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ABSTRACT

Much of the data we encounter in the real world can be represented as directed
graphs. In this work, we introduce a general family of representations for directed
graphs through connected time-oriented Lorentz manifolds, called “spacetimes” in
general relativity. Spacetimes intrinsically contain a causal structure that indicates
whether or not there exists a causal or even chronological order between points
of the manifold, called events. This chronological order allows us to naturally
represent directed edges via imposing the correct ordering when the nodes are
embedded as events in the spacetime. Previous work in machine learning only
considers embeddings lying on the simplest Lorentz manifold or does not exploit
the connection between Lorentzian pre-length spaces and directed graphs. We
introduce a well-defined approach to map data onto a general family of spacetimes.
We empirically evaluate our framework in the tasks of hierarchy extraction of
undirected graphs, directed link prediction and representation of directed graphs.

1 INTRODUCTION

Most of the machine learning literature has focused on learning representations that lie on a Rie-
mannian manifold such as the Euclidean space, the d-sphere (e.g., `2-normalized representations)
(Wang et al., 2017; Tapaswi et al., 2019), hyperbolic geometry to represent graphs without cycles
(Nickel & Kiela, 2017), or a statistical manifold in information geometry (Amari, 1998). Concepts
of Euclidean geometry, such as distances, are naturally generalized to Riemannian geometry which
remains easy to interpret. In contrast, recent approaches have considered learning representations
that lie on a pseudo-Riemannian manifold to extract hierarchies in graphs with cycles (Law & Stam,
2020; Law, 2021) or represent directed graphs (Clough & Evans, 2017; Sim et al., 2021).

Pseudo-Riemannian manifolds are generalizations of Riemannian manifolds where the constraint of
positive definiteness of the nondegenerate metric tensor is relaxed. The machine learning literature
on pseudo-Riemannian manifolds can be divided into two categories. The first category focuses on
how to optimize a given function whose domain is a pseudo-Riemannian manifold and does not take
into account whether the manifold is time-oriented or not (Law & Stam, 2020; Law, 2021). The
second category exploits the interpretation of a specific family of pseudo-Riemannian manifolds
called “spacetimes” in general relativity (Clough & Evans, 2017; Sim et al., 2021). More specifically,
spacetimes are connected time-oriented Lorentz manifolds. They intrinsically contain a causal
structure that indicates whether or not there exists a causal order between points of the manifold,
called events. This causal structure has been utilized to represent directed graphs where each node is
an event and the existence of an arc (i.e., directed edge) between two nodes depends on the causal
character of the curves joining them (Bombelli et al., 1987). In particular, Clough & Evans (2017)
consider learning representations via the Minkowski spacetime which is the simplest such manifold.
On the other hand, Sim et al. (2021) use three types of spacetimes and propose an ad hoc method
based on the sign of some time coordinate difference function to determine the orientation of edges.
The sign of such a function is not always meaningful as it for instance alternates periodically when
the manifold is non-chronological and does not generalize to all spacetimes. Moreover, the distance
function that they optimize is constant when two points cannot be joined by a geodesic.

Contributions. We propose a framework inspired by Lorentzian causality theory (Kronheimer &
Penrose, 1967; Minguzzi, 2019), and in particular Lorentzian pre-length spaces (Kunzinger & Sämann,
2018), to learn directed graph representations lying on a large family of spacetimes. To this end, we
present tools to account for time-orientation and exploit distances specific to Lorentz geometry. In
particular, we propose to restrict the existence of edges to pairs of nodes whose representations lie in
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Figure 1: Geodesics of the de Sitter space Sd1(r) (left) and of the anti-de Sitter space Hd
1(r) (right).

an open globally hyperbolic convex normal neighborhood. Such a neighborhood can be defined for
any spacetime (see Theorem 2.7 of Minguzzi (2019)) and admits simple distance and time separation
functions whose sign determines the direction of edges. We experimentally show that spacetimes
can extract hierarchies in social networks better than standard approaches. Our framework also
outperforms existing methods in link prediction on graphs with directed cycles.

2 SPACETIME DIFFERENTIAL GEOMETRY

We introduce some differential geometry background about spacetimes. Spacetimes have been widely
studied, and we refer the reader to Hawking & Ellis (1973); Uhlenbeck (1975); O’Neill (1995); Beem
et al. (1996); Wolf (2011); Gourgoulhon (2016), Chapter 5-8 & 14 of O’Neill (1983).

Pseudo-Riemannian Manifold. A d-dimensional pseudo-Riemannian manifold (M, g) is a smooth
manifold such that every point x ∈M has a d-dimensional tangent space TxM whose metric tensor
gx : TxM× TxM → R is a nondegenerate symmetric bilinear form (called a scalar product).
Nondegeneracy means that ∀v ∈ TxM, gx(u, v) = 0 =⇒ u = 0. When the context is clear and to
simplify the notation, we write 〈·, ·〉 := gx(·, ·) to define the metric tensor at x. We also writeM
instead of (M, g). We write points x ∈ M of the manifold in bold serif font, and tangent vectors
u ∈ TxM in bold sans-serif font when we want to distinguish them from points.

Lorentz manifold. Every tangent space TxM of a d-dimensional pseudo-Riemannian manifoldM
admits an orthonormal basis {e1, . . . , ed} that satisfies ∀i, 〈ei, ei〉 = ±1 and ∀ i 6= j, 〈ei, ej〉 = 0.
The index ν ≤ d of M is the number of vectors ei that satisfy 〈ei, ei〉 = −1. If ν = 0, M is
Riemannian and its metric tensor is positive definite (i.e., ∀x ∈ M,∀u ∈ TxM, 〈u,u〉 ≥ 0 and
〈u,u〉 = 0 ⇐⇒ u = 0). If ν = 1,M is a Lorentz manifold and TxM is a Lorentz vector space.

Future timecone. A nonzero tangent vector u is called timelike (or chronological), null, spacelike
or non-spacelike (or causal) if 〈u,u〉 is negative, zero, positive or nonpositive, respectively. The
type into which u falls is called its causal character. If u = 0, then u is spacelike. Every Lorentz
tangent space contains two timecones. Some timelike tangent vector t ∈ TxM can arbitrarily be used
to define the future timecone as the following set: C+x (t) := {v ∈ TxM : 〈v, v〉 < 0, 〈t, v〉 < 0}
whereas −t defines the past timecone C−x (t) := C+x (−t). Two timelike tangent vectors u and v are in
the same timecone iff 〈u, v〉 < 0. They belong to different timecones if v = −u.

Time-orientability and time-orientation. A continuous vector field X is a function that assigns
to each point x ∈ M a tangent vector of M at x denoted by X(x) ∈ TxM. X and −X are
timelike if ∀x ∈ M, 〈X(x), X(x)〉 < 0. A Lorentz manifold is time-orientable iff there exists a
timelike vector field. IfM is assigned such a timelike vector field X , it is time-oriented by X . In
this case, non-spacelike tangent vectors u at each point x can be divided into two separate classes:
future-directed if 〈X(x),u〉 < 0, and past-directed if 〈X(x),u〉 > 0.

A curve γx→u : I →M where I ⊆ R is defined such that its initial point is γx→u(0) = x and its
initial velocity is γ′x→u(0) = u ∈ TxM. We denote it by γ when its initial conditions are clear from
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the context. If its acceleration is zero, then it is called a geodesic. The curve γ is called timelike, null
or spacelike if its velocity on the whole domain I is timelike, null or spacelike, respectively. It is
called future-directed (or future-pointing) if its velocity is future-directed (and causal) on I .

Completeness. The manifolds that we consider in this paper are geodesically complete (i.e., I = R),
and the exponential map expx : TxM→M ofM at x is defined as expx(u) := γx→u(1) where
γx→u is a geodesic. The maximal normal neighborhood of x is the maximal subset Ux ⊆M where
the logarithmic map logx := exp−1

x : Ux → TxM is a diffeomorphism, it satisfies Ux := {y ∈M :
expx(exp

−1
x (y)) = y}. To simplify the notation, we also write −→xy := logx(y) where y ∈ Ux. Ux is

convex if ∀y ∈ Ux, there exists a unique geodesic totally contained in Ux from x to y.

We now present some pseudo-Riemannian manifolds that will be relevant. Their differential geometry
tools (e.g., exponential/logarithmic map and parallel transport) are provided in Appendix B.

• Pseudo-Euclidean space Rd
ν . The flat d-dimensional pseudo-Riemannian manifold of index ν is

denoted by Rd
ν . In particular, Rd

0 is the Euclidean space and Rd
1 is the Minkowski space (or Minkowski

spacetime). Since it is a vector space, we can identify its tangent space to the space itself by means of
the natural isomorphism Rd

ν ≈ TxRd
ν . Rd

ν is equipped with the following scalar product:

∀x = (x1−ν , . . . , xd−ν)
>, y = (y1−ν , . . . , yd−ν)

>, 〈x,y〉ν := −
0∑

i=1−ν

xiyi +
d−ν∑
j=1

xjyj . (1)

The maximal normal neighborhood for all x ∈ Rd
ν is Ux = Rd

ν . In special relativity, the first ν
elements of x ∈ Rd

ν are called time coordinates and the other ones are called space coordinates.

• The pseudo-sphere Sdν(r) of radius r > 0 is called the de Sitter space when ν = 1 and defined as:

Sdν(r) := {x ∈ Rd+1
ν : 〈x,x〉ν = r2}. (2)

It is not time-orientable if d− ν is odd, and Ux = {y ∈ Sdν(r) : 〈x,y〉ν > −r2}.
• The pseudo-hyperbolic space Hd

ν(r) is called the anti-de Sitter space when ν = 1 and defined as:

Hd
ν(r) := {x ∈ Rd+1

ν+1 : 〈x,x〉ν+1 = −r2}. (3)

The anti-de Sitter space is time-orientable for all d, and Ux = {y ∈ Hd
ν(r) : 〈x,y〉ν+1 < r2}.

• The cylindrical Minkowski space Ld
1(C) := Rd

1/∼ is a quotient set defined such that x ∈ Rd
1 and

y ∈ Rd
1 are equivalent (i.e., x∼y) iff ∀i > 0, yi = xi and ∃k ∈ Z, y0 = x0 + kC where C > 0 is a

circumference hyperparameter. See page 148 of O’Neill (1983) for other types of Lorentz cylinders.
We have Ux = {y = (y0, . . . , yd−1)

> ∈ Rd
1 : y0 ∈ (x0 − C/2, x0 + C/2)}.

3 SPACETIME GRAPH REPRESENTATION

A spacetime is a connected time-oriented Lorentz manifold M whose points are called events.
Informally, time-oriented is often weakened to time-orientable, and Hawking & Ellis (1973) ignore
the time-orientability criterion to define spacetimes although it is required to study their causal
structure. Our main contribution is to exploit this causal structure via Lorentzian pre-length spaces to
represent graphs. In the following, we always assume thatM is a spacetime unless stated otherwise.
A finite directed graph can be given the structure of a Lorentzian pre-length space (Kunzinger &
Sämann, 2018). To define our graphs, we then choose a special type of Lorentzian pre-length space
that is easy to optimize. We now provide and follow the definitions of Kunzinger & Sämann (2018).

Causal space. Let X be a set with a reflexive and transitive relation ≤, and� a transitive relation
contained in ≤ (i.e.,�⊆≤, so x� y =⇒ x ≤ y). Then (X ,�,≤) is called a causal space. This
definition is more general than the one given in the seminal work of Kronheimer & Penrose (1967).

Following general relativity, the event x ∈ M causally (resp. chronologically) precedes the event
y ∈M, and we write x < y (resp. x� y) iff there exists a future-directed causal (resp. timelike)
curve from x to y. This condition might be difficult to verify in general. However, if y is in a
convex normal neighborhood of x denoted by Vx ⊆ Ux (and we always assume in the following
that x ∈ Vx), we have x < y (resp. x � y) iff there exists a nonconstant future-directed causal
(resp. timelike) geodesic from x to y (see Proposition 4.5.1 of (Hawking & Ellis, 1973)). We note
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x ≤ y ⇐⇒ x = y or x < y. Any open subsetW ⊆M of a spacetime is a spacetime in its own
right, and the intrinsic causal relations ofW imply the corresponding ones inM. In the case where
W ⊆M is a convex open set, the intrinsic causality ofW is as simple as that of Minkowski space
(see page 403 of O’Neill (1983)). Moreover, both (M,�,≤) and (W,�,≤) are causal spaces.

Lorentzian pre-length space. Let (X ,�,≤) be a causal space and d a metric on X . Let τ :
X × X → [0,∞] be a lower semicontinuous map (w.r.t. the metric topology induced by d) that
satisfies the reverse triangle inequality: ∀x,y, z ∈ X with x ≤ y ≤ z, τ(x, z) ≥ τ(x,y) + τ(y, z).
Suppose that τ(x,y) = 0 if x 6≤ y and τ(x,y) > 0 iff x� y. Then (X , d,≤,�, τ) is a Lorentzian
pre-length space and τ is called the time separation function. See details about τ in Section 3.3.

3.1 GRAPH CONSTRUCTION VIA LORENTZIAN PRE-LENGTH SPACES

We now explain our methodological contribution, which is the construction of directed graphs from
the properties mentioned above. Let us define a directed graph G = (V,E) where V = {vi}ni=1
is the node set and E is the set of arcs. Our goal is to represent each node vi by a point xi ∈ M
so that there exists an arc from vi to vj (i.e., (vi, vj) ∈ E) only if xi � xj . We propose to
consider subgraphs Gi = (V,Ei) defined such that E =

⋃n
i=1Ei. Each subgraph Gi is given by the

structure of the Lorentzian pre-length space (Vxi
, d,≤,�, τ) where Vxi

⊆ Uxi
is an open subset

of the maximal normal neighborhood Uxi
. More precisely, we consider the chronological future

I+(xi,Vxi
) := {y ∈ Vxi

: xi � y} of the point xi relative to some given set Vxi
⊆ Uxi

(see page
402 of O’Neill (1983)), and we draw an arc from vi to vj iff xj ∈ I+(xi,Vxi). Assuming Vxi is a
convex normal neighborhood and xj ∈ Vxi , we have xj ∈ I+(xi,Vxi) only if −−→xixj is defined and
future-directed timelike (see Proposition 4.12 of Beem et al. (1996)).

Our framework produces a subgraph G =
⋃n

i=1Gi of the graph G described by the chronological
relations ofM, and the causal relations between events depend on the choice ofM. It is worth noting
that for any spacetime, chronological order is transitive (i.e., xi � xj and xj � xk =⇒ xi � xk

(i.e., xk ∈ I+(xi,M)), see Chapter 3.2 of Beem et al. (1996)). vi is then connected by an arc to all
the successors of vj in G . We avoid this degenerate case by drawing an arc from vi to vk in G iff
xk ∈ I+(xi,Vxi). The choice ofM and Vxi ⊆M for all i is then crucial to construct G ⊆ G .

Existence of directed cycles. Our framework can represent graphs with directed cycles only ifM is
non-chronological (i.e., there exists at least one closed timelike curve: ∃x ∈M,x� x, see Fig. 1),
which is the case ifM is the anti-de Sitter space Hd

1(r) or the Cylindrical Minkowski space Ld
1(C).

Spacetimes that do not contain closed timelike curves are called chronological (i.e., @x ∈M,x� x)
and can represent only Directed Acyclic Graphs (DAGs) in our framework. Some chronological
spacetimes such as Sd1(r) (when d ≥ 3 is odd) or Rd

1 are called globally hyperbolic and satisfy:
x ≤ y =⇒ x and y can be joined by a (longest) causal geodesic that is not necessarily unique (see
page 66 of Beem et al. (1996)). Nonetheless, ifM is Sd1(r) or Rd

1, we also have y ∈ I+(x,M) iff
y ∈ Ux and −→xy is future-directed timelike (see page 411 of (O’Neill, 1983) for details on conditions).
Although DAGs do not contain directed cycles, they can contain undirected cycles.

For simplicity, we consider that Vx ⊆ Ux is the convex normal neighborhood of x that contains
points y such that the arc length dγ of the geodesic γ from x = γ(0) to y = γ(1) is smaller than
some arbitrary threshold ε ∈ (0,∞] and can be formulated as dγ(x,y) :=

√
|〈−→xy,−→xy〉|. We have:

I+(x,Vx) = {y ∈ Ux : −ε2 < 〈−→xy,−→xy〉 < 0,−→xy ∈ C+x (t)}, (4)

where C+x (t) is the future timecone parametrized by some arbitrary timelike tangent vector t ∈ TxM.
The motivation is to choose or learn ε small enough that vi is not connected to undesired successors
of vj . However, in most of our experiments we simply consider that Vx = Ux (see Section C.4).

3.2 EXAMPLES OF SPACETIMES

We first illustrate how to represent directed graphs with the simplest spacetime, which is the (flat)
Minkowski space Rd

1. It is used in special relativity which is a special case of the general relativity
of a spacetime isometric to R4

1. It is also the geometry induced on each fixed tangent space of an
arbitrary Lorentz manifold. It was used in Clough & Evans (2017) to represent DAGs due to its
global hyperbolicity and the fact that any pair of points of Rd

1 can be joined by a geodesic. It is worth
noting that the Hopf-Rinow theorem does not hold for non-Riemannian manifolds such as spacetimes.
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Therefore for many spacetimes, there exist pairs of points that cannot be joined by a geodesic even if
the spacetime is geodesically complete. Working with convex normal neighborhoods Vxi

allows us to
constrain chronological order between points only via timelike geodesics as explained in Section 3.1.

• Minkowski spacetime Rd
1. We recall that ∀ν,Rd

ν ≈ TxRd
ν . Its geodesic γx→y : R → Rd

ν is
γx→y(t) := x+ ty. The exponential map at x is expx(y) := x+ y and its inverse is −→xy := y − x.
Rd

1 is time-oriented by the vector field ∂/∂x0 (e.g., ∀x,y, τ(x,y) := y0−x0, and we should in theory
define τ(x,y) := 0 if x � y to properly follow the definition of Lorentzian pre-length spaces but
we ignore this criterion during training for optimization purpose). Let us define t := (1, 0, . . . , 0)>,

α = −(y0 − x0) +
√∑d−1

i=1 (yi − xi)2 and β := 〈−→xy,−→xy〉 = −(y0 − x0)2 +
∑d−1

i=1 (yi − xi)2.

According to equation 4, we have y ∈ I+(x,Vx) iff −→xy is future-directed timelike (i.e., β < 0 and
〈−→xy, t〉 < 0, or equivalently α < 0) and dγ(x,y) is smaller than ε (i.e., −ε2 < β).

There might exist a path but no arc between x� y (i.e., y ∈ I+(x,M)\I+(x,Vx)) iff 〈−→xy, t〉 < 0
and β ≤ −ε2. There exists no path between x and y (i.e., x 6� y and y 6� x) iff β ≥ 0.

• de Sitter spacetime Sd1(r). The original de Sitter spacetime S41(r) is not time-orientable (see
Corollary 11.2.6 of Wolf (2011)). However, when d ≥ 3, ν > 0 and d− ν is even, Sdν(r) is orientable
and time-orientable, the projective space Sdν(r)/± 1 used in Law (2021) is orientable but not time-
orientable (see page 247 of O’Neill (1983)). We assume in the following that conditions hold so that
Sdν(r) is a spacetime and we refer the reader to the appendix for details.

For any pair of points x ∈ Sdν(r) and y ∈ Sdν(r),
−→xy is defined iff y ∈ Ux (i.e., 〈x,y〉1 > −r2),

and −→xy is timelike iff 〈x,y〉1 > r2. Let p := (0, . . . , 0, r)> ∈ Sd1(r) denote the positive pole, and
Γx
p : TpSd1(r)→ TxSd1(r) denote the parallel transport from TpSd1(r) to TxSd1(r). Since the parallel

transport preserves the causal character of any tangent vector v, we can define the future timecone
C+x (−→xy) with respect to the timelike tangent vector t := (1, 0, . . . , 0)> ∈ T±pSd1(r) as follows:

Lemma 3.1. Assuming −→xy is timelike, −→xy is future-directed iff Γx
p(t) ∈ C+x (−→xy) if Γx

p is defined
(i.e., p ∈ Ux), and Γx

−p(t) ∈ C+x (−→xy) otherwise (i.e., −p ∈ Ux). See proof in Appendix C.1.2.

• The anti-de Sitter spacetime Hd
1(r) and its projective version Pd

1(r) := Hd
1(r)/ ± 1 are non-

chronological and satisfy x� y =⇒ y� x, which is convenient to represent graphs with directed
cycles. Sim et al. (2021) use Hd

1(r) to represent directed graphs but also promote arcs (i.e., causal
relation) between pairs of nodes that are not connected by any geodesic, which makes their problem
hard to optimize. In this work, we only consider the existence of arcs if there exists a timelike
geodesic in the convex normal neighborhood Vx joining two events. See Appendix C for details.

• A warped product is a manifold (M1×M2, g1⊕ fg2) denoted byM1×fM2 where (M1, g1),
(M2, g2) and f :M1 → (0,∞) is a smooth function called the warping function (e.g., f = 1). Let
M = B ×f F be a Lorentz warped product where B is Lorentz and F is a complete Riemannian
manifold.M is time-orientable iff B is (see page 417 of (O’Neill, 1983)).M satisfies the chronology,
causality or strong causality iff B does. Our framework can then be extended to warped products.

3.3 LORENTZIAN DISTANCE AND LORENTZIAN LENGTH SPACES

The Lorentzian distance indicates chronological order (hence causality) between events when it is
positive, satisfies the reverse triangle inequality and its squared function is of class C2 on a normal
neighborhood. These properties make it ideal for optimization, and it can be used as time separation
function. We refer the reader to Chapter 4 of Beem et al. (1996) and Section 5 of Minguzzi (2019).

Proposition 4.5.3 of Hawking & Ellis (1973): Let x and y lie in a convex normal neighborhood
Vx ⊆ Ux. If x and y can be joined by a causal curve in Vx, the longest such curve is the unique causal
geodesic in Vx from x to y. This is in contrast with Riemannian geometry where the (spacelike)
geodesic corresponds to the shortest curve joining points. Since Vx is a convex normal neighborhood,
we can define the arc length of such a curve by χV(x,y) :=

√
−〈−→xy,−→xy〉 ≥ 0. If x� y, χV(x,y) is

called the Lorentzian distance from x to y on Vx, it corresponds to the elapsed proper time between the
events x and y (i.e., as measured by a clock along the geodesic γx→−→xy) (Gourgoulhon, 2016). If we
define τ := χV , then (Vx, d,≤,�, τ) is called a Lorentzian length space. In this paper, we consider
the squared Lorentzian distance which is defined as y ∈ I+(x,Vx) =⇒ χ2

V(x,y) = −〈
−→xy,−→xy〉.
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In the literature (Hawking & Ellis, 1973; Beem et al., 1996), the (squared) Lorentzian distance is
defined such that χ2

V(x,y) = 0 if x and y are not joined by a causal curve due to lack of causality.
When evaluating learned representations (i.e., at test time), we therefore consider that χ2

V(x,y) = 0
if this is the case. However, during training and for optimization purpose, we propose to consider:

If x 6� y and y 6� x, χ2
V(x,y) =

 −〈−→xy,−→xy〉 ifM = Rd
ν

2(〈x,y〉ν − r2) ifM = Sdν(r)
−2(|〈x,y〉ν+1| − r2) ifM = Pd

ν(r).
(5)

This makes the function χ2
V differentiable everywhere (except when 〈x,y〉ν+1 = 0 ifM = Pd

ν(r)),
equal to −〈−→xy,−→xy〉 > 0 if −→xy is timelike, and non-positive otherwise. χ2

V is defined for any pair of
points (x,y) by using extrinsic geometry, whether −→xy is defined or not (see details in Section C.3).

4 RELATED WORK

Exploiting spacetimes to represent directed graphs was proposed by Clough & Evans (2017) to extend
MultiDimensional Scaling (MDS) (Kruskal, 1964) to the simplest spacetime Rd

1. As in standard
MDS, a target distance matrix between nodes is given as input and the goal of the method is to find
the vector representations of nodes that return the best approximation of the target distance matrix
when using the squared Lorentzian distance as the dissimilarity function. However, as discussed in
Section 3.3, it is difficult to define target distances between pairs of nodes that are not connected.
Moreover, the formulation in (Clough & Evans, 2017) considers only Rd

1 and does not account for
future or past-direction between pairs of nodes during training. We solve this problem in Section 3.2
by enforcing future timelike geodesics to have their length smaller than some threshold ε ∈ (0,∞].

Sim et al. (2021) extended Clough & Evans (2017) to the anti-de Sitter space and Lorentz cylinder.
Although our motivation is similar, our contributions are methodological, rely on the intuitions of
Lorentzian pre-length spaces, and provide an easier interpretation of the learned representations as
we explain below. First, Sim et al. (2021) do not address clearly the case when there is no geodesic
between pairs of points, and their optimization framework leads to a distance loss term with a zero
gradient in this case, which is difficult to optimize. Moreover, their prediction of an arc between
a pair of nodes is determined via a Triple Fermi-Dirac (TFD) probability function that accounts
for the distance between the nodes, the time coordinate difference ∆t and its opposite value −∆t
(i.e., TFD accounts for both the chronological future and past of a given node). In contrast, we
restrict the representation of nodes connected by an arc to belong to I+(x,Vx) where Vx is an open
convex normal neighborhood, which is simple to interpret and optimize. In general, the Lorentzian
distance function from x to y onM is defined to be infinite ifM is non-chronological and there
exists a closed timelike curve joining x and y. Moreover, the Hopf-Rinow theorem does not hold
for spacetimes. Working with convex normal neighborhoods allows us to restrict the existence of
arcs between nodes to the existence of geodesics joining events. The definition of time separation
functions also becomes straightforward and we use their sign to determine the direction of an edge.
Our framework shares similarities with Sim et al. (2021) whenM = Rd

1 = Vx because Rd
1 is globally

hyperbolic. Otherwise, we do not formulate our time separation function in the same way and we
create arcs differently. Further comparisons with Sim et al. (2021) are provided in Appendix E.

The negative of the pseudo-Riemannian gradient is generally not a descent direction. We then use the
optimization tools introduced in Gao et al. (2018); Law & Stam (2020); Law (2021) as described in
Appendix F to learn our representations. Our approach could be extended to time-oriented pseudo-
Riemannian manifolds of index ν > 1 (see pages 240-242 of (O’Neill, 1983)). We also have x� y
if there exists a future-directed timelike curve joining them. Lemma 3.1 that exploits parallel transport
can for instance be generalized to timelike tangent vectors t1, . . . , tν to define different types of arcs.

Some Riemannian approaches (Bordes et al., 2013; Ganea et al., 2018; Vilnis et al., 2018) have been
used to represent DAGs. Ganea et al. (2018) consider entailment relations where x� y means that y
is a subconcept of x by constructing cones for each node representation in hyperbolic geometry. The
DAGs they consider are directed trees and their underlying undirected graphs are trees (i.e., graphs
without cycles). We propose to consider the chronological future and past that are intrinsic to our
manifolds and have been studied for decades to define the causal structure. For instance, it is known
that causal relations induce partially ordered sets (called causal sets) on causal spacetimes and can
then represent DAGs (Bombelli et al., 1987). Our framework can represent DAGs that are not directed
trees (see example in Appendix G.1) and is not limited to DAGs (see examples in Appendix G.2).
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Table 1: Link prediction for directed graphs. Median average precision (AP) percentages across 20
random initializations on a held-out test set.

Dataset DREAM 5: S. cerevisiae DREAM5 : in silico
Manifold dimensionality d 3 5 10 50 100 3 5 10 50 100

Euclidean + FD 33.0 34.2 40.2 44.5 49.0 29.4 32.9 39.7 39.8 34.8
Hyperboloid + FD 29.2 37.9 46.5 48.8 47.9 28.8 46.8 50.8 50.9 52.5
Minkowski + TFD 34.7 38.6 46.4 52.7 54.0 36.3 43.1 51.2 57.7 58.0
Anti de-Sitter + TFD 37.2 41.3 44.9 47.5 49.4 38.1 45.2 51.9 55.6 56.0
Cylindrical Minkowski + TFD 37.4 42.7 46.8 53.4 54.6 41.0 48.4 56.3 58.9 61.0

Cylindrical Minkowski + equation 6 50.0 52.5 55.2 56.2 55.7 52.5 56.5 59.8 60.4 60.8
de Sitter + equation 6 44.8 51.6 55.6 55.3 55.4 48.5 57.4 62.0 60.6 61.1

5 EXPERIMENTS

We show how our framework can represent graphs with directed cycles and predict links effectively
in Section 5.1. We also show how the causal interpretation of our model can be used to represent
hierarchical graphs with cycles in Section 5.2. We provide experiments on DAGs in Appendix D.1.

5.1 LINK PREDICTION ON GRAPHS WITH DIRECTED CYCLES

We now consider the link prediction task on the Saccharomyces cerevisiae, in silico and Escherichia
coli DREAM5 datasets (Marbach et al., 2012) (see values of hyperparameters, results on Escherichia
coli with standard deviations and more discussion in Appendix D.2). We follow the experimental
protocol of Sim et al. (2021) by considering only the positive-regulatory nodes from the networks
mentioned above while omitting the gene-expression data itself. Each network is randomly split into
train and test sets, following 85/15 splits, and a part of the training set is used for validation.

Sim et al. (2021) use the Minkowski space Rd
1, the anti de-Sitter space Hd

1(r), and the Cylindrical
Minkowski space Ld

1(C). Both Hd
1(r) and Ld

1(C) are non-chronological and can then represent
graphs with directed cycles. Sim et al. (2021) design a probability function that they call Triple
Fermi-Dirac (TFD) specifically for their Cylindrical Minkowski space.

Instead, we propose to define the chronological future I+(x,Vx) of x ∈ Ld
1(C) such that if −→xy is

timelike, we have y ∈ I+(x,Vx) if ∃k ∈ Z, y0+kC ∈ (x0, x0+C/2). Similarly, the chronological
past I−(x,Vx) is defined such that if −→xy is timelike, we have y ∈ I−(x,Vx) if ∃k ∈ Z, y0 +
kC ∈ (x0 − C/2, x0). In detail, we define the time separation function for Ld

1(C) as follows:
τ(x,y) :=

((
(y0 − x0 + C

2 ) mod C
)
− C

2

)
∈ [−C

2 ,
C
2 ) where we use the modulo operation for

real values which can be written as follows: a mod b := a − b · bab c, and b·c is the floor function.
Following our spacetime interpretation, we propose to learn our representations by optimizing:

min
{xk∈M}n

k=1

−
∑

(vi,vj)∈E

log(F (xi,xj))−
∑

(va,vb)/∈E

log(1− F (xa,xb)) (6)

where F (xi,xj) := σm
θ1
(χ2

V(xi,xj)) · σm
θ2
(τ(xi,xj)), θ1, θ2 > 0 are temperature hyperparameters,

m > 0 is an exponent, and σθ(x) := 1/(1 + e−x/θ) is the sigmoid function. We refer to Section C.2
and C.3 for the formulations of the time separation function τ and the squared Lorentzian distance
χ2
V , respectively. This promotes future-directed timelike geodesics only between nodes connected by

an arc. We report in Table 1 the Average Precision scores of our method (i.e., using equation 6) that
outperforms baselines reported in Sim et al. (2021). The non-chronological cylindrical Minkowski
space obtains a higher performance gap in low-dimensional space. This suggests it accounts for
directed cycles better than chronological spacetimes. On the other hand, the gap is reduced in higher
dimension except on Escherichia coli where the gap increases (see Table 4).

5.2 HIERARCHY EXTRACTION ON A SOCIAL NETWORK DATASET

Pseudo-Riemannian manifolds were introduced in the machine learning literature to extract hierarchies
in graphs with cycles (Law & Stam, 2020). Spacetimes are a special family of pseudo-Riemannian
manifolds whose time-orientation was not taken into account in Law & Stam (2020). In this paper,
we found that spacetimes are able to consistently outperform other pseudo-Riemannian manifold
approaches by exploiting the causality interpretation implicit in the squared Lorentzian distance.
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Table 2: Evaluation scores for the different learned representations (mean ± standard deviation).
↓ the lower the metric, the better. ↑ the larger the metric (in absolute value), the better.

Manifold Problem d(x,y) Rank of 1st leader (↓) Rank of 2nd leader (↓) Top 5 ρ (↑) Top 10 ρ (↑)

R2 (Euclidean) equation 7 dγ(x,y) 11.4 ± 4.3 14.0 ± 2.4 −0.17 ± 0.70 −0.19 ± 0.40
P2
0(r) (hyperbolic) equation 7 dγ(x,y) 7.0 ± 1.4 8.8 ± 1.1 −0.47 ± 0.31 −0.26 ± 0.13

P2
2(r) (elliptic) equation 7 dγ(x,y) 7.5 ± 0.5 9.1 ± 1.2 −0.59 ± 0.03 −0.38 ± 0.08

P2
1(r) equation 7 dγ(x,y) 2.2 ± 1.3 6.4 ± 2.2 0.28 ± 0.26 0.55 ± 0.20

P2
1(r) equation 7 χ2

U (x,y) 1.1 ± 0.3 2.8 ± 1.3 0.60 ± 0.23 0.82 ± 0.16

R3 (Euclidean) equation 7 dγ(x,y) 9.4 ± 1.3 11.0 ± 0.5 −0.50 ± 0.15 −0.38 ± 0.10
P3
0(r) (hyperbolic) equation 7 dγ(x,y) 4.3 ± 1.1 6.1 ± 1.1 0.05 ± 0.39 0.02 ± 0.15

P3
3(r) (elliptic) equation 7 dγ(x,y) 4.3 ± 1.1 5.9 ± 1.4 0.09 ± 0.38 0.11 ± 0.22

P3
1(r) equation 7 dγ(x,y) 1.2 ± 0.4 3.8 ± 1.6 0.59 ± 0.33 0.63 ± 0.13

P3
2(r) equation 7 dγ(x,y) 1.0 ± 0.0 4.3 ± 2.1 0.46 ± 0.20 0.61 ± 0.14

S31(r) (de Sitter) equation 7 χ2
U (x,y) 1.5 ± 1.3 4.1 ± 2.0 0.41 ± 0.59 0.58 ± 0.22

P3
1(r) equation 7 χ2

U (x,y) 1.1 ± 0.3 2.7 ± 0.8 0.56 ± 0.29 0.85 ± 0.07

R4 (Euclidean) equation 7 dγ(x,y) 4.6 ± 1.0 6.9 ± 0.7 0.06 ± 0.45 0.04 ± 0.19
P4
0(r) (hyperbolic) equation 7 dγ(x,y) 2.5 ± 0.7 3.8 ± 1.0 0.36 ± 0.22 0.38 ± 0.18

P4
4(r) (elliptic) equation 7 dγ(x,y) 2.5 ± 0.8 3.6 ± 0.7 0.46 ± 0.29 0.38 ± 0.26

P4
1(r) equation 7 dγ(x,y) 1.2 ± 0.4 2.7 ± 0.7 0.62 ± 0.23 0.73 ± 0.12

P4
2(r) equation 7 dγ(x,y) 1.3 ± 0.7 3.1 ± 1.0 0.61 ± 0.28 0.72 ± 0.07

P4
3(r) equation 7 dγ(x,y) 1.2 ± 0.4 4.4 ± 3.0 0.63 ± 0.35 0.63 ± 0.16

P4
1(r) equation 7 χ2

U (x,y) 1.2 ± 0.4 3.0 ± 1.1 0.56 ± 0.34 0.77 ± 0.13

R2
1 (Minkowski) equation 8 χ2

U (x,y) 1.1 ± 0.3 2.6 ± 0.8 0.71 ± 0.19 0.82 ± 0.08
P2
1(r) equation 8 χ2

U (x,y) 1.3 ± 0.5 2.5 ± 0.5 0.75 ± 0.20 0.90 ± 0.07
R3

1 (Minkowski) equation 8 χ2
U (x,y) 1.0 ± 0.0 2.3 ± 0.5 0.70 ± 0.17 0.80 ± 0.11

P3
1(r) equation 8 χ2

U (x,y) 1.3 ± 0.5 2.4 ± 0.5 0.69 ± 0.29 0.90 ± 0.07
S31(r) (de Sitter) equation 8 χ2

U (x,y) 1.1 ± 0.3 2.1 ± 0.3 0.86 ± 0.15 0.88 ± 0.05
R4

1 (Minkowski) equation 8 χ2
U (x,y) 1.0 ± 0.0 2.3 ± 0.9 0.70 ± 0.22 0.81 ± 0.13

P4
1(r) equation 8 χ2

U (x,y) 1.1 ± 0.3 2.4 ± 0.5 0.78 ± 0.13 0.91 ± 0.07

Graph dataset. We consider an undirected graph G = (V,E) where V = {vi}ni=1 is the node
set and E is the edge set such that (vi, vj) ∈ E indicates that vi and vj are connected by an edge.
Zachary’s karate club dataset (Zachary, 1977) is a social network of n = 34 members of the karate
club, each represented by a node vi. The club was split in two factions due to a conflict between
the instructor (node v1) and the administrator (node v34) that are the two most important members
(i.e., leaders) of the dataset. The other members had to decide between joining the new club created
by v1 or stay with v34. Two nodes are joined by an edge (vi, vj) ∈ E if the members are friends.

In the original ultrahyperbolic approaches (Law & Stam, 2020; Law, 2021), each node vi is repre-
sented by a point xi ∈M on some pseudo-Riemannian manifoldM. The goal is to learn embeddings
{xi}ni=1 so that pairs of nodes joined by an edge (vi, vj) ∈ E are closer to each other than pairs of
nodes not joined by an edge. To this end, the embeddings are learned in Law & Stam (2020); Law
(2021) by minimizing the following problem:

min
{xk∈M}n

k=1

−
∑

(vi,vj)∈E

log
e−d(xi,xj)/θ

e−d(xi,xj)/θ +
∑

(va,vb)/∈E

e−d(xa,xb)/θ
(7)

where the dissimilarity function d(xi,xj) is the arc length dγ(xi,xj) :=
√
|〈−−→xixj ,

−−→xixj〉| of the
geodesic joining xi and xj . IfM is Riemannian, dγ is the Riemannian distance. In this paper, we
propose instead to consider in equation 7 that d is the squared Lorentzian distance χ2

U , as defined in
Section 3.3, where Ux is the (convex) maximal normal neighborhood of x ∈M.

We also propose to simply enforce the embeddings of vi and vj to be joined by a timelike geodesic iff
(vi, vj) ∈ E. Since G is an undirected graph, the future- or past-direction is not provided so we do
not constrain the future-direction of the geodesics during training. Our problem formulation is then:

min
{xk∈M}n

k=1

∑
(va,vb)/∈E

σθ (d(xa,xb)) + λ
∑

(vi,vj)∈E

σθ (−d(xi,xj)) (8)

where λ > 0 is a regularization parameter and we set d(xi,xj) = χ2
U (xi,xj). The main goal of

equation 8 is to enforce pairs of nodes (vi, vj) ∈ E to be joined by a timelike geodesic and pairs
(va, vb) /∈ E to be joined by a spacelike geodesic since there is no causality between them.
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Figure 2: (left) Coordinates of 2-dimensional embeddings x = (x0, x1)
> learned with equa-

tion 8 when M = R2
1. (right) Coordinates of the first three coordinates of embeddings x =

(x0, x1, x2, x3)
> learned with equation 8 when M = S31(r). In Lorentz geometry, a timelike

geodesic joining two points is the longest timelike curve in a given convex normal neighborhood.
This translates in the high-level nodes v1 and v34 being the furthest from the rest of the nodes. The
ground truth edges are plotted in yellow and the node color corresponds to the joined faction. A small
number of spacelike edges are visible (those edges more than 45 degrees from vertical).

Evaluation metrics. We report in Table 2 the results obtained when optimizing equation 7 or
equation 8 using different dissimilarity functions. At test time, a score δi =

∑n
j=1 d(xi,xj) summing

pairwise distances is assigned to each node vi and used as an indicator of importance in the hierarchical
graph. Following Section 3.3, when the dissimilarity function is the arc length dγ (resp. squared
Lorentzian distance χ2

U ), we sort the scores δ1, . . . , δn is ascending (resp. descending) order and
report the ranks of the two leaders v1 and vn (in no particular order) in the first two columns of Table
2 averaged over 10 different initializations. We also report in Table 2 the Spearmans rank correlation
coefficient ρ (Spearman, 1904) between the ordered δi scores and the order of the 5 and 10 most
important nodes which are 34, 1, 33, 3, 2, 32, 24, 4, 9, 14 (in that order, see Law & Stam (2020)).

Results. In general, the squared Lorentzian distance χ2
U returns better performance than the arc

length dγ . Moreover, the optimization problem in equation 8 enforcing timelike geodesics between
connected nodes (i.e., causality) and spacelike geodesics between unconnected nodes (i.e., non-
causality) extracts the most important nodes in low-dimensional spacetimes more effectively. The
predicted ρ also shows higher rank correlation with χ2

U . It is worth noting that hyperbolic geometry
was shown relevant to represent graphs without cycles (Gromov, 1987) but our hierarchical graph
contains cycles, which explains why geometries other than hyperbolic may be more relevant. The
performance gap with non-Riemannian baselines (Law & Stam, 2020; Law, 2021) can be explained
by the fact that those baselines compare the arc lengths of different types of geodesics (i.e., timelike
or spacelike) that are not necessarily comparable. On the other hand, our framework sets non-causal
distances to zero at test time, and compares only the lengths of causal geodesics. Figure 2 illustrates
spacetime diagrams of the learned representations for R2

1 and S31(r). The most important nodes tend
to be further away from the other nodes with respect to the Lorentzian distance. Most ground truth
edges are timelike geodesics and belong to the chronological past or future of an edge representation.

We report in Appendix D.3 the same kind of hierarchy extraction experiment on a dataset that
describes co-authorship information from papers published at NIPS from 1988 to 2003 (Globerson
et al., 2007). The number of nodes/authors is |V | = 2715 and the number of edges is |E| = 4733.

6 CONCLUSION

We have proposed a general framework to represent data, and in particular nodes of a directed graph,
in a spacetime. Compared to previous work, our framework is properly endowed with the structure
of a Lorentzian pre-length space, which makes it easy to optimize and applicable to a large family
of spacetimes. In the case of hierarchical undirected graphs, we show that we can enforce causality
between nodes connected by an edge to extract the most important nodes in the hierarchy.
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A SUMMARY OF SUPPLEMENTARY MATERIAL

The supplementary material is structured as follows:

• Section B gives the differential geometry tools that are general to pseudo-Riemannian manifolds of
constant curvature (called space forms).

• Section C gives the differential geometry tools that are specific to our spacetimes such as the time
separation function and the squared Lorentzian distance.

• Section D presents additional results and further experimental details.

• Section E is an extended related work section.

• Section F gives the details of the optimizers we use.

• Section G gives examples of directed graphs described with our model.

B DIFFERENTIAL GEOMETRY OF PSEUDO-RIEMANNIAN SPACE FORMS

We provide the necessary differential geometry tools to work on the pseudo-Euclidean space Rd
ν , the

pseudo-sphere Sdν(r) and the pseudo-hyperboloid Hd
ν(r). Most of them are explained in (Law, 2021;

Law & Stam, 2020). We refer the reader to (Hawking & Ellis, 1973; O’Neill, 1983; Wolf, 2011).

B.1 PSEUDO-EUCLIDEAN SPACE

We recall that ∀ν,Rd
ν ≈ TxRd

ν . Its geodesic γx→y : R→ Rd
ν is γx→y(t) := x+ ty. The exponential

map at x is defined as expx(y) := γx→y(1) = x+ y and its inverse is −→xy := exp−1
x (y) = y − x.

Moreover, ∀x ∈ Rd
ν ,y ∈ Rd

ν , the parallel transport Γy
x : TxRd

ν → TyRd
ν can be defined as the

identity function due to the isomorphism Rd
ν ≈ TxRd

ν ≈ TyRd
ν . See page 67 of O’Neill (1983).

B.2 PSEUDO-SPHERE Sdν(r)

We give here the differential geometry tools specific to the pseudo-sphere which is defined as the
following hypersurface: Sdν(r) :=

{
x ∈ Rd+1

ν : 〈x,x〉ν = r2
}

. The tangent space TxSdν(r) of Sdν(r)
at x can be defined as: TxSdν(r) := {u ∈ Rd+1

ν : 〈u,x〉ν = 0}. In the case of the pseudo-sphere, we
have ∀u ∈ TxSdν(r),∀v ∈ TxSdν(r), gx(u, v) = 〈u, v〉 = 〈u, v〉ν .

Geodesic. The geodesic γx→u : R→ Sdν(r) satisfying γx→u(0) = x and γ′x→u(0) = u ∈ TxSdν(r)
is formulated for all t ∈ R:

γx→u(t) :=


cos

(
t
√

|〈u,u〉ν |
r

)
x + r√

|〈u,u〉ν |
sin

(
t
√

|〈u,u〉ν |
r

)
u if 〈u,u〉ν > 0

x+ tu if 〈u,u〉ν = 0

cosh
(

t
√

|〈u,u〉ν |
r

)
x+ r√

|〈u,u〉ν |
sinh

(
t
√

|〈u,u〉ν |
r

)
u if 〈u,u〉ν < 0

(9)

Exponential map. The exponential map expx : TxSdν(r) → Sdν(r) is defined such that ∀u ∈
TxSdν(r), expx(u) = γx→u(1). We then have:

expx(u) :=


cos

(√
|〈u,u〉ν |

r

)
x + r√

|〈u,u〉ν |
sin

(√
|〈u,u〉ν |

r

)
u if 〈u,u〉ν > 0

x+ u if 〈u,u〉ν = 0

cosh
(√

|〈u,u〉ν |
r

)
x+ r√

|〈u,u〉ν |
sinh

(√
|〈u,u〉ν |

r

)
u if 〈u,u〉ν < 0

(10)

Logarithmic map. The logarithmic map logx is the inverse of the exponential map expx on a normal
neighborhood of x ∈ Sdν(r) denoted by Ux = {y ∈ Sdν(r) :

〈x,y〉ν
r2 > −1}. It is formulated:

∀y ∈ Ux, −→xy := logx(y) :=


arccos (

〈x,y〉ν
r2

)√
1−(

〈x,y〉ν
r2

)2

(
y − 〈x,y〉ν

r2 x
)

if 〈x,y〉ν
r2 ∈ (−1, 1)

y − x if 〈x,y〉ν
r2 = 1

arccosh (
〈x,y〉ν

r2
)√

(
〈x,y〉ν

r2
)2−1

(
y − 〈x,y〉ν

r2 x
)

if 〈x,y〉ν
r2 > 1

(11)
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where arccos is the inverse of the cosine function, and arccosh is the inverse of the hyperbolic cosine
function. One can verify from equation 10 and equation 11 that −→xy is timelike (i.e., 〈−→xy,−→xy〉 < 0)
iff 〈x,y〉ν > r2.

Geodesic “distance”. As explained in (Law & Stam, 2020) and Chapter 5 of (O’Neill, 1983),
when the logarithmic map exists for some pseudo-Riemannian manifoldM, the arc length of the
geodesic γx→−→xy from x ∈M to y ∈M corresponds to the radius function:

√
|gx(−→xy,−→xy)| where

gx : TxM× TxM→ R is the metric tensor at x and −→xy = logx(y) is the logarithmic map. The
geodesic distance dγ : Sdν(r)× Sdν(r)→ R is then:

dγ(x,y) :=
√
|〈−→xy,−→xy〉ν | =

{
r arccosh ( 〈x,y〉νr2 ) if 〈x,y〉ν

r2 ≥ 1

r arccos ( 〈x,y〉νr2 ) if 〈x,y〉ν
r2 ∈ (−1, 1)

(12)

dγ is not a “distance metric” but a symmetric premetric: it satisfies (i) dγ(x,y) = dγ(y,x) ≥ 0 and
(ii) dγ(x,x) = 0.

In (O’Neill, 1983), the “minimizing geodesic” is defined by its arc length and then also corresponds
to the geodesic distance mentioned above.

Given the minimizing geodesic γ connecting x to y, the parallel transport Γy
x : TxSdν(r)→ TySdν(r)

is a linear isometry such that ∀u, v, 〈u, v〉ν = 〈Γy
x(u),Γ

y
x(v)〉ν . The parallel transport along γ from

x = γ(0) to y = γ(1) (where x and y satisfy 〈x,y〉ν > −r2) is:

Γy
x(u) := u− 〈y,u〉ν

〈x,y〉ν + r2
(y + x) (13)

Theorem B.1 (Diffeomorphism (Wolf, 2011)). There exists a diffeomorphism ψ : Sdν(r) → Rν ×

Sd−ν
0 (r). Let us note x =

(
t
s

)
∈ Sdν(r) with t ∈ Rν and s ∈ Rd−ν+1

∗ . Let us note z =

(
t
v

)
∈

Rν × Sd−ν
0 (r) where v ∈ Sd−ν

0 (r). The mapping ψ and its inverse ψ−1 can be formulated:

ψ(x) =

(
t
r

‖s‖s

)
and ψ−1(z) =

(
t√

r2+‖t‖2

r v

)
. (14)

where ‖.‖ is the standard Euclidean norm (i.e., ‖s‖ :=
√
s>s).

B.3 PSEUDO-HYPERBOLOID Hd
ν(r)

We recall the differential geometry tools (from (Law & Stam, 2020)) specific to the pseudo-
hyperboloid which is defined as the set: Hd

ν(r) := {x ∈ Rd+1
ν+1 : 〈x,x〉ν+1 = −r2}. The tangent

space TxHd
ν(r) of Hd

ν(r) at x can be defined as: TxHd
ν(r) := {u ∈ Rd+1

ν+1 : 〈u,x〉ν+1 = 0}. In the
case of Hd

ν(r), we have ∀u ∈ TxHd
ν(r),∀v ∈ TxHd

ν(r), gx(u, v) = 〈u, v〉 = 〈u, v〉ν+1.

Geodesic. The geodesic γx→u : R→ Hd
ν(r) satisfying γx→u(0) = x and γ′x→u(0) = u ∈ TxHd

ν(r)
is formulated for all t ∈ R:

γx→u(t) =


cos

(
t
√

|〈u,u〉ν+1|
r

)
x + r√

|〈u,u〉ν+1|
sin

(
t
√

|〈u,u〉ν+1|
r

)
u if 〈u,u〉ν+1 < 0

x+ tu if 〈u,u〉ν+1 = 0

cosh
(

t
√

|〈u,u〉ν+1|
r

)
x+ r√

|〈u,u〉ν+1|
sinh

(
t
√

|〈u,u〉ν+1|
r

)
u if 〈u,u〉ν+1 > 0

(15)

Exponential map. The exponential map expx : TxHd
ν(r) → Hd

ν(r) is defined such that ∀u ∈
TxHd

ν(r), expx(u) = γx→u(1). We then have:

expx(u) =


cos

(√
|〈u,u〉ν+1|

r

)
x + r√

|〈u,u〉ν+1|
sin

(√
|〈u,u〉ν+1|

r

)
u if 〈u,u〉ν+1 < 0

x+ u if 〈u,u〉ν+1 = 0

cosh
(√

|〈u,u〉ν+1|
r

)
x+ r√

|〈u,u〉ν+1|
sinh

(√
|〈u,u〉ν+1|

r

)
u if 〈u,u〉ν+1 > 0

(16)
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Logarithmic map. The logarithmic map logx is defined as the inverse of the exponential map expx
on a normal neighborhood of x ∈ Hd

ν(r) denoted by Ux = {y ∈ Hd
ν(r) : 〈x,y〉ν+1

r2 < 1}. It is
formulated:

∀y ∈ Ux, −→xy = logx(y) =



arccosh (− 〈x,y〉ν+1

r2
)√

(
〈x,y〉ν+1

r2
)2−1

(
y + 〈x,y〉ν+1

r2 x
)

if 〈x,y〉ν+1

r2 < −1

y − x if 〈x,y〉ν+1

r2 = −1
arccos (− 〈x,y〉ν+1

r2
)√

1−(
〈x,y〉ν+1

r2
)2

(
y + 〈x,y〉ν+1

r2 x
)

if 〈x,y〉ν+1

r2 ∈ (−1, 1)

(17)
One can verify that a nonconstant geodesic from x to y is timelike iff 〈x,y〉ν ∈ (−r2, r2) or y = ±x.

Geodesic “distance”. The geodesic distance dγ : Hd
ν(r)×Hd

ν(r)→ R is then:

dγ(x,y) =
√
|〈−→xy,−→xy〉ν+1| =

{
r arccosh (− 〈x,y〉ν+1

r2 ) if 〈x,y〉ν+1

r2 ≤ −1
r arccos (− 〈x,y〉ν+1

r2 ) if 〈x,y〉ν+1

r2 ∈ (−1, 1)
(18)

Parallel transport on Hd
ν(r). The parallel transport connecting x ∈ Hd

ν(r) to y ∈ Hd
ν(r) is:

Γy
x(u) := u− 〈y,u〉ν+1

〈x,y〉ν+1 − r2
(y + x) where 〈x,y〉ν+1 < r2 (19)

Theorem B.2 (Diffeomorphism (Wolf, 2011)). There exists a diffeomorphism ψ : Hd
ν(r)→ Sν0(r)×

Rd−ν . Let us note x =

(
t
s

)
∈ Hd

ν(r) with t ∈ Rν+1
∗ and s ∈ Rd−ν . Let us note z =

(
u
v

)
∈

Sν0(r) × Rd−ν where u ∈ Sν0(r) and v ∈ Rd−ν . The mapping ψ and its inverse ψ−1 can be
formulated:

ψ(x) =

( r
‖t‖t

s

)
and ψ−1(z) =

(√
r2+‖v‖2

r u
v

)
. (20)

The anti-de Sitter spacetime Hd
1(r) is non-chronological and satisfies x� y =⇒ y� x, which

is convenient to represent graphs with directed cycles. It was used in Sim et al. (2021) to represent
directed graphs. Nonetheless, it is worth noting that the problem formulation of Sim et al. (2021)
for Hd

1(r) also promotes arcs (i.e., causal relation) between pairs of nodes that are not connected by
any geodesic, which makes their problem hard to optimize. Following general relativity, we only
consider the existence of arcs if there exists a timelike geodesic in Vx joining two events x and y.
See Appendix C for details.

B.4 PROJECTIVE SPACE Pd
1(r)

The manifold Pd
1(r) := Hd

1(r)/ ± 1 used in Law (2021) is time-orientable for all d ≥ 2 (see page
214 of O’Neill (1983)). We refer the reader to (Law, 2021) for details about Pd

1(r) := Hd
1(r)/± 1.

C FUTURE DIRECTION, TIME SEPARATION FUNCTION AND LORENTZIAN
DISTANCE

C.1 FUTURE DIRECTION

We discuss in this section how to constrain future direction for our spacetimes.

C.1.1 MINKOWSKI SPACE

The explanation can be found in Section 3.2 when M = Rd
1. We recall that we defined: t :=

(1, 0, 0, 0)>, −→xy = y − x, 〈−→xy,−→xy〉 = 〈−→xy,−→xy〉1 and α := −(y0 − x0) +
√∑d−1

i=1 (yi − xi)2.

If α is negative, then −→xy is timelike (i.e., 〈−→xy,−→xy〉 < 0) and −→xy ∈ C+x (t). By definition, −→xy is then
future-directed timelike.
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C.1.2 DE SITTER SPACE

We provide the proof of Lemma 3.1 which is written: whenM = Sd1(r) and −→xy is timelike, −→xy is
future-directed iff Γx

p(t) ∈ C+x (−→xy) if Γx
p is defined (i.e., p ∈ Ux), and Γx

−p(t) ∈ C+x (−→xy) otherwise
(i.e., −p ∈ Ux).

We first recall a property from page 146 of (O’Neill, 1983): IfM is a Lorentz manifold, if a piecewise
smooth curve α is timelike, this means not only that α′(t) is timelike, but at each break ti of α:

〈α′(t−i ), α
′(t+i )〉 < 0. (21)

Here the first vector derives from α|[ti−1, ti] and the second from α|[ti, ti+1]. Thus α′ does not
switch timecones at the break.

Let us note the poles p = (0, . . . , 0, r)> ∈ Sd1(r), −p = (0, . . . , 0,−r)> ∈ Sd1(r) and t =
(1, 0 . . . , 0)> where t ∈ TpSd1(r) and t ∈ T−pSd1(r). We also note x := (x0, x1, . . . , xd)

> ∈ Sd1(r).

If xd ∈ (−r, r), we show below that equation 21 can be satisfied by defining α such that α(t0) = p,
α(t1) = x, α(t2) = −p, α′(t0) = t, α′(t−1 ) = Γx

p(t), α
′(t+1 ) = Γx

−p(t), α
′(t2) = t. For

completeness, we also have ∀t ∈ [t0, t
−
1 ], α

′(t) = Γ
α(t)
p (t) and ∀t ∈ [t+1 , t2], α

′(t) = Γ
α(t)
−p (t).

Let us arbitrarily consider that t ∈ TpSd1(r) defines the future direction of the manifold. For all
x ∈ Sd1(r) that satisfies 〈x,p〉1 > −r2 (i.e., p ∈ Ux), we note Γx

p(t) the parallel translate of
t ∈ TpSd1(r) to TxSd1(r). As explained in Appendix B.1.2 of (Law, 2021), it is formulated:

Γx
p(t) := t− 〈x, t〉1

〈x,p〉1 + r2
(p+ x) = t+

x0
rxd + r2

(p+ x) (22)

We know from page 66 of (O’Neill, 1983) that parallel transport (also called parallel translation) is a
linear isometry that satisfies:

∀u ∈ TxSd1(r),∀v ∈ TxSd1(r), 〈u, v〉 = 〈Γp
x(u),Γ

p
x(v)〉 = 〈Γp

x(u),Γ
p
x(v)〉1 (23)

and u = Γx
p (Γp

x(u)). This implies

Γx
p(t) ∈ C+x (u) ⇐⇒ Γp

x(u) ∈ C+p (t) (24)

Similarly, if 〈x,−p〉1 > −r2 (i.e., −p ∈ Ux), we have Γx
−p(t) ∈ C+x (u) ⇐⇒ Γ−p

x (u) ∈ C+−p(t).

Let us assume that x satisfies both p ∈ Ux (i.e., 〈x,p〉1 > −r2) and −p ∈ Ux (i.e., 〈x,p〉1 < r2),
this is equivalent to x satisfying xd ∈ (−r, r).
If xd ∈ (−r, r), then Γx

p(t) ∈ C+x (u),Γx
−p(t) ∈ C+x (u) ⇐⇒ 〈Γx

p(t),Γ
x
−p(t)〉1 < 0. By definition,

we have:

Γx
−p(t) := t− 〈x, t〉1

〈x,−p〉1 + r2
(−p+ x) = t+

x0
−rxd + r2

(−p+ x) (25)

〈Γx
p(t),Γ

x
−p(t)〉1 = −1− x20

rxd + r2
− x20
−rxd + r2

= −1− 2
x20

(xd + r)(−xd + r)
< 0 (26)

We have shown that Γx
p(t) and Γx

−p(t) have the same future direction by showing that
〈Γx

p(t),Γ
x
−p(t)〉1 < 0. A (piecewise) smooth curve that preserves causality can then be found

by using Γx
p(t) or Γx

−p(t).

C.1.3 ANTI-DE SITTER SPACE

WhenM = Hd
1(r),

−→xy is future-directed iff Γx
p(t) ∈ C+x (−→xy) if Γx

p is defined (i.e., p ∈ Ux), and
Γx
−p(−t) ∈ C+x (−→xy) otherwise (i.e., −p ∈ Ux). The proof is similar to the one in Section C.1.2.

Let us note the poles p = (r, 0, . . . , 0)> ∈ Hd
1(r), −p = (−r, 0, . . . , 0)> ∈ Hd

1(r) and t =
(0, 1, 0 . . . , 0)> where t ∈ TpHd

1(r) and t ∈ T−pHd
1(r). Let x = (x−1, x0, . . . , xd−1)

> ∈ Hd
1(r).

We recall that p ∈ Ux iff 〈x,p〉2 < r2 (i.e., x−1 > −r) and −p ∈ Ux iff 〈x,−p〉2 < r2

(i.e., x−1 < r). We define x such that x−1 ∈ (−r, r) (i.e., p ∈ Ux and −p ∈ Ux).
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Let us note Γx
p(t) the parallel translate of t ∈ TpHd

1(r) to TxHd
1(r). As explained in AppendixB.3

of (Law, 2021), it is formulated:

Γx
p(t) := t− 〈x, t〉2

〈x,p〉2 − r2
(p+ x) = t+

x0
−rx−1 − r2

(p+ x) (27)

We show below that Γx
p(t) and Γx

−p(−t) have the same future direction by showing that
〈Γx

p(t),Γ
x
−p(−t)〉2 < 0.

Γx
−p(−t) := −t−

〈x,−t〉2
〈x,−p〉2 − r2

(−p+ x) = −t− x0
rx−1 − r2

(−p+ x) (28)

〈Γx
p(t),Γ

x
−p(−t)〉2 = 1 +

x20
rx−1 − r2

+
x20

−rx−1 − r2
= 1− 2

x20
r2 − x2−1

(29)

=
r2 − x2−1 − 2x20

r2 − x2−1

< 0. (30)

equation 30 is negative because we have by definition of Hd
1(r): −x2−1−x20+

∑d−1
i=1 x

2
i = −r2, which

implies x20 ≥ r2 − x2−1 > 0, and the denominator is positive because we defined x−1 ∈ (−r, r).

C.2 TIME SEPARATION FUNCTION

We give the formulations we use for the time separation function τ(x,y) that is positive if y is in the
chronological future of x. There is no unique way to define it. We assume here that ν = 1.

Globally hyperbolic spacetimes. If the spacetimeM is globally hyperbolic, there exists a Cauchy
time function c : M → R (i.e., for any t ∈ R, the set Σt = {y ∈ M : c(y) = t} is a Cauchy
hypersurface) that can be used to define τ(x,y) := c(y)− c(x) since it satisfies the reverse triangle
inequality τ(x, z) ≥ τ(x,y) + τ(y, z) when x ≤ y ≤ z. With this formulation, it actually satisfies
τ(x, z) = τ(x,y) + τ(y, z) when x ≤ y ≤ z.

In theory, to have a Lorentzian pre-length space, one could define τ such that it is 0 if x � y, but this
is not easy to optimize in practice so we ignore this constraint for optimization purpose.

C.2.1 MINKOWSKI SPACE Rd
1

IfM = Rd
1 then we arbitrarily define:

τ(x,y) := −〈−→xy, t〉 = −〈−→xy, t〉1 = y0 − x0 (31)

where t := (1, 0, . . . , 0)> defines the future timecone C+x (t). It is worth noting that the function
c : Rd

1 → R defined such that ∀x = (x0, . . . , xd−1)
> ∈ Rd

1, c(x) := x0 is a Cauchy time function.

C.2.2 DE SITTER SPACE Sd1(r)

Following our discussion in SectionC.1.2 and using the formulation of the parallel transport in
equation 22, we can formulate the time function as:

τ(x,y) :=

{
−〈Γp

x(
−→xy), t〉ν if 〈x,p〉ν ≥ 0

−〈Γ−p
x (−→xy), t〉ν otherwise. (32)

where ν = 1. One limitation of equation 32 is that it assumes that −→xy is defined, which might not be
the case (if y /∈ Ux).

From the discussion in Chapter 5.2 and Figure 16 (i) of (Hawking & Ellis, 1973) that uses Cartesian
coordinates to formulate space coordinates on the pseudo-sphere, the function c : Sd1(r)→ R defined
such that ∀x = (x0, . . . , xd)

>, c(x) := x0 is a Cauchy time function. One can then also simply
define:

τ(x,y) := y0 − x0. (33)
In practice, we found that using equation 33 returns better performance than equation 32 in the
experiments of Section D.1. We then also use it for the experiment of Section 5.1. See Section D.2
for details.
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C.2.3 ANTI-DE SITTER SPACE Hd
1(r)

When ν > 0, Hd
ν(r) is non-chronological and satisfies x� y =⇒ y� x, which is convenient to

represent graphs with directed cycles. There exists a future-directed timelike geodesic from x to y
only if −→xy is timelike or y = ±x.

Following our discussion in Section C.1.3 and using the formulation of the parallel transport in
equation 27, we can formulate the time function as:

τ(x,y) :=

{
−〈Γp

x(
−→xy), t〉ν+1 if 〈x,p〉ν+1 ≤ 0

−〈Γ−p
x (−→xy),−t〉ν+1 otherwise. (34)

C.2.4 PROJECTIVE VERSION OF THE ANTI-DE SITTER SPACE Pd
1(r)

We recall that each point of Pd
1(r) is an unordered pair {−x,x} ∈ Pd

1(r) where x ∈ Hd
1(r). By using

the formulation of the parallel transport in equation 27 and assuming ν = 1, we can then define:

τ({−x,x}, {−y,y}) :=


−〈Γp

x(
−→xy), t〉ν+1 if 〈x,p〉ν+1 ≤ 0 and 〈x,y〉ν+1 ≤ 0

−〈Γ−p
x (−→xy),−t〉ν+1 if 〈x,p〉ν+1 > 0 and 〈x,y〉ν+1 ≤ 0

−〈Γp
x(
−−−−→
x(−y)), t〉ν+1 if 〈x,p〉ν+1 ≤ 0 and 〈x,y〉ν+1 > 0

−〈Γ−p
x (
−−−−→
x(−y)),−t〉ν+1 if 〈x,p〉ν+1 > 0 and 〈x,y〉ν+1 > 0

(35)

Let us assume that p = (r, 0, . . . , 0)>. We can choose x such that x−1 ≥ 0 so that 〈x,p〉2 ≤
0 is satisfied, and we can also choose y so that 〈x,y〉2 ≤ 0 is satisfied. We can define t :=
(0, 1, 0, . . . , 0)> ∈ TpPd

1(r). If we define u = (u−1, u0, . . . , ud−1)
> = Γp

x(
−→xy), then equation 35

can be rewritten:
τ({−x,x}, {−y,y}) = u0 (36)

Another possibility is to use the following time separation function:

τ({−x,x}, {−y,y}) = u0 −

√√√√d−1∑
i=1

u2i (37)

which is positive only if −→xy is future-directed timelike.

C.2.5 CYLINDRICAL MINKOWSKI SPACE Ld
1(C)

As we explain in the main paper, we propose to define the chronological future I+(x,Vx) of
x ∈ Ld

1(C) such that if−→xy is timelike, we have y ∈ I+(x,Vx) if ∃k ∈ Z, y0+kC ∈ (x0, x0+C/2).
Similarly, the chronological past I−(x,Vx) is defined such that if −→xy is timelike, we have y ∈
I−(x,Vx) if ∃k ∈ Z, y0 + kC ∈ (x0 − C/2, x0).
We define the time separation function for Ld

1(C) as follows:

τ(x,y) :=

((
(y0 − x0 +

C

2
) mod C

)
− C

2

)
∈ [−C

2
,
C

2
) (38)

where we use the modulo operation for real values which can be written as follows: a mod b :=
a− b · bab c, and b·c is the floor function.

C.3 SQUARED LORENTZIAN DISTANCE

We give the formulation of the squared Lorentzian distance for the different spacetimes that we use in
the main paper depending on the nature ofM:

IfM = Rd
1, χ

2
U (x,y) := −〈

−→xy,−→xy〉 = −〈−→xy,−→xy〉1 := (y0 − x0)2 −
d−1∑
j=1

(yj − xj)2. (39)
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IfM = Sd1(r), χ2
U (x,y) :=

{
−〈−→xy,−→xy〉 = r2 arccosh2 ( 〈x,y〉1r2 ) if 〈x,y〉1

r2 ≥ 1
2(〈x,y〉1 − r2) otherwise.

(40)

IfM = Pd
1(r), χ

2
U (x,y) :=

{
−〈−→xy,−→xy〉 = r2 arccos2 ( |〈x,y〉2|r2 ) if 〈x,y〉2

r2 ∈ [−1, 1]
−2(|〈x,y〉2| − r2) otherwise.

(41)

IfM = Ld
1(C), χ

2
U (x,y) :=

((
(y0 − x0 +

C

2
) mod C

)
− C

2

)2

−
d−1∑
j=1

(yj − xj)2. (42)

The above equations are equal to 0 when x is equivalent to y, which is the case if y = x in general, or
if y = ±x whenM = Pd

1(r), or if y ∼ x whenM = Ld
1(C). Otherwise, the equations are positive

iff there exists at least one timelike geodesic from x to y. If the timelike geodesic from x to y 6= x is
uniquely defined in Ux, we call it −→xy, and these equations are positive whether −→xy is future-directed
timelike or past-directed timelike.

Squared (Lorentzian) distance in Sim et al. (2021). Sim et al. (2021) acknowledge that there exists
no geodesic from x to y ifM = Hd

1(r) and 〈x,y〉2
r2 > 1. Therefore, they consider that their squared

Lorentzian distance is equal to π2 in this case to keep their function smooth. This promotes causality
between x and y. However, constraining future-direction between x and y when 〈x,y〉2

r2 > 1 becomes
problematic without the explicit formulation of a timelike curve. This is why they formulate their
time function based on a different criterion than ours that uses parallel transport (see Section C.2).
Moreover, the fact that their distance function becomes a constant in this case makes it difficult to
optimize as the gradient is zero. Instead, we propose to use the manifoldM = Pd

1(r) which can
represent the same types of relationships between points as Hd

1(r) since Pd
1(r) contains elliptic and

hyperbolic parts (Law, 2021), and any pair of points of Pd
1(r) can be joined by a geodesic.

C.4 ABOUT THE CHOICE OF ε IN EQUATION 4

We explain here why our formulation of equation 4 is general and can be extended to other spacetimes.

As explained in Theorem 2.7 of Minguzzi (2019), an open globally hyperbolic convex normal
neighborhood Vx can be defined for any point x ∈M whereM is a spacetime. As we mention in
Section 3, any open subset of a spacetime is a spacetime. Therefore, Vx is a spacetime that can be
chosen to be globally hyperbolic. We recall that a globally hyperbolic spacetime is strongly causal,
and that the chronological future I+(x,Vx) is the set of points y ∈ Vx that satisfy x� y (i.e., there
exists a timelike curve from x to y).

Since we define Vx to be a convex normal neighborhood, we know from Proposition 4.5.3 of Hawking
& Ellis (1973) that any pair of its points x,y that satisfy x � y can be joined by a unique future-
directed timelike geodesic γx→−→xy, which is also the unique longest curve joining x to y. Since
γx→−→xy is future-directed timelike, it satisfies 〈−→xy,−→xy〉 < 0 and 〈−→xy, t〉 < 0 (i.e., −→xy ∈ C+x (t))
where the timelike tangent vector t ∈ TxM defines the future direction ofM. Moreover, the arc
length of the geodesic γx→−→xy from x to y is

√
−〈−→xy,−→xy〉, and is called its Lorentzian distance.

From Theorem 5.6 and Lemma 5.7 of Minguzzi (2019), there exists a strongly causal open set
containing x such that its Lorentzian distance with any other point y in that set has its Lorentzian
distance

√
−〈−→xy,−→xy〉 upper bounded by some constant ε > 0. We can then define that open set to

be the convex normal neighborhood Vx and we can choose ε > 0 such that all the points y ∈ Vx that
satisfy x� y also satisfy −ε2 < 〈−→xy,−→xy〉 < 0.

Since Vx is a subset of the maximal normal neighborhood Ux, we then obtain exactly the definition
of equation 4, which is: I+(x,Vx) = {y ∈ Ux : −ε2 < 〈−→xy,−→xy〉 < 0,−→xy ∈ C+x (t)}.
In our experiments, we consider that Vx = Ux. WhenM is the Minkowski space Rd

1 or the de Sitter
space Sd1(r), we then have ε = +∞ but we describe some case where ε might be finite in Section 3.2.
Similarly, we have ε = rπ/2 whenM = Pd

1(r), and ε = C/2 whenM = Ld
1(C).

18



Published as a conference paper at ICLR 2023

Table 3: Preservation of chronological order between pairs of articles with one citing the other.
|V | R2

1 R5
1 R9

1 P2
1(r) P5

1(r) P9
1(r)

τ equation 31 equation 31 equation 31 equation 35 equation 35 equation 35

200 93.7% 94.0% 94.2% 73.3% 73.7% 74.9%
1000 91.5% 91.8% 92.0% 72.2% 72.4% 72.3%

|V | S31(r) S51(r) S91(r) S31(r) S51(r) S91(r)
τ equation 32 equation 32 equation 32 equation 33 equation 33 equation 33

200 93.8% 93.8% 93.7% 94.4% 94.9% 94.9%
1000 89.1% 89.2% 89.5% 92.8% 93.4% 93.6%

D ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAILS

We now report additional experiments and provide experimental details.

Setup. We ran all our experiments on a single desktop with 64 GB of RAM, a 6-core Intel i7-7800X
CPU and a NVIDIA GeForce RTX 3090 GPU.

D.1 CHRONOLOGICAL ORDER IN DIRECTED GRAPHS

Our goal in this subsection is to represent a directed graph with spacetimes. As in Clough & Evans
(2017), we select the 200 and 1000 most cited papers in the Arxiv High-energy physics theory
(HEP-TH) citation network (Gehrke et al., 2003). HEP-TH is originally a dataset of 27, 770 papers
(each represented by a node) with 352, 807 edges. The graph contains an arc from vi to vj if paper i
cites paper j.

When selecting the 200 or 1000 most cited papers, the graph is not a Directed Acyclic Graph (DAG)
as there exist pairs of papers that cite each other. We ignore these pairs of arcs. To simplify the
notation, we write vi � vj either if there exists a path from vi to vj , or the exists an arc from vi to vj
but not from vj to vi (i.e., there can exist a longer path from vj to vi). We also write va 6� vb if there
exists no path from va to vb or from vb to va (i.e., va 6� vb ⇐⇒ vb 6� va).

We optimize the problem:

min
{xk∈M}n

k=1

∑
va 6�vb

σθ1
(
χ2
U (xa,xb)

)
+ λ

∑
vi�vj

(
σθ1

(
−χ2

U (xi,xj)
)
+ σθ2 (−τ (xi,xj))

)
(43)

where σθ(x) := 1/(1 + e−x/θ) is the sigmoid function, θ1, θ2 > 0 are temperature parameters, λ is
a regularization parameter and τ(x,y) is a time separation function that is positive (resp. negative) if
y is in the chronological future (resp. past) of x. For instance, ifM = Rd

1 then we arbitrarily define
τ(x,y) := −〈−→xy, t〉 = y0 − x0, where t := (1, 0, . . . , 0)> defines the future timecone C+x (t).

In this experiment, our temperature hyperparameter values are θ1 = θ2 = 1, and we fix the radius to
r = 1. We run our experiments for 108 iterations with a step size of 10−6 by using the optimization
tools of (Law, 2021; Law & Stam, 2020). The regularization parameter λ is set to λ = |Ec|

|E| where
|E| is the number of pairs that satisfy vi � vj and |Ec| is the number of pairs that satisfy va 6� vb.

We report in Table 3 how well the learned representations manage to preserve chronological order
when we select the |V | = 200 or 1000 most cited papers. For instance ifM = Rd

1, we report the
percentage of pairs of nodes vi � vj represented by xi and xj that satisfy 〈−−→xixj , t〉 < 0. The
chronological manifolds Rd

1 and Sd1(r) manage to predict chronological order better than the non-
chronological manifold Pd

1(r). This suggests that chronological spacetimes are more appropriate to
represent graphs that are almost DAGs. The time separation function in equation 33 returns better
performance than equation 32, we then use it in the rest of our experiments.

Figure 3 illustrates the embeddings learned whenM = R2
1. Article representations tend to satisfy

the chronological order along the time coordinate.
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Figure 3: 2-dimensional representations of the Arxiv High-energy physics theory (HEP-TH) citation
network (Gehrke et al., 2003) when |V | = 200 andM = R2

1. The first four characters of the labels
correspond to the year of submission on Arxiv, and the following two characters are the month of
publication. For instance, the label “199208027” corresponds to the article submitted in August
1992 available at: https://arxiv.org/abs/hep-th/9208027. Similarly, “199409089”
is the article available at https://arxiv.org/abs/hep-th/9409089 and submitted in
September 1994. The embeddings more or less follow the chronological order (along the time axis)
in which the articles were submitted to Arxiv.

20

https://arxiv.org/abs/hep-th/9208027
https://arxiv.org/abs/hep-th/9409089


Published as a conference paper at ICLR 2023

D.2 DIRECTED LINK PREDICTION

In this section, we provide details about the experiments in Section 5.1.

We report in Table 4 the link prediction scores on the Saccharomyces cerevisiae, in silico and
Escherichia coli DREAM5 datasets (Marbach et al., 2012). Following the evaluation protocol of
(Sim et al., 2021), we report the median + standard deviation across 20 random initialization. We use
the same training and test splits as (Sim et al., 2021).

We use the following hyperparameters on the DREAM5 datasets to define equation 6:

• ifM = Sd1(r), r = 1, θ1 = 0.15, exponent m = 1, θ2 = 0.03, learning rate = 10−5, number of
epochs = 2000.

• ifM = Ld
1(C), C = 8, θ1 = 0.15, θ2 = 0.03, exponent m = 1, learning rate = 10−3, number of

epochs = 2000.

• ifM = Rd
1, θ1 = 0.15, θ2 = 0.03, exponent m = 1, learning rate = 10−3, number of epochs

= 2000.

When d = 10, 50 or 100, Sd1(r) is not time-oriented (see explanation in Section 3.2). We report the
scores obtained in these dimensionalities to be fair with baselines.

We also reran the experiments of Minkowski + TFD on the Escherichia coli DREAM 5 dataset.

It is worth noting that the DREAM5 datasets contain a relatively small number of cycles:

• The Saccharomyces cerevisiae DREAM 5 dataset contains 9 nodes that are part of at least one
directed cycle (0.5% of 1,994 nodes) and 19 edges that are part of at least one directed cycle (0.5% of
3,940).

• The Escherichia coli DREAM 5 dataset contains 18 nodes that are part of at least one directed cycle
(1.7% of 1,081 nodes) and 23 edges that are part of at least one directed cycle (1.1% of 2,066).

• The in silico DREAM 5 dataset contains 28 nodes that are part of at least one directed cycle (1.8%
of 1,565 nodes) and 39 edges that are part of at least one directed cycle (1.0% of 4,012).

The choice of a specific manifold acts as some inductive bias. When the manifold is chosen to
be chronological, the created graph does not necessarily contain directed cycles but allows their
existence. On the other hand, chronological manifolds are more appropriate for Directed Acyclic
Graphs as they ensure that the created graph does not contain directed cycles. From our results, it
seems that the (nonchronological) Cylindrical Minkowski spacetime obtains much better performance
in the low-dimensional case as its lack of causality allows some flexibility that is less beneficial in the
high-dimensional case.

Sim et al. (2021) also use the synthetic “Duplication-Divergence”(Dupdiv) dataset (Ispolatov et al.,
2005), but their dataset contains only 100 edges and 1,026 edges. We generated a bigger version of
Dupdiv that contains 1,000 edges and 26,649 edges (22,651 for training/validation and 3,998 for test)
following the same setup. More precisely, 748 nodes (74.8%) are part of at least one directed cycle
and 22,409 edges are part of at least one directed cycle (84.1% of 26,649). Sim et al. (2021) obtain
their best performance on their Dupdiv dataset with the Cylindrical Minkowski + Triple Fermi-Dirac
(TFD). We compare it on our larger dataset with Cylindrical Minkowski + equation 6. The results are
reported in Table 4 and show a consistent gain of 2% mean Average Precision by using a proper time
separation function.

We use the following hyperparameters for Dupdiv: M = Rd
1, θ1 = 0.4, θ2 = 0.07, exponent

m = 0.5, learning rate = 0.02, number of epochs = 500.
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Table 4: Link prediction for directed graphs. Median average precision (AP) percentages across 20
random initializations on a held-out test set.

Dataset DREAM 5: Saccharomyces cerevisiae
Manifold dimensionality d 3 5 10 50 100

Euclidean + FD 33.0 ± 2.7 34.2 ± 2.8 40.2 ± 3.3 44.5 ± 3.5 49.0 ± 2.0
Hyperboloid + FD 29.2 ± 2.5 37.9 ± 1.3 46.5 ± 1.6 48.8 ± 1.4 47.9 ± 1.2
Minkowski + TFD 34.7 ± 2.2 38.6 ± 1.9 46.4 ± 3.1 52.7 ± 3.0 54.0 ± 2.5
Anti de-Sitter + TFD 37.2 ± 3.2 41.3 ± 1.5 44.9 ± 2.5 47.5 ± 3.1 49.4 ± 3.3
Cylindrical Minkowski + TFD 37.4 ± 3.2 42.7 ± 2.3 46.8 ± 3.5 53.4 ± 2.2 54.6 ± 2.1

Minkowski + equation 6 47.6 ± 1.1 51.3 ± 1.5 54.4 ± 1.1 54.7 ± 2.0 54.8 ± 1.3
Cylindrical Minkowski + equation 6 50.0 ± 1.7 52.5 ± 1.4 55.2 ± 1.5 56.2 ± 1.4 55.7 ± 1.7
de Sitter + equation 6 44.8 ± 2.1 51.6 ± 1.6 55.6 ± 1.3 55.3 ± 1.4 55.4 ± 1.4

Dataset DREAM5 : in silico
Manifold dimensionality d 3 5 10 50 100

Euclidean + FD 29.4 ± 2.1 32.9 ± 2.5 39.7 ± 1.8 39.8 ± 1.6 34.8 ± 1.1
Hyperboloid + FD 28.8 ± 5.5 46.8 ± 4.6 50.8 ± 7.4 50.9 ± 1.5 52.5 ± 1.5
Minkowski + TFD 36.3 ± 2.3 43.1 ± 3.1 51.2 ± 3.0 57.7 ± 2.8 58.0 ± 2.7
Anti de-Sitter + TFD 38.1 ± 4.8 45.2 ± 2.3 51.9 ± 5.2 55.6 ± 4.2 56.0 ± 3.4
Cylindrical Minkowski + TFD 41.0 ± 3.6 48.4 ± 7.3 56.3 ± 8.4 58.9 ± 2.9 61.0 ± 1.9

Minkowski + equation 6 48.4 ± 1.2 49.4 ± 1.1 51.6 ± 1.2 58.1 ± 2.1 58.8 ± 1.1
Cylindrical Minkowski + equation 6 52.5 ± 1.9 56.5 ± 1.6 59.8 ± 1.5 60.4 ± 1.5 60.8 ± 1.3
de Sitter + equation 6 48.5 ± 1.9 57.4 ± 1.5 62.0 ± 1.4 60.6 ± 1.6 61.1 ± 1.4

Dataset DREAM5 : Escherichia coli
Manifold dimensionality d 3 5 10 50 100

Euclidean + FD 33.0 ± 3.9 34.2 ± 3.4 40.2 ± 4.3 44.5 ± 2.6 49.0 ± 3.2
Hyperboloid + FD 43.4 ± 4.1 47.2 ± 3.3 52.7 ± 1.9 53.6 ± 1.4 50.6 ± 0.7
Minkowski + TFD 43.8 ± 2.0 50.9 ± 2.3 57.7 ± 2.1 58.4 ± 2.3 58.3 ± 2.1
Anti de-Sitter + TFD 42.7 ± 3.7 56.5 ± 2.6 61.8 ± 6.8 63.3 ± 4.8 63.0 ± 7.5
Cylindrical Minkowski + TFD 50.3 ± 3.3 56.8 ± 3.4 62.3 ± 3.3 65.8 ± 3.4 63.2 ± 2.4

Minkowski + equation 6 55.9 ± 2.1 57.2 ± 1.8 58.1 ± 1.9 58.8 ± 1.1 59.1 ± 1.2
Cylindrical Minkowski + equation 6 60.9 ± 1.8 64.0 ± 2.4 67.5 ± 2.3 70.1 ± 1.4 70.4 ± 2.1
de Sitter + equation 6 58.1 ± 2.8 62.4 ± 2.3 62.7 ± 1.5 63.4 ± 1.3 62.1 ± 1.6

Dataset Duplication-Divergence (1000 edges)
Manifold dimensionality d 3 5 10 50 100

Cylindrical Minkowski + TFD 55.5 ± 0.6 64.7 ± 1.3 69.8 ± 1.4 70.2 ± 1.0 70.7 ± 0.8
Cylindrical Minkowski + equation 6 58.7 ± 1.3 66.9 ± 1.1 72.2 ± 1.1 72.4 ± 1.2 72.1 ± 1.0

D.3 HIERARCHY EXTRACTION

For both equation 7 and equation 8, we set θ = 10−2, r = 1 and train the model for 105 itera-
tions/epochs. In equation 8, the regularization parameter λ is set to λ = |Ec|

|E| where |E| is the number
of pairs that satisfy (vi, vj) ∈ E and |Ec| is the number of pairs that satisfy (va, vb) /∈ E.

We report scores for the NIPS dataset in Table 5. We report the Spearmans rank correlation coefficient
ρ (Spearman, 1904) for all the authors (left), the authors with at least 10 coauthors (middle) and
authors with at least 20 coauthors (right). Spacetimes return better performance for the subset of
authors with at least 10 coauthors.
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Table 5: Evaluation scores for the different learned representations (mean ± standard deviation). ↓
the lower the metric, the better. ↑ the larger the metric, the better.

Manifold Problem d(x,y) Whole dataset ρ (↑) top si ≥ 10 ρ (↑) Top si ≥ 20 ρ (↑)

R4 equation 7 dγ(x,y) 0.469 0.512 0.217
P4
0(r) equation 7 dγ(x,y) 0.460 0.490 0.292

P4
4(r) equation 7 dγ(x,y) 0.629 0.552 0.316

P4
1(r) equation 7 dγ(x,y) 0.667 0.493 0.307

P4
2(r) equation 7 dγ(x,y) 0.625 0.441 0.227

P4
3(r) equation 7 dγ(x,y) 0.437 0.493 0.387

S3
1(r) equation 8 χ2

U (x,y) 0.369 0.536 0.663
R4

1 equation 8 χ2
U (x,y) 0.524 0.668 0.484

P4
1(r) equation 8 χ2

U (x,y) 0.538 0.326 0.143

S5
1(r) equation 8 χ2

U (x,y) 0.373 0.498 0.618
R6

1 equation 8 χ2
U (x,y) 0.478 0.678 0.543

P6
1(r) equation 8 χ2

U (x,y) 0.576 0.455 0.219

Figure 4: Coordinates of embeddings {−x,x} ∈ P2
1(1) ⊂ R3

2 learned with equation 8.
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Figure 5: (top) Coordinates of 2-dimensional embeddings x = (x0, x1)
> learned with equa-

tion 8 when M = R2
1. (bottom) Coordinates of the first three coordinates of embeddings

x = (x0, x1, x2, x3)
> learned with equation 8 when M = S31(r). In Lorentz geometry, a time-

like geodesic joining two points is the longest timelike curve in a given convex normal neighborhood.
This translates in the high-level nodes v1 and v34 being the furthest from the rest of the nodes. The
ground truth edges are plotted in yellow and the node color corresponds to the joined faction. A small
number of spacelike edges are visible (those edges more than 45 degrees from vertical).
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E EXTENDED RELATED WORK

To help explain the contributions of our work relative to prior art, we use this section to provide a
more detailed comparison of our contributions to that of Sim et al. (2021).

Sim et al. (2021) extended Clough & Evans (2017) to the anti-de Sitter space and Lorentz cylinder.
Although our motivation is similar, our contributions are methodological, rely on a simpler use of the
intuitions of general relativity and Lorentzian pre-length spaces, and provide an easier interpretation
of the learned representations as we explain below. First, Sim et al. (2021) do not address clearly the
case when there is no geodesic between pairs of points, and their optimization framework leads to a
distance loss term with a zero gradient in this case, which make it difficult to optimize. Moreover,
in Sim et al. (2021), the prediction of an arc between a pair of nodes is determined via a Triple
Fermi-Dirac (TFD) probability function that accounts for the squared (Lorentzian) distance between
the nodes, the time coordinate difference ∆t and its opposite value −∆t. In other words, TFD
accounts for both the chronological future and past (with different weights) of a given node. The
major methodological difference with Sim et al. (2021) is that we restrict the representation of nodes
connected by an arc to belong to I+(x,Vx) where Vx is a convex normal neighborhood. Although
subtle, this difference makes the optimization and interpretation of results easier.

In general, the Lorentzian distance function from x to y on M is defined to be infinite
(i.e., χM(x,y) = +∞) ifM is non-chronological and there exists a closed timelike curve joining
x and y. Moreover, the Hopf-Rinow theorem does not hold for spacetimes. We propose to work
with convex normal neighborhoods, which allows us to restrict the existence of arcs between nodes
to the existence of geodesics joining events. Our distance function χV is called a local distance
function (see Definition 4.25 of Beem et al. (1996)) when its domain is restricted to a convex normal
neighborhood. Moreover, χV is continuous and differentiable on Vx × I+(x,Vx) (see Lemma 4.26
of Beem et al. (1996)). In some cases, it might be easier to optimize its squared function χ2

V which
is of class C2 on Vx × Vx (see Theorem 2.6 of Minguzzi (2019)). It is worth noting that Vx can be
defined to be globally hyperbolic for any spacetime (see Theorem 2.7 of Minguzzi (2019)). This
means that Vx admits a Cauchy time function that can be used to define a time separation function τ
(see explanation in Section C.2) whose sign defines the direction of edges. Our framework shares
similarities with Sim et al. (2021) whenM = Rd

1 = Vx because Rd
1 is globally hyperbolic and any

pair of points of Rd
1 can be joined by a geodesic. However, the way we define the time separation τ

(instead of using the same ∆t) is different whenM = Ld
1(C) because we restrict it to be calculated

on the maximal convex normal neighborhood. We construct τ so that it is positive if xj ∈ I+(x,Vx)
and negative if xj ∈ I−(x,Vx). We then enforce τ to be positive if we want an arc from vi to vj .
The fact that we work only with an open convex set instead of the whole manifoldM is crucial
because xj can belong to both the chronological future I+(xi,M) := {y ∈ M : xi � y} and
past I−(xi,M) := {y ∈ M : y � xi} if theM is non-chronological. Using the entire manifold
requires that the sign of ∆t is not as informative, as in Sim et al. (2021). Our approach allows us to
determine the direction of the arc joining vi and vj only via the sign of τ .

We also define a general way of optimizing τ via the parallel transport (see Appendix C.2) instead
of working only with Cartesian coordinates, which is not meaningful for some spacetimes such as
Pd
1(r). Moreover, since we restrict our Lorentzian distances to be calculated in the convex normal

neighborhood Vx, we also have the nice interpretation that the Lorentzian distance corresponds to the
length of the longest causal curve joining points.

One other contribution is the connection of our work with the theory of Lorentzian pre-length spaces
(Kunzinger & Sämann, 2018) which does not require notions of differential geometry to be understood
and can be applied to discrete topological spaces (see Example 2.16 of Kunzinger & Sämann (2018)).
The framework proposed by Sim et al. (2021) is not a Lorentzian pre-length space due to their
formulation of their time coordinate difference function that does not satisfy the properties of a time
separation function (especially whenM is non-chronological).
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Algorithm 1 Pseudo-Riemannian optimization
input: differentiable function f :M→ R to be minimized, some initial value of x ∈M
1: while not converge do
2: Calculate∇f(x) . i.e.,∇f(x) is the Euclidean gradient of f at x in the Euclidean ambient space
3: χ← Πx (GΠx(G∇f(x)))
4: x← expx(−ηχ) . where η > 0 is a step size
5: end while

F OPTIMIZATION

The optimizers that we use in the main paper for the different spacetimes can all be optimized as
described in Algorithm 1. The goal is to minimize some function f :M→ R by using differential
geometry tools described in (Gao et al., 2018; Law, 2021; Law & Stam, 2020). ∇f(x) is the
Euclidean gradient of f at x, Πx(z) is the orthogonal projection of an arbitrary vector z onto TxM,
and G is an involutory matrix (i.e., G−1 = G). We consider in the following that the step size η > 0
is fixed and given. We give details for the different spacetimes that we consider in the main paper.

F.1 MINKOWSKI SPACETIME Rd
1

This optimizer was explained in (Gao et al., 2018). WhenM = Rd
1, Πx is the identity function. G

is the diagonal matrix with the first diagonal element equal to −1 and the remaining ones equal to
1. expx(y) := x+ y. Algorithm 1 corresponds to the standard Euclidean gradient descent because
χ = ∇f(x) in this case.

F.2 CYLINDRICAL MINKOWSKI SPACETIME Ld
1(C)

We recall that Ld
1(C) = Rd

1/∼, a quotient set defined such that x ∈ Rd
1 and y ∈ Rd

1 are equivalent
(i.e., x∼y) iff ∀i > 0, yi = xi and ∃k ∈ Z, y0 = x0 + kC where C > 0 is a circumference
hyperparameter.

WhenM = Ld
1(C), we use the same optimizer as in Section F.1.

Although it is optional, we also reproject the time coordinate of x = (x0, . . . , xd−1)
> at the end of

each iteration as follows: x0 ←
((
(x0 +

C
2 ) mod C

)
− C

2

)
∈ [−C

2 ,
C
2 ) where we use the modulo

operation for real values which can be written as follows: a mod b := a− b · bab c, and b·c is the floor
function. If the initial value of x0 is not in [−C

2 ,
C
2 ), this projects x to an equivalent point.

F.3 DE SITTER SPACE Sd1(r)

This optimizer was introduced in (Law & Stam, 2020). We recall that Sd1(r) := {x ∈ Rd+1
1 :

〈x,x〉1 = r2}.G is the diagonal matrix with the first diagonal element equal to−1 and the remaining
ones equal to 1. We have: Πx(z) := z− 〈z,x〉1

〈x,x〉1x = z− 〈z,x〉1
r2 x. The exponential map is defined in

equation 10.

F.4 ANTI-DE SITTER SPACE Hd
1(r)

We recall that Hd
1(r) := {x ∈ Rd+1

2 : 〈x,x〉2 = −r2}. G is the diagonal matrix with the first two
diagonal elements equal to −1 and the remaining ones equal to 1. We have: Πx(z) := z− 〈z,x〉2

〈x,x〉2x =

z+ 〈z,x〉2
r2 x. The exponential map is defined in equation 15.

F.5 PROJECTIVE VERSION OF THE ANTI-DE SITTER SPACE Pd
1(r)

The neural network optimizer is given in (Law, 2021). Otherwise, the embedding optimizer is the
same as in Section F.4. The main difference is how the points are compared to calculate the distance
and time separation function.
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G EXAMPLES OF GRAPHS

Since our general framework is fairly abstract, we give some explicit examples of directed graphs
with or without cycles that can be described by our framework.

G.1 DIRECTED ACYCLIC GRAPHS (DAGS)

v1 v2 v3

v4 v5 v6

Figure 6: DAG containing an undirected cycle.

We first consider a directed acyclic graph that consists of an undirected cycle (Figure 6).
The DAG G = (V,E) is defined as V = {vi}6i=1 and the set of arcs is E =
{(v1, v4), (v2, v4), (v2, v5), (v3, v5), (v1, v6), (v3, v6)}. One can see that G is not a directed tree
since the undirected path v1, v4, v2, v5, v3, v6, v1 is cyclic.

We recall that if M is globally hyperbolic, M is also chronological and can then only describe
DAGs with our framework. Let us give an example whereM = Rd+1

1 orM = Sd1(r) ⊂ Rd+1
1 with

d = 3 and r > 0 (e.g., r = 1). Both Rd+1
1 and Sd1(r) are globally hyperbolic. Let us consider any

value ε > 0, a = r + ε and b =
√
2a2 − r2. We take the embeddings: x1 = (0, r, 0, 0)>,x2 =

(0, 0, r, 0)>,x3 = (0, 0, 0, r)>,x4 = (b, a, a, 0)>,x5 = (b, 0, a, a)>,x6 = (b, a, 0, a)>.

When M = Sd1(r), we know from Section B.2 that −−→xixj is timelike (i.e., 〈−−→xixj ,
−−→xixj〉 < 0) iff

〈xi,xj〉1 > r2. By using the time separation function in equation 33 and assuming −−→xixj is timelike,
we only need to compare the first coordinate of xi and xj to determine the direction of the edge
between vi and vj .

The caseM = Rd+1
1 is similar except that −−→xixj := xj − xi is timelike iff 〈−−→xixj ,

−−→xixj〉1 < 0.

One can verify that ∀i, j, (vi, vj) ∈ E ⇐⇒ xj ∈ Uxi and the tangent vector −−→xixj is future-directed
timelike.

G.2 GRAPHS WITH DIRECTED CYCLES

G.2.1 MINKOWSKI CYLINDER Ld
1(C)

v1

v2v3

Figure 7: A simple directed cycle.

We now illustrate a simple example of graph with directed cycle that can be drawn with Ld
1(C)

(Figure 7). The graph G = (V,E) is defined as V = {vi}3i=1 and E = {(v1, v2), (v2, v3), (v3, v1)},
which is a graph with directed cycle.

Let us consider that C = 3 and d = 2. The maximal normal neighborhood of every point x ∈ Rd
1 is

Ux = {y = (y0, . . . , yd−1)
> ∈ Rd

1 : y0 ∈ (x0 − 1.5, x0 + 1.5)}. We also consider that Vx = Ux.

Since Ld
1(C) is a quotient set, its points are equivalence classes. We consider three equivalence

classes [xi] := {(i + 3k, 0)> : k ∈ Z} where i ∈ {1, 2, 3} and we define xi := (i, 0)> ∈ Rd
1. In

other words, the five points x0 = (0, 0)>,x1 = (1, 0)>,x2 = (2, 0)>,x3 = (3, 0)>, x4 = (4, 0)>

in Rd
1 actually correspond to three points in Ld

1(C) due to the equivalence relation (i.e., x3 ∼ x0 and
x4 ∼ x1). We can then compare those three equivalence classes by comparing xi with xi−1 and xi+1

only. One can verify that ∀i ∈ {1, 2, 3}, we have xi+1 ∈ Uxi ,xi+1 ∈ I+(xi,Uxi), and xi−1 ∈ Uxi .
However, we also have xi−1 /∈ I+(xi,Uxi). We then obtain the graph illustrated in Figure 7.
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G.2.2 PROJECTIVE VERSION OF THE ANTI-DE SITTER SPACE Pd
1(r)

v1

v2

v3

v4

Figure 8: A graph with directed cycles.

We now consider the graph G = (V,E) defined as V = {vi}4i=1 and E =
{(v1, v4), (v2, v1), (v3, v1), (v3, v2), (v4, v2), (v4, v3)}. This is a graph with directed cycles
(e.g., v1 → v4 → v2 → v1, see Figure 8).

We recall that every point of Pd
1(r) can be written as the unordered pair {−x,x} where x ∈ Hd

1(r) ⊂
Rd+1

2 . Taking d = 2, the maximal normal neighborhood of every point {−x,x} can be written
U{−x,x} = {{−y,y} : y ∈ Hd

1(r), 〈x,y〉2 < 0}.

Let us consider r = 1, ε1 = −0.1, ε2 = ε3 = −0.5, a = −1, b = −
√
(r + ε1)2 − r2 + a2, c =

−2, e = −
√
(r + ε2)2 − r2 + c2, g = 1, h =

√
(r + ε3)2 − r2 + g2. We construct the four follow-

ing points: x1 = p = (r, 0, 0)>,x2 = (r + ε1, a, b)
>,x3 = (r + ε2, c, e)

>,x4 = (r + ε3, g, h)
>.

To define the future direction, we consider the timelike tangent vector t = (0, 1, 0)> ∈ TpHd
1(r).

In our framework, there exists an edge between xi and xj iff |〈xi,xj〉2| ∈ (0, r2). The direction of
the edge is determined by using Section C.2.4.

28


	Introduction
	Spacetime Differential Geometry
	Spacetime Graph Representation
	Graph construction via Lorentzian pre-length spaces
	Examples of spacetimes
	Lorentzian distance and Lorentzian length spaces

	Related Work
	Experiments
	Link prediction on graphs with directed cycles
	Hierarchy extraction on a social network dataset

	Conclusion
	Summary of Supplementary Material
	Differential Geometry of Pseudo-Riemannian Space Forms
	Pseudo-Euclidean space
	Pseudo-sphere Sd(r)
	Pseudo-hyperboloid Hd(r)
	Projective space Pd1(r)

	Future Direction, time separation function and Lorentzian Distance
	Future direction
	Minkowski space
	De Sitter space
	Anti-de Sitter space

	time separation function
	Minkowski space Rd1
	De Sitter space Sd1(r)
	Anti-de Sitter space Hd1(r)
	Projective version of the anti-de Sitter space Pd1(r)
	Cylindrical Minkowski space Ld1(C)

	Squared Lorentzian distance
	About the choice of  in equation 4

	Additional Experiments and Experimental Details
	Chronological order in directed graphs
	Directed link prediction
	Hierarchy extraction

	Extended Related Work
	Optimization
	Minkowski spacetime Rd1
	Cylindrical Minkowski spacetime Ld1(C)
	De Sitter space Sd1(r)
	Anti-de Sitter space Hd1(r)
	Projective version of the anti-de Sitter space Pd1(r)

	Examples of graphs
	Directed Acyclic Graphs (DAGs)
	Graphs with directed cycles
	Minkowski Cylinder Ld1(C)
	Projective version of the anti-de Sitter space Pd1(r)



