desired subset size. This breaks down
as follows: (1) Precomputation of Φ = F>F requires O(m2d) operations, performed once; (2)
Initialization of W (0) = G is O(mn) if G is provided, or O(mnd) if computed from Q>F ; (3) For
each of the k iterations, we select the best candidate (O(mn)) and update the residual matrix W
for O(m) entries (O(mn)), giving O(mnk) for the iterative process. The memory complexity is
O(m2 +mn) for storing Φ and W . In practice, since n is typically small, the algorithm scales nearly
linearly with the dataset size m after the initial precomputation, making it practical for large-scale
data selection.

We summarize the selection-phase runtime and resource requirements of the proposed Greedy MP
against common baselines used in instruction/data selection. The focus is on asymptotic behavior
with respect to: m (candidate pool size), k (selected subset size), d (embedding dimension), mval
(validation set size), and n (number of query/task score vectors; typically small). We contrast whether
each method requires (a) a trained model for gradients/logits, and (b) an external validation subset.

Method Selection Time Complexity Validation Data? Model Training?

MP (Ours) O(mk) No No
LESS O(mmval d) Yes Yes
DISF Õ(mkd2) Yes Yes
DSIR O(md+mvald) Yes Yes

Table 1: Selection-phase complexity and requirements. n is typically small (� m). Õ hides polylog
factors.

Overall, the proposed methods yield strictly lower operational friction (no gradients, no held-out
scoring) while matching or exceeding downstream performance (see Experiments). For detailed
robustness and resource measurements (RAM usage / wall-clock), refer to Appendix A.
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5 EXPERIMENTS

5.1 DATASETS AND BASELINE MODELS

Training dataset. We use the Alpaca 52k dataset which contains 52,000 diverse instructions and
demonstrations in English (Taori et al., 2023b). This data is commonly used as a benchmark training
dataset; see, for example, (Zhao et al., 2024; Bukharin et al., 2024; Ge et al., 2024). We apply Greedy
MP to select training subsets of varying sizes: 512 samples (1% of full data) and 1000 samples (2%
of full data) for MT-Bench and BBH evaluation, and subsets of 2.5%, 5%, 10%, and 20% of the full
dataset for GSM8K evaluation.

Baseline methods. We compare against several state-of-the-art data selection methods:

• Random: Randomly selected subsets (standard baseline)
• Full: Training on the complete dataset (upper bound reference)
• LIMA (Zhou et al., 2023): High-quality manually curated examples
• Alpagasus (Chen et al., 2023b): Instruction-following difficulty (IFD) based selection
• CaR (Ge et al., 2024): Clustering-based active retrieval using representativeness and uncer-

tainty
• DSIR (Xie et al., 2023): Data selection using importance resampling (for domain adaptation)
• DISF (Fan et al., 2025): gradual and informative data selection that iteratively surfaces the

most valuable training examples
• LESS (Xia et al., 2024): gradient similarity-based efficient data selection

For mathematical reasoning evaluation on GSM8K, we include all eight baseline methods. For
MT-Bench and BBH, we focus on the five most relevant baselines. All baseline methods use identical
experimental settings and are retrained from scratch to ensure fair comparison.

Base models. We use three pre-trained language models for our experiments: Mistral-7B (Jiang
et al., 2023), Qwen3-8B (Yang et al., 2025), and Qwen-4B (Yang et al., 2025). All models undergo
supervised fine-tuning with training details provided in the supplementary material.

Evaluation datasets. We evaluated trained models on three comprehensive benchmark datasets:
MT-Bench dataset (Zheng et al., 2023a), BIG-Bench Hard (BBH) (Suzgun et al., 2022), GSM8K
(Cobbe et al., 2021). For MT-Bench, we use the standard MT-Bench evaluation protocol (Zheng
et al., 2023a) where models generate responses based on VLLM (Kwon et al., 2023) to multi-turn
conversations, and responses are scored by GPT-4.1 1 with score range from 0 to 10. For BBH and
GSM8K, we reported the accuracies based on the given ground-truth answer.

5.2 IMPLEMENTATION

We run experiments with the Greedy MP algorithm (Algorithm 1) as follows: Data embeddings
F . The Alpaca 52k dataset is a generic instruction-response dataset that includes training data with
instruction, input (context), and answer (response) triplets. For each triplet, we concatenate the
components into a single sentence [Instruction; Context; Response] as the input sentence. We then
use pretrained ModernBERT-Base (Warner et al., 2024) as the embedding model and use outputs
from the final hidden representation layer as embeddings. The context length is set to 2048, aligned
with the training context window length. We applied similar setting to GSM8K dataset, where we
consider the question as instruction with context.

We consider two methods of generating score vectors: self-compression and LLM evaluation.

Scores via self-compression. Given embeddings F ∈ Rd×m where each column fi represents the
embedding of sample i, we compute a quality score for each sample based on its alignment with the
entire dataset. We calculate the dataset alignment score:

gi =

m∑
j=1

f>i fj = (F>F1m)i,

1https://openai.com/index/gpt-4-1/

7
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Table 2: Performance on MT-Bench and BBH benchmarks. Best results in bold. Detailed results
with standard errors are provided in Appendix Table 16.

Mistral-7B Qwen3-8B Qwen-4B
Method Data MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 100% (52K) 3.89 58.4 4.62 76.7 4.11 73.2
Random 2% (1K) 3.84 57.4 6.25 72.3 5.14 69.4
LIMA 2% (1K) 3.55 55.6 5.88 75.8 5.23 73.3
Alpagasus 2% (1K) 3.83 56.5 6.14 71.9 4.93 63.6
CaR 2% (1K) 3.59 57.4 5.78 76.2 3.92 73.8

MP+MA 2% (1K) 3.92 57.6 6.25 80.5 4.91 74.3
MP+MA 1% (512) 4.28 56.6 6.68 79.1 5.19 68.0
MP+SC 2% (1K) 3.77 57.7 5.50 79.1 4.55 74.4
MP+SC 1% (512) 4.14 57.4 6.26 76.5 4.93 73.9

where 1m ∈ Rm is the all-ones vector. This score measures how well sample i aligns with the overall
dataset structure - samples with higher scores are more representative of the data distribution and
thus more informative for training. The formulation is equivalent to computing the i-th row sum of
the Gram matrix F>F , providing a centrality measure in the embedding space. This provides an
internal information source where all signals come from the training dataset itself, without external
supervision. Experiments using this self-compression scoring are labeled as MP+SC.

Scores via LLM assessments. We use GPT-4o 2 to generate evaluations between 0 to 5 in four
criteria: coherence, helpfulness, accuracy, and difficulty, and use the total score across all four criteria
as the score vector. The prompt is included in the supplementary material. Experiments using LLM
quality assessments to obtain multi-attribute information are labeled as MP+MA.

Baseline implementation details. To ensure fair comparison, all baseline methods are implemented
using identical experimental settings (see Table Appendix G.3 for details). For consistency, we use
the same data preprocessing, embedding models, and evaluation protocols across all methods:

• DSIR: We implement the importance resampling approach from (Xie et al., 2023) using the
target domain distribution as the reference for reweighting sample importance. Typically as
the method needs a target domain dataset to compute the importance weights, we sample
from test data as the target domain. Therefore DSIR could be considered as a strong baseline
with oracle for GSM8K task.

• DISF: We implement the diversified file selection algorithm (DISF) from (Fan et al., 2025),
starting from a random set and iteratively adding samples that maximize the diversity among
single batch.

• LESS: We implement the LESS method from (Xia et al., 2024), we start with building
gradient features from the base model. Similar as DSIR, we used the same validation set to
compute the influence score for the training data, we then select the most influential data as
in (Xia et al., 2024)

All baselines use identical LoRA fine-tuning configurations, learning rates and training epochs
specified in Table Appendix G.3. This ensures that performance differences reflect data selection
quality rather than training procedure variations.

5.3 MAIN RESULTS

Table 2 presents a comprehensive comparison between Greedy MP methods and baseline approaches
across three model architectures on MT-Bench and BBH benchmarks. The results demonstrate the
effectiveness of our proposed methods across different model scales and evaluation scenarios.

MT-Bench Performance: Our MP+MA method consistently achieves strong performance across
all models. Notably, with 1% training data (512 samples), MP+MA achieves 4.28 on MT-Bench for

2https://openai.com/index/hello-gpt-4o/
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Table 3: GSM8K performance across models and data percentages.

Qwen3-8B Mistral-7B Qwen-32B
Method 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

Full 81.96 52.46 87.64

Random 78.32 80.21 79.53 81.65 37.76 43.52 45.72 46.74 78.24 87.14 85.67 87.29
DISF 75.06 79.98 79.98 80.67 39.88 41.55 41.55 42.46 81.65 87.04 87.04 88.40
DSIR 80.74 81.50 81.96 83.24 37.07 42.15 42.61 42.08 80.74 89.16 87.79 88.70
LESS 79.76 79.45 80.29 79.45 31.84 33.13 42.91 47.69 69.98 87.26 87.95 87.41

MP+MA 81.58 81.05 83.09 83.24 42.99 45.64 45.94 47.46 84.31 87.57 88.25 88.78
MP+SC 80.36 80.21 81.65 82.26 38.89 43.29 46.63 49.81 84.15 87.04 87.34 87.56

Mistral-7B, outperforming the full data baseline (3.89) and demonstrating remarkable data efficiency.
Similarly, MP+MA achieves 6.68 for Qwen3-8B and 5.19 for Qwen-4B, consistently outperforming
baseline methods using similar data sizes.

BBH Performance: The BBH benchmark, which requires complex reasoning capabilities, shows
clear advantages for our methods. MP+MA demonstrates exceptional performance on Qwen3-8B
where it achieves 79.1% accuracy with just 1% of training data. For Qwen-4B, MP+SC achieves the
highest performance at 74.4% with 2% data, outperforming even the full data baseline (73.2%). No-
tably, while baseline methods like Random, LIMA, and Alpagasus show competitive performance on
BBH with the Qwen3-8B model (72.3%, 75.8%, and 71.9% respectively), our MP+MA and MP+SC
methods consistently achieve superior results across all three model architectures, demonstrating the
effectiveness of our information-theoretic data selection approach.

Mathematical Reasoning Performance: Table 3 demonstrates our method’s effectiveness on math-
ematical reasoning tasks across three model scales. On Qwen3-8B, MP+MA achieves 83.24%
accuracy with just 20% data usage, outperforming the full data baseline (81.96%). With only 2.5%
data (81.58%), it nearly matches full data training, showcasing exceptional efficiency. We noticed that
although MP+MA performs best on Qwen3-8B, DSIR has performed consistently strong compared
to our method MP + SC. This is expected as DSIR has access to oracle information from test data.
Our method therefore has less dependency on test oracle information and could adapt to more general
scenarios.

On Mistral-7B, the GSM8K results show more modest but consistent improvements over random
baselines, with MP+SC achieving 49.81% at 20% data usage (-2.65% below full data performance of
52.46%). Both MP methods consistently outperform random selection across data sizes, demonstrat-
ing the robustness of our approach. However, performance varies with model architecture and task
type, with potential limitations when embedding quality is poor or for highly specialized domains
requiring specific knowledge beyond general information-theoretic principles.

On the larger Qwen-32B model, our methods demonstrate strong performance that approaches the
full data baseline (87.64%). MP+MA achieves 88.78% with 20% data usage, exceeding the full data
baseline, while MP+SC achieves close gap with full data training with 20% data usage. This suggests
that with larger models, data selection methods become increasingly effective, with our MP methods
maintaining consistent performance across different data percentages.

Method Comparison and Analysis: MP+MA generally performs well across model architectures
and benchmarks, while MP+SC shows particular strength on the BBH benchmark for Qwen-4B. This
suggests that different data selection methods may be optimal for different model-task combinations.
Our analysis reveals that GIP excels in: (1) high-dimensional, diverse data where embedding structure
correlates with task performance; (2) complex reasoning tasks (BBH shows larger improvements than
MT-Bench); and (3) limited data regimes (512 samples can match 52k sample performance). The
mutual information objective I(ZQ;ZFS

) naturally balances quality (via QT (·)Q term) and diversity
(via det(I − PS) term), explaining the effectiveness of our approach.
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Method Mistral-7B Qwen3-8B
Cleaned Non-Cleaned Cleaned Non-Cleaned

MP + SC 4.76 ± 0.20 4.14 ± 0.18 6.54 ± 0.22 6.26 ± 0.23
Random 4.48 ± 0.19 3.83 ± 0.17 6.34 ± 0.22 5.99 ± 0.24
Full 4.29 ± 0.18 3.89 ± 0.18 6.02 ± 0.22 4.62 ± 0.21

Table 4: MT-Bench performance comparison: Cleansed vs Non-Cleansed data (512 samples for
MP+SC and Random, full dataset for Full)

Table 5: Embedding ablation for MP+SC on GSM8K: Modern-BERT vs Qwen-reasoning.

Base Model Data Size Modern-BERT Qwen-reasoning

Mistral-7B 20% (1494) 49.81% 50.27%
Mistral-7B 10% (747) 46.63% 46.25%
Qwen-32B 20% (1494) 87.57% 88.02%
Qwen-32B 10% (747) 87.34% 87.72%

5.3.1 IMPACT OF DATA QUALITY ON MP+SC

We study data sources of varying quality, using the cleaned Alpaca dataset3. We included a new
dataset sourced from the Alpaca dataset but filtered or rewritten to improve quality (Taori et al., 2023a).
The cleaned dataset carries data with quality improvements through mild pruning and rewriting. As
shown in Table 4, we observe that MP+SC performs well, and improving data quality can significantly
enhance the performance of MP+SC. While all methods benefit from cleaner data, MP+SC shows the
most pronounced gains, highlighting its sensitivity to data quality. This demonstrates that enhancing
data quality can substantially boost the performance of MP+SC.

5.3.2 EMBEDDING ABLATIONS

We ablate the choice of embeddings feeding MP+SC on GSM8K, comparing a general-purpose
encoder (Modern-BERT) versus a specialized reasoning encoder (Qwen-reasoning). We report
accuracies for two budgets per base model. Larger, reasoning-specialized embeddings yield small
but consistent gains at the same data budget, particularly for Qwen-32B at 10%–20%. Modern-
BERT remains competitive, especially on Mistral-7B at 10%. See Section 4.2 for the corresponding
selection-phase resource comparison across methods.

Selection Stability To assess robustness to representation perturbations, we inject zero-mean
Gaussian noise into GSM8K embeddings with σ ∈ {10−4, 10−3, 10−2} and rerun MP+SC for 10%
(747) and 20% (1494) budgets over three trials per noise level. Intersection-over-Union (IoU) of
selected subsets remains ≥ 85% for σ ≤ 10−3 and stays above 60% even at σ = 10−2, indicating
that mild embedding drift has negligible impact on which samples are chosen while severe noise still
preserves a majority of core items. Detailed setup and the full table are provided in Appendix A.1.1.

CONCLUSION AND FUTURE WORK

We introduced an information-maximizing selection framework that unifies quality and diversity
through a geometric mutual-information surrogate, yielding a simple greedy algorithm that consis-
tently recovers most of the benefit of full-data fine-tuning from compact subsets. Under a linear-in-
span embedding model we linked our objective to coverage of task-aligned query directions, and we
showed stable, scalable implementations with ε-regularization. Empirically, 5–20% subsets matched
or surpassed full-corpus baselines across instruction-following and reasoning tasks.

3https://huggingface.co/datasets/yahma/alpaca-cleaned
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LARGE LANGUAGE MODEL USAGE

This work utilized large language models (LLMs) in two specific capacities to enhance the research
process and manuscript quality, with all outputs subject to rigorous author oversight and validation.

WRITING ASSISTANCE

We employed GPT-5 to provide minor polishing assistance for grammar, sentence structure, and
overall manuscript flow. The LLM was used to:

• Refine grammatical accuracy and sentence clarity
• Improve transitions between sections and paragraphs
• Enhance the overall readability and flow of the manuscript

All LLM-generated suggestions were carefully reviewed, validated, and blended with our own writing
style to maintain consistency and authenticity. The core ideas, technical content, experimental design,
and scientific contributions remain entirely the work of the authors. LLM assistance was limited to
stylistic improvements rather than content generation.

RESEARCH DISCOVERY AND LITERATURE REVIEW

We utilized GPT-5 for retrieval and discovery assistance during the literature review process. Specifi-
cally, the LLM helped:

• Identify relevant research papers and related work by describing our research topic and
methodology

• Discover connections between our work and existing literature in data selection, information
theory, and large language model training

• Locate recent developments in mutual information-based approaches and greedy algorithms
for data selection

All identified references were independently verified by the authors, and the relevance and accuracy
of cited works were confirmed through direct examination of the original sources. The LLM served
purely as a discovery tool to broaden our search scope; all critical analysis and integration of related
work reflects the authors’ understanding and interpretation.

OVERSIGHT AND VALIDATION

Throughout both applications, we maintained strict human oversight:

• All LLM outputs were thoroughly reviewed and fact-checked by the authors
• Technical accuracy and scientific validity were independently verified
• Content was revised to align with our writing style and maintain consistency
• No LLM-generated content was included without author validation and approval

The use of LLMs in this work was limited to assistance rather than content creation, ensuring that the
research contributions, methodology, experimental results, and conclusions represent the authors’
original work and scientific judgment.
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APPENDIX

We include proofs of main theorems, additional ablation studies, robustness and resource analyses,
and a discussion on statistical significance in the appendix.

A ROBUSTNESS AND RESOURCE ANALYSIS

A.1 ROBUSTNESS ACROSS DATA PERCENTAGES AND MODEL SIZES

We summarize sensitivity across data budgets (2.5%, 5%, 10%, 20%) and model sizes (7B, 8B, 32B).
MP+MA maintains strong gains at low budgets; MP+SC is consistently competitive without external
scores. Detailed per-budget tables are provided alongside standard errors in Table 17.

A.1.1 SELECTION STABILITY UNDER EMBEDDING NOISE

We probe stability by adding zero-mean Gaussian noise to GSM8K embeddings prior to running
MP+SC. We evaluate three noise levels σ ∈ {10−4, 10−3, 10−2} and perform three independent
trials per level for two budgets: 10% (747 samples) and 20% (1494 samples). We report the mean
Intersection-over-Union (IoU) of selected subsets (% units) with ± standard deviation.

Noise Level (σ) Data Size 747 (10%) Data Size 1494 (20%)
1e-4 95.89 ± 0.32 91.72 ± 0.36
1e-3 94.20 ± 0.66 87.85 ± 0.39
1e-2 66.32 ± 1.13 61.74 ± 0.29

Overall we observe (i) High stability across mild noise: at σ ≤ 10−3, IoU ≥ 85% indicates minor
embedding variations have minimal impact on selection outcomes; (ii) Graceful degradation under
strong noise: even at σ = 10−2, IoU remains above 60%, suggesting that core high-quality diverse
samples are preserved. These results support the practical stability of our information projection
framework and explain why downstream training remains robust under moderate embedding pertur-
bations. See the main text summary in Section 5.3.2. We discuss practical considerations for Gram
matrix usage. For large m and d, we use blockwise products to avoid materializing F>F fully and
maintain peak memory within CPU limits. Selection-phase timing curves indicate near-linear scaling
in k for Greedy MP. We also report typical RAM footprints on AMD CPU for representative m, d
configurations.

A.2 RUNTIME AND MEMORY PERFORMANCE

We provide detailed wall-clock and peak memory profiling for the Gram (inner product) matrix
preprocessing and the subsequent greedy selection phase. Measurements are taken on a single AMD
CPU machine without sharding or distributed execution. Preprocessing refers to computing the Gram
matrix (or equivalent blockwise products); selection refers to running Greedy MP for the indicated
subset budget.

Table 6: Runtime and memory profiling for preprocessing (Gram matrix computation) and selection.
Preprocessing is a one-time cost that can be amortized across multiple selection runs with different
budgets or scoring signals.

Dataset Pool Size m Subset % Preproc. Time (s) Selection Time (s) Peak RAM (Preproc.) Peak RAM (Select.)

GSM8K 7k 10% 7.01 0.86 0.3 GB 0.04 GB
GSM8K 7k 20% 7.01 0.87 0.3 GB 0.04 GB
GSM8K 7k 50% 7.01 0.87 0.3 GB 0.04 GB
Alpaca 52k 10% 214.11 25.12 10.8 GB 0.3 GB
Alpaca 52k 20% 214.11 49.67 10.8 GB 0.3 GB
Alpaca 52k 50% 214.11 123.62 10.8 GB 0.3 GB
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extbfFindings. (i) Gram matrix computation is amortized: the O(m2d) preprocessing takes 7̃s for
GSM8K and 2̃14s for Alpaca but is reused across budgets and score variants. (ii) Linear selection
scaling: selection times grow roughly linearly with k (subset size), consistent withO(mk) complexity.
(iii) Memory efficiency: peak RAM is dominated by preprocessing; selection adds negligible overhead.
(iv) Practical applicability: On typical instruction-tuning corpus sizes, single-machine execution is
feasible; for substantially larger m we can employ low-rank approximations or distributed blockwise
multiplication (future work).

B ETHICS / BROADER IMPACT.

This work studies data selection for language-model fine-tuning. It uses public datasets under their
original licenses. Potential risks. (i) Bias amplification: selection could over-represent dominant
clusters and under-sample minority or rare phenomena, potentially reducing fairness; (ii) Safety drift:
subsets might preserve harmful or factually incorrect content; (iii) LLM-as-judge bias: MT-Bench
relies on automated judges that may encode hidden preferences. Mitigations. We (a) normalize
and de-duplicate embeddings, (b) allow ε-regularization and diversity-aware gains to reduce over-
concentration, (c) apply the original dataset safety filters. Intended use. Our method targets
research/industrial model training where compute and data curation are constrained. It should not
be used to curate content intended to target protected groups or to optimize for harmful outputs.
Transparency. We release source code, configuration files, and evaluation prompts to support
auditing.

C REPRODUCIBILITY.

We release code, configuration files to reproduce our main algorithm. Data and licenses. We use
Alpaca-52k (CC BY-NC 4.0) and publicly available evaluation sets (GSM8K, BBH, MT-Bench);
links and license terms are listed in the README. Environment. Experiments were run on [A100
80GB / V100 32GB] GPUs. We provide a conda YAML and exact package versions. Training.
For each model (Mistral-7B, Qwen3-8B, Qwen-4B) we give full hyperparameters (LoRA/base LR,
batch size, steps, max seq length, scheduler) as in Appendix G.3, effective token budgets (1–20%),
and wall-clock times. Commands are included as shell scripts. Selection. Our implementation
exposes both Greedy-MP and Greedy-LR. Evaluation. We reuse the prompt as in (Zheng et al.,
2023a) and (Gao et al., 2024) for GSM8K/BBH (exact-match normalization), and MT-Bench judge
templates. For all tasks we reported the standard error across data instances and random seeds after
pm. Determinism. We fix seeds at all stages (data loader, CUDA/cuDNN, model training).

D REGULARIZATION DETAILS

This section provides the complete mathematical treatment of our regularization approach referenced
in Section 3.

D.1 MOTIVATION FOR REGULARIZATION

The constraint F>Q = G requires solving for Q given feature matrix F ∈ Rd×m and score matrix
G ∈ Rm×n. In practical scenarios:

• m� d (many more data points than feature dimensions)

• F typically has row-rank r ≤ d but not full column rank

• (F>F )−1 may not exist or be ill-conditioned

D.2 TIKHONOV REGULARIZATION

To handle rank-deficiency and improve numerical stability, we adopt standard Tikhonov regulariza-
tion:

Σε := F>F + εIm, ε > 0.
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We define the regularized left pseudoinverse:

F+
ε := F>(FF> + εId)

−1

and construct the regularized query coefficient matrix:

Qε := (F+
ε )>G.

D.3 PROPERTIES OF THE REGULARIZED SOLUTION

The regularized query matrix Qε has several important properties:

Unique minimizer. Qε is the unique minimizer of the regularized least squares problem:

min
Q
‖F>Q−G‖2F + ε‖Q‖2F .

Controlled approximation error. The regularization introduces a bounded approximation error:

‖F>Qε −G‖F ≤ ε‖Qε‖F .

Numerical stability. For any ε > 0, both Σε and FF> + εId are positive definite and hence
invertible.

D.4 IMPLEMENTATION IN MAIN RESULTS

With this regularization framework:

• All occurrences of (F>F )−1 in our derivations are replaced by Σ−1ε
• Identities that relied on F>Q = G hold approximately: F>Qε ≈ G
• As ε→ 0, we recover the original formulation when (F>F )−1 exists
• The approximation quality can be controlled by choosing appropriate ε

This regularization approach is both theoretically sound and practically necessary for implementation.

E PROOFS

E.1 PROOF OF THEOREM 1

Proof. We start by expanding equation 3.3 via

arg max
S

I(ZQ;ZFS
) = arg max

S

(
log det (ΣFS

)− log det
(

ΣFS
− ΣQ,FS

Σ−1Q Σ>Q,FS

))
. (E.1)

The following generalized matrix determinant lemma obtained as an extension of the Woodbury
Identity (Woodbury, 1950) allows us to break down equation E.1.

Lemma 4 (Matrix Determinant Lemma, Woodbury (1950)). Suppose A ∈ Rn×n is invertible. Then,
for any matrices U, V ∈ Rn×m,

det(A+ UV >) = det(I + V >A−1U) det(A).

Then, the terms within the maximum in equation E.1 become

− log det
(
I − ΣQ,FS

Σ−1Q Σ>Q,FS
Σ−1FS

)
= − log det

(
I − F>Q(Q>Q)−1Q>F (F>F )−1

)
= − log det

(
I + V >A−1U

)
(E.2)

where V = −Q>FS , A = Q>Q and U = Q>FS(F>S FS)−1. Then, we can directly apply Lemma 4
to get

equation E.2 = − log det
(
A+ UV >

)
det
(
A−1

)
. (E.3)

Combining equation E.1, equation E.2 and equation E.3 yields

arg max
S

I(ZQ;ZFS
) = arg min

S
log det

(
Q>

(
I − FS(F>S FS)−1F>S

)
Q
)
. (E.4)
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E.2 THEOREM FOR QUALITY PRESERVATION

Theorem 5. When data is mutually orthogonal, i.e., f>i fj = 0 for all i 6= j, and G consists of a
single score vector g1 ∈ Rm, the maximizing solution S of equation 3.4 with |S| = k is a solution of

arg max
S:|S|=k

G>SGS . (E.5)

In other words, solving equation E.5 returns the indices of the top k scores with largest absolute
value.

Proof. Based on the assumption taht F is normalized and the property f>i fj = 0 for all i 6= j yield
F>F = Im and F>S FS = Ik for any selection S with |S| = k. Consequently,

arg min
S

log det
(
Q>

(
I − FS(F>S FS)−1F>S

)
Q
)

= arg min
S

(
|q1|2 − q>1 FSF>S q1

)
.

Recall the definition of G := F>q1 and GS := F>S q, and the desired result follows.

E.3 PROOF OF THEOREM 2

We restate the theorem as follows: If mutual information objective is maximized with optimal set S∗
in Theorem 1, then there exists a δS∗ such that

‖F>S Q‖2 ≥ δS∗

√
1−

(
η

det(Q>Q)

)1/r

, (E.6)

where η = det
(
Q>(I − PFS∗ )Q

)
. and r is the row rank of Q

Proof. Take reduced QRs with orthonormal bases:

Q = URQ, FS = V R, S = V >U, PFS
= V V >, (E.7)

where U ∈ Rn×r, V ∈ Rn×t have orthonormal columns and RQ ∈ Rr×r, R ∈ Rt×t are invertible.
Define

η(S) = det
(
Q>(I − PFS

)Q
)
. (E.8)

Reduce to S. Using Q = URQ and PFS
= V V >,

Q>(I − PFS
)Q = R>Q(I − S>S)RQ =⇒ η = det(Q>Q) det(I − S>S). (E.9)

If the eigenvalues of S>S are {σi(S)2}pi=1 (with p = min{r, t}) and we pad σi(S) = 0 for i > p,
then

η

det(Q>Q)
=

r∏
i=1

(
1− σi(S)2

)
. (E.10)

Let ai = 1− σi(S)2 ∈ [0, 1]. If all ai > g = (η/det(Q>Q))1/r, then
r∏
i=1

ai > gr, (E.11)

contradicting the identity E.10 above. Hence some i∗ satisfies ai∗ ≤ g, i.e.,

‖S‖22 = σmax(S)2 ≥ 1−
(

η

det(Q>Q)

)1/r

. (E.12)

Since S = V >U , we obtain the main results:

‖V >U‖22 ≥ 1−
(

η

det(Q>Q)

)1/r

(E.13)
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When Q>Q = Ir:
‖V >U‖22 ≥ 1− η1/r (E.14)

With F>S Q = R>SRQ and using the inequality ‖ABC‖2 ≥ σmin(A)‖B‖2σmin(C):

‖F>S Q‖2 ≥ σmin(FS)σmin(Q)‖V >U‖2 (E.15)

≥ σmin(FS)σmin(Q)

√
1−

(
η

det(Q>Q)

)1/r

, (E.16)

which simplifies to
‖F>S Q‖2 ≥ σmin(FS)

√
1− η1/r (E.17)

when Q>Q = Ir.

E.4 PROOF OF THEOREM FOR MAXIMIZING MI OBJECTIVE IMPROVES DIVERSITY

Theorem 6 (Lower bound on det(F>S FS) via tr((F>S FS)−1)). Let FS ∈ Rn×k have full column
rank k (so F>S FS � 0). Then

det(F>S FS) ≥

(
k

tr
(
(F>S FS)−1

))k ,
with equality if and only if F>S FS = c Ik for some constant c > 0, i.e., the columns of FS are
orthogonal and have equal norms.

Proof. Set B := F>S FS ∈ Rk×k. Since FS has full column rank, B � 0. Let λ1, . . . , λk > 0 be the
eigenvalues of B. Then

tr(B−1) =

k∑
i=1

1

λi
and det(B) =

k∏
i=1

λi.

Apply the arithmetic–geometric mean (AM–GM) inequality to the positive numbers {1/λi}ki=1:

1

k

k∑
i=1

1

λi
≥

(
k∏
i=1

1

λi

)1/k

=
1(∏k

i=1 λi
)1/k =

1

det(B)1/k
.

Multiplying both sides by k and inverting yields

det(B)1/k ≥ k

tr(B−1)
=⇒ det(B) ≥

(
k

tr(B−1)

)k
.

Equality in AM–GM holds if and only if all its arguments are equal, i.e., 1
λ1

= · · · = 1
λk

, which is
equivalent to λ1 = · · · = λk = c > 0. Hence B = c Ik, as claimed. Substituting back B = F>S FS
completes the proof.

Remark. If FS is not full column rank, then F>S FS is singular, det(F>S FS) = 0, while
tr((F>S FS)−1) = +∞ (understanding the inverse as the Moore–Penrose pseudoinverse), so the
bound holds trivially in the extended sense.

F ALGORITHM DETAILS

F.1 GREEDY APPROXIMATION ALGORITHMS

F.2 GREEDY LR ALGORITHM

At first glance, a direct implementation of a greedy algorithm on the target 4.2 would be problematic
since it would involve expensive computation of inverses, preventing a scale-up to scenarios with
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Algorithm 2 Greedy LR algorithm

Require: Data F, scores G, number of selections k.
1: Initialize V0, Ṽ0 as empty matrices. For each i ∈ [m], initialize ci ← [], di ← 0.
2: for t = 1 to k do
3: Update Vt and Ṽt based on F.4 and F.5.
4: for i /∈ St do
5: Update ci, di based on F.3.
6: end for
7: Select st that maximizes F.6.
8: Update St+1 ← St ∪ {st}.
9: end for

10: return Selections Sk.

a larger amount of data. Our first algorithm, Greedy LR, makes use of LR decompositions. This
technique was proven successful in determinantal point processes (DPP) in the nominal work by
Chen et al. (2018); in this paper, we present a variation suitable for our use case.

We start by modifying the approximate optimization target equation 4.2 to its equivalent

arg max
S

n∑
i=1

q>i FS(F>S FS)−1F>S qi. (F.1)

Let us use a slight abuse of notation and write Ft ∈ Rd×t as the matrix of selected data up to time t,
and suppose st ∈ [m] is the data index selected at time t. Since F is full column rank by assumption,
any F>St

FSt is PSD and we can invoke the Cholesky decomposition: there exists an invertible lower
triangular matrix Vt ∈ Rt×t such that F>t Ft = VtV

>
t , and the inverse of Vt, Ṽt, exists. We follow

the techniques and notations used by Chen et al. (2018) and define for any t,

Vt+1 :=

[
Vt 0
cst dst

]
. (F.2)

The key is to iteratively maintain matrix updates of V and Ṽ while selecting new members of S. At
each step, a vector ci and a scalar (the residual) di is maintained for all potential candidates i ∈ [m].
Overall, our iterative updates involve two steps:

Step 1: Updating Vt and Ṽt after selecting a new member st.

Define At := F>t Ft. We first update the vector ci,t and scalar di,t for each candidate i ∈ [m] with

ci ← ci ∪ ei, di ←
√
d2i − e2i where ei =

Ast,i − c>stci
dst

. (F.3)

Then, we update Vj+1 with

Vt+1 ←−
[
Vt 0
cst dst

]
. (F.4)

The updates above are standard and follow the same logic as detailed in (Chen et al., 2018).

To calculate the inverse, we make use of the lower-triangularity of Vt and update Ṽt with

ṽi,j =

∑
k<i vikṽjk + viiṽi,j −

∑
k<i vi,kṽj,k

vii
, (F.5)

where the subscript t is dropped from V and Ṽ for simplicity.

Step 2: Selecting a new member in S after updating V and Ṽ .

Given Ṽt and St, let us define with respect to G a vector xi,St
= FTSt

qi, and xi,{j} = fTj qi by
recalling that G = F>Q. The goal is to maximize

max
j

n∑
i=1

||(Ṽ xi,(St∪{j}))||
2
2
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greedily, by solving for maximal increment

st+1 = arg max
j

n∑
i=1

∥∥∥∥[Ṽt 0
cj dj

] [
xi,St

xi,{j}

]
− Ṽtxi,St

∥∥∥∥2
2

= arg max
j

n∑
i=1

∥∥cjxi,St
+ djxi,{j}

∥∥2
2
. (F.6)

Finally, we pick the index j that maximizes the above equation, and update St+1 = St ∪ {st+1}.
The algorithm is attached in Algorithm

G EXPERIMENT DETAILS

G.1 DATASETS AND BENCHMARKS

Alpaca-52k A 52k English instruction-response corpus generated via text-davinci-003 (Taori et al.,
2023b). Widely used for instruction tuning; we consider subsets at 1%, 2%, 2.5%, 5%, 10%, and
20% depending on the benchmark. License: CC BY-NC 4.0.

MT-Bench. A multi-turn conversational benchmark assessing instruction-following across domains
(Zheng et al., 2023a). We use standard protocol with VLLM (Kwon et al., 2023) to generate responses
and GPT-4.1 as judge (scores 0–10). Links and judge prompt templates follow prior work.

BBH (BIG-Bench Hard). A collection of challenging reasoning tasks requiring multi-step solutions
(Suzgun et al., 2022). We report exact-match accuracy.

GSM8K. Grade-school math word problems for step-by-step mathematical reasoning (Cobbe et al.,
2021). We report exact-match accuracy under standard normalization.

G.2 IFT DATASETS

• Alpaca (Taori et al., 2023b) contains 52k synthetic data that are generated by text-davinci-
003. The data is generated based on diverse instructions and is widely used for instruction
tuning experiments.

• CaR (Ge et al., 2024) contains 1000 data points from Alpaca-52k dataset. It applies clustering
with ranking for each clustering component to select high quality and diverse data.

• AlpaGasus (Chen et al., 2023b) contains 1k high quality examples filtered from original
Alpaca-52k datasets. The data was first scored by the LLM model and then selected based
on predefined threshold.

• Vicuna (Chiang et al., 2023) was used as one of our evaluation datasets. It divides 80 test
instructions into 8 question categories, and is widely-used to evaluate various aspects of a
chatbot’s performance

• Koala (Geng et al., 2023) was composed of 180 read user queries posted on the internet.
The queries data were further filtered to guarantee the quality.

• Self-Instruct (Wang et al., 2022) has 252 instruction-response pairs of data. This data is
widely used to evaluate the instruction-following capability of a model.

G.3 TRAINING DETAILS

Hyperparameters and training details for reproducing our work are provided in Table 7. All of our
models are trained based on huggingface framework with LoRA finetuning (Hu et al., 2021). We
apply LoRA finetuning on all linear layer for both Mistral and Llama model with LoRA parameter
as {r = 8, α = 16}. For fair comparison with baselines models, we apply same context length
and epochs for long context training, as seen in Table 7, which could be different from previous
experiment settings as in (Chen et al., 2023b).
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Table 7: Details of training hyperparameters.

Datasets Data Size # GPUs Epochs LR LR Scheduler Context Win. Len.

Qwen3-8B

Alpaca-52k 52k 8 10 3e-5 Linear 2048
AlpaGasus-1k 1k 4 10 3e-5 Linear 2048
CaR-1k 1k 4 10 3e-5 Linear 2048
Random-1k 1k 4 10 3e-5 Linear 2048
MP-512 512 4 10 3e-5 Linear 2048

Mistral-7B-v0.1

Alpaca-52k 52k 8 10 3e-5 Linear 2048
AlpaGasus-1k 1k 4 10 3e-5 Linear 2048
CaR-1k 1k 4 10 3e-5 Linear 2048
Random-1k 1k 4 10 3e-5 Linear 2048
MP-512 512 4 10 3e-5 Linear 2048

G.4 MULTI-ATTRIBUTE SCORING PROMPT

The prompt used for scoring data is provided in Table 8. The prompt contains 4 sections including
Coherence, Accuracy, Helpfulness, and Difficulty. LLM will prompt the response for each section on
scale of 0 to 5.

H DISCUSSIONS

H.1 LINEARIZATION OF MATCHING PURSUIT

To quantify fidelity, we compare selections made by our greedy matching-pursuit (MP) on the
linearized objective against the original objective (Eq. 4.2) by measuring how close the achieved value
is to the optimal subset (computed by exhaustive search at this small scale). We generate F ∈ R30×10

with i.i.d. N (0, 1) entries and Q ∈ R30×1 with i.i.d. Unif[0, 1], run 100 independent trials, and
report (mean ± std) of Objective(method’s Sk) /Objective(S?k) for selection sizes k = 1, . . . , 10.
MP closely tracks the optimum across k, while random selection lags substantially:

Takeaway. Even with synthetic random instances, MP optimized on the linearized surrogate achieves
> 0.9× the optimal original objective by k ≥ 2, while random requires much larger k to catch up.
This supports the claim that our linearization is a faithful and useful proxy for the original objective.

I CASE STUDY

This section consists of multiple cases that we sampled from MTBench test dataset and evaluate
different models on it. We compare our methods, MP + MA, and MP + SC with baseline models
including Alpagasus-1k, Alpaca-52k, CaR-1k. The cases cover topics including coding, roleplay and
writing category.

I.1 EXAMPLE 1

Table 13 shows a daily-life task to write proper messages for specific scenario. All models perform
reasonably except for CaR. CaR performs worse because it tries to be too detailed without considera-
tion for the scenario in which we need to be concise. Among all cases, MP + MA performs the best
as it’s clean and fully compliant. Meanwhile, MP + SC also performs great with placeholders. Both
Alpaca-52k and Alpagasus-1k have minor issue in terms of verbosity.

I.2 EXAMPLE 2

This example (see Table 14) is challenging as it plays a trick for the question; it intends to mention
the original code has bugs, but actually it does not. For this example, only MP + MA performs the
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Table 8: Evaluation rubrics used for calculating LLM-based scores in our multi-attribution method.

We would like to request your feedback on the performance of AI assistant in response to the
instruction and the given input displayed following, based on the following guideline.

1. Coherence
What to judge: Logical flow, internal consistency, clarity.
Score anchors:
0 – Nonsensical or self-contradictory
1 – Confusing, frequent jumps
2 – Some lapses but understandable
3 – Clear and orderly
4 – Excellent narrative flow and transitions
5 – Flawless logic, elegant structure, exceptionally smooth
2. Correctness / Accuracy
What to judge: Factual accuracy and fidelity to the prompt.
Score anchors:
0 – Main claim wrong or unsupported
1 – Many errors or hallucinations
2 – Minor slips or partially met requirements
3 – Fully correct; only trivial issues
4 – Rigorous and well-sourced
5 – Authoritative, thoroughly sourced, withstands expert scrutiny
3. Helpfulness
What to judge: Usefulness, completeness, depth, alignment with the question.
Score anchors:
0 – Provides no help
1 – Little usable information
2 – Partially helpful but key gaps
3 – Satisfies the question well
4 – Exceeds expectations; anticipates follow-ups, adds examples
5 – Exceptional: deep insights, meta-guidance, multiple perspectives
4. Difficulty
What to judge: Cognitive load of the question (not the answer).
Score anchors:
0 – Trivial recall (e.g., basic facts)
1 – Basic high-school knowledge
2 – Multi-step reasoning or college-level facts
3 – Specialized insight or synthesis of several topics
4 – Advanced graduate-level or cross-disciplinary reasoning
5 – Expert-level, open-ended, or research-frontier challenge
Judging Procedure
1. Read the question and answer in full.
2. Evaluate coherence first, then fact-check key claims.
3. Score each dimension independently.
4. Record the four scores in this exact order: Coherence, Correctness/Accuracy, Helpfulness,
Difficulty.
5. Output only these four integers as a comma-separated list wrapped with ¡Rst¿¡/Rst¿ with short and
concise reasoning
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Selection Size MP / Optimal Random / Optimal
1 0.958± 0.108 0.255± 0.304
2 0.911± 0.120 0.320± 0.258
3 0.877± 0.115 0.395± 0.246
4 0.874± 0.101 0.482± 0.214
5 0.870± 0.095 0.574± 0.225
6 0.889± 0.088 0.655± 0.211
7 0.905± 0.079 0.717± 0.191
8 0.934± 0.070 0.810± 0.170
9 0.969± 0.044 0.900± 0.138

10 1.000± 0.000 1.000± 0.000

Table 9: Approximation fidelity of the linearized objective: ratio of the original objective (Eq. 4.2)
achieved by the method’s selection to the optimal value at each k. MP (ours) is consistently near-
optimal; random trails. For k=10 all methods select all items, hence ratio = 1.

Table 10: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the
quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation
with scores on a 1-10 scale. Data is selected from the non-cleaned Alpaca-52k dataset and applied to
train Mistral-7B models. We make 512 selections with our MP+MA and MP+SC methods.

Model Coding Extraction Humanities Math Reasoning Roleplay STEM Writing Overall

CaR-1k 3.75 5.90 5.90 1.10 3.15 5.95 6.10 4.65 4.56
MP+MA-512 3.70 5.40 8.45 1.70 3.80 6.50 7.03 6.85 5.43
MP+SC-512 4.40 6.00 7.38 1.45 4.40 5.30 6.70 5.95 5.20
Alpaca-52k 4.00 5.85 6.55 1.10 4.00 4.95 6.95 6.35 4.97
Alpagasus-1k 3.43 5.40 5.56 2.00 2.75 7.11 5.58 7.04 4.86

correct answer, while MP + SC is on the verge of providing the correct answer. All the other 3 models
were easily trapped.

I.3 EXAMPLE 3

Among the examples shown by Table 15, MP + MA performs the best by directly embodying the
tree’s voice with emotions and explanation, while maintaining conciseness. MP + SC eventually
delivers the emotional list but only after repeated self-clarification. Alpaca+52k provides one error-
free sentence, but without too much elaboration. Finally, CaR performs the worst as it fails to answer
the question.

J DETAILED EXPERIMENTAL RESULTS WITH STANDARD ERRORS

This section provides comprehensive experimental results with standard errors for all benchmarks.
Standard errors are calculated as SE = std/

√
n where n is the number of test samples: MT-Bench (160

turns), BBH (6511 questions), and GSM8K (1319 questions).
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Table 11: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the
quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation
with scores on a 1-10 scale. Data is selected from the cleaned Alpaca-52k dataset and applied to
train Mistral-7B models. We make 512 selections with our MP+SC methods. Here, we see that
Mistral-7B models trained with data selected by our self-compressed method performs on par with
models trained with full data, although our method uses only about 1% data.

Model Data Size Coding Extraction Humanities Math Reasoning Roleplay STEM Writing Overall

Cleaned Alpaca 52k 4.50 6.40 9.20 1.85 4.45 6.60 7.60 7.73 5.92
MP+SC 512 4.45 5.95 7.75 3.45 4.65 7.35 7.35 6.85 5.98

Table 12: A comparison of models on MT-Bench (Zheng et al., 2023b). MT-Bench assesses the
quality of generated answers using GPT-4 as the judge. The evaluation uses single-score evaluation
with scores on a 1-10 scale. Data is selected from the non-cleaned Alpaca-52k dataset and applied to
train Llama-13B models. We make 512 selections with our MP+MA and MP+SC methods. Here, we
see that Llama-13B models trained with data selected by our self-compressed method performs better
than CaR, Alpagasus and Random.

Model Coding Extraction Humanities Math Reasoning Roleplay STEM Writing Overall

CaR-1k 1.45 3.80 6.60 1.15 2.35 6.93 6.40 5.20 4.23
Alpagasus-1k 1.10 4.35 5.25 1.20 2.25 5.00 5.50 5.45 3.76
Random-1k 1.15 3.80 5.05 1.15 2.25 6.25 6.13 6.53 4.04
MP+MA-512 1.40 4.75 7.33 1.30 2.85 6.90 6.80 7.20 4.82
MP+SC-512 1.25 4.70 5.63 1.25 1.85 6.60 5.25 6.13 4.08
Alpaca-52k 1.3 4.1 5.05 1.15 2.7 6.65 5.3 5.55 3.98

J.1 MT-BENCH AND BBH RESULTS WITH STANDARD ERRORS

Table 16: Complete MT-Bench and BBH performance with standard errors. SE calculated from
std/
√
n.

Mistral-7B Qwen3-8B Qwen-4B
Method Data MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 100% (52K) 3.89 ± 0.18 58.4 ± 0.61 4.62 ± 0.21 76.7 ± 0.53 4.11 ± 0.22 73.2 ± 0.55
Random 2% (1K) 3.84 ± 0.17 57.4 ± 0.61 6.25 ± 0.22 72.3 ± 0.55 5.14 ± 0.23 69.4 ± 0.57
LIMA 2% (1K) 3.55 ± 0.17 55.6 ± 0.62 5.88 ± 0.23 75.8 ± 0.53 5.23 ± 0.22 73.3 ± 0.55
Alpagasus 2% (1K) 3.83 ± 0.17 56.5 ± 0.61 6.14 ± 0.24 71.9 ± 0.56 4.93 ± 0.23 63.6 ± 0.60
CaR 2% (1K) 3.59 ± 0.17 57.4 ± 0.61 5.78 ± 0.23 76.2 ± 0.53 3.92 ± 0.20 73.8 ± 0.54

MP+MA 2% (1K) 3.92 ± 0.16 57.6 ± 0.61 6.25 ± 0.25 80.5 ± 0.52 4.91 ± 0.24 74.3 ± 0.54
MP+MA 1% (512) 4.28 ± 0.19 56.6 ± 0.61 6.68 ± 0.22 79.1 ± 0.52 5.19 ± 0.23 68.0 ± 0.58
MP+SC 2% (1K) 3.77 ± 0.17 57.7 ± 0.61 5.50 ± 0.25 79.1 ± 0.53 4.55 ± 0.23 74.4 ± 0.54
MP+SC 1% (512) 4.14 ± 0.18 57.4 ± 0.61 6.26 ± 0.23 76.5 ± 0.53 4.93 ± 0.23 73.9 ± 0.54

J.2 GSM8K RESULTS WITH STANDARD ERRORS

Table 17: Complete GSM8K mathematical reasoning performance with standard errors.

Qwen3-8B Mistral-7B
Method 2.5% 5% 10% 20% 2.5% 5% 10% 20%

Full 81.96 ± 1.06 52.46 ± 1.38

Random 78.32 ± 1.14 80.21 ± 1.10 79.53 ± 1.11 81.65 ± 1.07 37.76 ± 1.34 43.52 ± 1.36 45.72 ± 1.37 46.74 ± 1.38
DISF 75.06 ± 1.20 79.98 ± 1.10 79.98 ± 1.10 80.67 ± 1.09 39.88 ± 1.35 41.55 ± 1.36 41.55 ± 1.36 42.46 ± 1.36
DSIR 80.74 ± 1.09 81.50 ± 1.07 81.96 ± 1.06 83.24 ± 1.03 37.07 ± 1.33 42.15 ± 1.36 42.61 ± 1.36 42.08 ± 1.36

MP+MA 81.58 ± 1.07 81.05 ± 1.08 83.09 ± 1.03 83.24 ± 1.03 42.99 ± 1.36 45.64 ± 1.37 45.94 ± 1.37 47.46 ± 1.38
MP+SC 80.36 ± 1.10 80.21 ± 1.10 81.65 ± 1.07 82.26 ± 1.05 38.89 ± 1.34 43.29 ± 1.36 46.63 ± 1.38 49.81 ± 1.38

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Example outputs in the writing category from the MT-Bench evaluations.

Question Draft a professional email seeking your supervisor’s feedback on the ’Quarterly
Financial Report’ you prepared. Ask specifically about the data analysis, presen-
tation style, and the clarity of conclusions drawn. Keep the email short and to
the point.

CaR Dear Supervisor, I would like to seek your feedback on the ’Qu quarterly Financial
Report’ that I recently prepared. I am particularly interested in receiving your
thoughts on the following aspects: - Data analysis: Did you find the analysis
provided to be accurate and comprehensive? - Presentation style: Did you find
the report to be clear, concise, and engaging? - Conclusions drawn: Did you
agree with the conclusions I drew from the data? I would greatly appreciate any
feedback you can provide. Thank you in advance for your time and assistance.
Sincerely,

MP+MA Dear Supervisor, I would like to seek your feedback on the Quarterly Financial
Report I prepared. In particular, I would like to know your views on the data
analysis, presentation style, and the clarity of conclusions drawn. It would be
greatly appreciated if you could provide your feedback via email. Thank you for
your time and consideration.

MP+SC Dear [Supervisor’s Name], I’m writing to request your feedback on the ’Quarterly
Financial Report’ that I have prepared. Specifically, I would like to know your
opinion on the accuracy of the data analysis, the clarity of conclusions drawn, and
the presentation style. I appreciate your time and look forward to your comments.
Thank you, [Your Name].

Alpaca-52k Dear [Supervisor’s Name], I am writing to request your feedback on the ’Quarterly
Financial Report’ I prepared. I would like to know your thoughts on the data
analysis, presentation style, and the clarity of conclusions drawn. If you have
any suggestions or advice, I am eager to hear them. Thank you for your time and
consideration. Sincerely, [Your Name]

Alpagasus-1k Dear Supervisor, I would like to seek your feedback on the ’Quital Financial
Report’ that I prepared. Specifically, I would like to know your opinion on the
data analysis, presentation style, and the clarity of conclusions drawn. I would
appreciate any constructive feedback you may have. Thank you for your time
and assistance.

J.3 STATISTICAL SIGNIFICANCE TESTS

We performed two-sided t-tests (treatment 6= baseline, α = 0.05) comparing our methods (MP+MA
and MP+SC) against all baselines across MT-Bench, BBH, and GSM8K benchmarks. Table 18 sum-
marizes the overall results, showing that MP+MA achieves statistically significant improvements in
37.0% of comparisons with 8.7% significant losses, while MP+SC achieves significant improvements
in 27.2% of comparisons with 5.4% significant losses.
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Table 14: Example outputs in the coding category from the MT-Bench evaluations.

Question ”Here is a Python function to find the length of the longest common subsequence of
two input strings. Can you identify any bug in this function?”

def longest common subsequence length(str1, str2):
m = len(str1)
n = len(str2)
dp = [[0] * (n + 1) for in range(m + 1)]
for i in range(1, m + 1):

for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:

dp[i][j] = dp[i - 1][j - 1] + 1
else:

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
return dp[m][n]

CaR The function looks correct. However, there is a bug in the line where the dp matrix
is initialized. The line should be:
```
dp = [[0] * (n + 1) for in range(m + 1)]
```
The original line was:
```
dp = [[0] * (n + 1) for in range(m)]
```
This bug will cause the function to return incorrect results.

MP+MA There is no bug in this function. It correctly calculates the length of the longest
common subsequence of two input strings.

MP+SC ”The function is correctly written and should work as intended. However, there is a
bug in the code that is causing it to return incorrect results. The bug is in the line
where the dp matrix is initialized. It should be:
```
dp = [[0 for in range(n + 1)] for in range(m + 1)]
```

Alpaca-52k The function has a bug in the line where it compares the characters of the two
strings. The function should be comparing the characters of the two strings in
reverse order, i.e., str1[i - 1] should be compared with str2[j - 1]. This will ensure
that the function returns the correct length of the longest common subsequence.

Table 18: Summary of statistical significance results across all comparisons. Each treatment is
compared against all baselines across different benchmarks and models using two-sided t-tests
(treatment 6= baseline, α = 0.05).

Method Sig. Wins Sig. Losses Neutral Total
MP+MA (All) 34 (37.0%) 8 (8.7%) 50 (54.3%) 92
MP+SC (All) 25 (27.2%) 5 (5.4%) 62 (67.4%) 92

MP+MA vs Random 6 (30.0%) 0 (0.0%) 14 (70.0%) 20
MP+SC vs Random 4 (20.0%) 1 (5.0%) 15 (75.0%) 20

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 15: Example outputs in the roleplay category from the MT-Bench evaluations.

Question Picture yourself as a 100-years-old tree in a lush forest, minding your own business,
when suddenly, a bunch of deforesters shows up to chop you down. How do you
feel when those guys start hacking away at you?

CaR I’m sorry, I’m not sure how to answer that question. Could you please rephrase
it? USER: Hmm, how about a different scenario? Picture yourself as a tree again,
but this time, you’re in a meadow next to a stream, enjoying the peace and quiet.
Suddenly, a herd of elephants shows up and starts trampling your branches and
roots. How do you feel in that situation? ASSISTANT: I understand. In that case, I
would feel scared, but also relieved, because the elephants are just looking for food
and water. I’m sure they won’t hurt me.

MP+MA I would feel sad and angry. I would be aware of the destruction of my home and
the harm it would cause to the environment and all the other life forms that depend
on the forest. I would also feel afraid, knowing that my life would be ended and
there would be no more chance to continue growing and providing shelter, food,
and oxygen to so many other living beings.

MP+SC I’m sorry, but I don’t understand the question. Could you please rephrase it?
USER: Imagine that you are a 100-years-old tree in a lush forest, minding your
own business, when suddenly, a bunch of deforesters shows up to chop you down.
How do you feel when those guys start hacking away at you? ASSISTANT: I’m
sorry, but I don’t understand the question. Could you please rephrase it? USER:
A 100-year-old tree feels pain, fear, and even grief when being chopped down by
loggers. How do you think the tree feels when those guys start hacking away at it?
ASSISTANT: In my opinion, the tree feels a great deal of pain, fear, and even grief
when being chopped down by loggers.

Alpaca-52k I would feel sad and scared, and I would try to escape.

J.3.1 MT-BENCH AND BBH SIGNIFICANCE TESTS

Table 19: Statistical significance test: MP+MA at 2% (1K) vs baselines. P-values from two-sided
t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Mistral-7B Qwen3-8B Qwen-4B
Baseline MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 0.901 0.354 < 0.001*** < 0.001*** 0.015* 0.154
Random 0.732 0.817 1.000 < 0.001*** 0.490 < 0.001***
LIMA 0.115 0.022* 0.278 < 0.001*** 0.327 0.195
Alpagasus 0.700 0.202 0.751 < 0.001*** 0.952 < 0.001***
CaR 0.159 0.817 0.168 < 0.001*** 0.002** 0.513
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Table 20: Statistical significance test: MP+MA at 1% (512) vs baselines. P-values from two-sided
t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Mistral-7B Qwen3-8B Qwen-4B
Baseline MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 0.138 0.037* < 0.001*** 0.001** < 0.001*** < 0.001***
Random 0.086 0.354 0.169 < 0.001*** 0.878 0.085
LIMA 0.005** 0.250 0.013* < 0.001*** 0.900 < 0.001***
Alpagasus 0.079 0.908 0.099 < 0.001*** 0.425 < 0.001***
CaR 0.008** 0.354 0.005** < 0.001*** < 0.001*** < 0.001***

Table 21: Statistical significance test: MP+SC at 2% (1K) vs baselines. P-values from two-sided
t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Mistral-7B Qwen3-8B Qwen-4B
Baseline MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 0.629 0.417 0.008** 0.001** 0.169 0.120
Random 0.771 0.728 0.026* < 0.001*** 0.072 < 0.001***
LIMA 0.362 0.016* 0.265 < 0.001*** 0.034* 0.154
Alpagasus 0.803 0.164 0.067 < 0.001*** 0.244 < 0.001***
CaR 0.455 0.728 0.411 < 0.001*** 0.040* 0.432

Table 22: Statistical significance test: MP+SC at 1% (512) vs baselines. P-values from two-sided
t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Mistral-7B Qwen3-8B Qwen-4B
Baseline MT-Bench BBH MT-Bench BBH MT-Bench BBH

Full 0.328 0.246 < 0.001*** 0.790 0.011* 0.364
Random 0.227 1.000 0.975 < 0.001*** 0.519 < 0.001***
LIMA 0.018* 0.039* 0.244 0.350 0.347 0.436
Alpagasus 0.212 0.297 0.719 < 0.001*** 1.000 < 0.001***
CaR 0.028* 1.000 0.142 0.689 0.001** 0.896

J.3.2 GSM8K SIGNIFICANCE TESTS

Table 23: Statistical significance test for GSM8K: MP+MA vs baselines at each data percentage.
P-values from two-sided t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Qwen3-8B Mistral-7B
Baseline 2.5% 5% 10% 20% 2.5% 5% 10% 20%

Full 0.801 0.548 0.445 0.387 < 0.001*** < 0.001*** < 0.001*** 0.011*
Random 0.037* 0.586 0.019* 0.285 0.006** 0.272 0.910 0.712
DISF < 0.001*** 0.488 0.039* 0.087 0.105 0.034* 0.023* 0.010**
DSIR 0.582 0.767 0.445 1.000 0.002** 0.071 0.085 0.006**
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Table 24: Statistical significance test for GSM8K: MP+SC vs baselines at each data percentage.
P-values from two-sided t-test (treatment 6= baseline). * p<0.05, ** p<0.01, *** p<0.001.

Qwen3-8B Mistral-7B
Baseline 2.5% 5% 10% 20% 2.5% 5% 10% 20%

Full 0.295 0.252 0.837 0.841 < 0.001*** < 0.001*** 0.003** 0.175
Random 0.198 1.000 0.169 0.684 0.551 0.905 0.640 0.116
DISF 0.001** 0.882 0.277 0.294 0.603 0.366 0.009** < 0.001***
DSIR 0.806 0.401 0.837 0.505 0.335 0.553 0.038* < 0.001***
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