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Abstract001

Large language models (LLMs) achieve re-002
markable advancements by leveraging tools003
to interact with environments, a critical step004
toward generalized AI. However, the standard005
supervised fine-tuning (SFT) approach, which006
relies on large-scale datasets, often overlooks007
task-specific characteristics in tool use, lead-008
ing to performance bottlenecks. To address009
this issue, we analyze three existing LLMs010
and uncover key insights: training data can011
inadvertently impede tool-use behavior, token012
importance is distributed unevenly, and errors013
in tool calls fall into a small set of categories.014
Building on these findings, we propose TL-015
Training, a task-feature-based framework that016
mitigates the effects of suboptimal training data,017
dynamically adjusts token weights to prioritize018
key tokens during SFT, and incorporates a019
robust reward mechanism tailored to error020
categories, optimized through proximal policy021
optimization. We validate TL-Training by022
training CodeLLaMA-2-7B and evaluating it023
on four open-source test sets. Our results024
demonstrate that the LLM trained by our025
method matches or surpasses both open- and026
closed-source LLMs in tool-use performance027
using only 1,217 training data points. Addi-028
tionally, our method enhances robustness in029
noisy environments and improves general task030
performance, offering a scalable and efficient031
paradigm for tool-use training in LLMs.1032

1 Introduction033

Large language models (LLMs) (OpenAI, 2023;034

Touvron et al., 2023; Bai et al., 2023) excel in035

natural language understanding due to pre-training036

on extensive datasets (Chen et al., 2023; Ye et al.,037

2023). By incorporating tool-use capabilities,038

LLMs can extend beyond text generation to interact039

with the external environment, enabling tasks such040

1Code and data will be available upon acceptance of the
paper.
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Figure 1: Error statistics for various tool calls in
RoTLLaMA’s training data.

as web searches and email management (Tang 041

et al., 2023; Ye et al., 2025). Furthermore, these 042

capabilities are essential for addressing real-world 043

user needs and advancing the development of 044

general-purpose AI (Xi et al., 2023). 045

Current approaches to training LLMs for tool use 046

rely heavily on large-scale datasets generated from 047

trajectories of interactions with tools (Qin et al., 048

2024; Zhuang et al., 2023). Standard supervised 049

fine-tuning (SFT) is then applied to pre-trained 050

models. While effective in some cases, these 051

methods overlook key task-specific characteristics, 052

leading to performance bottlenecks. For instance, 053

ToolLLaMA-2-7B-v2 (Qin et al., 2024) achieves 054

only 80% of GPT-4’s performance on tool-use 055

benchmarks (Ye et al., 2025; Wu et al., 2024), 056

indicating room for significant improvement. 057

To fill this gap, we conduct an in-depth analysis 058

of three tool-using LLMs, uncovering several 059

key phenomena. Notably, over 17% of the 060

training data for RoTLLaMA (Ye et al., 2024b) 061
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Table 1: Proportion statistics of various error cases
in RoTBench (Clean) for ToolLLaMA-2-7B-v2 and
NexusRaven-13B-v2. ‘First’ indicates a mismatch in
the initial token of the selected and correct tool names,
while ‘Prefix’ denotes a shared prefix between them.
‘Synonyms’ captures instances where filled parameter
values are synonymous with standard values.

Aspect Error ToolLLaMA NexusRaven

Tool
First 53.33% 65.22%
Prefix 46.67% 34.78%

Parameter
Redundancy 46.43% 33.33%
Missing 57.14% 66.67%
Hallucination 17.86% 6.67%

Content
Synonyms 73.68% 95.00%
Others 31.58% 5.00%

contains tool-calling errors (Figure 1), primarily062

due to reliance on data from GPT series models,063

which are not entirely error-free with complex064

tools. Training on such flawed data can hinder065

model performance. Additionally, our tests066

of ToolLLaMA-2-7B-v2 and NexusRaven-13B-067

v2 (team, 2023) reveal that incorrect tool selections068

often share a common prefix with the correct ones069

(Table 1), and correcting initial erroneous tokens070

can lead to successful predictions. This suggests071

that certain tokens are more critical in tool selection.072

Moreover, the types of errors produced by tool073

calls are relatively limited (Figure 3), providing074

a foundation for targeted improvements across075

various error categories.076

Based on these insights, we propose TL-Training,077

a task-feature-based framework for training LLMs078

in tool use. TL-Training mitigates the negative079

impact of training data by identifying erroneous080

interaction paths and excluding them from gra-081

dient updates. It prioritizes key tokens through082

adaptive weighting during SFT and incorporates083

tool feedback into a robust reward mechanism for084

reinforcement learning using the proximal policy085

optimization (PPO) (Schulman et al., 2017).086

We validate our approach by training087

CodeLLaMA-2-7B (Rozière et al., 2023) on088

a curated dataset of 1,217 tool-call trajectories089

generated with GPT-4o. Evaluations on four090

open-source test sets demonstrate that the model091

trained with TL-Training matches or surpasses the092

tool-use performance of leading open- and closed-093

source LLMs, despite requiring significantly less094

training data. Additionally, TL-Training improves095

robustness in noisy environments and enhances096

general task performance.097

In summary, our contributions are as follows: 098

1) We identify three key insights in tool use, 099

including the impact of erroneous data, the uneven 100

importance of tokens, and the constrained range of 101

tool-calling error categories; 2) We propose TL- 102

Training, a novel task-feature-based framework 103

comprising of adverse effects mitigation, key 104

tokens prioritization, and reinforcement learning 105

for tool use; 3) We demonstrate the effectiveness 106

of TL-Training by training CodeLLaMA-2-7B 107

and achieving leading tool-use performance on 108

multiple benchmarks with only 1,217 pieces of 109

data; and 4) We show that TL-Training enhances 110

both robustness to noisy data and general task 111

performance, highlighting its potential for scalable 112

tool-use training. 113

2 Preliminaries 114

Task Formulation Given a model M, a user 115

query q, and a collection of tools T, the task of tool 116

use requires M to iteratively select the appropriate 117

tool ts ∈ T at each step s, process its feedback 118

os, and continue selecting subsequent tools ts+1 119

until the query is resolved and a final answer is 120

obtained. Formally, this can be represented as 121

ts+1 = M(·|q,T, t0..s, o0..s). This task is distinct 122

from traditional natural language processing tasks, 123

as it requires the model to invoke tools repeatedly 124

and interpret their feedback dynamically. Despite 125

its importance, to the best of our knowledge, there 126

has been no systematic examination of the intrinsic 127

properties of tool use. Thus, we aims to fill this 128

gap by conducting an in-depth analysis focusing 129

on both the training data and model performance. 130

Data Analysis For our analysis, we use the 131

training set from RoTLLaMA, which includes 132

12,247 filtered multi-turn tool-call trajectories 133

generated by GPT-4. Illustrated in Figure 1, 17% of 134

these trajectories contain various errors, indicating 135

that even advanced models like GPT-4 encounter 136

challenges with complex tools. These erroneous 137

trajectories pose a challenge for models trained 138

through SFT, as they inherit these error patterns 139

during learning. This predisposition to incorrect 140

tool invocation highlights the need for more robust 141

training methods to mitigate error propagation and 142

improve overall model performance. 143

Performance Analysis We evaluate the perfor- 144

mance of ToolLLaMA-2-7B-v2 and NexusRaven- 145

13B-v2, which are built on LLaMA-2-7B (Touvron 146
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getPapersByKeywords(keyword = ‘tool learning’, venue = 
‘ICLR’, limit = 1) Blocked For Parameter Missing

TOOL
getPapersByKeywords missing 1 positional argument: query

ASSISTANT
getPapersByKeywords(query = ‘tool learning’, venue = 
‘ICLR’, limit = 1) 

SYSTEM
• def getPaperDetails(paperId:str, fields:str = None)
• def getPapersByKeywords(query:str, fields:str = None, 

publicationTypes:str = None, openAccessPdf:str = None)
• def finish(answer:str)

USER
I am interested in case paper related to tool learning published 
in ‘ICLR.’

TOOL
{“data”: {“paperId”: “ICLR2024TOOLLEARNING”}}

ASSISTANT
getPapersByDetail(paperId = ‘ICLR2024TOOLLEARNING’)

Blocked For Tool Hallucination

TOOL
name getPaperByDetail is not defined

ASSISTANT
getPaperDetails(paperId = ‘ICLR2024TOOLLEARNING’)

TOOL
{“detail”: {“title”: “ToolLLM: Facilitating Large Language 
Models to Master 16000+ Real-world APIs”}}

ASSISTANT
finish(answer = ‘I have found an paper published in ICLR 
for you, whose title is “ToolLLM: Facilitating Large 
Language Models to Master 16000+ Real-world APIs.”’)

Mitigating Adverse Effects Prioritizing Key Tokens Introducing a Reward Mechanism
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• S1: The tool ‘get_papers_by_keys’ is not given, so this 

sample contains a tool hallucination => -2
• S2: Tool ‘get_papers_by_keywords’ does not has a 

parameter named ‘keyword’, so this sample has a 
parameter hallucination => -0.8

• S3: The value ‘learning’ is not matched ‘tool learning’, so 
this sample has a content filling issue => -0.25

• S4: The sample is correct => 1
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Figure 2: Framework of TL-Training. TL-Training comprises three main components: (Left) mitigating the adverse
effects of suboptimal data by identifying erroneous interaction trajectories through tool feedback and blocking their
gradient updates; (Middle) optimizing key tokens by dynamically adjusting token weights during the SFT process;
and (Right) enhancing tool call performance through a reward mechanism tailored to tool invocation error types,
using the PPO algorithm for reinforcement learning.

et al., 2023) and CodeLLaMA-2-13B (Rozière147

et al., 2023), respectively, as representative tool-148

using LLMs. Our evaluation uses RoTBench149

(Clean) (Ye et al., 2024b), a manually labeled150

dataset for the single-turn tool-use task with151

standardized answers. The analysis focuses152

on errors related to tool selection, parameter153

identification, and content filling, with results154

shown in Table 1. We observe that when the model155

selects the wrong tool, it often chooses one with156

a prefix similar to the correct tool. By manually157

correcting the first incorrectly predicted token, the158

model can generate the correct one, suggesting159

that certain tokens are crucial for task success.160

Additionally, errors in parameter identification and161

content generation highlight areas where further162

training is required.163

3 Approaches164

Building on the analysis in Section 2, we propose165

TL-Training, a novel training paradigm for LLMs166

in tool use. As shown in Figure 2, this paradigm167

incorporates three core techniques: mitigating the168

adverse effects of suboptimal data by preventing its169

back-propagation (Section 3.1), prioritizing key170

tokens using adaptive weight adjustments (Sec- 171

tion 3.2), and implementing a reward mechanism 172

tailored to tool invocation error categories to enable 173

effective reinforcement learning (Section 3.3).2 174

3.1 Mitigating Adverse Effects 175

During the SFT stage, the objective is to align 176

LLMs with the distribution of the training data. 177

However, erroneous interaction paths in the data 178

can negatively affect the model’s decision-making, 179

leading to an increased likelihood of incorrect tool 180

calls. To address this, we design an automated pro- 181

cess that identifies erroneous interaction paths and 182

blocks their back-propagation, thereby reducing 183

their harmful impact on the model. 184

Given a data sequence (q, t0..s, o0..s), we seek 185

to identify the erroneous tool call trajectory Te ⊆ 186

{t0, t1, . . . , ts}. Directly determining whether a 187

specific ti is correct is challenging. However, 188

the feedback oi generated after each tool call 189

contains structured error-reporting information, 190

as summarized in Figure 3.3 We automate the 191

2Theoretical proofs of the effectiveness of our proposed
approaches is provided in Appendix A.

3Specific examples can be found in Appendix E.
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Figure 3: Types of errors encountered by LLMs during
tool use and their corresponding feedback messages.

identification of incorrect calls by sequentially192

analyzing oi to extract Te.193

Once Te is identified, we mitigate the impact194

of these erroneous interactions by blocking their195

back-propagation during training. This is achieved196

by modifying the loss function as follows:197

LMAE =−
∑
D

∑
ts /∈Te

log pM (ts|q,T,

t0..s−1, o0..s−1),

198

where D represents the entire training dataset.199

3.2 Prioritizing Key Tokens200

Based on the analysis in Section 2, and the insights201

from rows 1-2 of Table 1, we observe that the first202

token of a tool name, along with any subsequent203

token that shares a common prefix with other tool204

names, plays a more critical role in successful205

tool identification. As such, these tokens are206

more challenging for LLMs to generate correctly.207

However, standard SFT training maximizes the208

conditional probability of each token without209

distinction, treating all tokens as equally important.210

To address this limitation, we propose a scheme211

that adaptively adjusts the training weights of212

tokens according to their relative importance.213

Given a data sequence (q, t0..s, o0..s), where214

each tool ti = (t0i , t
1
i , . . . , t

li
i ) consists of li tokens,215

we categorize the tokens into two sets:216

Ki = {tmi ∈ ti | tmi is a key token}217
218

NKi = {tmi ∈ ti | tmi is not a key token}219

We then adjust the weights of Ki and NKi based220

on their relative importance, allowing the model to221

focus more on the key tokens.222

wm
i =

{
CLIP

(
|NKi|
|Ki| , 1, wmax

)
if tmi ∈ Ki

1 otherwise
223

Here, wmax is the maximum adjustment multi- 224

plier, and CLIP(x,min,max) is used to constrain 225

the adjustment factor to lie within the range 226

[min,max]. The notation | · | represents the size 227

of the set.4 228

With these computed weights, we prioritize key 229

tokens during training with the following objective: 230

LPKT =−
∑
D

∑
ts

∑
tms

wm
s · log pM (tms | q,T,

t0..s−1, o0..s−1, t
0
s . . . t

m−1
s ).

231

3.3 Introducing a Reward Mechanism 232

The three stages of tool use by LLMs are interde- 233

pendent, where an error in any stage can lead to the 234

failure of the entire tool invocation. Fortunately, 235

the types of errors that arise are limited, enabling 236

us to introduce a reward mechanism based on 237

these specific errors. This allows us to apply 238

reinforcement learning algorithms that help align 239

the model more closely with human intent and 240

enhance its tool-use proficiency. To achieve this, 241

we define a set of reward functions tailored to the 242

tool use task and employ the PPO algorithm to 243

optimize the model’s performance. 244

Given an LLM-generated tool call prediction ti 245

and its corresponding ground truth, we define the 246

following reward function based on the quality of 247

the LLM’s tool use in various scenarios: 248

R(ti) =



−2 if ti cannot be parsed
−2 if ti contains tool hallucinations
−1.5 if ti calls the wrong tool
Rp(ti) if ti has parameter issues
−0.25 if ti has content filling issues
1 if ti is correct

249

where Rp(ti) is defined as: 250

Rp(ti) =− 0.8 · I(ti has parameter hallucinations)

− 0.5 · I(ti has redundant parameters)

− 0.5 · I(ti has missing parameters)
251

where I(·) represents the indicator function. 252

4Since Ki always includes at least the first token of the
tool name, we avoid any risk of dividing by zero.
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This reward function R addresses the different253

potential errors in LLM tool use, providing a254

structured scoring system to assess performance.255

Based on this, we apply the PPO algorithm, which256

iteratively optimizes the model’s parameters to257

maximize these rewards as follows:258

M∗ =argmax
M

ED[
∑
ts

(R(ts)−

βKL(M(·)||Msft(·)))]
259

where β regulates deviation from the initial SFT260

model Msft. This approach enables the LLM to261

progressively refine its understanding and improve262

the accuracy of its tool usage over time.263

4 Experimental Setup264

4.1 Dataset265

As shown in Table 2, to validate our approach,266

we construct a custom training set focused on267

multi-turn tool use and evaluate it using four268

publicly available test sets (i.e., ToolAlpaca (Tang269

et al., 2023), RoTBench (Ye et al., 2024b), BFCL-270

v3 (Patil et al., 2024), and ToolEyes).5271

4.2 Baselines272

We conduct a comprehensive comparison of ten273

LLMs from three different categories. These in-274

clude ToolLLaMA-2-7B and NexusRaven-2-13B275

as tool-use LLMs; ChatGLM-4-chat-9B (Zeng276

et al., 2024), Qwen-2-Instruct-7B (Yang et al.,277

2024a), LLaMA-3.1-Instruct-8B (Team, 2024),278

and Qwen-2.5-Instruct-7B (Yang et al., 2024b)279

as open-source LLMs; GPT-3.5-turbo, GPT-4o,280

and GPT-4-turbo as closed-source LLMs; and TL-281

CodeLLaMA-2, developed from CodeLLaMA-2-282

7B with the custom dataset.6283

4.3 Metrics284

For single-turn tool use, where the original285

dataset provides a standard answer, we follow Ye286

et al. (2024b) and assess the model’s performance287

across three key areas: 1) Tool Selection (TS)288

measures the model’s accuracy in selecting the tool289

specified by the standard answer; 2) Parameter290

Identification (PI) evaluates the model’s ability to291

correctly select the tool and identify the relevant292

parameters required for invocation; and 3) Content293

Filling (CF) assesses the model’s capacity to294

complete the single-turn tool invocation, including295

5Details of the datasets can be found in Appendix B
6Details of baselines can be found in Appendix C.

Table 2: Statics of datasets used. ‘# Number’ represents
the number of data in the dataset. ‘Type’ represents the
type of tool use.

Split Dataset # Number Type

Train Self-Construct 1217 Multi-Turn

Test

ToolAlpaca 114 Single-Turn
RoTBench 105 Single-Turn
BFCL-v3 239 Single-Turn
ToolEyes 382 Multi-Turn

selecting the correct tool, identifying relevant 296

parameters, and filling in the appropriate values. 297

For multi-turn tool use, where no standardized 298

interaction path exists, we adapt the methods 299

of Qin et al. (2024) and Ye et al. (2025), and 300

assess performance based on following metrics: 301

1) Documentation Understanding Error (DE) 302

represents the percentage of errors resulting from 303

the model’s failure to interpret the tool documenta- 304

tion, encompassing tool hallucinations, parameter 305

hallucinations, and missing necessary parameters; 306

2) Tool Call Error (CE) denotes the proportion 307

of errors arising from incorrect tool invocation, 308

covering all error types except those classified as 309

DE; and 3) Valid Answers (VA) evaluates the 310

percentage of instances where the model delivers 311

valid responses within nine turns. 312

4.4 Implementation Details 313

In the SFT stage, we use 1,217 constructed 314

data samples, applying both the MAE and 315

PKT strategies. We employ the AdamW 316

optimizer (Loshchilov and Hutter, 2019) with 317

cosine scheduling, setting the learning rate to 318

1e-6, a warmup rate of 0.01, and a batch size of 319

4, training for a total of 1 epoch. For the PKT 320

strategy, wmax is set to 9. In the RL stage, we 321

filter 1,194 entries from the constructed data and 322

apply PPO with the reward function described in 323

Section 3.3. The actor learning rate is set to 2e-6, 324

the critic learning rate to 1e-6, and the batch size to 325

8, training for a total of 3 epochs. For testing, we 326

use the official prompt template for tool invocation 327

and apply greedy search.7 328

5 Experiments 329

5.1 Main Results 330

We evaluate the performance of various LLMs on 331

three single-turn tool-use test sets and one multi- 332

7Templates for each LLM are provided in Appendix D.
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Table 3: Performance of various LLMs on single-turn test sets. ‘Avg.’ represents the average performance across all
LLMs. Individual LLM performances are color-coded for clarity: teal highlights better-than-average performance,
while purple indicates below-average performance. Darker shades signify greater deviations from the average.
The best performance in each column is indicated in bold.

Models Size ToolAlpaca RoTBench BFCL-v3

TS (↑) PI (↑) CF (↑) TS (↑) PI (↑) CF (↑) TS (↑) PI (↑) CF (↑)

Avg. 80.63 65.09 42.72 74.10 49.90 35.43 93.13 89.88 74.17

ToolLLaMA-2 7B 75.56 61.40 37.72 70.48 43.81 25.71 87.08 83.75 56.67
NexusRaven-2 13B 82.46 48.25 37.72 70.48 56.19 37.14 97.08 94.17 75.83

ChatGLM-4-chat 9B 73.68 68.42 38.60 67.62 53.33 37.14 95.42 93.33 86.67
Qwen-2-Instruct 7B 86.84 68.42 43.86 74.29 47.62 35.24 98.33 95.42 85.00
LLaMA-3.1-Instruct 8B 84.21 59.65 42.98 62.86 17.14 8.57 63.75 59.58 34.58
Qwen-2.5-Instruct 7B 92.11 68.42 44.74 80.00 32.38 15.24 100.00 95.42 87.92

GPT-3.5-turbo - 72.81 54.39 39.47 74.29 61.90 48.57 99.17 95.83 75.83
GPT-4o - 76.32 70.18 42.11 74.29 62.86 50.48 96.67 93.75 74.58
GPT-4-turbo - 74.56 73.68 42.11 82.86 69.52 53.33 97.50 93.75 76.25

TL-CodeLLaMA-2 7B 87.72 78.07 57.89 83.81 54.29 42.86 96.25 93.75 88.33

Table 4: Performance on the multi-turn test set.

Models ToolEyes

DE (↓) CE (↓) VA (↑)

Avg. 3.91 12.46 65.56

ToolLLaMA-2 21.00 36.62 52.36

ChatGLM-4-chat 0.17 32.45 43.45
Qwen-2-Instruct 0.78 6.71 70.16
LLaMA-3.1-Instruct 4.80 3.76 4.71
Qwen-2.5-Instruct 4.78 4.60 74.08

GPT-3.5-turbo 2.36 10.73 89.79
GPT-4o 0.12 4.64 87.43
GPT-4-turbo 0.34 7.83 90.31

TL-CodeLLaMA-2 0.82 4.84 77.75

turn tool-use test set, with the results summarized333

in Table 3 and Table 4.8 Despite using the334

smallest model size and the least amount of training335

data, our approach achieves results comparable336

to the best-performing models. These findings337

demonstrate the potential for smaller, efficient338

models to excel in the tool use task, making339

advanced capabilities more accessible for resource-340

constrained environments.341

Single-Turn Evaluation Results from three342

single-turn tool-use test sets demonstrate that343

TL-CodeLLaMA-2, with only 7B parameters344

8Since NexusRaven-2-13B does not receive tool feedback
during interactions, it is evaluated only on the single-turn
tool-use datasets.

and 1,217 training examples, surpasses all other 345

open-source LLMs in overall task completion (i.e., 346

CF). Remarkably, on the ToolAlpaca and BFCL-v3 347

datasets, TL-CodeLLaMA-2 outperforms GPT-4- 348

turbo, the top-performing GPT family model, by an 349

impressive 15.78% and 12.08%, respectively. Most 350

notably, TL-CodeLLaMA-2 is the only model 351

that consistently exceeds the average performance 352

across all three aspects of every dataset evaluated, 353

highlighting the effectiveness of our approach in 354

enhancing single-turn tool usage capabilities. 355

Multi-Turn Evaluation In the multi-turn test 356

set, our approach significantly enhances the ability 357

of LLMs to handle the tool use task. TL- 358

CodeLLaMA-2 achieves an total error rate of just 359

5.64% on the test set, second only to GPT-4o, 360

which had the lowest error rate at 4.76%, and 361

ahead of Qwen-2-Instruct at 7.49%. Additionally, 362

TL-CodeLLaMA-2 maintaines a low error rate 363

while achieving a high effective response rate, 364

outperforming all other open-source models. In 365

contrast, LLaMA-3.1-Instruct-8B frequently fails 366

to provide a valid direct answer, effectively 367

rendering it incapable of completing the task. 368

These results highlight that our trained model 369

effectively uses tools in multi-turn settings to solve 370

complex user queries. 371

5.2 Ablation Studies 372

To assess the individual contributions of the three 373

components in our design that enhance LLMs’ 374

tool-use capabilities, we conduct ablation studies, 375
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Table 5: The ablation studies of the three components of our method, with better results than Standard SFT labeled
in teal , poorer results labeled in purple . Darker colors indicate larger gaps.

Models ToolAlpaca RoTBench ToolEyes

TS (↑) PI (↑) CF (↑) TS (↑) PI (↑) CF (↑) DE (↓) CE (↓) VA (↑)

Standard SFT (w/ None) 74.56 70.18 42.98 76.19 55.24 38.10 0.72 9.08 59.32

w/ MAE 73.68 64.91 43.68 78.10 57.14 40.95 1.22 5.53 68.85
w/ PKT 77.78 71.72 43.86 82.86 63.81 48.57 1.07 7.52 63.61
w/ IRM 88.60 84.21 57.02 79.05 59.05 44.76 0.65 6.80 57.33

w/ MAE & PKT 73.68 64.91 43.86 80.95 56.19 40.00 0.71 10.07 75.13
w/ MAE & IRM 87.72 78.95 57.89 82.86 56.19 45.71 0.96 5.03 71.20
w/ PKT & IRM 86.84 79.82 57.02 82.86 63.81 48.57 0.88 7.11 65.18

w/ All (TL-CodeLLaMA-2) 87.72 78.07 57.89 83.81 54.29 42.86 0.82 4.84 77.75
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Figure 4: Performance comparison of RoTLLaMA
and TL-CodeLLaMA-2 in different noise environments.
RoTLLaMA’s results are from Ye et al. (2024b).

comparing model performance across various376

scenarios. The results are shown in Table 5.377

When compared to standard SFT without ad-378

ditional techniques (i.e., w/ None), masking379

erroneous interaction paths during training (e.g.,380

w/ MAE) reduces the model’s overall error rate381

in multi-turn tool use by nearly one-third and382

increases effective responses by 9.53%. This383

suggests that removing these erroneous paths384

prevents LLMs from learning incorrect tool-use385

patterns. However, since such errors are rare386

in single-turn tool use, the improvement in that387

case is less pronounced and requires additional388

techniques for further gains (e.g., w/ MAE &389

IRM). Similarly, optimizing the weights of key390

tokens during training (e.g., w/ PKT) enhances391

the model’s ability to differentiate between similar392

tools, improving tool selection accuracy and overall393

performance. Furthermore, reinforcement learning394

with our proposed reward function (e.g., w/ IRM)395

further improves performance across all stages by396

dynamically optimizing the entire tool-use process,397

addressing diverse errors encountered during tool 398

use. Finally, TL-CodeLLaMA-2 (i.e., w/ All), 399

which integrates all three strategies, maximizes 400

their combined advantages, significantly improving 401

LLM performance in both single-turn and multi- 402

turn tool use with only 1,217 data points, demon- 403

strating the effectiveness of our approach. 404

6 Further Studies 405

6.1 Robustness Improvement 406

In real-world environments, tools often contain 407

various types of noise, and LLMs must be 408

robust in their tool use to effectively meet user 409

needs across different situations. RoTBench 410

provides five tool-use test environments with 411

varying noise levels, designed to evaluate whether 412

LLMs can accurately understand the functions and 413

properties of different tools and execute effective 414

invocations. We compare the performance of 415

TL-CodeLLaMA-2 and RoTLLaMA across these 416

five noisy environments, as shown in Figure 4. 417

While RoTLLaMA has been optimized for such 418

environments through targeted noise augmentation, 419

TL-CodeLLaMA-2, without specific optimizations, 420

matches or exceeds RoTLLaMA’s performance in 421

all aspects. This suggests that our approach allows 422

the model to focus on the core functionality of 423

external tools without being hindered by noise, 424

making it more adaptable to real-world scenarios. 425

6.2 General Performance 426

The strong performance of LLMs is largely 427

attributed to their extensive world knowledge and 428

generalizability acquired during pre-training (Ye 429

et al., 2023). However, fine-tuning on domain- 430

specific tasks can sometimes compromise this 431

generalizability (Yang et al., 2024c; Ghosh et al., 432
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2024). To assess whether TL-CodeLLaMA-2’s433

general-purpose capabilities are affected by its434

exclusive training on tool-use data, we evaluate435

its performance on three general test sets: MMLU436

(knowledge) (Hendrycks et al., 2021), GSM8K437

(math) (Cobbe et al., 2021), and HumanEval438

(code) (Chen et al., 2021), comparing it to439

CodeLLaMA-2-7B. As shown in Figure 5, despite440

being fine-tuned solely for the tool-use task, TL-441

CodeLLaMA-2 retains its original task perfor-442

mance and even shows slight improvements in443

math and coding abilities. This is because our444

method requires only a small amount of training445

data, resulting in minimal changes to the model’s446

original parameters, thus preserving its knowledge447

base (Ren et al., 2024; Wang et al., 2024; Ye et al.,448

2024c). Furthermore, the enhancement in tool-use449

ability appears to improve the model’s reasoning450

capacity, contributing to better performance in451

math and coding tasks. These findings further452

underscore the broad applicability of our approach.453

7 Related Works454

Training LLMs for Tool Use LLMs capable of455

utilizing external tools significantly enhance their456

ability to interact with dynamic environments and457

address user needs (Qin et al., 2023). However, the458

diversity and complexity of real-world tools present459

significant challenges in training such models. Ex-460

isting methods, such as SFT, rely on the generation461

of extensive datasets of tool interactions (Song462

et al., 2023; Tang et al., 2023), enabling models463

to learn tool functionalities, invoke appropriate464

tools, and process feedback. While effective, these465

methods are resource-intensive due to the large-466

scale data construction involved. To overcome467

these challenges, some studies have proposed468

encoding tool names as special tokens directly469

integrated into model training, embedding tool-470

specific knowledge into the model (Hao et al.,471

2023). This approach has shown promise for472

existing tools but remains limited in its ability473

to adapt to newly introduced tools. Building474

on these findings, our work introduces a novel475

training paradigm for tool-use LLMs, addressing476

both efficiency and adaptability. By leveraging477

a compact dataset of 1,217 data points and478

incorporating three task-specific components, our479

approach achieves state-of-the-art performance480

while significantly reducing data requirements.481

39.52
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29.27

39.52

18.27

29.88

0 10 20 30 40 50

MMLU

GSM8K
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CodeLLaMA-2 TL-CodeLLaMA-2

Figure 5: Performance comparison of CodeLLaMA-2
and TL-CodeLLaMA-2 across various general tasks.

Evaluating LLMs in Tool Use Evaluating 482

LLMs’ tool-use capabilities is essential for 483

understanding their effectiveness in diverse 484

scenarios. A common evaluation method involves 485

comparing predicted outputs with standard 486

answers from a single turn of tool use (Chen et al., 487

2024). However, in multi-turn interactions, the 488

variability in invocation processes complicates 489

the definition of a single standard path. To 490

address this, evaluations increasingly consider 491

multiple dimensions of tool-use processes and 492

outcomes (Ye et al., 2025). Beyond tool-use 493

performance, researchers have also investigated 494

robustness and safety in practical scenarios (Ye 495

et al., 2024b,a), which provide insights into how 496

LLMs manage edge cases and avoid harmful 497

outputs. In this paper, we evaluate LLMs across 498

single-turn and multi-turn tool use to provide a 499

more comprehensive assessment. Additionally, 500

we analyze robustness to further demonstrate the 501

superiority of our approach. 502

8 Conclusion 503

In this paper, we introduce TL-Training, a novel 504

paradigm for training LLMs specifically for tool 505

use. Our approach mitigates the impact of 506

erroneous interaction data, adaptively adjusts token 507

weights, and introduces a reward mechanism tailed 508

for tool use to facilitate PPO-based reinforcement 509

learning. This methodology not only enhances 510

LLMs’ tool-use capabilities but also improves 511

their robustness in noisy environments, all while 512

preserving strong general performance across a 513

range of tasks. Our findings demonstrate the 514

effectiveness of TL-Training in addressing real- 515

world challenges in tool use, offering a promising 516

direction for future research in improving LLM 517

interaction capabilities and adaptability. 518
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Limitations519

While we propose a novel paradigm for training520

LLMs in tool use, our work still has a few521

limitations. First, we do not construct large-522

scale training data. However, despite using only523

1,217 data samples, our results show that we524

match or even surpass the best current tool-use525

performance, highlighting the strengths of our526

approach. Second, we design a reward function527

based on tool feedback for tool use directly, without528

training a separate reward model. Nonetheless, we529

experimentally demonstrate the effectiveness of530

our reward function. In future work, we plan to531

explore training a reward model specifically for tool532

learning to further improve model performance.533
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A Theorems and Proofs744

In this paper, we propose LMAE and LPKT , aimed at enhancing the model’s ability to utilize tools during745

the SFT stage. Additionally, we provide theoretical explanations of the effectiveness of these strategies.746

Theorem A.1. During the SFT stage for LLM in tool use, gradient updates resulting from incorrect747

interaction paths in the training data can adversely impact the model’s ability to choose the appropriate748

tool.749

Proof. Let M be an LLM that interacts with a set of tools T to answer the user query q. At each step s,750

the model selects a tool ts ∈ T based on the query and the history of tool selections and feedback:751

ts+1 = M(· | q,T, t0..s, o0..s),752

where os is the feedback received after calling tool ts.753

Consider a dataset D comprising interaction sequences (q, t0..s, o0..s), which includes both correct and754

erroneous tool calls. Let Te ⊆ {t0, t1, . . . , ts} denote the set of erroneous tool calls identified via analysis755

of feedback os.756

The standard loss function during SFT aims to maximize the likelihood of the model’s tool selections757

over the entire dataset:758

L = −
∑
D

∑
ts

log pM(ts | q,T, t0..s−1, o0..s−1).759

The gradient of this loss with respect to the model parameters θ is:760

∇θL = −
∑
D

∑
ts

∇θ log pM(ts | q,T, t0..s−1, o0..s−1).761

This gradient comprises contributions from both correct and erroneous tool calls. The gradient762

component arising from erroneous tool calls is:763

Gerror = −
∑
D

∑
ts∈Te

∇θ log pM(ts | q,T, t0..s−1, o0..s−1).764

These gradients encourage the model to replicate erroneous tool selections, thereby misguiding its765

learning process. Specifically, they can increase the likelihood of the model making incorrect tool calls766

in future interactions, which negatively impacts its performance. By including erroneous tool calls in767

the gradient updates, the model parameters θ are adjusted in directions that do not align with optimal768

decision-making. This is detrimental because it interferes with the model’s ability to learn the correct769

sequence of tool selections that effectively resolve user queries. Therefore, errors in the training data770

introduce gradient updates that adversely affect the model’s performance.771

To mitigate this effect, we propose to modify the loss function to exclude erroneous tool calls from772

back-propagation:773

LMAE = −
∑
D

∑
ts /∈Te

log pM(ts | q,T, t0..s−1, o0..s−1).774

By omitting the erroneous tool calls from the loss computation, their associated gradients are not used775

to update the model parameters. This reduces the harmful impact of errors in the training data on the776

model’s performance.777

Theorem A.2. During the gradient update process in SFT, assigning higher weights to key tokens778

prioritizes their contribution to the loss function, enabling the model to focus more on these tokens and fit779

them better.780
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Proof. Let M be an LLM interacting with a set of tools T to answer the user query q. Each tool ts used 781

at step s is a sequence of tokens: 782

ts = (t0s, t
1
s, . . . , t

ls
s ), 783

where ls is the length of the token sequence for tool ts. 784

For each tool ts, we categorize its tokens into two sets: 785

Ks = {tms ∈ ts | tms is a key token}, 786

787
NKs = {tms ∈ ts | tms is not a key token}. 788

We assign weights wm
s to each token tms as follows: 789

wm
s =

{
CLIP

(
|NKs|
|Ks| , 1, wmax

)
if tms ∈ Ks,

1 if tms ∈ NKs,
790

where |Ks| and |NKs| denote the number of key and non-key tokens in ts, respectively, wmax is the 791

maximum adjustment multiplier, and CLIP(x, min, max) constrains x to the interval [min, max]. 792

The modified loss function that prioritizes key tokens is: 793

LPKT = −
∑
D

∑
ts

∑
tms

wm
s · log pM

(
tms | q, T, t0..s−1, o0..s−1, t

0
s . . . t

m−1
s

)
, 794

where pM is the probability assigned by the model to token tms , given the context. 795

The gradient of the loss with respect to the model parameters θ is: 796

∇θLPKT = −
∑
D

∑
ts

∑
tms

wm
s · ∇θ log pM

(
tms | q, T, t0..s−1, o0..s−1, t

0
s . . . t

m−1
s

)
. 797

Tokens with higher weights wm
s contribute more to the gradient: 798

∥wm
s · ∇θ log pM

(
tms | q, T, t0..s−1, o0..s−1, t

0
s . . . t

m−1
s

)
∥ ∝ wm

s . 799

Assuming wk
s > wn

s for key token tks and non-key token tns , the gradient contribution from tks is larger: 800

∥wk
s · ∇θ log pM

(
tks | · · ·

)
∥ > ∥wn

s · ∇θ log pM (tns | · · · ) ∥. 801

During gradient descent, the parameter updates prioritize reducing the loss associated with higher- 802

weighted (key) tokens: 803

θ′ = θ − η∇θLPKT . 804

As a result, the model adjusts its parameters more significantly to fit the key tokens, improving its 805

ability to generate them correctly. This leads to better fitting of tokens with higher weights. Therefore, 806

assigning higher weights to key tokens during gradient updates enhances the model’s performance on 807

these tokens. 808
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B Details of Datasets809

As shown in Table 2, we construct a custom training set focused on multi-turn tool use and evaluate it810

using four publicly available test sets.811

Training Data To train the LLMs using our method, we first construct a training dataset. Since812

ToolEyes provides a comprehensive set of invocable tools, we use it as a foundation to artificially create813

1,217 relevant user requirements. GPT-4o is then employed to interact with these tools and generate the814

corresponding tool usage trajectories, which form our training set.815

While previous studies often construct over 100,000 data points for training (Qin et al., 2024), we816

deliberately limit our dataset size. Our main goal is to validate the effectiveness of our approach rather817

than to scale data volume. Surprisingly, the experimental results in Section 5 show that training on just818

1,217 data points using our method matches or even exceeds the performance of leading LLMs.819

Test Sets To comprehensively evaluate LLM tool-use performance, we use four open-source tool820

usage test sets. ToolAlpaca (eval_real), RoTBench (Clean), and BFCL-v3 (executable) are selected for821

single-turn tool use evaluations, while ToolEyes is used for multi-turn tool use assessment.822
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C Details of Baselines 823

In this paper, we select nine existing LLMs from three different sources for a comprehensive comparison 824

with our tool-use LLMs. 825

Tool-Use LLMs ToolLLaMA-2-7B and NexusRaven-2-13B are prominent tool-use LLMs, built on 826

LLaMA-2-7B and CodeLLaMA-2-13B, respectively. These models are trained on a large volume of 827

tool-use data, enhancing their ability to interact with tools. For example, ToolLLaMA-2-7B is trained on 828

over 120,000 data points covering more than 16,000 tools using standard SFT, significantly boosting its 829

tool-use capabilities. 830

Open-Source LLMs Among the existing open-source, general-purpose LLMs, ChatGLM-4-chat- 831

9B, Qwen-2-Instruct-7B, LLaMA-3.1-Instruct-8B and Qwen-2.5-Instruct-7B have been specifically 832

optimized for tool use, enabling them to interact with various tools to fulfill user needs. 833

Closed-Source LLMs The GPT family represents some of the most advanced LLMs, demonstrating 834

strong performance not only in general-purpose tasks but also in tool use, with notable generalization 835

capabilities. For this study, we select GPT-3.5-turbo, GPT-4o, and GPT-4-turbo as leading 836

representatives of the GPT series for comparison. 837

Our Model We apply the TL-Training paradigm to CodeLLaMA-2-7B, using the custom dataset of 838

1,217 examples, to develop TL-CodeLLaMA-2, a specialized tool-use LLM. Compared to the other 839

models in this study, TL-CodeLLaMA-2 is the smallest and trained on the least amount of data. 840
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D Prompt Template841

We use the official prompt of each LLM for tool use, which are provided from Table 6 to Table 13.842

Table 6: An example for tool use of ToolLLaMA-2-7B.

System:
You are AutoGPT, you can use many tools(functions) to do the following task.
First I will give you the task description, and your task start.
At each step, you need to give your thought to analyze the status now and what to do next, with a
function call to actually excute your step. Your output should follow this format:
Thought:
Action
Action Input:

After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After many (Thought-call) pairs, you finally perform the task, then you can give your finial answer.
Remember:
1.the state change is irreversible, you can’t go back to one of the former state, if you want to restart
the task, say Ï give up and restart.̈
2.All the thought is short, at most in 5 sentence.
3.You can do more then one trys, so if your plan is to continusly try some conditions, you can do one
of the conditions per try.
Let’s Begin!
Task description: You should use functions to help handle the real time user querys. Remember:
1.ALWAYS call F̈inishf̈unction at the end of the task. And the final answer should contain enough
information to show to the user,If you can’t handle the task, or you find that function calls always
fail(the function is not valid now), use function Finish->give_up_and_restart.
2.Do not use origin tool names, use only subfunctions’ names.

Specifically, you have access to the following APIs: [{“type": “function", “function": {“name":
“random_advice", “description": “Returns a random advice slip as a slip object.", “parameters":
{“type": “object", “properties": {}, “required": []}}}]
User: Can you fetch some random advice for me?
Assistant:

Table 7: An example for tool use of NexusRaven-2-13B.

Function:
def random_advice():
“““
Returns a random advice slip as a slip object.

Args:

Returns:
string: The feedback from the tool.
”””

User Query: Can you fetch some random advice for me?<human_end>
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Table 8: An example for tool use of ChatGLM-4-chat-9B.

< |system| >
你是一个名为 ChatGLM的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4模型开
发的，你的任务是针对用户的问题和要求提供适当的答复和支持。

#可用工具

## random_advice

{“name": “random_advice", “description": “Returns a random advice slip as a slip object.",
“parameters": {“type": “object", “properties": {}, “required": []}}
在调用上述函数时，请使用 Json格式表示调用的参数。< |user| >
Can you fetch some random advice for me?< |assistant| >

Table 9: An example for tool use of Qwen-2-Instruct-7B.

< |im_start| >system
You are a helpful assistant.< |im_end| >< |im_start| >user
Answer the following questions as best you can. You have access to the following tools:

random_advice: Call this tool to interact with the random_advice API. What is the random_advice
API useful for? Returns a random advice slip as a slip object. Parameters: [] Format the arguments
as a JSON object.

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [random_advice]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!

Question: Can you fetch some random advice for me?< |im_start| >assistant
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Table 10: An example for tool use of LLaMA-3.1-Instruct-8B.

< |begin_of_text| >< |start_header_id| >system< |end_header_id| >

Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

< |eot_id| >< |start_header_id| >user< |end_header_id| >

Given the following functions, please respond with a JSON for a function call with its
proper arguments that best answers the given prompt.

Respond in the format “name”: function name, “parameters”: dictionary of argument name and its
value.Do not use variables.

{
“function”: {
“description”: “Returns a random advice slip as a slip object.”,
“name”: “random_advice”,
“parameters”: {
“properties”: {},
“required”: [],
“type”: “object”
}
},
“type”: “function”
}

Can you fetch some random advice for me?< |eot_id| >< |start_header_id| >assistant<
|end_header_id| >
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Table 11: An example for tool use of Qwen-2.5-Instruct-7B.

< |im_start| >system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{“function”: {“description”: “Returns a random advice slip as a slip object.”, “name”:
“random_advice”, “parameters”: {“properties”: {}, “required”: [], “type”: “object”}}, “type”:
“function”}
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:
<tool_call>
{“name”: <function-name>, “arguments”: <args-json-object>}
</tool_call>< |im_end| >
< |im_start| >user
Can you fetch some random advice for me?< |im_end| >
< |im_start| >assistant

Table 12: An example for tool use of GPT series models. The tools are send with the ‘tools’ key of
‘OpenAI().chat.completions.create()’.

Can you fetch some random advice for me?

Table 13: An example for tool use of TL-CodeLLaMA-2.

System: Function:
def random_advice():
“““
Returns a random advice slip as a slip object.

Args:
”””

User: Can you fetch some random advice for me?
Assistant:
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E Examples of Tool Call and Feedback843

In Table 14, we present some examples of potential scenarios that may arise during tool calls.844

Table 14: Examples of various scenarios that may arise during tool calls.

Category Models Output Feedback

All Right
TL-
CodeLLaMA-2

random_advice()
{“slip”: {“id”: 52, “advice”:
“Don’t promise what you can’t
deliver.”}}

Tool Instability GPT-4-turbo
{“arguments”: “{}”,
“name”: “get_currency”}

HTTPSConnectionPool(host=...,
port=443): Max retries
exceeded with url: ...

Tool Instability
ChatGLM-4-
chat

get_exchange_rate
{“from_currency”: “EUR”,
“to_currency”: “GBP”}

Invalid API call. Currency
codes might be invalid.

Tool Instability Qwen-2-Instruct

Thought: ...
Action:
google_trends_search
Action Input: {“query”:
“school”, “data_type”:
“related_topics”}

400 Client Error: Bad Request
for url: ...

Tool Call Failure
ChatGLM-4-
chat

search_country
{“query”: “IN”}

{“error”: “Response error.”}

Tool Call Failure GPT-3.5-turbo

{“arguments”: “{“query”:
“Bitcoin”, “data_type”:
“RELATED_QUERIES”,
“limit”: “5”}”, “name”:
“google_trends_search”}

‘<=’ not supported between
instances of ‘str’ and ‘int’

Tool Call Failure ToolLLaMA-2

Thought: ...
Action: get_nobel_results
Action Input: { “year”:
“2018” }

Object of type bytes is not
JSON serializable

Tool
Hallucination

Qwen-2.5-
Instruct

{“arguments”: “{“query”:
“most popular tourist destina-
tions in Europe”}”, “name”:
“google_search”}

name google_search if not de-
fined

Parameter Hallu-
cination

ToolLLaMA-2

Thought: ...
Action: get_news_headlines
Action Input: { “api_key”:
“your_api_key”, “q”: “tech-
nology”, “sortBy”: “popular-
ity”}

get_news_headlines() got an
unexpected keyword argument
‘sortBy’

Parameter Miss-
ing

Qwen-2.5-
Instruct

{“arguments”: “{“q”:
“London”, “days”:
“7”, “api_key”:
“your_api_key”}”, “name”:
“forecast”}

forecast() missing 1 required
positional argument: aqi

Others GPT-4o
{“arguments”: “{“website”:
“www.mywebsite.com”}”,
“name”: “analyze_scan”}

{“error”: “Recently completed
scan for www.mywebsite.com
not found”}
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