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Abstract

Given the exceptional performance of propri-001
etary large language models (LLMs) like GPT-002
4, recent research has increasingly focused on003
boosting the capabilities of smaller models004
through knowledge distillation (KD) from these005
powerful yet black-box teachers. While lever-006
aging the high-quality outputs of these teachers007
is advantageous, the inaccessibility of their in-008
ternal states often limits effective knowledge009
transfer. To overcome this limitation, we in-010
troduce Proxy-KD, a novel method that uses a011
proxy model to facilitate the efficient transfer012
of knowledge from black-box LLMs to smaller013
models. Our experiments show that Proxy-KD014
not only enhances the performance of KD from015
black-box teacher models but also surpasses016
traditional white-box KD techniques. This ap-017
proach presents a compelling new avenue for018
distilling knowledge from advanced LLMs.019

1 Introduction020

Recently, proprietary large language models021

(LLMs) like GPT-3.5 (OpenAI, 2022) and GPT-4022

(OpenAI, 2023) have demonstrated significant su-023

periority over open-source counterparts such as the024

LLaMA series (Touvron et al., 2023a,b; MetaAI,025

2024). However, their vast number of parameters026

leads to high inference costs, and they are only ac-027

cessible via API calls, offering limited customiza-028

tion and transparency. To address these challenges,029

recent efforts like Alpaca (Taori et al., 2023), Vi-030

cuna (Chiang et al., 2023), and Orca (Mukherjee031

et al., 2023) have focused on transferring the capa-032

bilities of proprietary LLMs to smaller open-source033

models through knowledge distillation (Chen et al.,034

2023; Hsieh et al., 2023; Ho et al., 2022).035

Knowledge distillation (KD) (Hinton et al.,036

2015) is a technique used to enhance the perfor-037

mance of a smaller student model by learning038

from a larger, more sophisticated teacher model.039

Depending on the level of access to the teacher040
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Figure 1: Comparison of white-box knowledge distilla-
tion (KD) and black-box knowledge distillation (KD).

model’s internals, KD methods can be categorized 041

into two types: KD with black-box teachers and 042

KD with white-box teachers. As illustrated in Fig- 043

ure 1, white-box KD allows the student model to 044

distill more intrinsic knowledge from the teacher by 045

mimicing the teacher model’s output distribution 046

(Gu et al., 2023; Wen et al., 2023), hidden states 047

(Jiao et al., 2020; Sun et al., 2019), and attention 048

scores (Wang et al., 2021). Therefore, this method 049

can only be applied when the teacher model’s pa- 050

rameters are accessible. On the other hand, black- 051

box KD leverages the high-quality outputs from 052

powerful proprietary LLMs to fine-tune the student 053

model (Hsieh et al., 2023; Fu et al., 2023). Both 054

white-box and black-box KD have their respective 055

drawbacks. While white-box KD is hindered by the 056

limited capacity of the teacher model, which often 057

restricts the distillation performance of the student, 058

black-box KD faces challenges with knowledge 059

transfer due to the inaccessibility of the teacher 060

model’s output distribution and internal states. 061

In this paper, we propose Proxy-based Knowl- 062

edge Distillation (Proxy-KD) to better transfer 063

knowledge from black-box teacher models. Proxy- 064

KD introduces a proxy model, typically a white- 065

box LLM, between the student and the black-box 066

teacher. The proxy model first aligns with the capa- 067

bilities of the black-box teacher by leveraging the 068
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teacher’s outputs. Moreover, preference optimiza-069

tion is performed to further refine and enhance the070

alignment between the proxy and teacher models.071

During the knowledge distillation process, the072

proxy model generates a dense distribution that073

closely approximates the black-box teacher’s out-074

put distribution. This enables the student model to075

train effectively as if it were using the black-box076

teacher’s guidance. Moreover, the outputs from the077

black-box teacher are treated as ground-truth labels,078

similar to traditional white-box knowledge distilla-079

tion. Introducing the proxy model also mitigates080

the model capacity gap issue (Cho and Hariharan,081

2019; Dong et al., 2023), which typically occurs082

when there is a significant disparity in strength083

between the teacher model (e.g., GPT-4) and the084

student model (e.g., LLaMA-1-7B).085

To validate the effectiveness of our method, we086

conducted comprehensive experiments across a087

range of well-established benchmarks. The re-088

sults show that Proxy-KD consistently outperforms089

both black-box and white-box KD methods. We090

observed that the alignment between the proxy091

model and the black-box teacher is crucial; a poorly092

aligned proxy model significantly diminishes the093

performance of knowledge distillation. We also094

found that larger and more robust proxy models are095

generally more desirable, as they possess stronger096

foundational capabilities and can align more effec-097

tively with the black-box teacher, enhancing the098

distillation process. Furthermore, we discovered099

that directly fine-tuning the proxy model with out-100

puts from the black-box teacher is suboptimal for101

the alignment. These findings highlight the impor-102

tance of selecting a well-aligned and capable proxy103

model to fully leverage the benefits of Proxy-KD.104

2 Related Work105

Existing knowledge distillation methods can be106

categorized into white-box knowledge distillation107

and black-box knowledge distillation.108

2.1 White-Box Knowledge Distillation109

Traditional knowledge distillation (KD) research110

predominantly employs white-box teachers and111

is typically classified into three main branches:112

feature-based, response-based, and relation-based113

methods. Feature-based methods seek to replicate114

the teacher’s intermediate representations, such as115

attention scores (Jiao et al., 2020), attribution maps116

(Wu et al., 2023), and hidden representations of117

tokens (Sun et al., 2019). Response-based methods 118

train the student model by minimizing divergences 119

like Kullback–Leibler (KL) divergence (Hinton 120

et al., 2015; Sanh et al., 2019), reverse KL (Gu 121

et al., 2023; Wen et al., 2023), Jensen–Shannon Di- 122

vergence (JSD) (Fang et al., 2021; Yin et al., 2020), 123

and Total Variation Distance (TVD) (Wen et al., 124

2023) based on the teacher’s output distribution. 125

Relation-based methods train the student model by 126

learning pairwise distances and triple-wise angles 127

among token representations from the teacher (Park 128

et al., 2021), or extracting structural relations from 129

multi-granularity representations (Liu et al., 2022). 130

2.2 Black-Box Knowledge Distillation 131

Given the remarkable performance achieved by 132

proprietary LLMs like GPT-4 (OpenAI, 2023), 133

Claude 3 (Anthropic, 2024), and Gemini (Team 134

et al., 2023), recent studies like Alpaca (Taori et al., 135

2023), Vicuna (Chiang et al., 2023), and Orca 136

(Mukherjee et al., 2023) have focused on trans- 137

ferring diverse capabilities from these black-box 138

teachers into smaller open-source models. For in- 139

stance, Li et al. (2024) and Liu et al. (2023) im- 140

proved the mathematical capability of small mod- 141

els by training on tailored rationale samples gen- 142

erated by GPT-3.5-Turbo and GPT-4. To transfer 143

the code generation capability, Azerbayev et al. 144

(2023) prompted Codex (Chen et al., 2021) to cre- 145

ate natural language-code pairs and fine-tuned a 146

smaller model on these samples. To transfer the 147

tool usage capability, Gou et al. (2023) utilized 148

GPT-4 to generate interactive tool-use trajectories 149

as training samples for the target model. Other 150

approaches, such as Hsieh et al. (2023); Ho et al. 151

(2022); Chen et al. (2023), utilize rationales gen- 152

erated by black-box teachers as training data to 153

transfer their general reasoning capabilities. 154

White-box knowledge distillation (KD) effi- 155

ciently distills knowledge by leveraging the internal 156

states of the teacher model. However, white-box 157

teachers typically possess a more limited capac- 158

ity compared to their black-box counterparts. In 159

contrast, black-box KD capitalizes on the superior 160

performance of the teacher models but is restricted 161

to fine-tuning on teacher-generated samples. This 162

approach captures input-output patterns without 163

accessing the deeper, intrinsic knowledge of the 164

teacher model. To bridge these gaps, we propose 165

Proxy-KD, a straightforward method that combines 166

the strengths of both white-box and black-box KD 167

while mitigating their respective limitations. 168
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Figure 2: Overview of our proposed Proxy-based Knowledge Distillation (Proxy-KD).

2.3 Connection with Teacher Assistant169

The proposed Proxy-KD method draws inspiration170

from TAKD (Mirzadeh et al., 2020), as both meth-171

ods use an intermediate network to aid knowledge172

distillation, but they differ in three significant ways.173

Firstly, the motivation behind each approach is dis-174

tinct: TAKD focuses on mitigating the capacity gap175

between the teacher and student in white-box set-176

tings, whereas Proxy-KD addresses the challenges177

posed by black-box teacher models and seeks to178

incorporate the benefits found in white-box scenar-179

ios. Secondly, they operate in different domains:180

TAKD is applied in the field of computer vision,181

while Proxy-KD is specifically designed for natural182

language processing, targeting the distillation of183

proprietary large language models (LLMs). Lastly,184

the methodologies diverge, with Proxy-KD intro-185

ducing a crucial proxy alignment phase that in-186

cludes preference optimization to better align the187

proxy model with the black-box LLM. This step188

is essential for reducing discrepancies between the189

proxy and teacher models, thereby improving the190

effectiveness of the distillation process.191

3 Method192

In this section, we introduce Proxy-based Knowl-193

edge Distillation (Proxy-KD), a simple yet efficient194

approach for knowledge distillation from black-box195

LLMs. As illustrated in Figure 2, Proxy-KD intro-196

duces a larger white-box LLM as the proxy aim-197

ing to capture the black-box teacher’s knowledge.198

The process unfolds in two main stages: (1) proxy199

model alignment and (2) student knowledge distil- 200

lation. First, the proxy model is aligned with the 201

teacher through supervised fine-tuning and prefer- 202

ence optimization. Once aligned, the student model 203

learns from both the explicit outputs (hard labels) 204

of the black-box teacher and output distributions 205

(soft labels) provided by the aligned proxy. 206

3.1 Problem Statement 207

To facilitate the transfer of knowledge from a black- 208

box teacher LLM πt to a smaller, open-source stu- 209

dent LLM πs, we introduce a proxy model πp. The 210

training dataset D consists of input-output pairs 211

(x, y), where x represents the input prompt and 212

y is the output sequence generated by the teacher 213

model πt. This dataset is strategically divided into 214

three parts: 10% (Dw) for the warm-up phase, 45% 215

(Dp) for aligning the proxy model with the teacher, 216

and the remaining 45% (Ds) for the knowledge 217

distillation training of the student model. 218

The process begins with a warm-up phase where 219

the proxy model πp is trained on Dw. This phase 220

helps πp develop a basic capability to generate 221

responses to input prompts. Following this, the 222

proxy model undergoes alignment with the teacher 223

model πt using the next dataset, Dp. This align- 224

ment is achieved through two methods: hard-label 225

knowledge distillation (KD) and preference learn- 226

ing. These methods enable πp to approximate the 227

behavior and outputs of the teacher model. Once 228

aligned, πp acts as an intermediary, facilitating the 229

transfer of knowledge to the student πs on Ds. 230
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3.2 Preliminary231

Hard-Label Knowledge Distillation. In this ap-232

proach, the student model is trained using the out-233

puts generated by the teacher model by minimizing234

the negative log-likelihood (NLL) function:235

LNLL = E(x,y)∼D [− log πs(y|x)] , (1)236

where πs(y|x) is the probability of πs generating237

y given x. This approach is essentially a form238

of supervised fine-tuning and typically employed239

when the teacher is a black-box model.240

Soft-Label Knowledge Distillation. In this ap-241

proach, the student is trained to imitate the token-242

level probabilities of the teacher, by minimizing243

the Kullback-Leibler (KL) divergence:244

LKL = E(x,y)∼D [DKL(πt(y|x)||πs(y|x))] . (2)245

This knowledge distillation approach is typically246

employed when the teacher is a white-box model.247

While the KL divergence objective provides248

richer supervision signals by using the token-level249

output distributions of the teacher model, it can-250

not be applied to black-box teachers due to the251

inaccessibility of these distributions. Consequently,252

current methods (Chiang et al., 2023; Mukherjee253

et al., 2023) rely on supervised fine-tuning using254

the outputs generated by black-box models to trans-255

fer their knowledge. Proxy-KD addresses this lim-256

itation by using a proxy model to incorporate the257

KL objective. The proxy mimics the black-box258

teacher, allowing access to its output distributions259

and enabling a more effective knowledge transfer.260

3.3 Proxy Model Alignment261

The proxy model πp is typically a larger white-262

box LLM than the student model πs. For effective263

knowledge transfer, it’s crucial to first align the264

output distribution of the proxy model with that265

of the black-box teacher model πt. This align-266

ment ensures that the proxy accurately captures267

the teacher’s behavior.268

The proxy model πp first undergoes supervised269

fine-tuning on a warm-up dataset Dw. Following270

this, the proxy is further trained on the Dp dataset271

by minimizing the NLL loss:272

LProxy-NLL = E(x,y)∼Dp
[− log πp(y|x)] . (3)273

To enhance the alignment of the proxy model274

with the teacher, we further introduce a preference275

learning-based alignment objective, with the hy- 276

pothesis that the teacher model’s responses are 277

of higher quality compared to those from the un- 278

aligned proxy model. The objective is to iteratively 279

adjust the proxy model so that it increasingly fa- 280

vors responses similar to those of the teacher while 281

reducing its preference for its own initial outputs. 282

To implement this, we employ the Direct Prefer- 283

ence Optimization (DPO) algorithm (Rafailov et al., 284

2024), which refines the proxy model by systemati- 285

cally preferring the teacher’s responses. 286

Specifically, for a given input x, we iteratively 287

sample a response y from the teacher and ŷ from 288

the proxy. These responses form a preference pair 289

(x, y, ŷ). To train the proxy model to prefer y over 290

ŷ, we define the following preference loss function: 291

L(i)
DPO(x, y, ŷ) =

log σ

[
β log

π
(i)
p (y|x)

π
(i−1)
p (y|x)

− β log
π
(i)
p (ŷ|x)

π
(i−1)
p (ŷ|x)

]
,

(4) 292

where π
(i−1)
p is the proxy model from the previous 293

training iteration. The overall preference loss over 294

all the preference samples is defined as: 295

L(i)
Pref = E(x,y)∼Dp,ŷ∼π

(i)
p (x)

L(i)
DPO(x, y, ŷ). (5) 296

At each iteration i, the proxy model is updated 297

based on the combined objective that includes both 298

the NLL loss and the preference loss: 299

L(i)
Proxy = L(i)

Proxy-NLL + L(i)
Pref. (6) 300

This iterative process continues for a fixed num- 301

ber of iterations k or until the proxy model con- 302

verges. Through this method, the proxy model πp 303

is aligned to emulate the distribution of the black- 304

box teacher πt, becoming an effective intermediary 305

for transferring knowledge to the student model. 306

3.4 Knowledge Distillation 307

To transfer knowledge from the black-box teacher 308

to the student model πs, we define the first training 309

objective using teacher-generated sequences and 310

the hard-label knowledge distillation objective: 311

LStudent-NLL = E(x,y)∼Ds
[− log πs(y|x)] . (7) 312

Based on the proxy model aligned with the black- 313

box teacher, which delivers accessible output distri- 314

butions, we define another training objective for the 315

student through soft-label knowledge distillation: 316

LStudent-KL = E(x,y)∼Ds
[DKL(πp(y|x)||πs(y|x))] .

(8) 317
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In this process, the proxy model functions as318

an intermediary for the black-box teacher, facil-319

itating the transfer of knowledge to the student320

model. However, as illustrated in Figure 6 in Ap-321

pendix, discrepancies between the teacher’s and322

the proxy’s output distributions persist even after323

aligning the proxy model, potentially degrading324

the effectiveness of knowledge distillation. To ad-325

dress these discrepancies, we propose a weighted326

approach to the soft-label knowledge distillation327

objective. By introducing weights, we dynami-328

cally adjust the influence of each sample based329

on the alignment quality between the proxy and330

the black-box teacher. This approach ensures that331

the student model prioritizes samples where the332

proxy’s distribution closely matches the teacher’s333

distribution and reduces focus on samples where it334

does not. The weights are calculated based on the335

log-likelihood of the teacher’s output generated by336

the proxy, normalized by the mean and variance of337

these log-likelihoods:338

w(x, y) = σ

[
log πp(y|x)− µ

γ

]
,

µ = E(x,y)∼Ds
[log πp(y|x)],

γ2 = Var(x,y)∼Ds
[log πp(y|x)],

(9)339

where w(x, y) is a weight reflecting the quality of340

the proxy’s prediction for the sample (x, y), Var(·)341

is the variance operation, γ is the standard devi-342

ation, σ is the sigmoid function that projects the343

score to nonzero. Based on Equation (8), we derive344

the weighted version of LStudent-KL as follow:345

LWeight-KL =

E(x,y)∼Ds
[w(x, y)DKL(πp(y|x)||πs(y|x))] .

(10)346

Therefore, the overall objective for student347

knowledge distillation can be derived as:348

LStudent = LStudent-NLL + αLWeight-KL, (11)349

where α is a hyperparameter utilized to adjust the350

strength of the weighted KL loss.351

This knowledge distillation strategy effectively352

blends the advantages of both black-box and white-353

box knowledge distillation methods, employing the354

proxy model to bridge the gap between black-box355

LLMs and open-source student LLMs.356

4 Experimental Setup357

In this section, we introduce the experimental set-358

tings of models, datasets, and method baselines.359

4.1 Models and Datasets 360

Teacher/Proxy/Student Models. In Proxy-KD, 361

we choose GPT-4 (OpenAI, 2023) as the teacher, 362

which is a powerful proprietary large language 363

model. We select LLaMA-2-70b (Touvron et al., 364

2023b) and LLaMA-2-13b (MetaAI, 2024) as the 365

proxy, respectively. Our student models come from 366

two model types: LLaMA-1-7B (Touvron et al., 367

2023a) and LLaMA-2-7B (Touvron et al., 2023b). 368

Training Corpus. We combine the OpenOrca 369

(Lian et al., 2023) and Nectar (Zhu et al., 2023) 370

datasets as our training corpus, containing a total 371

of 1M output sequences generated by the block- 372

box teacher GPT-4. The OpenOrca dataset con- 373

sists of instruction-following tasks, where GPT-4 374

is prompted to generate responses based on diverse 375

input instructions. Nectar is a 7-wise comparison 376

dataset, we filter and select those responses derived 377

from GPT-4. Following Li et al. (2024), we also in- 378

corporate synthetic data generated by GPT-4, based 379

on existing benchmark training sets. We split the 380

original training corpus D into three parts: 10% 381

as Dw with 100K samples, 45% as Dp with 450K 382

samples, and 45% as Ds with 450K samples. 383

Evaluation Benchmarks. Evaluation bench- 384

marks include complex reasoning dataset BBH 385

(Suzgun et al., 2022), knowledge-based datasets 386

AGIEval (Zhong et al., 2023), ARC-challenge 387

(Clark et al., 2018), and MMLU (Zeng, 2023), com- 388

monsense reasoning dataset CSQA (Talmor et al., 389

2019), and mathematical reasoning dataset GSM8K 390

(Cobbe et al., 2021). All evaluated models apply a 391

zero-shot greedy decoding strategy. 392

4.2 Training Configurations 393

All experiments are conducted on 8×A100 Nvidia 394

GPUs with 80GB memory. All proxy and student 395

models are trained for only one epoch. We use a 396

constant learning rate of 1e-5 and the Adam opti- 397

mizer, with a max sequence length of 1024. We 398

set hyperparamter α = 100 in Equation (11), and 399

k = 16 for the number of proxy alignment itera- 400

tions. All models are trained using LoRA (Hu et al., 401

2021) with mixed-precision: frozen parameters in 402

bfloat16 and LoRA-trained parameters in float32. 403

4.3 Baselines 404

We compare Proxy-KD with different white-box 405

KD and black-box KD methods. 406

White-Box KD. For knowledge distillation with 407
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Method #Params AGIEval ARC BBH CSQA GSM8K MMLU Avg

Black-Box Teacher

GPT-4 - 56.40 93.26 88.0 - 92.0 86.4 -

White-Box KD

Forward KL ♣ 7B 35.16 66.87 35.68 74.40 44.12 51.42 51.27
Reverse KL ♣ 7B 35.37 66.93 35.94 74.45 44.11 51.23 51.34

Black-Box KD

GPT-3 (Ho et al., 2022) 6.7B - - - 56.76 6.75 - -
FlanT5-XL (Fu et al., 2023) 3B - - 39.0 - 22.4 - -
FlanT5-XXL (Fu et al., 2023) 11B - - 47.20 - 27.10 - -
MCC-KD (Chen et al., 2023) 11B - - - 84.93 33.99 - -
MCC-KD (Chen et al., 2023) 7B - - - 76.41 41.58 - -
Orca-1 (Mukherjee et al., 2023) 13B 41.7 74.74 49.7 - 26.46 53.80 -
Orca-2 (Mitra et al., 2023) 7B 45.10 78.41 45.93 - 47.23 53.70 -
Orca-2 (Mitra et al., 2023) 13B 49.93 83.36 50.18 - 59.14 57.73 -
WizardLM (Xu et al., 2023) 13B 38.25 74.74 38.47 - 48.60 55.00 -
Vicuna (Chiang et al., 2023) 13B 29.3 - 23.3 - - - -
Vanilla Black-Box KD ♣ 7B 34.71 66.85 46.68 74.43 49.51 49.82 53.66

Proxy-KD 7B 36.59 71.09 53.40 75.18 53.07 51.35 56.78

Table 1: Overall results on evaluated benchmarks. The superscript ♣ represents our own implemented methods.
GPT-4 is used as the black-box teacher, the chat version of LLaMA-2-70B is used as the white-box teacher, the base
version of LLaMA-2-70B is used as the proxy model, student models are based on the LLaMA-2-7B backbone. All
models utilize a zero-shot greedy decoding strategy for evaluation. Other results are from their original papers.

white-box teachers, we compare forward KL meth-408

ods (Hinton et al., 2015; Agarwal et al., 2024) and409

reverse KL methods (Gu et al., 2023; Wen et al.,410

2023). The chat version of LLaMA-2-70b is uti-411

lized as the white-box teacher.412

Black-Box KD. For knowledge distillation with413

black-box teachers, we compare the vanilla black-414

box KD methods (Mukherjee et al., 2023; Mitra415

et al., 2023; Xu et al., 2023), which directly fine-416

tunes the student model on the data generated by417

the black-box teacher.418

For baselines implemented by us, we start from419

the same student checkpoint as Proxy-KD and use420

the same input prompts. In white-box KD, output421

sequences are generated by the white-box teacher,422

while in black-box KD, output sequences are gen-423

erated by the black-box teacher.424

5 Result and Analysis425

In this section, we present the main results and426

additional experiments of Proxy-KD.427

5.1 Overall Results428

We show the overall comparison of Proxy-KD429

against baseline methods in Table 1. Overall, the430

performance of black-box KD methods outper-431

forms that of white-box KD methods, demonstrat-432

ing the efficacy of distilling knowledge from pow- 433

erful black-box models. Notably, Proxy-KD fur- 434

ther enhances the performance, consistently achiev- 435

ing higher scores across most evaluated bench- 436

marks compared to the white-box KD methods 437

and the vanilla black-box KD method. Specifi- 438

cally, the improvement is particularly pronounced 439

in the challenging datasets like BBH and GSM8K, 440

where Proxy-KD obtains scores of 53.40 and 53.07, 441

respectively, outperforming even larger models 442

trained using traditional black-box KD methods. 443

This demonstrates the effectiveness of Proxy-KD 444

in leveraging both hard and soft labels through a 445

well-aligned proxy, thereby facilitating more accu- 446

rate knowledge transfer. 447

We also present the performance changes of stu- 448

dent models during the distillation process in Fig- 449

ure 3. We show the accuracy curves of students 450

on the benchmark test sets for every 40K training 451

steps. We compare three methods: vanilla black- 452

box KD, Proxy-KD, and white-box KD (forward 453

KL). The results show that Proxy-KD stands out 454

with the most significant enhancements, indicat- 455

ing its superior capability to efficiently transfer the 456

comprehensive knowledge of black-box teachers 457

to student models. The steeper and more consistent 458

improvement curves of Proxy-KD across bench- 459
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Figure 3: Accuracy curves for student models during knowledge distillation process. The y-axis is the accuracy of
the students on the benchmark test sets, and the x-axis is the number of training steps. We compare Proxy-KD with
black-box KD (vanilla black-box KD) and white-box KD (forward KL) baselines. Notably, Proxy-KD did not show
sign of saturation on some benchmarks, such as AGIEval, ARC, and BBH benchmarks.

Method AGIEval ARC BBH CSQA GSM8K MMLU
Studnet Model Distillation

LStudent 36.59 71.09 53.40 75.18 53.07 51.35
w/o πp 34.71 (-1.88) 66.85 (-4.24) 46.68 (-6.72) 74.43 (-0.75) 49.51 (-3.56) 49.82 (-1.53)
w/o LProxy 35.05 (-1.54) 67.18 (-3.91) 43.0 (-10.40) 76.04 (+0.86) 47.54 (-5.53) 48.09 (-3.26)
w/o LPref 35.38 (-1.21) 66.11 (-4.98) 52.51 (-0.89) 75.51 (+0.33) 52.49 (-0.58) 48.79 (-2.56)
w/o LWeight-KL 33.99 (-2.60) 71.81 (+0.72) 51.50 (-1.90) 75.11 (-0.07) 52.91 (-0.16) 49.47 (-1.88)

Proxy Model Alignment

LProxy 49.12 87.67 66.04 82.18 78.24 68.62
w/o LPref 48.31 (-0.81) 86.93 (-0.74) 62.16 (-3.88) 80.95 (-1.23) 79.15 (+0.91) 66.38 (-2.24)

Table 2: Ablation studies of Proxy-KD. We examine the impact of the proxy model πp, proxy model alignment
loss LProxy, proxy preference loss LPref, and weighted KL loss LWeight-KL on the performance of the student model
training, as well as the impact of the proxy preference loss LPref on the performance of the proxy model alignment.

marks such as AGIEval, ARC, and particularly460

in complex tasks like BBH and GSM8K, under-461

score its robust and effective approach in leverag-462

ing proxy models for knowledge distillation.463

5.2 Ablation Studies464

In this section, we perform ablation studies to ex-465

amine the impact of different components within466

our method. LLaMA-2-7B and LLaMA-2-70B are467

utilized as the backbones of the student and the468

proxy models, respectively.469

Effect of the Proxy Model. The proxy model470

πp is crucial for the effectiveness of Proxy-KD. Re-471

moving the proxy model forces the distillation pro-472

cess to revert to hard-label knowledge distillation,473

leading to significant performance drops across474

multiple benchmarks: a decrease of 4.24 on ARC, 475

6.72 on BBH, and 3.56 on GSM8K, as shown in Ta- 476

ble 2. These declines underscore the proxy model’s 477

essential role in capturing and transferring the dis- 478

tributional knowledge from the black-box teacher, 479

which is particularly important for tasks involving 480

complex reasoning and mathematical challenges. 481

Without the proxy, the student model fails to benefit 482

from the detailed distributional guidance, resulting 483

in markedly lower performance. 484

Effect of Proxy Model Alignment. The proxy 485

model alignment, facilitated by the loss LProxy, is 486

vital for effective knowledge transfer. Table 2 487

shows that when the proxy is initialized directly 488

from the LLaMA-2-70B checkpoint without align- 489

ment, the performance drops notably on BBH (- 490
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10.40), GSM8K (-5.53), and MMLU (-3.26). This491

decline illustrates the adverse effect of an unaligned492

proxy, which fails to approximate the teacher’s493

distribution and consequently underperforms com-494

pared to models directly fine-tuned on teacher data.495

The slight increase on CSQA (+0.86) when skip-496

ping alignment might be attributed to the simplic-497

ity of the task, indicating potential overfitting to498

teacher outputs without proxy guidance. This re-499

inforces the necessity of the alignment process to500

ensure the proxy effectively bridges the knowledge501

transfer from the black-box teacher to the student502

model across diverse and complex tasks.503

Effect of Preference Optimization. Table 2 il-504

lustrates the significant role of preference optimiza-505

tion in enhancing the performance of both the proxy506

and student models. When the proxy preference507

loss LPref is removed, reducing the proxy align-508

ment loss to LProxy-NLL, we observe notable perfor-509

mance drops across various benchmarks. Specif-510

ically, the alignment of the proxy model with the511

black-box teacher deteriorates, as evidenced by de-512

creases in scores on benchmarks like BBH and513

MMLU, which subsequently impacts the student514

model. The overall trend confirms that prefer-515

ence optimization is crucial for refining the proxy516

model’s ability to emulate the teacher effectively.517

Effect of Weighted KL. When LWeight-KL is re-518

placed with the standard KL loss LStudent-KL, we519

also observe declines in performance across most520

benchmarks, indicating that the effectiveness of521

the distillation process diminishes. The results522

shown in Table 2 highlight that focusing on high523

log-likelihood distributions from the proxy, as fa-524

cilitated by the weighted KL loss, significantly en-525

hances the quality of knowledge transfer. The over-526

all declines underscore that this weighting mecha-527

nism significantly improves the quality of knowl-528

edge distillation, enhancing the student’s ability to529

learn from a well-aligned proxy.530

5.3 Impact of Proxy Model’s Capability531

How well the proxy aligned with the teacher can532

directly affect the performance of the student. The533

final alignment effectiveness of the proxy model de-534

pends on two factors: the design of the alignment535

algorithm and the inherent alignment capability536

of the proxy backbone model itself. In this sec-537

tion, we investigate the impact of the latter. We538

hypothesize that the size of the proxy model’s pa-539

rameters is crucial for its capacity to align with540

the black-box teacher’s capability, especially when541
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Figure 4: Performance of student models under different
proxy models. We also show the ratio of performance
gap between the proxy models and the student models.

the teacher’s parameter size is significantly larger 542

than the proxy’s. Experiments are conducted with 543

LLaMA-2-70B and LLaMA-2-13B as the proxy 544

backbone models. We show the performance of 545

these aligned proxy models. As depicted in Fig- 546

ure 4, the proxy model based on LLaMA-2-70B 547

performs better than the one based on LLaMA- 548

2-13B, the latter has fewer parameters. We also 549

examine the impact of proxy models with differ- 550

ent capacities on student performance. We observe 551

that the stronger proxy based on LLaMA-2-70B 552

yields better student performance than the weaker 553

proxy based on LLaMA-2-13B. Furthermore, when 554

using a proxy based on a backbone model with a 555

larger capacity, the student demonstrates a greater 556

potential for achieving higher performance. 557

6 Conclusion 558

This paper aims to tackle the challenge of knowl- 559

edge distillation for black-box large language mod- 560

els (LLMs), where we can only access the out- 561

puts generated by the teacher model. Given the 562

inaccessibility of the internal states of these black- 563

box models, we introduce Proxy-KD, a novel ap- 564

proach that leverages a proxy model to enhance 565

the distillation process. The proxy model is first 566

aligned with the black-box teacher, closely mim- 567

icking its behavior. Then, the student model is 568

trained using the combined knowledge from both 569

the black-box teacher and the proxy model. Ex- 570

tensive experiments and analyses across a variety 571

of well-established benchmarks demonstrate that 572

Proxy-KD significantly outperforms existing black- 573

box and white-box knowledge distillation methods. 574
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Limitations575

The limitations of this work include the training576

time overhead associated with proxy model align-577

ment, particularly when the proxy model has a large578

number of parameters. Additionally, the proposed579

preference optimization requires online sampling580

from the proxy model, further increasing the train-581

ing time overhead. Another limitation is the type582

of experimental backbone models used. Due to583

resource constraints, this work only conducts ex-584

periments with the LLaMA model series, without585

including other model backbones such as Qwen586

(Bai et al., 2023) or Mistral (Jiang et al., 2023).587
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Models #GPUs Hours/Round

LLaMA-7B-SFT 4 1.0
LLaMA-7B-Distill 4 2.0
LLaMA-13B-SFT 8 1.8
LLaMA-13B-Pref 8 9.0
LLaMA-70B-SFT 8 5.5
LLaMA-70B-Pref 8 28.0

Table 3: Training time overhead. We show the training
hours per round for different methods. SFT is the su-
pervised fine-tuning method, Distill is the knowledge
distillation method, Pref is the preference optimization
method. Each round contains 40K training samples
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Figure 5: The statistics of the cumulative probability
within the Top K exceeding 0.95. The x-axis represents
different values of K, while the y-axis shows the per-
centage of instances meeting this threshold.

A Experimental Analysis835

A.1 Analysis of Training Efficiency836

We show the training time overhead for different837

methods in Table 3. We show the training hours838

per round for supervised fine-tuning, knowledge839

distillation, and preference optimization methods840

across various model sizes. Each round contains841

40K training samples. We note that preference op-842

timization is the main time overhead due to online843

sampling from the proxy model. In Proxy-KD, we844

obtain the proxy model’s output distribution offline845

during student distillation. As Figure 5 shows, most846

probability mass is concentrated on a few tokens.847

To save memory, only the top 10 token indices and848

their logits are retained.849

A.2 Output Token Agreement850

To serve as a stand-in for the teacher model’s output851

distribution, it’s important for the proxy model’s852

output to align with the teacher model’s output dis-853

tribution, which is achieved through proxy model854

alignment. We measure the change in agreement855

between the top-1 token given by the proxy and the856

token provided by teacher in current step, before857

and after alignment. To visualize this alignment,858

Match
37.7%

Mismatch
62.3%

Before Alignment

Match

82.0%

Mismatch

18.0%

After Alignment

Figure 6: The match ratio between the proxy and
teacher’s output tokens before and after alignment. If
the top-1 token given by the proxy equals the token
given by the teacher in a current step, it is considered a
match; otherwise, it is considered a mismatch..

at each step, consider the top-1 token given by the 859

proxy’s output distribution and the token given by 860

the teacher. If the top-1 token given by the proxy 861

matches the token given by the teacher at the cur- 862

rent step, it is considered a match; otherwise, it 863

is considered a mismatch. As shown in Figure 6, 864

We find that after the proxy model alignment, the 865

matched portions show a significant upward trend, 866

indicating a trend towards alignment. 867

A.3 Additional Results 868

We present the performance changes of student 869

models during the distillation in Figure 7. The 870

student models are based on LLaMA-1-7B back- 871

bone, and the proxy model is based on LLaMA-2- 872

70B backbone. We test the accuracy of students 873

on benchmarks for every 20K training steps. We 874

compare Proxy-KD with vanilla black-box KD 875

method. We observe Proxy-KD consistently out- 876

perform vanilla black-box KD. 877
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Figure 7: Accuracy curves for student models during knowledge distillation process. The y-axis is the accuracy of
students on the benchmark test sets, and x-axis is the number of training steps. We compare Proxy-KD with vanilla
black-box KD. The students are based on LLaMA-1-7B, and the proxy is based on LLaMA-2-70B.
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