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Abstract

Large language models (LLMs) achieve re-
markable advancements by leveraging tools
to interact with environments, a critical step
toward generalized Al. However, the standard
supervised fine-tuning (SFT) approach, which
relies on large-scale datasets, often overlooks
task-specific characteristics in tool use, lead-
ing to performance bottlenecks. To address
this issue, we analyze three existing LLMs
and uncover key insights: training data can
inadvertently impede tool-use behavior, token
importance is distributed unevenly, and errors
in tool calls fall into a small set of categories.
Building on these findings, we propose TL-
Training, a task-feature-based framework that
mitigates the effects of suboptimal training data,
dynamically adjusts token weights to prioritize
key tokens during SFT, and incorporates a
robust reward mechanism tailored to error
categories, optimized through proximal policy
optimization. We validate TL-Training by
training CodeLLaMA-2-7B and evaluating it
on four open-source test sets. Our results
demonstrate that the LLM trained by our
method matches or surpasses both open- and
closed-source LLMs in tool-use performance
using only 1,217 training data points. Addi-
tionally, our method enhances robustness in
noisy environments and improves general task
performance, offering a scalable and efficient
paradigm for tool-use training in LLMs.!

1 Introduction

Large language models (LLMs) (OpenAl, 2023;
Touvron et al., 2023; Bai et al., 2023) excel in
natural language understanding due to pre-training
on extensive datasets (Chen et al., 2023; Ye et al.,
2023). By incorporating tool-use capabilities,
LLMs can extend beyond text generation to interact
with the external environment, enabling tasks such

!Code and data will be available upon acceptance of the
paper.
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Figure 1: Error statistics for various tool calls in

RoTLLaMA’s training data.

as web searches and email management (Tang
et al., 2023; Ye et al., 2025). Furthermore, these
capabilities are essential for addressing real-world
user needs and advancing the development of
general-purpose Al (Xi et al., 2023).

Current approaches to training LLMs for tool use
rely heavily on large-scale datasets generated from
trajectories of interactions with tools (Qin et al.,
2024; Zhuang et al., 2023). Standard supervised
fine-tuning (SFT) is then applied to pre-trained
models. While effective in some cases, these
methods overlook key task-specific characteristics,
leading to performance bottlenecks. For instance,
ToolLLaMA-2-7B-v2 (Qin et al., 2024) achieves
only 80% of GPT-4’s performance on tool-use
benchmarks (Ye et al., 2025; Wu et al., 2024),
indicating room for significant improvement.

To fill this gap, we conduct an in-depth analysis
of three tool-using LLMs, uncovering several
key phenomena. Notably, over 17% of the
training data for RoTLLaMA (Ye et al., 2024b)



Table 1: Proportion statistics of various error cases
in RoTBench (Clean) for ToolLLaMA-2-7B-v2 and
NexusRaven-13B-v2. ‘First’ indicates a mismatch in
the initial token of the selected and correct tool names,
while ‘Prefix’ denotes a shared prefix between them.
‘Synonyms’ captures instances where filled parameter
values are synonymous with standard values.

Aspect Error ToolLLaMA NexusRaven
First 53.33% 65.22%
Tool
Prefix 46.67% 34.78%
Redundancy 46.43% 33.33%
Parameter Missing 57.14% 66.67%
Hallucination 17.86% 6.67%
Content Synonyms 73.68% 95.00%
Others 31.58% 5.00%

contains tool-calling errors (Figure 1), primarily
due to reliance on data from GPT series models,
which are not entirely error-free with complex
tools. Training on such flawed data can hinder
model performance. Additionally, our tests
of ToolLLaMA-2-7B-v2 and NexusRaven-13B-
v2 (team, 2023) reveal that incorrect tool selections
often share a common prefix with the correct ones
(Table 1), and correcting initial erroneous tokens
can lead to successful predictions. This suggests
that certain tokens are more critical in tool selection.
Moreover, the types of errors produced by tool
calls are relatively limited (Figure 3), providing
a foundation for targeted improvements across
various error categories.

Based on these insights, we propose TL-Training,
a task-feature-based framework for training LLMs
in tool use. TL-Training mitigates the negative
impact of training data by identifying erroneous
interaction paths and excluding them from gra-
dient updates. It prioritizes key tokens through
adaptive weighting during SFT and incorporates
tool feedback into a robust reward mechanism for
reinforcement learning using the proximal policy
optimization (PPO) (Schulman et al., 2017).

We validate our approach by training
CodeLLaMA-2-7B (Roziere et al., 2023) on
a curated dataset of 1,217 tool-call trajectories
generated with GPT-40. Evaluations on four
open-source test sets demonstrate that the model
trained with TL-Training matches or surpasses the
tool-use performance of leading open- and closed-
source LLMs, despite requiring significantly less
training data. Additionally, TL-Training improves
robustness in noisy environments and enhances
general task performance.

In summary, our contributions are as follows:
1) We identify three key insights in tool use,
including the impact of erroneous data, the uneven
importance of tokens, and the constrained range of
tool-calling error categories; 2) We propose TL-
Training, a novel task-feature-based framework
comprising of adverse effects mitigation, key
tokens prioritization, and reinforcement learning
for tool use; 3) We demonstrate the effectiveness
of TL-Training by training CodeLLaMA-2-7B
and achieving leading tool-use performance on
multiple benchmarks with only 1,217 pieces of
data; and 4) We show that TL-Training enhances
both robustness to noisy data and general task
performance, highlighting its potential for scalable
tool-use training.

2 Preliminaries

Task Formulation Given a model M, a user
query g, and a collection of tools T, the task of tool
use requires M to iteratively select the appropriate
tool ts € T at each step s, process its feedback
0s, and continue selecting subsequent tools 541
until the query is resolved and a final answer is
obtained. Formally, this can be represented as
ts+1 = M(+|q, T, to.s,00.s). This task is distinct
from traditional natural language processing tasks,
as it requires the model to invoke tools repeatedly
and interpret their feedback dynamically. Despite
its importance, to the best of our knowledge, there
has been no systematic examination of the intrinsic
properties of tool use. Thus, we aims to fill this
gap by conducting an in-depth analysis focusing
on both the training data and model performance.

Data Analysis For our analysis, we use the
training set from RoTLLaMA, which includes
12,247 filtered multi-turn tool-call trajectories
generated by GPT-4. Illustrated in Figure 1, 17% of
these trajectories contain various errors, indicating
that even advanced models like GPT-4 encounter
challenges with complex tools. These erroneous
trajectories pose a challenge for models trained
through SFT, as they inherit these error patterns
during learning. This predisposition to incorrect
tool invocation highlights the need for more robust
training methods to mitigate error propagation and
improve overall model performance.

Performance Analysis We evaluate the perfor-
mance of ToolLLaMA-2-7B-v2 and NexusRaven-
13B-v2, which are built on LLaMA-2-7B (Touvron
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Figure 2: Framework of TL-Training. TL-Training comprises three main components: (Left) mitigating the adverse
effects of suboptimal data by identifying erroneous interaction trajectories through tool feedback and blocking their
gradient updates; (Middle) optimizing key tokens by dynamically adjusting token weights during the SFT process;
and (Right) enhancing tool call performance through a reward mechanism tailored to tool invocation error types,

using the PPO algorithm for reinforcement learning.

et al.,, 2023) and CodeLLaMA-2-13B (Roziere
et al., 2023), respectively, as representative tool-
using LLMs. Our evaluation uses RoTBench
(Clean) (Ye et al., 2024b), a manually labeled
dataset for the single-turn tool-use task with
standardized answers. The analysis focuses
on errors related to tool selection, parameter
identification, and content filling, with results
shown in Table 1. We observe that when the model
selects the wrong tool, it often chooses one with
a prefix similar to the correct tool. By manually
correcting the first incorrectly predicted token, the
model can generate the correct one, suggesting
that certain tokens are crucial for task success.
Additionally, errors in parameter identification and
content generation highlight areas where further
training is required.

3 Approaches

Building on the analysis in Section 2, we propose
TL-Training, a novel training paradigm for LLMs
in tool use. As shown in Figure 2, this paradigm
incorporates three core techniques: mitigating the
adverse effects of suboptimal data by preventing its
back-propagation (Section 3.1), prioritizing key

tokens using adaptive weight adjustments (Sec-
tion 3.2), and implementing a reward mechanism
tailored to tool invocation error categories to enable
effective reinforcement learning (Section 3.3).2

3.1 Mitigating Adverse Effects

During the SFT stage, the objective is to align
LLMs with the distribution of the training data.
However, erroneous interaction paths in the data
can negatively affect the model’s decision-making,
leading to an increased likelihood of incorrect tool
calls. To address this, we design an automated pro-
cess that identifies erroneous interaction paths and
blocks their back-propagation, thereby reducing
their harmful impact on the model.

Given a data sequence (g, to_s, 0p..s), wWe seek
to identify the erroneous tool call trajectory T, C
{to,t1,...,ts}. Directly determining whether a
specific t; is correct is challenging. However,
the feedback o; generated after each tool call
contains structured error-reporting information,
as summarized in Figure 3.> We automate the

*Theoretical proofs of the effectiveness of our proposed
approaches is provided in Appendix A.
3Specific examples can be found in Appendix E.
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Figure 3: Types of errors encountered by LLMs during
tool use and their corresponding feedback messages.

identification of incorrect calls by sequentially
analyzing o; to extract T,.

Once T, is identified, we mitigate the impact
of these erroneous interactions by blocking their
back-propagation during training. This is achieved
by modifying the loss function as follows:

Lyap ==Y > logpultslq,T,

D t,¢T.
£0..5—1,00..5—1)5

where D represents the entire training dataset.

3.2 Prioritizing Key Tokens

Based on the analysis in Section 2, and the insights
from rows 1-2 of Table 1, we observe that the first
token of a tool name, along with any subsequent
token that shares a common prefix with other tool
names, plays a more critical role in successful
tool identification. As such, these tokens are
more challenging for LLMs to generate correctly.
However, standard SFT training maximizes the
conditional probability of each token without
distinction, treating all tokens as equally important.
To address this limitation, we propose a scheme
that adaptively adjusts the training weights of
tokens according to their relative importance.

Given a data sequence (q,to.s,00.s), Where
each tool t; = (2,1, ... ,tii) consists of /; tokens,
we categorize the tokens into two sets:

K; = {t" € t; | t]" is a key token}
NK; = {t{* € t; | t* is not a key token}

We then adjust the weights of K; and N K; based
on their relative importance, allowing the model to
focus more on the key tokens.

o [cup (“'Vlg‘iu,wmax) if t7 € K;
i = .
1 otherwise

Here, wpyax 18 the maximum adjustment multi-
plier, and CLIP(z, min, max) is used to constrain
the adjustment factor to lie within the range
[min, max]. The notation | - | represents the size
of the set.*

With these computed weights, we prioritize key
tokens during training with the following objective:

Legr ==Y Y wllogpu(t | ¢, T,
D

ts tm

0 -1
£0..5—1,00.5—1,tg - - - 15" ).

3.3 Introducing a Reward Mechanism

The three stages of tool use by LLMs are interde-
pendent, where an error in any stage can lead to the
failure of the entire tool invocation. Fortunately,
the types of errors that arise are limited, enabling
us to introduce a reward mechanism based on
these specific errors. This allows us to apply
reinforcement learning algorithms that help align
the model more closely with human intent and
enhance its tool-use proficiency. To achieve this,
we define a set of reward functions tailored to the
tool use task and employ the PPO algorithm to
optimize the model’s performance.

Given an LLM-generated tool call prediction ¢;
and its corresponding ground truth, we define the
following reward function based on the quality of
the LLM’s tool use in various scenarios:

—2 if ¢; cannot be parsed
-2 if ¢; contains tool hallucinations
—1.5  if ¢; calls the wrong tool

R,(t;) if t; has parameter issues
—0.25 if ¢; has content filling issues
1 if ¢; is correct

where Rp(t;) is defined as:

R, (t;) = — 0.8 - I(t; has parameter hallucinations)
— 0.5 - [(¢; has redundant parameters)

— 0.5 - I(t; has missing parameters)

where [[(-) represents the indicator function.

*Since K; always includes at least the first token of the
tool name, we avoid any risk of dividing by zero.



This reward function R addresses the different
potential errors in LLM tool use, providing a
structured scoring system to assess performance.
Based on this, we apply the PPO algorithm, which
iteratively optimizes the model’s parameters to
maximize these rewards as follows:

M" =argmax Ep[) (R(ts)—

ts

BRLIM()[[Mispe()))]

where [ regulates deviation from the initial SFT
model M. This approach enables the LLM to
progressively refine its understanding and improve
the accuracy of its tool usage over time.

4 Experimental Setup
4.1 Dataset

As shown in Table 2, to validate our approach,
we construct a custom training set focused on
multi-turn tool use and evaluate it using four
publicly available test sets (i.e., ToolAlpaca (Tang
et al., 2023), RoTBench (Ye et al., 2024b), BFCL-
v3 (Patil et al., 2024), and ToolEyes).5

4.2 Baselines

We conduct a comprehensive comparison of ten
LLMs from three different categories. These in-
clude ToolLLaMA-2-7B and NexusRaven-2-13B
as tool-use LLMs; ChatGLM-4-chat-9B (Zeng
et al., 2024), Qwen-2-Instruct-7B (Yang et al.,
2024a), LLaMA-3.1-Instruct-8B (Team, 2024),
and Qwen-2.5-Instruct-7B (Yang et al., 2024b)
as open-source LLMs; GPT-3.5-turbo, GPT-4o,
and GPT-4-turbo as closed-source LLMs; and TL-
CodeLLaMA-2, developed from CodeLLaMA-2-
7B with the custom dataset.®

4.3 Maetrics

For single-turn tool use, where the original
dataset provides a standard answer, we follow Ye
et al. (2024b) and assess the model’s performance
across three key areas: 1) Tool Selection (TS)
measures the model’s accuracy in selecting the tool
specified by the standard answer; 2) Parameter
Identification (PI) evaluates the model’s ability to
correctly select the tool and identify the relevant
parameters required for invocation; and 3) Content
Filling (CF) assesses the model’s capacity to
complete the single-turn tool invocation, including

SDetails of the datasets can be found in Appendix B
®Details of baselines can be found in Appendix C.

Table 2: Statics of datasets used. ‘# Number’ represents
the number of data in the dataset. “Type’ represents the
type of tool use.

Split Dataset # Number Type

Train  Self-Construct 1217 Multi-Turn
ToolAlpaca 114 Single-Turn

Test RoTBench 105 Single-Turn
BFCL-v3 239 Single-Turn
ToolEyes 382 Multi-Turn

selecting the correct tool, identifying relevant
parameters, and filling in the appropriate values.

For multi-turn tool use, where no standardized
interaction path exists, we adapt the methods
of Qin et al. (2024) and Ye et al. (2025), and
assess performance based on following metrics:
1) Documentation Understanding Error (DE)
represents the percentage of errors resulting from
the model’s failure to interpret the tool documenta-
tion, encompassing tool hallucinations, parameter
hallucinations, and missing necessary parameters;
2) Tool Call Error (CE) denotes the proportion
of errors arising from incorrect tool invocation,
covering all error types except those classified as
DE; and 3) Valid Answers (VA) evaluates the
percentage of instances where the model delivers
valid responses within nine turns.

4.4 TImplementation Details

In the SFT stage, we use 1,217 constructed
data samples, applying both the MAE and
PKT strategies. We employ the AdamW
optimizer (Loshchilov and Hutter, 2019) with
cosine scheduling, setting the learning rate to
le-6, a warmup rate of 0.01, and a batch size of
4, training for a total of 1 epoch. For the PKT
strategy, Wmqq 1S set to 9. In the RL stage, we
filter 1,194 entries from the constructed data and
apply PPO with the reward function described in
Section 3.3. The actor learning rate is set to 2e-6,
the critic learning rate to 1e-6, and the batch size to
8, training for a total of 3 epochs. For testing, we
use the official prompt template for tool invocation
and apply greedy search.’

S Experiments

5.1 Main Results

We evaluate the performance of various LLMs on
three single-turn tool-use test sets and one multi-

"Templates for each LLM are provided in Appendix D.



Table 3: Performance of various LLMs on single-turn test sets. ‘Avg.’ represents the average performance across all
LLMs. Individual LLM performances are color-coded for clarity: highlights better-than-average performance,

while |purple indicates below-average performance. Darker shades signify greater deviations from the average.

The best performance in each column is indicated in bold.

. ToolAlpaca RoTBench BFCL-v3

Models Size

S PI(H CFM TS PI(M CF(M TS® PI(M CF(M
Avg. 80.63 65.09 42.72 7410 49.90 3543 9313 89.88 74.17
ToolLLaMA-2 7B 7556 6140 3772 7048 4381 2571 87.08 83.75 56.67
NexusRaven-2 13B 8246 4825 3772 7048 56.19 37.14 97.08 94.17 75.83
ChatGLM-4-chat 9B 73.68 68.42 38.60 67.62 5333 37.14 9542 9333 86.67
Qwen-2-Instruct 7B 86.84 68.42 4386 7429 47.62 3524 9833 9542 85.00
LLaMA-3.1-Instruct 8B 8421 59.65 4298 62.86 @ 17.14 8.57 63.75 59.58 34.58
Qwen-2.5-Instruct 7B 92.11 68.42 4474 80.00 32.38 1524 100.00 9542 87.92
GPT-3.5-turbo - 72.81 5439 3947 7429 | 6190 48.57 99.17 9583 75.83
GPT-40 - 76.32  70.18 42.11 7429 | 62.86 5048 96.67 93.75 74.58
GPT-4-turbo - 74.56 73.68 42.11 82.86 [ 69.52 5333 97.50 93.75 76.25
TL-CodeLLaMA-2 7B 87.72 78.07 57.89 83.81 5429 4286 96.25 93.75 | 88.33

Table 4: Performance on the multi-turn test set.

Models ToolEyes

DEl) CE{l) VA
Avg. 3.91 1246  65.56
ToolLLaMA-2 21.00 36.62 52.36
ChatGLM-4-chat 0.17 3245 4345
Qwen-2-Instruct 0.78 6.71 70.16
LLaMA-3.1-Instruct  4.80 3.76 4.71
Qwen-2.5-Instruct 4.78 4.60 74.08
GPT-3.5-turbo 2.36 10.73
GPT-40 0.12 4.64 87.43
GPT-4-turbo 034  7.83 9031
TL-CodeLLLaMA-2 0.82 4.84 77.75

turn tool-use test set, with the results summarized
in Table 3 and Table 4.8 Despite using the
smallest model size and the least amount of training
data, our approach achieves results comparable
to the best-performing models. These findings
demonstrate the potential for smaller, efficient
models to excel in the tool use task, making
advanced capabilities more accessible for resource-
constrained environments.

Single-Turn Evaluation Results from three
single-turn tool-use test sets demonstrate that
TL-CodeLLaMA-2, with only 7B parameters

8Since NexusRaven-2-13B does not receive tool feedback
during interactions, it is evaluated only on the single-turn
tool-use datasets.

and 1,217 training examples, surpasses all other
open-source LLMs in overall task completion (i.e.,
CF). Remarkably, on the ToolAlpaca and BFCL-v3
datasets, TL-CodeLLaMA-2 outperforms GPT-4-
turbo, the top-performing GPT family model, by an
impressive 15.78% and 12.08%, respectively. Most
notably, TL-CodeLLaMA-2 is the only model
that consistently exceeds the average performance
across all three aspects of every dataset evaluated,
highlighting the effectiveness of our approach in
enhancing single-turn tool usage capabilities.

Multi-Tarn Evaluation In the multi-turn test
set, our approach significantly enhances the ability
of LLMs to handle the tool use task. TL-
CodeLLaMA-2 achieves an total error rate of just
5.64% on the test set, second only to GPT-4o,
which had the lowest error rate at 4.76%, and
ahead of Qwen-2-Instruct at 7.49%. Additionally,
TL-CodeLLLaMA-2 maintaines a low error rate
while achieving a high effective response rate,
outperforming all other open-source models. In
contrast, LLaMA-3.1-Instruct-8B frequently fails
to provide a valid direct answer, effectively
rendering it incapable of completing the task.
These results highlight that our trained model
effectively uses tools in multi-turn settings to solve
complex user queries.

5.2 Ablation Studies

To assess the individual contributions of the three
components in our design that enhance LLMs’
tool-use capabilities, we conduct ablation studies,



Table 5: The ablation studies of the three components of our method, with better results than Standard SFT labeled

m

, poorer results labeled in | purple|. Darker colors indicate larger gaps.

Models ToolAlpaca RoTBench ToolEyes
S PI(H CEM TS PI(M CF(M) DE() CEWl) VAM
Standard SFT (w/ None) 74.56  70.18 4298 76.19 55.24 3810  0.72 9.08 59.32
w/ MAE 73.68 6491 43.68 78.10 57.14 40.95 1.22 5.53 68.85
w/ PKT 7778 7172 4386 82.86 63.81 48.57 1.07 752  63.61
w/ IRM 88.60 84.21 57.02 79.05 59.05 4476  0.65 6.80  57.33
w/ MAE & PKT 73.68 6491 4386 8095 56.19 40.00 0.71 10.07 | 75.13
w/ MAE & IRM 87.72 78.95 57.89 82.86 56.19 45.71 0.96 503  71.20
w/ PKT & IRM 86.84 79.82 57.02 82.86 63.81 4857 0.88 7.11 65.18
w/ All (TL-CodeLLaMA-2) = 87.72 78.07 57.89 83.81 5429 4286  0.82 4.84 | 715
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Figure 4: Performance comparison of RoTLLaMA
and TL-CodeLLaMA-2 in different noise environments.
RoTLLaMA'’s results are from Ye et al. (2024b).

comparing model performance across various
scenarios. The results are shown in Table 5.

When compared to standard SFT without ad-
ditional techniques (i.e., w/ None), masking
erroneous interaction paths during training (e.g.,
w/ MAE) reduces the model’s overall error rate
in multi-turn tool use by nearly one-third and
increases effective responses by 9.53%. This
suggests that removing these erroneous paths
prevents LLMs from learning incorrect tool-use
patterns. However, since such errors are rare
in single-turn tool use, the improvement in that
case is less pronounced and requires additional
techniques for further gains (e.g., w/ MAE &
IRM). Similarly, optimizing the weights of key
tokens during training (e.g., w/ PKT) enhances
the model’s ability to differentiate between similar
tools, improving tool selection accuracy and overall
performance. Furthermore, reinforcement learning
with our proposed reward function (e.g., w/ IRM)
further improves performance across all stages by
dynamically optimizing the entire tool-use process,

addressing diverse errors encountered during tool
use. Finally, TL-CodeLLaMA-2 (i.e., w/ All),
which integrates all three strategies, maximizes
their combined advantages, significantly improving
LLM performance in both single-turn and multi-
turn tool use with only 1,217 data points, demon-
strating the effectiveness of our approach.

6 Further Studies

6.1 Robustness Improvement

In real-world environments, tools often contain
various types of noise, and LLMs must be
robust in their tool use to effectively meet user
needs across different situations. RoTBench
provides five tool-use test environments with
varying noise levels, designed to evaluate whether
LLMs can accurately understand the functions and
properties of different tools and execute effective
invocations. We compare the performance of
TL-CodeLLaMA-2 and RoTLLaMA across these
five noisy environments, as shown in Figure 4.
While RoTLLaMA has been optimized for such
environments through targeted noise augmentation,
TL-CodeLLaMA-2, without specific optimizations,
matches or exceeds RoOTLLaMA’s performance in
all aspects. This suggests that our approach allows
the model to focus on the core functionality of
external tools without being hindered by noise,
making it more adaptable to real-world scenarios.

6.2 General Performance

The strong performance of LLMs is largely
attributed to their extensive world knowledge and
generalizability acquired during pre-training (Ye
et al., 2023). However, fine-tuning on domain-
specific tasks can sometimes compromise this
generalizability (Yang et al., 2024c; Ghosh et al.,



2024). To assess whether TL-CodeLLaMA-2’s
general-purpose capabilities are affected by its
exclusive training on tool-use data, we evaluate
its performance on three general test sets: MMLU
(knowledge) (Hendrycks et al., 2021), GSM8K
(math) (Cobbe et al., 2021), and HumanEval
(code) (Chen et al., 2021), comparing it to
CodeLLaMA-2-7B. As shown in Figure 5, despite
being fine-tuned solely for the tool-use task, TL-
CodeLLaMA-2 retains its original task perfor-
mance and even shows slight improvements in
math and coding abilities. This is because our
method requires only a small amount of training
data, resulting in minimal changes to the model’s
original parameters, thus preserving its knowledge
base (Ren et al., 2024; Wang et al., 2024; Ye et al.,
2024c¢). Furthermore, the enhancement in tool-use
ability appears to improve the model’s reasoning
capacity, contributing to better performance in
math and coding tasks. These findings further
underscore the broad applicability of our approach.

7 Related Works

Training LLMs for Tool Use LLMs capable of
utilizing external tools significantly enhance their
ability to interact with dynamic environments and
address user needs (Qin et al., 2023). However, the
diversity and complexity of real-world tools present
significant challenges in training such models. Ex-
isting methods, such as SFT, rely on the generation
of extensive datasets of tool interactions (Song
et al., 2023; Tang et al., 2023), enabling models
to learn tool functionalities, invoke appropriate
tools, and process feedback. While effective, these
methods are resource-intensive due to the large-
scale data construction involved. To overcome
these challenges, some studies have proposed
encoding tool names as special tokens directly
integrated into model training, embedding tool-
specific knowledge into the model (Hao et al.,
2023). This approach has shown promise for
existing tools but remains limited in its ability
to adapt to newly introduced tools. Building
on these findings, our work introduces a novel
training paradigm for tool-use LLMs, addressing
both efficiency and adaptability. By leveraging
a compact dataset of 1,217 data points and
incorporating three task-specific components, our
approach achieves state-of-the-art performance
while significantly reducing data requirements.

CodeLLaMA-2 TL-CodeLLaMA-2
0 10 20 30 40 50

39.52

MMLU 39.52

14.94

GSM8K 18.27

29.27

HumanEval 2088

Figure 5: Performance comparison of CodeLLaMA-2
and TL-CodeLLaMA-2 across various general tasks.

Evaluating LLMs in Tool Use Evaluating
LLMs’ tool-use capabilities is essential for
understanding their effectiveness in diverse
scenarios. A common evaluation method involves
comparing predicted outputs with standard
answers from a single turn of tool use (Chen et al.,
2024). However, in multi-turn interactions, the
variability in invocation processes complicates
the definition of a single standard path. To
address this, evaluations increasingly consider
multiple dimensions of tool-use processes and
outcomes (Ye et al., 2025). Beyond tool-use
performance, researchers have also investigated
robustness and safety in practical scenarios (Ye
et al., 2024b,a), which provide insights into how
LLMs manage edge cases and avoid harmful
outputs. In this paper, we evaluate LL.Ms across
single-turn and multi-turn tool use to provide a
more comprehensive assessment. Additionally,
we analyze robustness to further demonstrate the
superiority of our approach.

8 Conclusion

In this paper, we introduce TL-Training, a novel
paradigm for training LLMs specifically for tool
use. Our approach mitigates the impact of
erroneous interaction data, adaptively adjusts token
weights, and introduces a reward mechanism tailed
for tool use to facilitate PPO-based reinforcement
learning. This methodology not only enhances
LLMs’ tool-use capabilities but also improves
their robustness in noisy environments, all while
preserving strong general performance across a
range of tasks. Our findings demonstrate the
effectiveness of TL-Training in addressing real-
world challenges in tool use, offering a promising
direction for future research in improving LLM
interaction capabilities and adaptability.



Limitations

While we propose a novel paradigm for training
LLMs in tool use, our work still has a few
limitations.  First, we do not construct large-
scale training data. However, despite using only
1,217 data samples, our results show that we
match or even surpass the best current tool-use
performance, highlighting the strengths of our
approach. Second, we design a reward function
based on tool feedback for tool use directly, without
training a separate reward model. Nonetheless, we
experimentally demonstrate the effectiveness of
our reward function. In future work, we plan to
explore training a reward model specifically for tool
learning to further improve model performance.
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A Theorems and Proofs

In this paper, we propose Ly74r and L£px7, aimed at enhancing the model’s ability to utilize tools during
the SFT stage. Additionally, we provide theoretical explanations of the effectiveness of these strategies.

Theorem A.1. During the SFT stage for LLM in tool use, gradient updates resulting from incorrect
interaction paths in the training data can adversely impact the model’s ability to choose the appropriate
tool.

Proof. Let M be an LLM that interacts with a set of tools T to answer the user query ¢g. At each step s,
the model selects a tool t; € T based on the query and the history of tool selections and feedback:

t5+1 = M( ‘ q7T7t0..5700..5)7

where o; is the feedback received after calling tool .

Consider a dataset D comprising interaction sequences (g, to.s, 0o..s), Which includes both correct and
erroneous tool calls. Let T, C {to,t1,...,ts} denote the set of erroneous tool calls identified via analysis
of feedback oy.

The standard loss function during SFT aims to maximize the likelihood of the model’s tool selections
over the entire dataset:

L==>"% logpmlts | ¢ T to.s-1,00.5-1).
D s

The gradient of this loss with respect to the model parameters 8 is:

Vol = — ZZV@ logp/\/((ts ‘ QaTvtO..s—luOO..s—l)'
D s

This gradient comprises contributions from both correct and erroneous tool calls. The gradient
component arising from erroneous tool calls is:

CYYf:rror - - Z Z VG 1ngM(tS | q, Tvtl]..s—la 00..5—1)~
D ts€Te

These gradients encourage the model to replicate erroneous tool selections, thereby misguiding its
learning process. Specifically, they can increase the likelihood of the model making incorrect tool calls
in future interactions, which negatively impacts its performance. By including erroneous tool calls in
the gradient updates, the model parameters 6 are adjusted in directions that do not align with optimal
decision-making. This is detrimental because it interferes with the model’s ability to learn the correct
sequence of tool selections that effectively resolve user queries. Therefore, errors in the training data
introduce gradient updates that adversely affect the model’s performance. O

To mitigate this effect, we propose to modify the loss function to exclude erroneous tool calls from
back-propagation:

Lyag = — 2 Z logpa(ts | ¢, T, to.s—1,00..5-1)-
D ¢,¢T.

By omitting the erroneous tool calls from the loss computation, their associated gradients are not used
to update the model parameters. This reduces the harmful impact of errors in the training data on the
model’s performance.

Theorem A.2. During the gradient update process in SFT, assigning higher weights to key tokens
prioritizes their contribution to the loss function, enabling the model to focus more on these tokens and fit
them better.
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Proof. Let M be an LLM interacting with a set of tools T to answer the user query g. Each tool ¢5 used

at step s is a sequence of tokens:
0,1 ls
ts = (tg,tg,...,t2),

where [ is the length of the token sequence for tool ¢,.
For each tool t5, we categorize its tokens into two sets:

K, = {t7' € ts | t1" is a key token},
NKg = {t]" € ts | t7" is not a key token}.

We assign weights w?* to each token ¢7* as follows:

1 if " € NK,,

where | K| and |N K| denote the number of key and non-key tokens in ¢, respectively, wpax is the
maximum adjustment multiplier, and CLIP(z, min, max) constrains z to the interval [min, max].
The modified loss function that prioritizes key tokens is:

LprT = —ZZZU}? ogpam (87| @, T, to.s-1, 00,51, to.. .07 1),
D ts

where p, is the probability assigned by the model to token ¢7*, given the context.
The gradient of the loss with respect to the model parameters 6 is:

V@EPKT = — ZZZU}T . V@ ].ng_/\/l (t;n ‘ q, Ta tO..S—17 00..5—15 tg N 'tglfl) .
D

ts tm
Tokens with higher weights w* contribute more to the gradient:
-1
[wl" - Vologpm (¢ | ¢, T, to.s—1, 00.s—1, ta...t0 1) || oc wl™.

Assuming w” > w? for key token ¢ and non-key token ¢7, the gradient contribution from ¥ is larger:

Jw - Vologpar (¢ -+ ) | > llw? - Vologpar (¢2 | -+) |-

During gradient descent, the parameter updates prioritize reducing the loss associated with higher-
weighted (key) tokens:
0 =0 —nVeLlpkr.

As a result, the model adjusts its parameters more significantly to fit the key tokens, improving its
ability to generate them correctly. This leads to better fitting of tokens with higher weights. Therefore,
assigning higher weights to key tokens during gradient updates enhances the model’s performance on
these tokens. O
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B Details of Datasets

As shown in Table 2, we construct a custom training set focused on multi-turn tool use and evaluate it
using four publicly available test sets.

Training Data To train the LLMs using our method, we first construct a training dataset. Since
ToolEyes provides a comprehensive set of invocable tools, we use it as a foundation to artificially create
1,217 relevant user requirements. GPT-40 is then employed to interact with these tools and generate the
corresponding tool usage trajectories, which form our training set.

While previous studies often construct over 100,000 data points for training (Qin et al., 2024), we
deliberately limit our dataset size. Our main goal is to validate the effectiveness of our approach rather
than to scale data volume. Surprisingly, the experimental results in Section 5 show that training on just
1,217 data points using our method matches or even exceeds the performance of leading LLMs.

Test Sets To comprehensively evaluate LLM tool-use performance, we use four open-source tool
usage test sets. ToolAlpaca (eval_real), RoTBench (Clean), and BFCL-v3 (executable) are selected for
single-turn tool use evaluations, while ToolEyes is used for multi-turn tool use assessment.
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C Details of Baselines

In this paper, we select nine existing LLMs from three different sources for a comprehensive comparison
with our tool-use LLMs.

Tool-Use LLMs ToolLLaMA-2-7B and NexusRaven-2-13B are prominent tool-use LLMs, built on
LLaMA-2-7B and CodeLLaMA-2-13B, respectively. These models are trained on a large volume of
tool-use data, enhancing their ability to interact with tools. For example, ToolLLaMA-2-7B is trained on
over 120,000 data points covering more than 16,000 tools using standard SFT, significantly boosting its
tool-use capabilities.

Open-Source LLMs Among the existing open-source, general-purpose LLMs, ChatGLM-4-chat-
9B, Qwen-2-Instruct-7B, LLaMA-3.1-Instruct-8B and Qwen-2.5-Instruct-7B have been specifically
optimized for tool use, enabling them to interact with various tools to fulfill user needs.

Closed-Source LLMs The GPT family represents some of the most advanced LLMs, demonstrating
strong performance not only in general-purpose tasks but also in tool use, with notable generalization
capabilities. For this study, we select GPT-3.5-turbo, GPT-40, and GPT-4-turbo as leading
representatives of the GPT series for comparison.

Our Model We apply the TL-Training paradigm to CodeLLaMA-2-7B, using the custom dataset of
1,217 examples, to develop TL-CodeLLaMA-2, a specialized tool-use LLM. Compared to the other
models in this study, TL-CodeLLaMA-2 is the smallest and trained on the least amount of data.
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D Prompt Template
We use the official prompt of each LLM for tool use, which are provided from Table 6 to Table 13.

Table 6: An example for tool use of ToolLLaMA-2-7B.

System:

You are AutoGPT, you can use many tools(functions) to do the following task.

First I will give you the task description, and your task start.

At each step, you need to give your thought to analyze the status now and what to do next, with a
function call to actually excute your step. Your output should follow this format:

Thought:

Action

Action Input:

After the call, you will get the call result, and you are now in a new state.

Then you will analyze your status now, then decide what to do next...

After many (Thought-call) pairs, you finally perform the task, then you can give your finial answer.
Remember:

1.the state change is irreversible, you can’t go back to one of the former state, if you want to restart
the task, say I give up and restart.

2.All the thought is short, at most in 5 sentence.

3.You can do more then one trys, so if your plan is to continusly try some conditions, you can do one
of the conditions per try.

Let’s Begin!

Task description: You should use functions to help handle the real time user querys. Remember:
1.ALWAYS call Finishfunction at the end of the task. And the final answer should contain enough
information to show to the user,If you can’t handle the task, or you find that function calls always
fail(the function is not valid now), use function Finish->give_up_and_restart.

2.Do not use origin tool names, use only subfunctions’ names.

Specifically, you have access to the following APIs: [{“type": “function”, “function": {“name":
“random_advice", “description": “Returns a random advice slip as a slip object.", “parameters":
{“type": “object", “properties": {}, “required": []}}}]

User: Can you fetch some random advice for me?

Assistant:

Table 7: An example for tool use of NexusRaven-2-13B.

Function:
def random_advice():

Returns a random advice slip as a slip object.

Args:

Returns:
string: The feedback from the tool.

999999

User Query: Can you fetch some random advice for me?<human_end>
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Table 8: An example for tool use of ChatGLM-4-chat-9B.

< |system| >
1RE—"147 ChatGLM KA TERER T o 1REETEEALNGITESEE GLM-4 AT
R, VRAVESS ZEN R A B[R] BRI SR$2 At 2 AR S A SCH -

# A HTE
## random_advice

“name": “random_advice", “description": “Returns a random advice slip as a slip object.",

", "o

“parameters": {“type": “object", “properties": {}, “required": []}}
TEV _EaR k&L, 1568 Json AAEERAHNZEL - < |user| >

Can you fetch some random advice for me?< |assistant| >

Table 9: An example for tool use of Qwen-2-Instruct-7B.

< |im_start| >system
You are a helpful assistant.< |im_end| >< |im_start| >user
Answer the following questions as best you can. You have access to the following tools:

random_advice: Call this tool to interact with the random_advice API. What is the random_advice
API useful for? Returns a random advice slip as a slip object. Parameters: [] Format the arguments
as a JSON object.

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [random_advice]

Action Input: the input to the action

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer

Final Answer: the final answer to the original input question

Begin!

Question: Can you fetch some random advice for me?< |im_start| >assistant
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Table 10: An example for tool use of LLaMA-3.1-Instruct-8B.

< |begin_of_text| >< |start_header_id| >system< |end_header_id| >

Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

< |eot_id| >< |start_header_id| >user< |end_header_id| >

Given the following functions, please respond with a JSON for a function call with its
proper arguments that best answers the given prompt.

Respond in the format “name”: function name, “parameters”: dictionary of argument name and its
value.Do not use variables.

{

“function”: {

“description”: “Returns a random advice slip as a slip object.”,
“name”: “random_advice”,

“parameters”: {

“properties”: {},

“required”: [],

“type”: “object”

}

},

“type”: “function”

}

Can you fetch some random advice for me?< |eot_id| >< |[start_header_id| >assistant<
lend_header_id| >
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Table 11: An example for tool use of Qwen-2.5-Instruct-7B.

< |im_start| >system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

# Tools
You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>

{“function”:  {“description”: “Returns a random advice slip as a slip object.”, “name”:
“random_advice”, “parameters”: {“properties”: {}, “required”: [], “type”: “object”’}}, “type”:
“function”}

</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:

<tool_call>

“name”: <function-name>, “arguments”: <args-json-object>}

</tool_call>< |im_end| >

< |im_start| >user

Can you fetch some random advice for me?< |im_end| >

< |im_start| >assistant

Table 12: An example for tool use of GPT series models. The tools are send with the ‘tools’ key of
‘OpenAl().chat.completions.create()’.

Can you fetch some random advice for me?

Table 13: An example for tool use of TL-CodeLLaMA-2.

System: Function:
def random_advice():

13113313

Returns a random advice slip as a slip object.

Args:

999999

User: Can you fetch some random advice for me?
Assistant:
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E Examples of Tool Call and Feedback

In Table 14, we present some examples of potential scenarios that may arise during tool calls.

Table 14: Examples of various scenarios that may arise during tool calls.

Category Models Output Feedback
TL {“slip”: {“id”: 52, “advice”:
All Right CodeLLaMA-2 random_advice() DQn t fromlse what you can’t
deliver.”}}
{“arguments™: “y HTTPSConnectionPool(host=...,
Tool Instability GPT-4-turbo B g o . port=443): Max retries
name”: “get_currency”} .
exceeded with url: ...
get_exchange_rate )
Tool Instability ChatGLM-4 {“from_currency”: “EUR”, Tnvalid A PI CE}H' .Currency
chat “ v . codes might be invalid.
to_currency”: “GBP”’}
Thought: ...
Action:
Tool Instability Qwen-2-Instruct google_trends_sear(‘:‘h § 400 Client Error: Bad Request
Action Input: {“query”: forurl: ...
“school”, “data_type”:
“related_topics™}
Tool Call Failure ChatGLM-4- Sf arch_Santr’}’/ “error”’: “Response error.”}
chat {“query”: “IN”}
{“arguments”: “{*“query”:
“Bitcoin”, “data_type” ‘<= not supported between
Tool Call Failure ~GPT-3.5-turbo ~ “RELATED_QUERIES”, .~ ipported bet
e s e e ,, instances of ‘str’ and ‘int
limit™: 57}”, “name”:
“google_trends_search”}
Thought: ...
. Action: get_nobel_results Object of type bytes is not
Tool Call Failure  ToolLLaMA-2 Action Input: { “year”: JSON serializable
442018?’ }
{“arguments”: “{*“query”:
Tool Qwen-2.5- “most popular tourist destina- name google_search if not de-
Hallucination Instruct tions in Europe”}”, “name”: fined

Parameter Hallu-
cination

Parameter Miss-
ing

Others

ToolLLaMA-2

Qwen-2.5-
Instruct

GPT-40

“google_search”}

Thought: ...

Action: get_news_headlines
Action Input: { “api_key”:
“your_api_key”, “q”: “tech-

nology”, “sortBy”: “popular-
ity”’}

{“arguments”: “{“q:
“London”, “days™:
“77, “api_key”:
“your_api_key”}”, “name”:

“forecast”}
{“arguments”: “{“website”:
“www.mywebsite.com”}”,

“name”: “analyze_scan”}

get_news_headlines() got an
unexpected keyword argument
‘sortBy’

forecast() missing 1 required
positional argument: aqi

“error”: ‘“Recently completed
scan for www.mywebsite.com
not found”}
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