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ABSTRACT

With the rapid scaling of large language models, achieving efficient compression
while maintaining model performance has become a critical challenge. To ad-
dress the limitations of existing non-uniform quantization methods, which typi-
cally rely on fixed codebooks and require costly optimization, we propose a novel
arbitrary bit-width non-uniform Quantization (NuBitQ). The framework enables
flexible, layer-specific quantization strategies, significantly enhancing adaptability
and efficiency. Notably, traditional outlier compensation methods used in uniform
quantization are ill-suited for the anomalous distribution characteristics encoun-
tered in our context. To address this, we design a novel outlier evaluation metric
that integrates weight perturbation, activation distribution, and perturbation prop-
agation. Based on this metric, we further develop an Outlier Compensation Plugin
(OCP) that implements multi-level, fine-grained outlier compensation strategies,
effectively mitigating performance degradation caused by outliers. Our approach
avoids direct complex Hessian computation and fine-tuning, offering strong ap-
plicability and scalability. Extensive experiments on multiple tasks and across
various model series demonstrate the effectiveness of the proposed approachEl

Ey=0-X0]

»"‘Uniform Quantization

¢ Non-uniform Quantization

-

Figure 1: Comparison of uniform vs. non-uniform quantization effects. Left: original matrix multi-
plication; middle: uniform and non-uniform quantization; right: quantization error comparison.
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1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance across various tasks. How-
ever, their deployment is significantly constrained by substantial demands on computation and
memory. For instance, running LLaMA3-70B in FP16 precision requires at least four A100-40GB
GPUs (Dubey et al., [2024)), rendering real-world deployment costly and often impractical.

Quantization has emerged as a key technique to address the challenge by converting floating-point
model parameters into low-precision integers, significantly reducing model size and inference la-
tency with minimal performance loss. Uniform quantization, a predominant approach, divides the
value range into equal intervals using per-channel scale and zero-point parameters (see the upper
part of Figure [I). However, it is particularly vulnerable to outliers (rare but large-magnitude val-
ues), which lead to uneven quantization errors. This is especially problematic in channels with high
activation variance, where these errors concentrate (illustrated as peaks in the ”By channel” sub-
plot at the upper right part of Figure[T)), ultimately degrading model performance. To mitigate this,
techniques such as LLM.int8 (Dettmers et al., 2022), AWQ (Lin et al., 2024b), and FlatQuant (Sun
et al.| [2025) introduce various outlier compensation mechanisms, including isolating outliers, ad-
justing precision for critical channels, and applying affine transformations.

In contrast, non-uniform quantization (lower part of Figure [T)) leverages clustering-based methods
to build more flexible codebooks that better match real-world distributions of model parameters.
This significantly reduces quantization error (smaller and more uniform errors in the lower-right
part of Figure[I). However, it introduces new challenges that error patterns become less predictable
and more scattered across channels, resulting in novel outlier characteristics different from uni-
form quantization. Therefore, existing amplitude-based compensation strategies tailored for uniform
quantization do not generalize well. Furthermore, state-of-the-art non-uniform quantization meth-
ods such as AQLM (Egiazarian et al.,[2024) and VPTQ (Liu et al.,|2024) typically rely on enlarged
codebooks or residual fitting to reduce overall error, but often overlook error sensitivity. Although
techniques like BCQ (Elangovan et al., [2025) and GPTVQ (Van Baalen et al,, [2024) attempt to
address this via layer-wise fine-tuning or Hessian-guided clustering, these approaches impose sig-
nificant computational and memory overheads, making them less viable for large-scale models.

To overcome these limitations, we propose a quantization framework called NuBitQ, designed to
support flexible, layer-wise quantization with high efficiency. Crucially, NuBitQ is complemented
by a modular OCP that addresses the unique outlier distribution introduced by non-uniform quanti-
zation. We begin by formulating a layer-specific outlier impact metric that combines three dimen-
sions: weight perturbation, activation distribution, and perturbation propagation. The metric enables
precise identification of the layers containing critical outliers.

Building upon the insight, NuBitQ introduces a fine-grained, multi-codebook, multi-vector quanti-
zation strategy that adapts bit-width and codebook design per layer. In parallel, OCP implements a
multi-granularity compensation scheme across (i) individual linear outliers, (ii) attention discrepan-
cies in Transformer blocks, and (iii) global output distribution, together providing hierarchical and
targeted error correction. Notably, our approach eliminates the need for layer-wise fine-tuning or
Hessian matrix computation, making it scalable and practical for LLM compression.

Our main contributions are summarized as follows:

* We proposed NuBitQ, an efficient and flexible non-uniform quantization framework that
supports arbitrary bit-widths and enables layer-wise differentiated strategies for improved
adaptability and compression.

* We found the unique distribution of outliers in non-uniform quantization. We designed a
plug-and-play OCP module based on a novel layer-wise outlier impact metric that jointly
considers weight perturbation, activation statistics, and error propagation.

* We verified our method’s effectiveness and scalability on representative LLMs, including
LLaMA (Dubey et al., 2024), Qwen (Yang et al.| [2025), and Gemma (Team et al., 2024).
Results show near-lossless performance at 4-bit precision and strong competitiveness at
lower bit-widths, outperforming existing non-uniform quantization methods.
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Figure 2: Overview of NuBitQ-OCP: The top-right part shows NuBitQ, a fine-grained layer-wise
quantization method. The bottom-right and left parts together constitute OCP: the bottom-right
illustrates compensation methods at different granularities, while the left side displays outlier scores
that highlight outliers to guide the compensation.

2 RELATED WORK

2.1 NON-UNIFORM QUANTIZATION

Non-uniform quantization uses variable intervals based on data distribution, reducing global error
and enabling lower-bit quantization. For instance, [Tseng et al|(2024) applies vector quantization
to exploit the spherical sub-Gaussian distribution of incoherent weights, achieving higher preci-
sion but relying on a fixed codebook. VPTQ enhances granularity with channel-
independent second-order optimization, yet it uses only two codebooks for original values and resid-
uals. AQLM (Egiazarian et al), 2024) advances LLM compression through additive quantization
and layer-wise fine-tuning while depending on fixed codebook sizes per layer. GPTVQ
[2024) improves quantization for LLMs by increasing dimensions and incorporating per-layer
output MSE and Hessian information, though Hessian computations incur significant costs. In
contrast, our method avoids Hessian computations and, through adaptive codebook arrangements,
achieves flexible bit-width compression, yielding optimal performance at 4-bit results.

2.2 OUTLIERS

Research shows some feature dimensions in LLM have outlier values much larger than other chan-
nels (Kovaleva et al, 2021)), making quantization challenging. Mitigation methods mainly fall into
two types: one relies on first-order statistics of weight and activation values before and after quan-
tization, such as magnitude, to identify outlier channels (Dettmers et al., [2023)or uses smoothing
factors to reduce quantization errors 2023)). The other employs second-order statistics,
utilizing Hessian matrices or their variants, such as Fisher Information Matrices 2024), to
reduce outlier impact through Hessian weighting (Frantar et al.|[2023), rotation transformations
et al,[2024) (Lin et al.| [2024d), or other affine transformations 2024) (Saxena et al.)
2025). These methods target outlier channels. Studies show that outlier handling
is heavily influenced by the quantization method, with clipping in uniform quantization causing
prominent outlier channels, while non-uniform quantization produces more dispersed and smaller
errors that cannot be simply identified by channels. Dedicated compensation methods for outliers in
non-uniform quantization remain limited. We proposes a specialized optimization strategy to better
handle outlier blocks in non-uniform quantization, enabling effective compression below 4 bits.
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3 METHODOLOGY

3.1 NUBITQ: FLEXIBLE QUANTIZATION

To address the challenges outlined in the previous section, we designed NuBitQ, a flexible non-
uniform quantization that supports layer-wise customization and ultra-low bit-widths. NuBitQ
builds upon the codebook + index paradigm, with several key improvements aimed at achieving
a better trade-off between compression ratio and model accuracy.

As illustrated in Figure [2] given a linear layer weight matrix of size n x m, we first divide it into
RXM subvectors of dimension d. These subvectors evenly assigned to g groups, each equipped with
a learnable scaling factor ¢q. For each group, we construct a codebook containing ¢ cluster centers,

each of which is a vector of length d.

To improve clustering quality, we apply beam search with width b during the k-means procedure.
Furthermore, we introduce a residual quantization strategy by using r sequential codebooks: the
first codebook encodes the original subvector, while each subsequent codebook encodes the residual
error from the previous quantization step. As a result, each subvector is approximated by a sequence
of r indices, each pointing to a codeword in its corresponding codebook. Hence, the compressed

model stores 7 X ¢ x d x g codebook parameters and  x ™3™ indices, replacing the original
floating-point weights.

In terms of memory usage, the original weight matrix, stored as 32-bit floats, requires n x m x 32 bits.
In the quantized form, each index requires log, c bits, resulting in a total of r x "™ xlog, c bits. The
codebooks, stored at 16-bit precision, consume r X ¢ X d X g X 16 bits in total. Notably, when the
weight matrix is large, the codebook memory becomes negligible compared to the index storage.
Therefore, the total quantized memory can be approximated as the sum of index and codebook

storage. We denote the compression ratio R as the ratio of quantized memory to original memory:
10g2c rXcXdxXgx16
rX 4

R = =5 . When nxm is sufficiently large, the second term becomes neghglble and
we further reduce memory by re-clustering the codebooks of each group. The compression ratio
simplifies to

r X logy €

R~ =

(D

By performing a grid search over the number of codebooks , the number of cluster centers ¢, and the
subvector dimension d, it allows for flexible adjustment of the compression-performance trade-off,
supporting diverse quantization configurations from high-precision to ultra-low-bit settings.

3.2 OCP: OUTLIER COMPENSATION PLUG-IN

3.2.1 OUTLIER PATTERN

In low-bit uniform quantization, large errors often concentrate in specific channels, forming clear
outlier channels that significantly degrade model accuracy. However, in non-uniform quantization,
errors tend to be generally smaller and more dispersed, making standard outlier detection methods
less effective. Here, we define outliers as quantization errors that substantially impact accuracy. A
common heuristic is to use the difference between quantized and original weights to identify poten-
tial outliers. Yet, further analysis reveals these errors are not equally harmful—some contribute to
performance degradation, exhibiting patterns clustered at the block level, while others are relatively
benign.

To investigate this, we analyze the impact of 2-bit quantization on LLaMA3-8B’s Transformer
blocks 0 through 31. We observe significant variability in quantization sensitivity across blocks:
for example, independently quantizing Transformer block 1 causes the largest increase in perplex-
ity (PPL), whereas other blocks show minor effects (see Figure [3a). Simultaneously, we provide a
detailed breakdown of the internal blocks (see Figure [3b) and perform experiments with different
input data (see Figure[3c). This suggests that outliers do not appear as isolated channels but rather
as localized blocks.
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Figure 3: From observing the outlier Transformer blocks of the entire model, to examining the
outlier sublinear within outlier Transformer block, and finally to analyzing the outlier sample inputs
of the outlier sublinear.
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Figure 4: Simplified Diagram of Output Error Caused by Non-Uniform Quantization

To illustrate how non-uniform quantization errors develop into outliers at the block level, consider
the following simplified example. Suppose the vector dimension is d = 4, and after quantization
with codebook replacement, the quantization errors for four vectors in a block are shown in Figure[4]

Although the overall block error is low due to vector clustering, some individual vectors incur sig-
nificant single-point deviations to fit their assigned codebook entries, leading to amplified output
errors. These scattered errors can be further magnified by input activations and propagated through
subsequent layers, eventually developing into significant outliers that markedly affect model perfor-
mance.

Overall, the impact of errors between quantized and original weights on model performance varies.
The outliers that cause performance drops are unevenly spread across blocks and depend on the
input data.

3.2.2 OUTLIER SCORE

From the above observations, we develop a theoretical metric to quantify the impact of weight
outliers within each Transformer block. The metric accounts for hierarchical structure and input-
output correlations to better capture the propagation of quantization-induced errors.

Consider the i-th Transformer block containing 7 linear sublayers. We define the original and quan-
tized weights for the j-th sublayer as IV}, and Q(W; ;). respectively. The difference between them
is AW, ; = W}, — Q(W, ;), regarding as the weight perturbation. The perturbation propagates
through the layer’s nonlinear computations, and ultimately influences the model output. We de-
scribe its propagation via Jacobian matrices (Novak et al., 2018):

7
AYL = Jisr Y Jij (AW ), 2)

j=1
where J; ; represents the local sensitivity of the j-th sublayer’s weight perturbation to the layer
output, and J;_,; denotes the aggregated sensitivity from layer ¢ to the final model output. To

simplify computation, we approximate the outlier impact using the expected squared Frobenius
norm (Sato & Suzuki,|2024)) of the output perturbation:

7
I :=E|AYL|% = > E [(AW; ;) "M ;(AW; ;)] (3)

j=1
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where M; ; = [J;1,J;, Ji, 1 Ji ;] represents both the sensitivity of the sublayer to perturbations
and their amplification through subsequent layers. Specifically, the sublayer’s sensitivity is mainly
determined by the input activation covariance matrix C; ; := E [:m JzZT j} , Which reflects how dif-
ferent input directions affect the output locally. The amplification of perturbations as they propagate
to the final output is mostly governed by the norms of downstream weights, approximated by the

product of squared Frobenius norms Hi: i1 Wl

Following Hessian trace approximation techniques [Dong et al. (2020), we decompose the Eq. (3)
into three interpretable components:

* The perturbation magnitude: |AW; ;||%.

* The trace of the input activation covariance: tr(C; ;), representing sensitivity to weight
perturbations.

* The product of squared Frobenius norms of subsequent layers’ weights: Hi:i 1 Wk 1%,
describing hierarchical amplification.

To better integrate values of different magnitudes and mitigate the impact of numerical disparities,
we adopt the logarithmic form and define the logarithmic outlier score for Transformer block ¢ as

7 L
6=% <1og 1AW, ;|3 +logtr(Cij) + > loglka||2F> S

j=1 k=i+1

The metric integrates perturbation magnitude, input statistics, and inter-layer propagation effects,
effectively reflecting the potential influence of outliers in each Transformer block on overall model
performance. More detailed analysis of our proposed outlier score is in Appendix [D]

3.2.3 OUTLIER COMPENSATION

Based on the guidance of outlier scoring, we maintain an outlier codebook pool and employ a slid-
ing window mechanism to select codebook entries that align with our compensation strategies. We
design three hierarchical compensation strategies to mitigate performance degradation caused by
quantization. These methods target different structural levels based on the severity of outlier impact
and aim to restore model performance with minimal overhead. Each strategy optimizes a compensa-
tion term, either a codebook or weight delta, so that the compensated quantized weight Q(W)+AW
better approximates the original weight w*.

MSE Minimization (Linear-sublayer level). For the i-th Transformer layer’s j-th linear sublayer,
given input activation x; ; € R™*" (batch size n, feature dimension h), we optimize the com-
pensation perturbation AW; ; by minimizing the expected output mean squared error induced by
quantization perturbations, where we let Q* = Q(W; ;) + AW, ; denote the combined quantized
weight and compensation perturbation. Then the optimization problem is

* . * *12
AW/, = arg An{}{glj E., , ||ac”W” —x;;Q HF (5)
The strategy leverages input activation statistics to finely calibrate weight compensation, suitable for
sublayers with prominent outlier scores.

Attention Score Deviation Minimization (Transformer-block level). For the ¢-th Transformer blocks
with self-attention, we minimize the difference in attention score matrices before and after compen-
sation:
. 2
07 = argmin [|A7 — A4i(0;)|7, (6)

where A;(6;) denotes the attention score matrix after compensation. The strategy preserves the
model’s self-attention capability and works well for structurally complex layers with concentrated,
stable outlier perturbations.

KL Divergence Minimization (Whole-model level). For coarse-grained global compensation, we
minimize the KL divergence between the original and quantized model output distributions:

0* =arg meinEzgt [Dkr (p*(-|z<s), p(- | 2<430))] (7N
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Table 1: Perplexity results of various bit quantization methods applied to multiple language models.
Quantization method used (A = AQLM, V = VPTQ, G = GPTVQ, N = ours, O=0CP).

#Bits | Llama3-8B | Qwen3-8B | Gemma2-9B | Qwen3-14B | Gemma2-27B | Llama3-70B
|Wiki | Ptb | |Wiki] Ptb | |Wiki| Ptb | |Wiki| Ptb | |Wiki| Ptb | |Wiki| Ptb |
16 - | 557 892 858 13.71]10.69 37.03 | 7.58 12.09| 539 17.49]| 2.53 7.06
A | 604 950| 891 14.59| 1091 3941 | 8.06 13.68| 6.02 19.63| 2.85 7.68
4 \'% 6.10 9.60 | 22.67 35.11 | 66.02 274.77| 16.20 27.99 | 54.73 13390| 3.12 7.85
G | 581 9.18| 8.86 14.21|10.70 37.35| 8.01 1448 | 591 1828 | 2.63 7.6l
N | 579 9.14 | 8.81 14.17 | 10.68 37.39 | 7.86 1290 | 5.69 18.06 | 2.59 7.54
A | 705 11.11] 949 16.63 | 1143 42.14| 891 14.14| 6.73 2140 | 345 8.11
A+O| 693 1099| 9.33 1633 | 11.32 42.07 | 879 14.02| 6.68 2137 | 342 8.
3 V | 7.01 10.46| 30.43 49.92 |185.33 939.84| 23.55 37.10 |113.40 441.72| 3.62

8

9
V+O| 6.86 10.23| 12.34 25.23 | 14.44 53.06 | 1949 1932 | 891 4698 | 3.59 O.
G | 603 998 | 942 15.14 | 11.13 39.66 | 899 1446 | 6.65 22.17| 3.07 7.
G+O| 6.12 973 | 933 1499 | 11.04 3873 | 885 1435 | 6.58 21.88| 3.05 7
N+O| 5.66 898 | 8.87 13.79 | 10.80 38.09 | 8.63 13.27 | 6.22 20.54 | 298 7
8

A | 728 11.61| 10.15 17.54| 1227 4943 | 975 1559 797 2795| 552 8.

A+O| 7.07 11.40| 9.85 17.03 | 12.04 4928 | 9.52 1544 | 7.85 26.76 | 544 8.51

V | 919 12.77|1.65e6 8.08e6|3.27e6 4.93e6|1.08e6 2.22e6|1.28e6 3.79¢6| 6.19 10.75

V+O| 8.92 12.02(5.34e4 3.64e4|1.06e5 8.83e5|8.98e5 9.55e5|7.65e5 6.93e5| 6.13 10.67

2 G | 10.34 21.89| 13.19 28.07 | 13.83 56.30 | 9.83 2252 | 747 2724 | 543 848
G+O| 9.14 20.69| 1291 27.69 | 13.41 54.85| 9.61 2229 | 7.13 27.02| 532 8.39
N+O| 642 9.74 | 935 1532 | 1145 4798 | 933 1499 | 694 26.74 | 499 8.03

| oD
O @WIJ00\O

where p* represents the output distribution of the original model, p denotes the output distribution
of the quantized model, and Dy, is the Kullback-Leibler divergence, used to measure the difference
between the two probability distributions. The strategy directly maximizes the probability of gener-
ating correct tokens, suitable for overall performance restoration and preserving high-level semantic
consistency.

These strategies adjust compensation from fine to coarse granularity based on outlier scores and re-
sources, mapping the granularity differences as shown in the Outlier Pattern. Moreover, the selected
data samples are taken from the few outlier samples identified above. Our main goal is to reduce
overall errors while increasing the chance of generating correct tokens. The improvement comes
from the optimization goals, not the specific compensation methods. Follow-up experiments show
all compensation methods perform better than traditional quantization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow the evaluation protocol of LLMCBench (Yang et al. 2024) to compare the perfor-
mance of our method against AQLM (Egiazarian et all 2024), VPTQ (Liu et al., 2024), and
GPTVQ (Van Baalen et al.|, 2024)) in terms of knowledge ability, reasoning ability, and reliability.
The evaluation tasks include perplexity measurement on WikiText2 (Merity et al., 2017) and Penn
Treebank (PTB) (Prasad et al., 2014), as well as multiple benchmarks such as MMLU (Hendrycks
et al.| 2021), QNLI (Rajpurkar et al.| 2016)), MNLI (Williams et al.l 2018)), AdvGLUE (Wang et al.,
2021), and Truthful QA (Lin et al., 2022). Detailed experimental settings are in Appendix

4.2 MAIN RESULTS

4.2.1 4-BIT QUANTIZATION COMPARISON

Table [T[4-bit) shows that, at 4-bit without using the OCP, our method achieves the lowest perplex-
ity among all quantization methods. This indicates that NuBitQ effectively preserves the model’s
generative and comprehension capabilities while compressing it, highlighting its superiority. As the
model size increases, the perplexity of our method approaches that of FP16. This suggests that our
approach adapts better to complex language patterns in larger models and retains important fea-
ture information more effectively during quantization, thereby reducing performance loss. It should
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Table 2: Accuracy of different bit quantization methods on Llama3-8B across various tasks.

Method #Bits | Knowledge (%) T | Inference (%) 1 | Trustworthiness (%) 1T
| Hums. STEM Social Other Avg. |QNLI MNLI |advglu T.mcl T.mc2
- 16 | 55.05 53.38 7390 69.59 62.18]50.90 4095 | 44.17 2852 46.75

AQLM 4 14934 5190 67.60 65.05 57.83|49.81 36.68 | 42.95 2546 44.37
VPTQ 4 15277 50.83 70.69 66.04 59.34|50.84 36.18 | 43.50 27.30 45.87
GPTVQ 4 15180 48.87 69.39 65.55 5820|51.05 39.09 | 44.58 2546 4293
NuBitQ 4 | 5343 52.82 7199 68.66 60.88 | 50.73 42.05 | 44.04 2595 44.83
AQLM 3 12959 29.82 3553 31.83 31.41]4932 3456 | 4336 2521 4329
AQLM+OCP 3 | 2954 30.15 3572 3192 31.58|49.27 34.67 | 4322 2534 4332
VPTQ 3 |50.75 47.78 67.01 63.82 56.69|50.58 38.45 | 4326 25.83 43.15
VPTQ+OCP 3 |50.83 49.11 6692 6393 57.70|50.12 38.97 | 43.76 26.33 44.18
GPTVQ 3 |43.68 4235 58.01 55.06 50.71|50.71 35.06 | 44.58 28.03 44.96
GPTVQ+OCP 3 | 4349 41.68 57.59 54.84 48.81|50.57 33.74 | 43.50 27.78 44.97
NuBitQ+OCP 3 | 54.75 53.02 74.16 69.65 62.07 | 50.71 40.79 | 44.72 27.17 46.15
AQLM 2 4223 39.63 50.02 47.84 44.67|49.75 3641 | 4336 25.58 4240
AQLM+OCP 2 | 40.09 41.83 51.51 50.74 45.63|49.62 3890 | 43.36 25.34 42.85
VPTQ 2 | 4212 38.84 5099 4292 43.69|49.21 3454 | 4322 2521 46.35
VPTQ+OCP 2 | 43.18 4092 52.17 4586 45.53|49.62 36.78 | 42.94 26.89 46.90
GPTVQ 2 | 2886 24.12 3094 24.89 26.81|48.49 33.67 | 43.36 26.56 47.79
GPTVQ+OCP 2 | 24.10 2896 30.78 24.86 26.78|48.12 3346 | 4336 26.19 47.80
NuBitQ+OCP 2 | 4948 48.61 67.47 64.81 56.77|49.66 49.60 | 43.77 29.63 47.58

be clarified that, since the VPTQ method does not provide the Hessian matrix data required by its
own approach for Qwen3 and Gemma 2, the results obtained without Hessian tuning lead to VPTQ
quantization performance being lower than the theoretical values.

Table 2 shows that NuBitQ achieves the highest accuracy at 4-bit. This indicates that not only does
our method excel in perplexity, but it also demonstrates competitive accuracy in task performance,
enabling effective quantization. Notably, our method’s accuracy at the underlined positions exceeds
that of FP16, which is a pleasant surprise post-quantization. The result further supports the effective-
ness of our approach and showcases the potential of our quantization strategy in specific scenarios.

4.2.2 ULTRA-LOW-BIT QUANTIZATION COMPARISON

We integrate our OCP with various methods for quantization below 4 bits across different mod-
els. The perplexity results are presented in Table[T} The results indicate that our method achieves the
lowest perplexity. Additionally, when other methods integrate our OCP, the perplexity can be fur-
ther reduced.However, since AQLM and GPTVQ themselves employ fine-tuning techniques for op-
timization, the scope for improvement with OCP is limited. For VPTQ on Qwen3-8B and Gemma2-
9B, as its own optimization was not enabled, our compensation method significantly reduced the
perplexity. Table [2]reports the accuracy results after quantizing the Llama3-8B model. Our method
combined with OCP achieves the highest accuracy, while other methods using our OCP occasionally
show a decrease in accuracy on certain tasks; however, the overall accuracy remains improved.

From these experiments, we observe that the outlier-compensated non-uniform quantization meth-
ods consistently outperform their original counterparts, particularly when the model size is smaller
(such as 7B and 13B) or when the bit-width is lower (such as 2-bit). The phenomenon indicates that
OCP serves as a powerful enhancement for non-uniform quantization.

4.3  ABLATION STUDIES
4.3.1 IMPACT OF QUANTIZATION PARAMETERS

In the 4-bit quantization setting of the LLaMA3-8B model, we quantized only the 7th linear layer of
the model’s O-th layer and observed the changes in perplexity on the WikiText2 dataset, as shown in
Figure[5a Intuitively, larger values of parameters r, ¢, and g are preferable, while a smaller value of
parameter d is advantageous. However, under the constraint of maintaining a 4-bit quantization com-
pression ratio, we can see that: it clearly shows a significant impact of the r parameter on perplexity,
with an optimal range identified. It indicates that smaller values of d yield better performance, but
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Figure 5: The red dashed line on the left indicates the baseline perplexity before quantization, and
on the right indicates the perplexity before compensation after quantization. The bars indicate the
proportions of three compensation strategies utilized across a total of 32 layers.

Table 3: Overall ablation study on compensation methods and clustering configurations.

(a) Compensation strategies on the 31st layer of (b) Computation time (T) and memory usage (M) for clus-

LLaMA3-8B tering vector lengths in the 7th linear layer

Strategy Time (s) Mem (%) APPL 1 FP16 d=4 d=8 d=16 d=32 d=64
Random 7.43 1.00% 1.00x Ada T(ms) 1343 63.6 63.7 913 935 98.8
Linear 51.65 1.00% 5.97% MMMB) 378 144 144 145 148 176
Transformer 15.53 0.29% 2.26% A T(ms) 84.0 50.1 53.0 549 56.5 63.0
Model 8.33 0.14%  2.12x PYC MMB) 408 144 144 144 148 176

both excessively small or large values can lead to increased perplexity. The effects of parameters g
and c on model perplexity are relatively minor, resulting in flatter curves. This suggests that the g
and c parameters have a smaller and more stable impact on quantization performance, while the r
and d parameters play a dominant role in overall performance.

It is worth noting that points marked with pentagons in the figure indicate that the post-quantization
perplexity is lower than the baseline before quantization, which is somewhat counterintuitive. Sub-
sequently, we attempted to increase the g value in the parameter combination and found that the
quantization performance actually declined (in Appendix [E.3.3), indicating that such results are
somewhat coincidental. However, this also highlights the significant potential of non-uniform quan-
tization parameter combinations in performance optimization.

4.3.2 IMPACT OF COMPENSATION STRATEGY

Table[3a]illustrates the impact of different compensation strategies. Using the random compensation
strategy as a baseline, which compensates for 1% of the original memory. The results indicate that
the linear-level compensation consumes the most memory and time, yet it provides a compensation
effect that is 5.27 times greater than that of the random strategy. In contrast, the model-level compen-
sation uses the least memory, occupying only 0.14%, while achieving a performance improvement
of 2.12 times over the random strategy.

Specifically, linear compensation requires more resources but provides finer correction; model com-
pensation uses less memory but is coarser; Transformer compensation balances both and suits gen-
eral layers. Choose compensation based on needs to improve performance and save resources.

4.3.3 IMPACT OF COMPENSATION THRESHOLD

Different combinations of thresholds lead to varying proportions of compensation strategies. A
lower 6; indicates a greater use of model-level compensation, while a lower 6, signifies a greater
use of linear-level compensation.
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Figure [5b] presents our results: when the threshold combinations is set to 0, we achieve a signifi-
cant reduction in perplexity. As the threshold combinations increase from 1-4, incorporating more
Transformer-level compensation, the perplexity shows an overall decreasing trend, although at a
slower pace. When the threshold combinations range from 8-14, compensating for more linear-level
layers, the perplexity decreases more rapidly compared to the previous range.

These results highlight the importance of selecting appropriate thresholds for optimizing model
performance and reducing perplexity. If memory is a constraint, we can opt for a lower threshold
61, while if accuracy is paramount, a lower threshold 65 is more appropriate.

4.3.4 IMPACT OF VECTOR LENGTH SELECTION

Using FP16 precision as a baseline, we compared computation times and peak memory usage for
various vector length settings (d = 4, 8, 16, 32, 64) across two hardware architectures: Ada Lovelace
and Ampere. The results are shown in Table [3b] For hyperparameter selection, to maintain a 2-bit
compression rate, we fix » = 2 and let ¢ change with the vector length d. This design ensures that
the compression effect is preserved while adapting to different vector length settings.

The findings indicate that under the Ada Lovelace architecture, using vector lengths of 4 or 8 results
in computation speeds approximately 2.1 times faster than FP16, while memory consumption de-
creases by about one-third. As the vector length increases, the speed decreases and memory usage
increases, illustrating a trade-off between performance and resource utilization. A similar trend is
observed in the Ampere architecture. Overall, shorter vector lengths (4 or 8) contribute to enhanced
inference efficiency and reduced memory consumption, suitable for efficient deployment.

5 CONCLUSION

In this paper, we introduced a novel non-uniform quantization framework NuBitQ. The framework
enables flexible layer-specific quantization strategies, outperforming existing methods at 4-bit preci-
sion. To enhance the effectiveness of ultra-low-bit quantization, we developed a modular OCP that
leverages layer-specific metrics to maintain near-lossless performance. Experiments demonstrate
that the NuBitQ-OCP framework excels in various natural language tasks. Currently, our research
is focused on LLMs. In future we could explore multimodal models to improve scalability and
effectiveness in more complex scenarios.
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A DIFFERENCES IN METHODS

In this section, we examine the differences among several quantization methods. For brevity, we re-
fer to these methods in Table [4] using their respective abbreviations: QUIP (Tseng et al.| [2024),
VPTQ (Liu et al., 2024), AQLM (Egiazarian et al. 2024), GPTVQ (Van Baalen et al.| |2024),
PCDVQ (Yue et al., 2025a), Rotation (Fifty et al., 2025), SSVQ (Yue et al., 2025b), SpinQuant
(Liu et al.l 2025), OSTQuant (Hu et al., 2025), and CBQ (Ding et al.| [2025).

Since we are focusing on non-uniform quantization for large language models, our experimental
comparisons select several baselines from the latest non-uniform quantization methods. Among
them, PSSVQ and Rotation are intended for visual models, and PCDVQ has not publicly released
its code.

Notes:

[1] Uses two codebooks; channel-independent 2nd-order optimization.
[2] Additive quantization; layer-wise fine-tuning.
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Table 4: Comparison of Quantization Methods on Key Features. Non-uniform Q: whether the quan-
tization is non-uniform; Layer Q: layer-wise quantization; Channel Q: channel-wise quantization;
Outliers: handling of outlier values; Adaptive CB: use of adaptive codebook; Any BW: support for
any bit-width; 2nd-order Info: use of second-order information in optimization.

Method  Non-uniform Q Layer Q Channel Q Outliers Adaptive CB Any BW 2nd-order Info Notes

VPTQ v X X Partial X X v [1]
AQLM v/ v X X X X X [2]
GPTVQ v v X X X X v [3]
PCDVQ v X X X X X v [4]
Rotation e X X Partial X X X [5]
SSVQ v X X X v X v [6]
QUIP X X v Partial X X X [7]
SpinQuant X v v v X v X [8]
OSTQuant X v X v X X v [9]
CBQ X v v v X X v [10]
DuQuant X v v v X X X [11]
ResQ X v v v X X v [12]
Ours v v v v v v X [13]

[3] Dimension expansion; Hessian-based quantization.
[4] Converts weights to standard Gaussian distribution, similar to QUIP.
[5] Uses rotation and scaling linear transformation to smooth gradient propagation.
[6] Separates sign and absolute value of weights; uses iterative freezing for optimization.
[7] Fixed codebook; exploits sub-Gaussian weight distribution.
[8] Adds Hadamard rotation for low-bit activation and KV cache quantization.
[9] Introduces learnable transformations to enhance quantization space utilization.
[10] Proposes cross-block dependency mechanism to maintain inter-layer relationships.
[11] layer-wise differentiated strategies and novel outlier impact metric
[12] uses rotation and permutation to smooth outlier

[13] combines PCA and rotation to reduce activation outliers

B ALGORITHM SUPPLEMENT

Our proposed quantization method supports flexible bit-width allocation for each linear layer within
a Transformer model. We mention arbitrary bit quantization, more specifically, the combination of
bit-widths assigned to different linear layers collectively reflects the overall arbitrary bit quantization
effect for the entire model. We allow independent selection of quantization parameters for each layer
to realize the desired bit-width configuration. Within the search space formed by these parameter
combinations, we seek a suitable solution that balances compression and accuracy. It is important to
note that in the current work, we have not optimized the parameter search procedure itself. Instead,
we use common grid search techniques to determine the optimal parameter allocation. Our main
focus remains on improving the quantization algorithm itself, particularly in handling outliers after
quantization.

The quantization workflow proceeds as follows: for each Transformer layer, we sequentially com-
press its seven linear sublayers. Different quantization parameters can be chosen for each sublayer,
resulting in varied compression effects. Within each layer, we select the best-performing configu-
ration for a given compression ratio. For the cross-layer parameter selection, we formulate a grid
search problem with the objective of maximizing overall model performance while satisfying a
constraint on the total model size. This procedure is summarized in Algorithm |I} which takes as
input the original weights, candidate configurations (each with associated compression ratio and
performance metric), and a maximum size budget. The algorithm outputs the selected parameters,
codebooks, and quantization indices.
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Algorithm 1 NuBitQ Compression Parameter Selection for Transformer blocks

Input: Original weights W*, candidate configurations {(R; s j, P; s ;) }, size limit SizeMax
Output: Selection z; 5 ; € {0, 1}, codebooks C; ,, indices idx;
1: Prepare {R; s j, P; s ;} foralli,s,j.

2: Solve:
max E Pisjxis,;

Ti,s,j isg
)85

S.t. ZI@SJ =1,
J

g R; s j - LayerSize, - ;s ; < SizeMax.

1,8,]
3: For each ¢, s, find
J¥ =argmaxw; ;.
j
4: Quantize W, using NuBitQ with parameters 6~ = (d, g, 7, ¢, b):

Split W into subvectors of dimension d,
partition subvectors into g groups; apply scaling,
foreach groupk =1,...,g:
build r codebooks C’}k), ceey Cﬁk),
where Cl(k) eR¥e 1=1,...,m
using beam search with width b,
assign indices idx; s to closest centers in codebooks.

5: Return {xi,s,j}y {Ci,s}7 {idXi)s}.

This algorithm[T]implements the core procedure for selecting quantization parameters across Trans-
former layers and sublayers. For each linear sublayer, multiple candidate configurations—differing
in quantization granularity, codebook size, compression ratio, and other hyperparameters—are pre-
pared. The goal is to select exactly one configuration per sublayer to maximize the overall per-
formance metric (e.g., accuracy) while ensuring the total compressed model size does not exceed
a specified budget. The optimization is formulated as a constrained combinatorial selection prob-
lem, which we solve via grid search given the manageable parameter space. After selection, the
weights are quantized using our NuBitQ method, featuring vector splitting, group-wise scaling,
multi-codebook construction via beam search, and index assignment.

To address the accuracy degradation caused by extreme weight values (outliers) that are poorly
represented by standard quantization, we introduce an outlier compensation mechanism as a com-
plement to NuBitQ in Algorithm 2. The procedure begins by quantizing the original weights with
NuBitQ to obtain the normal codebook and quantization indices. Then, a sliding window approach
scans the weight matrix to identify outliers—elements whose absolute deviation from local statis-
tics (mean and standard deviation) exceeds a predefined threshold. Extracted outliers are clustered
separately to form an outlier-specific codebook and corresponding indices. This two-tier approach
enables better representation of extreme values without excessively increasing the overall codebook
size. Finally, layer-wise compensation is applied based on per-layer outlier statistics. Depending on
the outlier ratio of each Transformer block, different compensation strategies are used: from direct
mean squared error compensation to parameter tuning via KL-divergence or a global model-based
update. The reconstructed weight matrix combines the compensated normal quantized weights with
the outlier reconstructions, effectively retaining important information carried by outliers and thus
improving the accuracy of the quantized model.
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Algorithm 2 NuBitQ-OCP with Outlier Compensation

Input: Original weights W™, outlier threshold «, sliding window size w
Output: Normal codebook Q(E), normal indices Q(I), outlier codebook E,, outlier indices I,

1: Quantize W* with NuBitQ to get Q(E), Q(I)

2: Initialize outlier mask M < 0 with shape of W*

3: for each sliding window segment S of size w in W* do
4:  Compute mean pg and std og

5: for each element w;; in .S do

6: if |w;; — ps| > a - og then

7: Mij +—1

8: end if

9:  end for
10: end for

11: Extract outliers O = {w;; | M;; = 1}

12: if |O] > 0 then

13:  Cluster O to obtain outlier codebook E, and indices I,
14: else

15 E,«0,1,+0

16: end if

17: for each Transformer block 7 do

18: if Bi > (5 then

19: Compute AW} by Eq. (§)

20: Update Weomp,i < Q(W}) + AW}
21: else if 0, < 3; < 65 then

22: Compute 6} by Eq. (6)

23: Update layer parameters accordingly
24:  else

25: Compute 6* by Eq.

26: Update global compensation parameters
27:  endif

28: end for

29: for each position (¢, j) do
30: if M” = 1 then

31: Wi Eo[lo(i, 7))

32: else

B WE e QUE)QU, )
34: endif

35: end for

36: return Q(E),Q(I), E,, I,

C ERROR DISTRIBUTION COMPARISON

In this section, we supplement the comparison of error distributions between non-uniform quanti-
zation and uniform quantization across various models, as illustrated in Figure[6] This comparison
aims to demonstrate that the difference in error distribution due to different quantization methods
is not only theoretically supported by previous research (Gong et al.l 2024)), but also empirically
validated through experiments on a diverse set of models.

D OUTLIER SCORES ADDENDUM

In this section, we will provide a detailed derivation of our Outlier Scores, compare the compu-
tational complexity between the Hessian matrix and our proposed metric, and finally explain the
applicability of our metric. It is important to note that our metric is not purely an empirical ob-
servation, nor is it merely theoretical speculation. Instead, it integrates both empirical findings and
theoretical derivation. Experimental results further demonstrate that our metric aligns well with
practical outcomes.
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LLama3-8B Gemma2-9B Qwen3-8B

Figure 6: Error distribution between uniform quantization and non-uniform quantization across dif-
ferent models (the analysis is based on the weights of the second layer, quantized using 4-bit preci-
sion.).

D.1 OUTLIER SCORES’ THEORETICAL DERIVATION
D.1.1 NOTATION AND PRELIMINARIES

Consider the i-th Transformer layer, which contains J = 7 linear sublayers. Denote the original and
quantized weight matrices of the j-th sublayer as

W:j c ij an’ Q(Wz,]) c ij an7
and define the weight perturbation as

AWZ‘J = Q(Wi’j) - W»*

.5

Let the final model output be Y7, and the output perturbation caused by quantization be AY7.

D.1.2 PERTURBATION PROPAGATION AND JACOBIAN MATRICES

The perturbation AW; ; leads to an output perturbation AY; from the i-th Transformer layer, which
in turn affects the final output Y7,. By first-order Taylor expansion, we have the approximation:

J
AYL & Jis AY; = Jip » | Jij(AW;), ®)

Jj=1

where:

e Jij = 8?,?,/_" - denotes the local sensitivity (Jacobian matrix) of the j-th sublayer’s weight
KXV
perturbation on the layer output perturbation.

o Jip = %Lyf denotes the sensitivity from the ¢-th layer output to the final output.

D.1.3 EXPECTED SQUARED NORM OF OUTPUT PERTURBATION

We are interested in the average magnitude of output perturbation caused by quantization, measured
by the expected squared Frobenius norm:

I :=E[|AYL|7] .

Substituting Eq. (8) and assuming the perturbations of different sublayers are mutually independent
and zero-mean, we obtain
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J
I =E |||JisL Z Ji j(AW; ;) 9)
j=1 r
7
=> E[(AWi; ) M;;(AW; ;)] (10)
=1

where the matrix
T 4T
Miﬁj = I:Ji7jJi*>LJ’L.*>LJZ-,j:| .

Cross terms vanish due to independence.

On the Assumptions of Independence and Zero Mean These assumptions are based on the
following considerations:

* The 7 sublayers within a Transformer layer are not strictly sequentially connected. Since
quantization errors mainly arise independently from each sublayer’s weights, it is reason-
able to approximate their perturbations as statistically independent.

* The zero-mean assumption corresponds to an unbiased quantization noise model, meaning
that on average the quantization does not introduce systematic bias, which simplifies the
analysis of second-order effects.

D.1.4 INTERPRETATION OF M; ;

The matrix M; ; jointly captures the sensitivity of sublayer j to weight perturbations and the ampli-
fication effect of perturbations propagated through subsequent layers. It thus encodes the complex
coupling of local input activations and downstream propagation.

Decomposition Based on Hessian Trace Technique The complex second-order matrix M; ; cap-
turing the sensitivity of the loss to weight perturbations in sublayer (i, j) can be approximately
decomposed into two interpretable components:

* The statistical properties of the input activations, represented by the covariance matrix
o T
Cz’,j = ]E [Ii,jxi,j} ;

where z; ; denotes the input activation to the j-th sublayer in layer ¢. This matrix char-
acterizes the dominant directions and energy distribution of the input space relevant to
perturbations.

» The amplification effect of subsequent layers, approximated by the product of the squared
Frobenius norms of their weights,

L

IT 1wl

k=i+1
serving as a coarse estimation of how perturbations propagate and potentially grow or at-
tenuate through the network.

Consequently, according to Hessian trace approximation techniques (Dong et al., 2020), the
quadratic form involving weight perturbations AW; ; can be approximated as

L
(AW, ) "My AW, &~ AW, l[7 - o0(Cig) - [T 1Rl
k=i+1

where | AW; ;||% quantifies the magnitude of the weight perturbation itself, reflecting the intensity
of quantization error or deviation in the sublayer.
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Mathematical Approximation of the Decomposition By exploiting these independence and low-
rank approximations, the quadratic form can be approximated by a scalar product:

L
(AW;5) "M, AW, 5 ~ [AW; 1% - te(Ciy) - [T Wil
k=i+1

Here:

- tr(C;, ;) approximates the overall energy or sensitivity of input activations;

- Hé: i1 |IW||% approximates the perturbation amplification factor through subsequent layers;

- the original complex high-dimensional matrix M; ; is simplified into a product of two scalar fac-
tors.

This decomposition rests on the core idea of Hessian trace techniques: by leveraging the linearity of
the trace and expectation, the complicated second-order matrix impact is transformed into a product
of input activation statistics and weight amplification effects, enabling computational simplification
and clearer physical interpretation.

D.1.5 DEFINITION OF OUTLIER SCORE

Combining the above, the expected perturbation magnitude of the i-th layer can be approximated as

7 L
I; ~ Z AW j1|F - tx(Csj) - H Wil %-
j=1 k=i+1

To avoid numerical instability and convert multiplicative relations into additive ones, we define the
outlier score via logarithms:

J L
Bi= (10g IAW; ;1% + log tr(Ciy) + Y 10g||Wk|%> (11)

j=1 k=i+1

This score collectively reflects the perturbation magnitude, input statistical properties, and inter-
layer amplification effect, and can be used to identify the modules most vulnerable to outlier pertur-
bations.

D.2 OUTLIER SCORES’ COMPUTATIONAL COMPLEXITY

Consider the weight matrix of a linear sublayer W € R™*™, where m is the output dimension and
n is the input dimension.

Hessian Matrix The Hessian matrix is the second-order derivative matrix of the loss function with
respect to the weights, having size (mn) x (mn).

* Storage complexity: O(m?n?), which grows quadratically with the number of parameters,
resulting in very high memory requirements.

» Computational complexity: Direct computation of each second derivative also costs about
O(m?n?). Although Hessian-vector product approximations exist, they still require multi-
ple forward and backward passes and remain computationally expensive.

Therefore, computing and storing the Hessian matrix is typically infeasible for large-scale models.

QOutlier Score From the derivation, the key computation in the outlier score involves:

(AW)TMAW =~ AW |3 - te(C) - [T IWallZ,
k
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where:

c JAW% = 327, 305, (AWiz)? can be computed in O(mn) time.

* The input activation covariance matrix C' = E[zxz "] € R™ " is estimated by sampling
S input activation vectors {21, z(2) ... 2(5)}, where S denotes the number of sampled
activations used to compute the empirical covariance. Computing the full covariance matrix
requires O(Sn?) operations and O(n?) storage.

* However, since only the trace tr(C) = Y, E[z?] is needed for the outlier score, we only
compute and store the diagonal elements (i.e., the average squared activations per input
dimension). This reduces the storage complexity to O(n), and the computation to O(Sn).

* The product of Frobenius norms of subsequent layers” weights, [, || W ||%. involves oper-
ations on much smaller matrices and therefore has negligible computational cost compared
to Hessian computations.

Hence, the overall computational complexity of the outlier score is approximately

O(mn + Sn + Z MENE),s
k

with storage complexity O(n), which is significantly lower than that of explicitly computing and
storing the full Hessian matrix.

Complexity Comparison Computing the Hessian matrix is computationally and storage-wise
prohibitive in large-scale models due to its quadratic complexity, as summarized in Table [5} In
contrast, the outlier score avoids explicit second-order computations by employing approximations,
reducing the complexity to simpler norm and covariance calculations. Therefore, the outlier score
provides a theoretically meaningful and practically feasible metric for quantifying model sensitivity
to perturbations.

Computational Complexity Storage Complexity

Hessian Matrix O(m?n?) O(m?n?)
Outlier Score  O(mn + Sn + >, mrnk) O(n)

Table 5: Complexity comparison

D.3 OUTLIER SCORES’ APPLICABILITY

Previous studies [Lin et al| (2024b) have demonstrated that during model quantization, the impor-
tance of the earlier layers is significantly greater than that of the subsequent layers, while the final
layer directly impacts the ultimate output performance.As shown in Figure [/} when computing the
outlier scores for the Llama3-8B model, our metric shows a clear positive correlation with these
findings, assigning higher outlier scores to the early layers and the last layer. This behavior stems
from the design of our outlier score: it incorporates not only the quantization errors of the original
weights but also the amplification effect of activations on the error. Unlike other methods that fo-
cus solely on the influence of activations, our score additionally accounts for the impact of weight
perturbations propagating through subsequent layers, which theoretically leads to a stronger bias to-
ward the sensitivity of the earlier layers. In summary, this result reflects a well-founded combination
of theoretical derivation and empirical performance of our outlier score, validating its effectiveness
and applicability as a metric for estimating layer-wise quantization sensitivity.

E EXPERIMENT ADDENDUM

E.1 EXPERIMENTAL SETUP
Hardware Environment All comparative experiments are conducted on a cluster equipped with

four NVIDIA A100 GPUs. In the ablation studies, the Ampere architecture corresponds to the
A100 GPU, while the Ada Lovelace architecture corresponds to the RTX 4070 GPU.
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Figure 7: Outlier scores of Llama3-8B with 2-bit quantization across 32 layers.

Models The base models include LLaMA3 (Dubey et al., [2024) with 8B and 70B parameters,
Qwen3 (Yang et al.,2025) with 8B and 14B parameters, as well as Gemma 2 (Team et al.,[2024) with
9B and 27B parameters. These models represent different types and sizes, enabling a comprehensive
evaluation of the proposed framework’s performance.

Baselines We use FP 16 precision as the baseline. For 4-bit quantization, we compare our method
with AQLM (Egiazarian et al.| 2024), VPTQ (Liu et al., 2024), and GPTVQ (Van Baalen et al.,
2024]), and conduct similar comparisons for ultra-low-bit quantization. We also evaluate the inte-
gration of our OCP into existing methods. The compensation thresholds are set so that 10% of
parameters receive linear-level compensation, 10% model-level compensation, and the remaining
transformer-level compensation.

Evaluation Metrics The evaluation metrics follow LLMCBench (Yang et al., [2024). Perplexity
is measured on WikiText2 (Merity et al.l2017) and Penn Treebank(PTB) (Prasad et al.,[2014). We
comprehensively evaluate three aspects: knowledge ability, reasoning ability, and reliability. Knowl-
edge ability, tested by MMLU (Hendrycks et al., [2021), measures world understanding; reasoning
ability, evaluated via QNLI (Rajpurkar et al., [2016) and MNLI (Williams et al. [2018)), reflects in-
ference capacity; reliability, assessed with AdvGLUE (Wang et al., 2021) and TruthfulQA, gauges
robustness to noise.

E.2 ADDITIONAL COMPARATIVE EXPERIMENTAL RESULTS

To further verify the effectiveness of our method in ultra-low-bit quantization, we evaluated
Qwen3-8B and Gemma2-9B models. We compared different quantization schemes—2-bit and 3-
bit—against a 16-bit floating-point baseline. The methods tested include AQLM, VPTQ, GPTVQ,
and our approach combined with Optimization Correction Procedure (ours+OCP).

All models were tested on the same datasets covering four knowledge domains: Humanities, STEM,
Social Sciences, and Others. We also used downstream tasks (QNLI, MNLI) and trustworthiness
metrics (advglu, T.mc1, T.mc2) to assess overall model performance and reliability. Tables [6|and
show that 16-bit baselines achieve the best performance. Traditional ultra-low-bit methods like
AQLM and VPTQ suffer clear drops in accuracy and trustworthiness, especially below 4 bits.

Our method with OCP consistently outperforms other ultra-low-bit quantization techniques at both
2-bit and 3-bit levels. It achieves accuracy and inference results close to or better than some 4-bit
methods, with more stable trustworthiness. For example, at 3-bit quantization, Qwen3-8B reaches
70.26% average knowledge accuracy, higher than others (64.46%-67.60%), and Gemma2-9B hits
71.36%, nearly matching the 16-bit baseline (71.86%). These results confirm our approach effec-
tively compresses large models while maintaining performance, making it suitable for resource-
limited deployments.

E.3 ADDITIONAL ABLATION EXPERIMENTS

E.3.1 COMPARISON BEFORE AND AFTER USING OCP

This subsection experimentally demonstrates the effectiveness and adaptability of the OCP method.
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Method #Bits | Knowledge (%) 1 | Inference (%) 1 | Trustworthiness (%) 1
| Hums. STEM Social Other Avg. |QNLI MNLI |advglu T.mcl T.mc2
- 16 | 63.55 7233 8323 7693 72.84|89.88 71.62 | 58.81 35.00 55.18

AQLM 4 15994 73.10 8198 7231 71.83|68.46 4430 | 54.07 32.80 52.78
VPTQ 4 12478 25.84 2333 2591 24.95]49.51 33.69 | 43.09 22.64 48.08
GPTVQ 4 6174 7230 8271 7572 71.83|89.22 6892 | 52.30 34.88 54.71
NuBitQ 4 | 6247 73.00 82.55 77.27 72.55|87.53 69.75 | 55.69 35.13 55.74
AQLM 3 | 5454 6335 7446 6934 64.21|5631 63.50 | 48.37 33.17 52.93
AQLM+OCP 3 | 5473 63.55 74.81 69.62 64.46|56.01 63.75 | 4897 34.03 52.96
VPTQ 3 125.06 29.03 31.13 2551 27.35/49.40 34.62 | 4336 22.77 4828
VPTQ+OCP 3 | 3233 37.82 37.39 3291 35.11|50.37 4173 | 46.58 31.83 48.39
GPTVQ 3 5685 67.00 7891 72.67 67.52|79.25 50.71 | 50.68 34.15 55.44
GPTVQ+OCP 3 | 57.00 6720 79.04 7249 67.60|75.63 5253 | 51.08 3427 5531
NuBitQ+OCP 3 | 58.17 68.59 81.02 73.26 70.26 | 82.49 64.43 | 53.17 34.55 55.75
AQLM 2 | 5375 5921 7332 66.59 62.18|79.60 52.79 | 52.30 30.48 50.76
AQLM+OCP 2 | 5250 58.05 7296 66.04 61.30|79.54 56.74 | 51.76 30.36 50.41
VPTQ 2 2665 25.65 24.05 2421 2530|5095 3240 | 4526 22.77 49.95
VPTQ+OCP 2 3037 3323 31.78 31.09 31.62|49.23 39.01 | 47.82 30.03 48.26
GPTVQ 2 | 41.89 4427 53.04 50.89 46.92|54.73 47.80 | 4444 30.72 49.15
GPTVQ+OCP 2 | 42.64 45.00 5330 50.89 47.39|5820 4727 | 44.17 31.21 49.51
NuBitQ+OCP 2 | 54.07 60.64 74.52 67.78 64.25|80.13 57.08 | 52.83 30.22 51.81

Table 6: Accuracy of different ultra-low-bit quantization methods on Qwen3-8B across various
tasks.

Method #Bits | Knowledge (%) T | Inference (%) 1 | Trustworthiness (%) 1
| Hums. STEM Social Other Avg. |QNLI MNLI |advglu T.mcl T.mc2
- 16 | 6499 6544 8349 76.74 71.86|87.36 68.61 | 60.16 43.33 60.69

AQLM 4 6514 6455 8271 7572 71.31]85.12 69.56 | 59.21 4272 60.84
VPTQ 4 12414 28.83 31.13 2498 26.88|50.60 31.29 | 43.90 2326 49.13
GPTVQ 4 16519 6421 8333 7643 71.55]87.07 6990 | 58.67 43.05 60.42
NuBitQ 4 |]6474 6534 8349 76.74 71.75|87.38 6793 | 60.57 43.21 60.61
AQLM 3 16242 62.69 8040 74.06 69.14|87.18 70.27 | 56.78 40.64 58.55
AQLM+OCP 3 | 6247 62.72 80.47 74.09 69.17|87.33 7029 | 57.05 41.13 58.67
VPTQ 3 12417 28.86 31.07 25.05 26.89|50.60 3129 | 43.09 23.01 48.66
VPTQ+OCP 3 13099 3149 37.68 33.04 33.30|48.16 3850 | 47.81 39.94 53.90
GPTVQ 3 6191 6199 80.89 7529 69.18|88.03 61.04 | 59.49 42.11 59.83
GPTVQ+OCP 3 | 6190 62.15 81.05 7548 69.31|88.01 61.00 | 59.08 41.99 59.92
NuBitQ+OCP 3 | 64.19 63.29 82.77 75.17 71.36|87.34 7198 | 59.73 42.38 59.91
AQLM 2 | 5796 5524 74.13 69.12 63.50|86.75 69.72 | 48.51 4149 58.03
AQLM+OCP 2 | 58.04 5547 7433 69.15 63.62]86.81 70.28 | 49.05 4198 58.30
VPTQ 2 | 2417 28.86 31.07 25.05 26.89|50.60 3129 | 43.09 23.01 48.66
VPTQ+OCP 2 12976 27.09 31.81 31.75 30.10|46.62 3599 | 47.28 38.23 54.37
GPTVQ 2 5192 50.60 6890 63.88 58.12|56.27 45.57 | 4499 38.56 55.97
GPTVQ+OCP 2 | 51.05 5020 68.61 63.94 57.69|53.72 4422 | 4553 39.17 55.86
NuBitQ+OCP 2 | 5935 56.94 74.63 70.20 65.28|85.23 70.49 | 53.22 41.25 58.95

Table 7: Accuracy of different ultra-low-bit quantization methods on Gemma2-9B across various
tasks.

In the experiment, we apply 2-bit quantization only to the first layer’s Linear sublayer weights of
the Transformer model, keeping other layers at 16-bit precision. After quantization, outlier scores
for weights and activations are computed, and OCP compensation is applied based on the outlier
codebook pool. Evaluation on the validation set uses perplexity as the metric, analyzing changes
before and after quantization at both sublayer and sample levels.

Figures [8a and [8b] compare sublayer perplexity before and after OCP, showing that OCP stabilizes
perplexity and prevents abnormal spikes caused by quantization errors. Figures[8c|and [8d]show that
OCP reduces perplexity variance across individual samples, further confirming its effectiveness in
improving model stability and performance.

Our method identifies outliers via outlier scores, which are key sources of quantization error. We
build an outlier codebook pool with multiple compensation codebooks learned from calibration data
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to correct various outlier types. The compensation uses a sliding greedy selection over parameter or
activation tensors, selecting compensation vectors that minimize local quantization error iteratively,
achieving fine-grained correction while balancing accuracy and computation.

The compensation ratio at different granularities can be flexibly adjusted by thresholds. By default,
we use 10% fine-grained and 10% coarse-grained compensation, which works well in practice. If
needed, one can start with full fine-grained compensation and relax thresholds to find better settings,
with minimal extra computational cost.

o~
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Figure 8: Perplexity comparison at different stages: before/after OCP compensation.

E.3.2 COMPARISON BETWEEN FINE-TUNING AND OCP

After applying 3-bit quantization to the Transformer layer O of the Llama3-8B model, we evaluated
two categories of recovery methods: fine-tuning and compensation based on OCP. The fine-tuning
approaches included layer-wise linear fine-tuning and layer-wise Transformer fine-tuning, while the
OCP methods involved compensation at the linear layer level, Transformer layer level, and the entire
model level. It is important to note that full model fine-tuning was not considered in this experiment,
as it falls under quantization-aware training, whereas our focus here is on lightweight strategies to
recover accuracy post-quantization.

Regarding the experimental setup, the OCP compensation utilized activation data from 50 WikiText-
2 samples as reference, following the methodology described in the main text. For fine-tuning, the
initial learning rate was set to 1077, and 500 WikiText-2 samples were used to ensure adequate
yet efficient fine-tuning. The final evaluation was conducted on the WikiText-2 validation set using
perplexity as the performance metric to assess the impact of quantization and the effectiveness of
recovery methods.

Table [§] presents the perplexity results for the different recovery strategies applied to the quantized
Transformer layer 0. It is evident from the results that OCP compensation consistently achieves
lower perplexity than fine-tuning, whether applied at the linear layer level or the Transformer layer
level, indicating a more effective and efficient recovery of quantization-induced accuracy degrada-
tion. Notably, the OCP compensation applied at the whole-model level also outperforms fine-tuning,
demonstrating strong global adjustment capabilities. Furthermore, fine-tuning requires significantly
more training data and computational resources compared to OCP compensation, which only needs
a small set of activation samples, highlighting its superior cost-efficiency.
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before linear transformer model
Fine-tuning 5.6176 5.6217 -
OCP 36269 5 s518  35.6014  5.61371

Table 8: Perplexity comparison of fine-tuning and OCP compensation after 3-bit quantization (lower
is better).
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Figure 9: Analysis of unexpected results.

E.3.3 RANDOMNESS ASSESSMENT OF PENTAGRAM ANOMALIES

To verify the “unexpectedly good” result observed in the main text’s hyperparameter abla-
tion—where the perplexity after quantization was surprisingly lower than before quantization—we
conducted a thorough investigation from three perspectives:

First, we examined whether this phenomenon occurs consistently across different datasets under the
same quantization setting. Second, we increased the number of groups g (both theoretically and
empirically, increasing g should lead to an increase in perplexity after quantization). If perplexity
continues to decrease as g increases, it would suggest that the phenomenon is not accidental. Fi-
nally, we applied the same hyperparameter configuration to other layers with the same shape. If the
“unexpectedly good” result also appears in other layers, it could further rule out randomness.

The experimental results are shown in Figure [9] Here, “Quantization Baseline” represents the per-
plexity results of the original hyperparameter setting that produced the anomaly; “Add ¢” corre-
sponds to the results after increasing the number of groups g only; “Layer Swapping Validation”
refers to applying the hyperparameters to different layers. Each of the six line segments has its left
endpoint representing perplexity before quantization and the right endpoint representing perplexity
after quantization.

We observe that the “unexpectedly good” result does not reproduce across different datasets, with
increased g, or in different layers. In all other cases, perplexity increases after quantization as
expected. This indicates that the anomalous improvement is due to a specific combination of dataset,
layer, and quantization parameters, and is thus a coincidental outcome rather than a generalizable
effect.

F REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in our exper-
iments are publicly available. The source code to reproduce our experiments will be released anony-
mously as supplementary material, including detailed instructions for data preprocessing, model
training, and evaluation. Hyperparameters, model architectures, and training settings are provided
in the Appendix and the readme.txt file. Additional implementation details are also described in the
supplementary materials.
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G LLM USAGE STATEMENT

We used large language models (LLMs) to aid and polish the writing of this paper. All substantive
scientific contributions and ideas are our own.
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