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Abstract

Federated Learning is an evolving machine learning paradigm, in which multiple clients
perform computations based on their individual private data, interspersed by commu-
nication with a remote server. A common strategy to curtail communication costs is
Local Training, which consists in performing multiple local stochastic gradient descent
steps between successive communication rounds. However, the conventional approach to
local training overlooks the practical necessity for client-specific personalization, a tech-
nique to tailor local models to individual needs. We introduce Scafflix, a novel algorithm
that efficiently integrates explicit personalization with local training. This innovative ap-
proach benefits from these two techniques, thereby achieving doubly accelerated communi-
cation, as we demonstrate both in theory and practice. The code is publicly available at
https://github.com/WilliamYi96/Scafflix.

1 Introduction

Due to privacy concerns and limited computing resources on edge devices, centralized training with all data
first gathered in a datacenter is often impossible in many real-world applications. So, Federated Learning
(FL) has gained increasing interest as a framework that enables multiple clients to do local computations,
based on their personal data kept private, and to communicate back and forth with a server. FL is classically
formulated as an empirical risk minimization problem of the form

min [f (z) = ;Zfi(ﬂf)l ; (ERM)

z€ER4

where f; is the local objective on client ¢, n is the total number of clients, x is the global model.

Thus, the usual approach is to solve (ERM) and then to deploy the obtained globally optimal model a* :=
arg min,cpa f(2) to all clients. To reduce communication costs between the server and the clients, the practice
of updating the local parameters multiple times before aggregation, known as Local Training (LT) (Povey
et al., 2014; Moritz et al., 2016; McMahan et al., 2017; Li et al., 2020b; Haddadpour & Mahdavi, 2019; Khaled
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et al., 2019; 2020; Karimireddy et al., 2020; Gorbunov et al., 2020a; Mitra et al., 2021), is widely used in
FL. LT, in its most modern form, is a communication-acceleration mechanism, as we detail in Section A.1.

Meanwhile, there is a growing interest in providing personalization to the clients, by providing them more-
or-less customized models tailored to their individual needs and heterogeneous data, instead of the one-size-
fits-all model z*. We review existing approaches to personalization in Section A.2. If personalization is
pushed to the extreme, every client just uses its private data to learn its own locally-optimal model

zF == arg min f;(x
' gmG]Rde( )

and no communication at all is needed. Thus, intuitively, more personalization means less communication
needed to reach a given accuracy. In other words, personalization is a communication-acceleration mecha-
nism, like LT.

Therefore, we raise the following question: Is it possible to achieve double communication acceleration in
FL by jointly leveraging the acceleration potential of personalization and local training?

For this purpose, we first have to formulate personalized FL as an optimization problem. A compelling
interpretation of LT (Hanzely & Richtarik, 2020) is that it amounts to solve an implicit personalization

objective of the form:
n

1 A v
min foZ(acl)—i-%ZHJC—acZH?7 (1)
i=1

Z1,...,xn ERE T £
i=1

where z; € R? denotes the local model at client i € [n] == {1,...,n}, z := L 37" | ; is the average of these
local models, and A > 0 is the implicit personalization parameter that controls the amount of personalization.
When ) is small, the local models tend to be trained locally. On the other hand, a larger A puts more penalty
on making the local models x; close to their mean z, or equivalently in making all models close to each other,
by pushing towards averaging over all clients. Thus, LT is not only compatible with personalization, but
can be actually used to implement it, though implicitly: there is a unique parameter A in equation 1 and it
is difficult evaluate the amount of personalization for a given value of A.

The more accurate FLIX model for personalized FL was proposed by Gasanov et al. (2022). It consists for
every client 4 to first compute locally its personally-optimal model z}, and then to solve the problem

s 1 ¢ .

min, f(z) = o ; filaiz + (1 — a)z}), (FLIX)
where «; € [0, 1] is the explicit and individual personalization factor for client i. At the end, the personalized
model used by client 7 is the explicit mixture

7 = ar* + (1 — ay)z],
where x* is the solution to (FLIX). A smaller value of a; gives more weight to z}, which means more
personalization. The extreme case a; = 0 simply means using fully personalized model without any commu-
nication. On the other hand, if a; = 1, the client ¢ uses the global model x* without personalization. Thus,
if all a; are equal to 1, there is no personalization at all and (FLIX) reverts to (ERM). So, (FLIX) is a more
general formulation of FL than (ERM). The functions in (FLIX) inherit smoothness and strong convexity
from the f;, so every algorithm appropriate for (ERM) can also be applied to solve (FLIX). Gasanov et al.
(2022) proposed an algorithm also called FLIX to solve (FLIX), which is simply vanilla distributed gradient
descent (GD) applied to (FLIX).

In this paper, we first redesign and generalize the recent Scaffnew algorithm (Mishchenko et al., 2022),
which features LT and has an accelerated communication complexity, and propose Individualized-Scaffnew (i-
Scaffnew), wherein the clients can have different properties. We then apply and tune i-Scaffnew for the problem
(FLIX) and propose our new algorithm for personalized FL, which we call Scafflix. We answer positively to
the above question and prove that Scafflix enjoys a doubly accelerated communication complexity, by jointly
harnessing the acceleration potential of LT and personalization. That is, its communication complexity
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Algorithm 1 Scafflix for (FLIX)

1: input: stepsizes 43 > 0,...,7, > 0; probability p € (0,1]; initial estimates z9,...,22 € R¢ and

hY,...,h% € R such that >, hY = 0, personalization weights as, ..., o,
2: at the server, v = (% Z?:l a?v;l)_l ¢ 7 is used by the server at Step 11
3: at clients in parallel, 7 := argmin f; ¢ not needed if a; =1
4: fort=0,1,... do
5. flip a coin ' := {1 with probability p, 0 otherwise}
6: fori=1,...,n, at clients in parallel, do
7 ji = aimf + (1 — Ozl)xf ¢ estimate of the personalized model 7
8: compute an estimate g¢ of V f;(Z!)
9: 2=l — %; (gf — hf) ¢ local SGD step
10: if 6" =1 then ,
11: send %if to the server, which aggregates z* := 1 3", %fcg and broadcasts it to all clients ¢
communication, but only with small probability p
12: it =gt
13: hZ_H = hl; + % (ft — 5:2) o update of the local control variate h!
14: else
15: ot =gt
16: Ritt = ht
17: end if
18:  end for
19: end for

depends on the square root of the condition number of the functions f; and on the «;. In addition to
establishing the new state of the art for personalized FL with our theoretical guarantees, we show by extensive
experiments that Scafflix is efficient in real-world learning setups and outperforms existing algorithms.

Our approach is novel and its good performance is built on a solid theoretical foundation. We stress that our
convergence theorem for Scafflix holds under standard assumptions, without bounded variance or any other
restriction. By way of comparison with recent works, pFedGate (Chen et al., 2023) bases its theorem on the
bounded diversity assumption, which is often unrealistic for non-iid FL. Neither FedCR (Zhang et al., 2023)
nor FedGMM (Wu et al., 2023) comes with a conventional convergence theory. pFedGraph (Ye et al., 2023)
and FED-PUB (Back et al., 2023) also lack a solid convergence analysis.

2 Proposed Algorithm Scafflix and Convergence Analysis

We generalize Scaffnew (Mishchenko et al., 2022) and propose Individualized-Scaffnew (i-Scaffnew), shown as
Algorithm 2 in the Appendix. Its novelty with respect to Scaffnew is to make use of different stepsizes -y; for
the local SGD steps, in order to exploit the possibly different values of L; and pu;, as well as the different
properties A; and C; of the stochastic gradients. This change is not straightforward and requires to rederive
the whole proof with a different Lyapunov function and to formally endow R? with a different inner product
at every client.

We then apply and tune i-Scaffnew for the problem (FLIX) and propose our new algorithm for personalized
FL, which we call Scafflix, shown as Algorithm 1.

We analyze Scafflix in the strongly convex case, because the analysis of linear convergence rates in this setting
gives clear insights and allows us to deepen our theoretical understanding of LT and personalization. And to
the best of our knowledge, there is no analysis of Scaffnew in the nonconvex setting. But we conduct several
nonconvex deep learning experiments to show that our theoretical findings also hold in practice.
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Assumption 1 (Smoothness and strong convexity). In the problem (FLIX) (and (ERM) as the particular
case a; = 1), we assume that for every i € [n], the function f; is L;-smooth and pu;-strongly convex,' for
some L; > p; > 0. This implies that the problem is strongly convex, so that its solution z* exists and is
unique.

We also make the two following assumptions on the stochastic gradients g! used in Scafflix (and i-Scaffnew as
a particular case with oy = 1).

! is an unbiased estimate of

Assumption 2 (Unbiasedness). We assume that for every ¢t > 0 and i € [n], g
V fi(zt); that is,
E[g; | #] = V().

To characterize unbiased stochastic gradient estimates, the modern notion of expected smoothness is well
suited (Gower et al., 2019; Gorbunov et al., 2020b):

Assumption 3 (Expected smoothness). We assume that, for every i € [n], there exist constants A; > L; ?
and C; > 0 such that, for every ¢ > 0,

E[lg! - VA" | 3] <2405, 30) + Ci, )

where Dy (x,2") == f(x) — f(2') = (Vf(2'),2 — 2’) > 0 denotes the Bregman divergence of a function ¢ at
points z,z’ € R%.

Thus, unlike the analysis in Mishchenko et al. (2022, Assumption 4.1), where the same constants are assumed
for all clients, since we consider personalization, we individualize the analysis: we consider that each client
can be different and use stochastic gradients characterized by its own constants A; and C;. This is more
representative of practical settings. Assumption 3 is general and covers in particular the following two
important cases (Gower et al., 2019):

1. (bounded variance) If g! is equal to Vf;(Z!) plus a zero-mean random error of variance o2 (this
covers the case of the exact gradient g! = V f;(#}) with o; = 0), then Assumption 3 is satisfied with
AZ:L’L and (71:(J'Z2

2. (sampling) If f; = niz;lzl fi;j for some L;-smooth functions f;; and g = Vf; (@) for
some j! chosen uniformly at random in [n;], then Assumption 3 is satisfied with A; = 2L; and
C; = (7% > HVf”(ﬁc;‘)Hz) — 2||Vfi(#)||* (this can be extended to minibatch and nonuniform
sampling).

We now present our main convergence result:

Theorem 4 (fast linear convergence). In (FLIX) and Scafflix, suppose that Assumptions 1, 2, 3 hold and
that for every i € [n], 0 < ; < A%. For every t > 0, define the Lyapunov function

1< Venin || B Ymin 1 - N
R I L Ry M LR g

1A function f : R% — R is said to be L-smooth if it is differentiable and its gradient is Lipschitz continuous with constant
L; that is, for every z € R and y € RY, |V f(z) — V£(y)|| < L||x — yl|, where, here and throughout the paper, the norm is the
Euclidean norm. f is said to be p-strongly convex if f — & - |I? is convex. We refer to Bauschke & Combettes (2017) for such
standard notions of convex analysis.
2
=t —
‘ mz} =

. Assuming that L; is the best known smooth-

2We can suppose A; > L;. Indeed, we have the bias-variance decomposition E[Hgf—Vfl(:El*)

Vs - vrn||” + 2]

ness constant of f;, we cannot improve the constant L; such that for every z € R%, ||Vfb(x) - Vfi(zr)
Therefore, A; in equation 2 has to be > L;.

‘ 2

gt — V(&)

*rat] = |[vaeh - vaen

|* < 2L;Dy, (2, 57).
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where Ymin = Min;ep,) v;- Then Scafflix converges linearly: for everyt >0,
min 1 -
E[v] < (1*C)t‘I’O+LC EZ%C"’ (4)
i=1

where

¢ = min <gg[1£1] Viui,pQ) : (5)

It is important to note that the range of the stepsizes 7;, the Lyapunov function ¥! and the convergence
rate in equation 4—equation 5 do not depend on the personalization weights «;; they only play a role in the
definition of the personalized models #! and Z}. Indeed, the convergence speed essentially depends on the
conditioning of the functions = — f; (aiz +(1- ai)xf), which are independent from the «;. More precisely,

let us define, for every i € [n],
L:
Ki=—2>1 and Kpax = max K,
i i€[n]

and let us study the complexity of of Scafflix to reach e-accuracy, i.e. E[¥?] < e. If, for every i € [n], C; =0,
A; =0O(L;),and v; = O(+) = @(L%), the iteration complexity of Scafflix is

A;
] (</<;max + p12) 1og(\11061)> . (6)

And since communication occurs with probability p, the communication complexity of Scafflix is

0 ((zmmax n ;) logulfoel)) . (7)

max; L;
ming p; ?
Thus, Scafflix is much more versatile and adapted to FL with

Note that Kmax can be much smaller than Kgiobal = which is the condition number that appears

1
max; Ari :

in the rate of Scaffnew with v =
heterogeneous data than Scaffnew.

Corollary 5 (case C; = 0). In the conditions of Theorem 4, if p = G(ﬁ) and, for every i € [n], C; =0,

A; =0O(L;), and v; = G(A%) = @(L%), the communication complexity of Scafflix is
O (V/Fmax log(¥% ™)) . (8)

Corollary 6 (general stochastic gradients). In the conditions of Theorem /, if p = /min;ep,) vips and, for

every i € [n],
. 1 €min
i = R 9
o= min (-, e ) ©

(or ~; = A% if C; =0), where fimin = minjep,) i, the iteration complexity of Scafflix is

A i - A i _
(@] ((max max <, ¢ >> log (W0 1)> :C)(max (max —,max ¢ ) log (W0 1)) (10)
16[”1] Mi  €min i 716[71] Hi ie[n] EMmin i

and its communication complexity is

O (max | max é,max Cs log(WPe 1) | . (11)
i€[n] i i€[n] €Mmin i

If A; = ©(L;) uniformly, we have max;cy ,/% = O(\/Fmax)- Thus, we see that thanks to LT, the commu-
nication complexity of Scafflix is accelerated, as it depends on /Kmax and %
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Figure 1: The objective gap f(z*) — f* and the squared gradient norm ||Vf(:vk)||2 against the number k of
communication rounds for Scafflix and GD on the problem (FLIX) on class-wise non-iid FL setting. We set all
a; to the same value for simplicity. The dashed line represents GD, while the solid line represents Scafflix. We
observe the double communication acceleration achieved through explicit personalization and local training.
Specifically, (a) for a given algorithm, smaller «;s (i.e. more personalized models) lead to faster convergence;
(b) comparing the two algorithms, Scafflix is faster than GD, thanks to its local training mechanism.

In the expressions above, the acceleration effect of personalization is not visible: it is “hidden” in ¥°, because

every client computes z! but what matters is its personalized model &, and ||&! — &*||° = o2 ||a! — *||°. In
particular, assuming that 2§ = --- = 2% = 2% and 1Y = V £;(7?), we have
n 2 n 2
Ymin || 0 %12 o1 L3 2\ Ymin || o %12 1 Vi L
PO < M0 g Q; <+>§ maxoj)— ||[x° — <+
e a3 (2 200 < () 22 o - 3 (24 220,

and we see that the contribution of every client to the initial gap W is weighted by a?. Thus, the smaller the
a;, the smaller ¥° and the faster the convergence. This is why personalization is an acceleration mechanism
in our setting.

3 Experiments

We first consider a convex logistic regression problem to show that the empirical behavior of Scafflix is in
accordance with the theoretical convergence guarantees available in the convex case. Then, we make extensive
experiments of training neural networks on large-scale distributed datasets.

3.1 Prelude: Convex Logistic Regression

We begin our evaluation by considering the standard convex logistic regression problem with an [5 regularizer.
This benchmark problem is takes the form (ERM) with

1 H 2
filz) = — > log (1 + exp(—b;jz"a; ;) + 5 el

)

where 1 represents the regularization parameter, n; is the total number of data points present at client 7; a; ;
are the training vectors and the b; ; € {—1,1} are the corresponding labels. Every function f; is p-strongly

convex and L;-smooth with L; = 4%”

;L;l Ha,i,j||2 + p. We set p to 0.1 for this experiment. We employ the
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Figure 2: Comparative generalization analysis with baselines. We set the communication probability to
p = 0.2. The left figure corresponds to the FEMNIST dataset with o = 0.5, while the right figure corresponds
to the Shakespeare dataset with o = 0.3.

mushrooms, a6a, and w6a datasets from the LibSVM library (Chang & Lin, 2011) to conduct these tests.
We consider several non-iid splits and present the results on feature-wise non-iid in Figure 1. We discuss the
difference among non-iid settings and complementary results in Appendix E.1.

The data is distributed evenly across all clients, and the «; are set to the same value. The results are shown
in Figure 1. We can observe the double acceleration effect of our approach, which combines explicit person-
alization and accelerated local training. Lower «; values, i.e. more personalization, yield faster convergence
for both GD and Scafflix. Moreover, Scafflix is much faster than GD, thanks to its specialized local training
mechanism.

3.2 Neural Network Training: Datasets and Baselines for Evaluation

To assess the generalization capabilities of Scafflix, we undertake a comprehensive evaluation involving the
training of neural networks using two widely-recognized large-scale FL datasets.

Datasets. Our selection comprises two notable large-scale FL datasets: Federated Extended MNIST (FEM-
NIST) (Caldas et al., 2018), and Shakespeare (McMahan et al., 2017). FEMNIST is a character recognition
dataset consisting of 671,585 samples. In line with the methodology described in FedJax (Ro et al., 2021), we
distributed these samples across 3,400 devices, with each device exhibiting a naturally non-iid characteristic.
For all algorithms, we employ a Convolutional Neural Network (CNN) model, featuring two convolutional
layers and one fully connected layer. The Shakespeare dataset, used for next character prediction tasks,
contains a total of 16,068 samples, which we distribute randomly across 1,129 devices. For all algorithms
applied to this dataset, we use a Recurrent Neural Network (RNN) model, comprising two Long Short-Term
Memory (LSTM) layers and one fully connected layer.

Baselines. The performance of our proposed Scafflix algorithm is benchmarked against prominent baseline
algorithms, specifically FLIX (Gasanov et al., 2022) and FedAvg (McMahan et al., 2016). The FLIX algo-
rithm optimizes the FLIX objective utilizing the SGD method, while FedAvg is designed to optimize the
ERM objective. We employ the official implementations for these benchmark algorithms. Comprehensive
hyperparameter tuning is carried out for all algorithms, including Scafflix, to ensure optimal results. For
both FLIX and Scafflix, local training is required to achieve the local minima for each client. By default,
we set the local training batch size at 100 and employ SGD with a learning rate selected from the set
Cs == {1075,107*,--- ,1}. Upon obtaining the local optimum, we execute each algorithm with a batch size
of 20 for 1000 communication rounds. The model’s learning rate is also selected from the set Cs. All the
experiments were conducted on a single NVIDIA A100 GPU with 80GB of memory.
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Table 1: Numerical comparison with baselines.

Method Local Training Objective FEMNIST Shakespeare
FedAvg Basic (ERM) 85.25 38.67
FLIX Basic Personalized (FLIX) 87.18 43.40
Scaffnrew  Accelerated (ERM) 87.73 51.66
Scafflix Accelerated  Personalized (FLIX) 89.43 54.21
FEMNIST FEMNIST FEMNIST
0.900 0.85
> 2038 >
© 0.875 ® @© 0.80
S 0.850 Scafflix, a=01 3 S o075
© —— Scafflix, a=0.3 © 0.6 —— Scafflix, r=1 o
g 0.825 —— Scafflix, a=0.5 g —— Scafflix, =5 § 0.70 —— Scafflix, p=0.1
+ —— Scafflix, a=0.7 + —— Scafflix, r=10 *+ —— Scafflix, p=0.2
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(a) as (b) 7s (c) ps

Figure 3: Key ablation studies: (a) evaluate the influence on personalization factor «, (b) examinate the
effect of different numbers of clients participating to communication, (c¢) compare different values of the
communication probability p.

3.3 Analysis of Generalization with Limited Communication Rounds

In this section, we perform an in-depth examination of the generalization performance of Scafflix, particularly
in scenarios with a limited number of training epochs. This investigation is motivated by our theoretical
evidence of the double acceleration property of Scafflix. To that aim, we conduct experiments on both
FEMNIST and Shakespeare. These two datasets offer a varied landscape of complexity, allowing for a com-
prehensive evaluation of our algorithm. In order to ensure a fair comparison with other baseline algorithms,
we conducted an extensive search of the optimal hyperparameters for each algorithm. The performance
assessment of the generalization capabilities was then carried out on a separate, held-out validation dataset.
The hyperparameters that gave the best results in these assessments were selected as the most optimal set.

In order to examine the impact of personalization, we assume that all clients have same a; = o and we
select « in {0.1,0.3,0.5,0.7,0.9}. We present the results corresponding to o = 0.1 in Figure 2. Additional
comparative analyses with other values of a are available in the Appendix. As shown in Figure 2, it is
clear that Scafflix outperforms the other algorithms in terms of generalization on both the FEMNIST and
Shakespeare datasets. Interestingly, the Shakespeare dataset (next-word prediction) poses a greater challenge
compared to the FEMNIST dataset (digit recognition). Despite the increased complexity of the task, Scafflix
not only delivers significantly better results but also achieves this faster. Thus, Scafflix is superior both in
speed and accuracy.

For additional clarity, we provide numerical results comparing our approach with FedAvg, FLIX, and Scaffnew,
as summarized in Table 1. To align with Figure 2, we set a = 0.5 for FEMNIST and « = 0.3 for Shakespeare,
reporting the former after 300 communication rounds and the latter after 1,000 rounds. Notably, the advan-
tages of accelerated local training are even more pronounced on the Shakespeare dataset—an observation
that warrants further investigation.
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3.4 Key Ablation Studies

In this section, we conduct several critical ablation studies to verify the efficacy of our proposed Scafflix
method. These studies investigate the optimal personalization factor for Scafflix, assess the impact of the
number of clients per communication round, and examine the influence of the communication probability p
in Scafflix.

Optimal Personalization Factor. In this experiment, we explore the effect of varying personalization
factors on the FEMNIST dataset. The results are presented in Figure 3a. We set the batch size to 128 and
determine the most suitable learning rate through a hyperparameter search. We consider linearly increasing
personalization factors within the set {0.1,0.3,0.5,0.7,0.9}. An exponential scale for « is also considered in
the Appendix, but the conclusion remains the same.

We note that the optimal personalization factor for the FEMNIST dataset is 0.3. Interestingly, personaliza-
tion factors that yield higher accuracy also display a slightly larger variance. However, the overall average
performance remains superior. This is consistent with expectations as effective personalization may empha-
size the representation of local data, and thus, could be impacted by minor biases in the model parameters
received from the server.

Number of Clients Communicating per Round. In this ablation study, we examine the impact of
varying the number of participating clients in each communication round within the Scafflix framework. By
default, we set this number to 10. Here, we conduct extensive experiments with different client numbers per
round, choosing 7 from {1,5,10,20}. The results are presented in Figure 3b. We can observe that Scafflix
shows that for larger batch sizes, specifically 7 = 10 and 20, demonstrate slightly improved generalization
performance.

Selection of Communication Probability p. In this ablation study, we explore the effects of varying
the communication probability p in Scafflix. We select p from {0.1,0.2,0.5}, and the corresponding results
are shown in Figure 3c. We can clearly see that a smaller value of p, indicating reduced communication,
facilitates faster convergence and superior generalization performance. This highlights the benefits of LT,
which not only makes FL faster and more communication-efficient, but also improves the learning quality.
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Inexact Local Optimal. In FL, the primary challenge lies in minimizing communication overhead while
effectively managing local computation times. Attaining a satisfactory local optimum (or approximation) for
each client is both practical and similar to pretraining for finding a good initialization, a common practice
in fields like computer vision and natural language processing. For instance, in our study of the Shakespeare
dataset, distributed across 1,129 devices with over 16,000 samples, a mere 50 epochs of local training per
client were necessary to achieve optimal results, as demonstrated in Figure 2. This efficiency stands in stark
contrast to traditional methods, which often require more than 800 communication rounds, each involving
multiple local updates.

We further conducted detailed ablation studies on logistic regression to assess the impact of inexact local
optimum approximation. A threshold was set such that ||V f;(z)|| < € indicates a client has reached its local
optimum, with the default € set to le — 6. Our investigation focused on the consequences of using higher
€ values. Appendix Figure 12 details the expected number of local iterations for 100 clients. Notably, an €
value of le — 1 is found to be 23.55 times more efficient than ¢ = le — 6. Additional results for 8 workers
with o = 0.1 are presented in Figure 4, showing that ¢ = le — 1 provides a satisfactory approximation. (We
anticipate an even lower computational cost for finding a local optimum approximation when the data per
client is smaller.) Opting for e = le — 1 is a viable strategy to reduce computation, while smaller e values
are advantageous for greater precision. To ensure that our initial 2 is not already near the optimum, we
initialized each element of 2? to 100. Additionally, we explored the number of local iterations required for
achieving the optimal setting, ranging from [0, 1,5, 200, 1000], as depicted in the right panel of Figure 4.
These findings underscore the need for a balance between performance and computational costs. More
comprehensive insights and results are provided in Appendix E.2.

Individual Stepsizes for Each Client. In our experiments, we initially assumed a uniform learning
rate for all clients for simplicity. However, to more accurately represent the personalized approach of our
method and to align closely with Algorithm 1, we explored different stepsizes for each client. Specifically,
we set v; = 1/L;, where L; denotes the smoothness constant of the function f; optimizing (FLIX). The
impact of this variation is demonstrated in Figure 5, which presents results using the mushrooms dataset.
We observed that employing individual stepsizes generally enhances performance. This approach, along with
a global stepsize (indicated by dashed lines in the figure), both contribute to improved outcomes.

3.5 Comparisons with Personalized FL Baselines

While our research primarily seeks to ascertain the impact of explicit personalization and local training on
communication costs, we recognize the interest of the community for a broad comparative scope. Accordingly,
we have included extensive baseline comparisons with other recent FL and particularly personalized FL (pFL)
methodologies. A comparative performance analysis on popular datasets like CIFAR100 and FMNIST is
presented below:

Table 2: Results of additional baselines.

Method Ditto FedSR-FT FedPAC FedCR  Scafflix

CIFAR100 58.87 69.95 69.31 78.49  72.37
FMNIST  85.97 87.08 89.49  93.77  89.62

We utilized the public code and adopted the optimal hyper-parameters from FedCR (Zhang et al., 2023),
subsequently re-running and documenting all baseline performances under the ‘non-iid’ setting. Our proposed
Scafflix algorithm was reported with a communication probability of p = 0.3 and spanned 500 communication
rounds. We set the personalization factor « at 0.3. Based on the results, when focusing solely on the
generalization (testing) performance of the final epoch, our method is on par with state-of-the-art approaches
such as FedPAC (Xu et al., 2023) and FedCR (Zhang et al., 2023). However, our primary emphasis lies in
demonstrating accelerated convergence.
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4 Discussion

4.1 Significance and Novelty

While our approach builds on existing “5th-generation" local training methods—many of which employ
control variates and exhibit (sub)linear convergence-it introduces two key innovations that yield significant
theoretical and practical benefits. First, individualized stepsizes allow each client to adapt updates to its
own data distribution and local smoothness/strong convexity constants, thus capturing heterogeneity more
precisely than prior work employing a single global stepsize. Second, explicit personalization via FLIX is
seamlessly integrated into these local updates, ensuring that client-specific models converge faster while also
maintaining a strong global consensus.

At first glance, these modifications may appear incremental. However, historical precedents-such as the
adoption of Polyak’s adaptive stepsize (Polyak, 1964), dropout (Srivastava et al., 2014), or batch normal-
ization (Ioffe & Szegedy, 2015)-demonstrate that small algorithmic changes often unlock disproportionately
large improvements. Analogously, our refinements enable a double communication acceleration, evidenced
by communication complexity depending on y/kmax rather than k.. . Beyond achieving faster theoret-
ical rates, this synergy of local training and personalization simultaneously reduces the initial error gap,
enhancing real-world performance. We believe these contributions-both in handling heterogeneous data
and attaining provably accelerated convergence—distinguish our work from prior state-of-the-art federated
learning algorithms.

4.2 Learning Rate Design

Most existing work on 5th-generation local training methods (e.g., (Mishchenko et al., 2022; Malinovsky
et al., 2022; Condat et al., 2023b; Meinhardt et al., 2024)) relies on a single, global learning rate applied
uniformly across all clients. While effective, such an approach does not adapt to varying local data geometry
or allow for personalization at the client level. In contrast, our method employs individualized stepsizes
vi = 1/4;, where A; is a client-specific smoothness parameter (Theorem 4). This design is grounded in
theoretical insights indicating that per-client rates can better capture heterogeneity and potentially yield
faster convergence in practice.

We acknowledge that this choice of stepsize may appear straightforward; however, it represents a deliberate
divergence from the convention of a uniform, global learning rate. Although more sophisticated adaptive
strategies (e.g., adaptive gradient methods) could be considered in future work, here we show that even
a relatively simple rule—rooted in individual smoothness constants—establishes a strong theoretical and
empirical baseline. Our findings suggest that principled, client-specific learning rates open new avenues for
further personalization, and we anticipate subsequent studies to refine or extend these ideas.

4.3 Nonconvex Setting and Partial Client Participation

In Theorem 4, we establish linear convergence in the convex setting. To the best of our knowledge, there
is no existing analysis of accelerated local training methods under standard assumptions in the nonconvex
regime. Addressing this nonconvex case remains a significant challenge and is beyond the scope of this
work. Instead, our primary objective is to evaluate the practical effectiveness of our approach. Therefore, we
conduct experiments in both convex and nonconvex settings, and the empirical results confirm the efficiency
of our method.

Theoretical analysis of partial client participation in accelerated local training methods is similarly chal-
lenging. For more details on this topic, we refer interested readers to Grudzien et al. (2022); Condat et al.
(2023Db). In this paper, we focus on whether double acceleration can be achieved through explicit personal-
ization and local training. In Section 3.4, we examine the effect of varying the number of participating clients
per round and observe that increasing client participation slightly improves the generalization performance
of Scafflix.
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5 Conclusion

In the contemporary era of artificial intelligence, improving federated learning to achieve faster conver-
gence and reduce communication costs is crucial to enhance the quality of models trained on huge and
heterogeneous datasets. For this purpose, we introduced Scafflix, a novel algorithm that achieves double
communication acceleration by redesigning the objective to support explicit personalization for individual
clients, while leveraging a state-of-the-art local training mechanism. We provided complexity guarantees in
the convex setting, and also validated the effectiveness of our approach in the nonconvex setting through
extensive experiments and ablation studies. Thus, our work is a step forward on the important topic of
communication-efficient federated learning and offers valuable insights for further investigation in the future.
Future work could profitably explore the algorithm’s robustness against adversarial attacks and its adapt-
ability to differential privacy in federated settings, expanding its applicability and ensuring its resilience in
more challenging scenarios. Additionally, exploring the potential of Scafflix in federated fine-tuning of large
language models could yield significant insights and contributions, further advancing the field.
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A Related Work

A.1 Local Training Methods in Federated Learning

Theoretical evolutions of LT in FL have been long-lasting, spanning five generations from empirical results
to accelerated communication complexity. The celebrated FedAvg algorithm proposed by McMahan et al.
(2017) showed the feasibility of communication-efficient learning from decentralized data. It belongs to the
first generation of LT methods, where the focus was on empirical results and practical validations (Povey
et al., 2014; Moritz et al., 2016; McMahan et al., 2017).

The second generation of studies on LT for solving (ERM) was based on homogeneity assumptions, such
as bounded gradients (3¢ < +oo, |V fi(z)|| < ¢,z € RY, i € [n]) (Li et al., 2020b) and bounded gradient
diversity (Y7, |V fi(2)]? < c||Vf(x)||2) (Haddadpour & Mahdavi, 2019). However, these assumptions
are too restrictive and do not hold in practical FL settings (Kairouz et al., 2019; Wang et al., 2021).

The third generation of approaches, under generic assumptions on the convexity and smoothness, exhibited
sublinear convergence (Khaled et al.,; 2019; 2020) or linear convergence to a neighborhood (Malinovsky et al.,
2020).

Recently, popular algorithms have emerged, such as Scaffold (Karimireddy et al., 2020), S-Local-GD (Gorbunov
et al., 2020a), and FedLin (Mitra et al., 2021), successfully correcting for the client drift and enjoying linear
convergence to an exact solution under standard assumptions. However, their communication complexity
remains the same as with GD, namely O(kloge 1), where x := L/u is the condition number.

Finally, Scaffnew was proposed by Mishchenko et al. (2022), with accelerated communication complexity
O(y/kloge™!). This is a major achievement, which proves for the first time that LT is a communication
acceleration mechanism. Thus, Scaffnew is the first algorithm in what can be considered the fifth generation
of LT-based methods with accelerated convergence. Subsequent works have further extended Scaffnew with
features such as variance-reduced stochastic gradients (Malinovsky et al., 2022), compression (Condat et al.,
2022), partial client participation (Condat et al., 2023a), asynchronous communication of different clients
(Maranjyan et al., 2022), and to a general primal-dual framework (Condat & Richtédrik, 2023). The fifth
generation of LT-based methods also includes the 5GCS algorithm (Grudzier et al., 2023), based on a different
approach: the local steps correspond to an inner loop to compute a proximity operator inexactly. Our
proposed algorithm Scafflix generalizes Scaffnew and enjoys even better accelerated communication complexity,
thanks to a better dependence on the possibly different condition numbers of the functions f;.

A.2 Personalization in FL

We can distinguish three main approaches to achieve personalization:

a) One-stage training of a single global model using personalization algorithms. One common scheme is to
design a suitable regularizer to balance between current and past local models (Li et al., 2021) or between
global and local models (Li et al., 2020a; Hanzely & Richtarik, 2020). The FLIX model (Gasanov et al., 2022)
achieves explicit personalization by balancing the local and global model using interpolation. Meta-learning
is also popular in this area, as evidenced by Dinh et al. (2020), who proposed a federated meta-learning
framework using Moreau envelopes and a regularizer to balance personalization and generalization.

b) Training a global model and fine-tuning every local client or knowledge transfer/distillation. This approach
allows knowledge transfer from a source domain trained in the FL manner to target domains (Li & Wang,
2019), which is especially useful for personalization in healthcare domains (Chen et al., 2020; Yang et al.,
2020).

¢) Collaborative training between the global model and local models. The basic idea behind this approach
is that each local client trains some personalized parts of a large model, such as the last few layers of a
neural network. Parameter decoupling enables learning of task-specific representations for better personal-
ization (Arivazhagan et al., 2019; Bui et al., 2019), while channel sparsity encourages each local client to
train the neural network with sparsity based on their limited computation resources (Horvath et al., 2021;
Alam et al., 2022; Mei et al., 2022).
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Algorithm 2 i-Scaffnew for (ERM)

1: input: stepsizes 71 > 0,...,7, > 0; probability p € (0,1]; initial estimates z¥,...,2% € R? and
hY,...,h% € R? such that > h) = 0.

2: at the server, v = (% Z?:l 'y;l)_l ¢ 7y is used by the server for Step 9

3: fort=0,1,... do

4:  flip a coin 6 := {1 with probability p, 0 otherwise}

5. fori=1,...,n, at clients in parallel, do

6: compute an estimate g! of V f;(x?!)

7 2h=al — (gzt — hf) ¢ local SGD step

8: if " =1 then

9: send %i‘f to the server, which aggregates z* := 1 Z?Zl %i‘; and broadcasts it to all clients ¢
communication, but only with small probability p

10: ot =gt

11: h?q = hf + % (fct — ﬁf) ¢ update of the local control variate hf

12: else

13: aith =gt

14: hitt = hl

15: end if

16:  end for

17: end for

Despite the significant progress made in FL personalization, many approaches only present empirical results.
Our approach benefits from the simplicity and efficiency of the FLIX framework and enjoys accelerated
convergence.

B Proposed i-Scaffnew Algorithm

We consider solving (ERM) with the proposed i-Scaffnew algorithm, shown as Algorithm 2 (applying i-Scaffnew
to (FLIX) yields Scafflix, as we discuss subsequently in Section C).

Theorem 7 (fast linear convergence). In (ERM) and i-Scaffnew, suppose that Assumptions 1, 2, 3 hold and
that for every i € [n], 0 <; < A%. For every t > 0, define the Lyapunov function

LD D [ =D DRt LR FCol 12)
=1

i=1

Then i-Scaffnew converges linearly: for everyt > 0,

1 n
E[P] < (11— + ¢ > G, (13)
i=1
where
¢ = min <m[1n] ’Yz‘/iz‘,PQ) ) (14)
€N

Proof. To simplify the analysis of i-Scaffnew, we introduce vector notations: the problem (ERM) can be
written as
find x* = argmin f(x) st. Wx=0, (15)
xeX
where X' == R*" an element x = (z;)?_; € X is a collection of vectors z; € R%, f : x € X — 1" | fi(w;), the
linear operator W : X — X maps x = (x;)"_; to (z; — %Z?Zl %xj)?zh for given values 71 > 0,...,7, >0

-1
and their harmonic mean v = (23" | 77') . The constraint Wx = 0 means that x minus its weighted
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average is zero; that is, x has identical components x; = --- = x,,. Thus, equation 15 is indeed equivalent to
(ERM). x* :== (2*)_, € X is the unique solution to equation 15, where z* is the unique solution to (ERM).

Moreover, we introduce the weighted inner product in X: (x,y) — (X,¥)y = Y iy %(a:i,yz). Then, the
orthogonal projector P onto the hyperspace {y € X : y = -+ = y,}, with respect to this weighted
inner product, is P : x € X = X = ()}, withz = 23" 15 xl (because Z minimizes [|X — x|| , S0 that

% Dy ,Yi(fv — ;) =0). Thus, P, as wellas W =1d — P where Id denotes the identity, are self-adjoint and
positive linear operators with respect to the weighted inner product. Moreover, for every x € X,

2 2 2 -2 2 n,_,2 2
=[5 = P[5 + [Wx|[ = X5 + [[Wx][] = 5 )™+ [[Wx]]5 ,

where X = (Z)_; and 2 = 2 37" 17 x;.
7

Let us introduce further vector notations for the variables of i-Scaffnew: for every ¢t > 0, e deﬁne the

scaled concatenated control variate ht = (yhi)"y, h* = (yh}),, with k¥ = Vfl( *), Xt = (T4,
wh = (W), with w! == 2! — y;g!, w* == (w)P_,, with w} == 2% — %V fi(«}), h == ht — pr Finally,
we denote by F¢ the o-algebra generated by the collection of X- Valued random variables x°, h°, ..., x? h?

and by F' the o-algebra generated by these variables, as well as the stochastic gradients g/ .

We can then rewrite the iteration of i-Scaffnew as:
%t = wt +ht

if ' =1 then
<t — gt
htt! := ht — pW)A(t

else
Xt+1 =kt
hit! .= h!

end if

We suppose that 3 ) h? = 0. Then, it follows from the definition of z* that T >7"_, - Lz —2t) =0,s0

that for every ¢t > 0, Zi:l ht = 0; that is, Wh' = h.

Let t > 0. We have

B[|x = x| | 7] = p & - x[2 + (1 - p) [ - x|

:
with
&= = 15 | s
Moreover,
I =€l = ' = [ + b = w2 = w, b =),
= [[w' = w2 = |0 = b[|2 + 2(%' — x*, b’ —h*),
= 1w =y = b 208 e )y 208 B -
= [l = w0 2R xR )y 4 2p(8 xR,
= [t w2 B b 2p
Hence,

B[t o[l | 7] = 1= =3 —p W]

= ||w" - w*Hi — |In* - h*Hi +2(&" — x* B —h*), +p watuf/
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On the other hand, we have

E[n —w|f} | 7] =p B -0t i +(1-p) |~ 0|2
and
flt _ h* 2 — H(ht —h*)—l—(flt—ht) 2
2 ¥
2
= ||n’ - h*Hi 4 ‘ it — nt . +2(ht — h*, Kt — ht),
= |l - h*Hi _ ‘ it — htHi +2(h* — h*,B* — h'),
= [[0* - b*|| - & - b’ " 9p( - b WE - xY)),
¥
= bt =02 = p? W2 — 2p(W (B! — b*), %" — x*),
= ||n’ - h*Hi —p? ||W§(t||i —2p(h! — h* &' — x*),,.
Hence,

E[th-&-l _X*H-Qy |]_—t:| +Z%]E{Hht+l _h*Hi |]_-t}
B 2
b e = - 20 - b,

2
=W = wi

1 N2
te L g - 16

Moreover, for every i € [n],
lwf = wi|[* = ||t — 2% = i (g! = Vi(a*)|*
= [lot = o |* —2vlat —a*.gi = Vi) + 22 |lof = VA
and, by unbiasedness of g and Assumption 2,
B[l — wi||* 1 7] = [lot = 2*|* = 200(at — 2, V fi(wl) = Vi)
+2E[[lgt = Vit | F]
< [lot - a*|* = 27(at 2%, Vfila!) - VHila*)) + 27 4Dy (af, 27)

It is easy to see that (z! — 2*, V f;(z}) — V f;(2*)) = Dy, (2!, 2*) + Dy, («*,2t). This yields

E[W — i | fé} < [lot = &*||" = 20Dy, (2%, 21) — 29Dy, (&l @) + 292 A: Dy, (3t 2)

In addition, the strong convexity of f; implies that Dy, (z*,2%) > & [|z! — 2*||?, so that

E[Hwﬁ —wf|” | fé} < (1= yapsa) ||t = 2*||* = 2%(1 = % 40) Dy, (f, a*) + 72Cs,
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and since we have supposed v; < A%,

E{H“’f - wz*HQ | ]:5} < (1 = i) ||} — HC*H2 +2C;.

Therefore,
E[[lw - w|l% | 7] < max(1 = an;) [[x" - |2+ 3w
i=1
and
B[o | 7] = B[[x* - x|} | 7] + SB[ w1 ]
1 n
< (1 =) [ = 5 (1=97) [ =+ 3w
=1
1 n
<(1-0Q <||xt R h*||§) 3G
1=1
= (1=QU +> 7, (17)
=1
where

¢ = min <miﬂ %‘/lzwpz) :
i€[n]

Using the tower rule, we can unroll the recursion in equation 17 to obtain the unconditional expectation of
\I,tJrl' O

C From i-Scaffnew to Scafflix

We suppose that Assumptions 1, 2, 3 hold. We define for every i € [n] the function fi iz e R
fi(oiz + (1 — a;)x}). Thus, (FLIX) takes the form of (ERM) with f; replaced by f;.

We want to derive Scafflix from i-Scaffnew applied to (ERM) with f; replaced by f;. For this, we first observe
that for every i € [n], f; is a?L;-smooth and a?u;-strongly convex. This follows easily from the fact that
Vfi(z) =a;V§f; (aix +(1- ai):c*).

K2

Second, for every ¢t > 0 and i € [n], g! is an unbiased estimate of Vf;(&!) = o; 'V f;(a!). Therefore, ag! is
an unbiased estimate of V f;(z!) satisfying

E|Jaig = VFila)|* | 2] = o2E|lgf = Vi@ | L] < 2024:Dy, (3, ) + a2C;.

Moreover,

Thus, we obtain Scafflix by applying i-Scaffnew to solve (FLIX), viewed as (ERM) with f; replaced by f;, and
further making the following substitutions in the algorithm: ¢! is replaced by «a;g!, h! is replaced by a;h!
(so that h in Scafflix converges to V f;(Z}) instead of V f;(z*) = o;V fi(Z})), i is replaced by a; %v; (so that
the «; disappear in the theorem).
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Accordingly, Theorem 4 follows from Theorem 7, with the same substitutions and with A;, C; and pu; replaced
by a?A;, a?C; and o?p;, respectively. Finally, the Lyapunov function is multiplied by Ymin/n to make it
independent from e when scaling the 7; by € in Corollary 6.

We note that i-Scaffnew is recovered as a particular case of Scafflix if a; = 1, so that Scafflix is indeed more
general.

D Proof of Corollary 6

We place ourselves in the conditions of Theorem 4. Let € > 0. We want to choose the ~; and the number of
iterations T > 0 such that E[\IJT] < e. For this, we bound the two terms (1 — )T ¥% and 7&“—”" S G in
equation 4 by €/2.

We set p = \/min;ec,) Yipti, so that ¢ = min;ep,) vips. We have
1
T> Elog(Q\Iloe_l) = (1-0)T0 < % (18)
Moreover,

n

/’('mm ’Yrmn Z E mian[n] fYJ) (minje[n] /’L]) < E
— 2 mine ) v 1) -2

;=

(Vi € [n] s.t. C; > 0) 3 <

Therefore, we set for every i € [n]

gT

(or 7, == % if C; =0), and we get from equation 18 that E[ < € after

(@] ((max max (Ai, CZ)) log(\Iloe_l))
1€[n] Hi  €bmin i

E Additional Experimental Results

iterations.

E.1 Evaluating Logistic Regression under Non-l1ID Conditions

Our thorough evaluation investigates the potential for achieving double acceleration through both explicit
personalization and efficient local training under varying data distributions. We consider the scenarios
outlined below:

e IID: Data is uniformly distributed across all clients with identical weighting factors, denoted as «;.

e Label-wise Non-1ID: We induce imbalances in label distribution among clients. The data is bifurcated
into positive and negative samples, followed by a tailored sampling technique that incrementally
augments the ratio of positive samples relative to negative ones. We define these ratios as rpos =
(i+1)/n and Theg = 1 — T'pos, Where ¢ represents the client index, and n is the number of clients.

o Feature-wise Non-I1ID: Variations in feature distribution across clients are introduced by segmenting
the features into clusters with the k-means algorithm. The number of clusters corresponds to the
client count.

e Quantity-wise Non-IID: Data volume variance among clients is realized. The distribution of data
samples per client follows a Dirichlet distribution, with a default setting of & = 0.5. Notably, a
higher « leads to a more uniform distribution. At a = 1, it resembles a uniform distribution, while
at a < 1, the distribution becomes skewed, resulting in a disparate data volume across workers.
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Figure 6: As part of our experimentation on the FEMNIST dataset, we performed complementary ablations
by incorporating various personalization factors, represented as «. In the main section, we present the
results obtained specifically with o = 0.5. Furthermore, we extend our analysis by highlighting the outcomes
achieved with « values spanning from 0.1 to 0.9.
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Figure 7: In our investigation of the Shakespeare dataset, we carried out complementary ablations, consid-
ering a range of personalization factors denoted as . The selection strategy for determining the appropriate
« values remains consistent with the methodology described in the above figure.
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Figure 8: Ablation studies with different values of the personalization factor «. The left figure is the com-
plementary experiment of linearly increasing o with full batch size; the right is the figure with exponentially
increasing « with default batch size of 20.
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In the main text, Figure 1 illustrates the outcomes for label-wise non-IID. For the sake of completeness,
we also include results in Figure 9, Figure 10, and Figure 11 depicting various data partitioning strategies.
Across these figures, we consistently observe that Scafflix successfully achieves double acceleration.
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Figure 9: Results on IID splits.
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Figure 10: Feature-wise non-IID.
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Figure 11: Quantity-wise non-IID.
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E.2 Inexact Approximation of Local Optimal

To visualize the cost of local communications, we present the expected number of local iterations to achieve
an epsilon such that |V f;(z)|| < e. We present the results in Figure 12. We can see there is a huge difference
with respect to the different €. Since in FL, the communication cost is always the bottleneck, for scenarios
that local computation is not that expensive, we can run more local iterations to obtain a smaller e. In
Figure 4, we show on ablations that even choose ¢ = le — 1, which can still provide guidance leading to
acceptable neighborhood. In general, there is a neighborhood here. Since in Figure 4, we consider the
personalization factor v = 0.1, here we conduct further ablations with o = 0.01 with the results presented
in Figure 13.
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Figure 12: Number of local iterations per client for find an approximation z} of the local optimal x} such
that ||V fi(x)]| < e. The legend is e.
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Figure 13: Inexact local optimal approximation with o = 0.01.
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