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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive generalization abil-
ity by learning from extensive unlabeled text. However, they still exhibit reasoning
mistakes, which can affect their trustworthiness and reliability. Although users can
interact with LLMs and provide diverse and comprehensive queries to expose the
flaws of LLMs, obtaining sufficient and effective feedback is demanding. Further-
more, comprehensively evaluating LLMs with limited labeled samples is difficult.
These make it a challenge to diagnose and remedy the deficiencies in LLMs through
rich label-free user queries. To tackle this challenge and considersing that LLMs’
reasoning mistakes often stem from knowledge deficiencies, we propose label-
free curricular meaningful learning (LaMer), which first employs relative entropy
to diagnose and quantify knowledge deficiencies of LLMs in a label-free setting.
Then, LaMer adaptively synthesizes augmentation data based on deficiency severity
and progressively remedies them with a curricular remedy strategy. Experiments
show that LaMer effectively diagnoses and remedies knowledge deficiencies in
LLMs, improving various LLLMs across seven out-of-distribution (OOD) reasoning
benchmarks, achieving comparable results to baselines with only 40% training data.
LaMer even surpasses methods that rely on labeled data for deficiency diagnosis.
In application, LaMer offers a diagnostic tool for efficient LLM development.

1 INTRODUCTION

Large language models (LLMs) have made significant advancements in various fields recently (Kim
et al.,|2024; |Li et al., 2024a)). By implicitly mining and learning information from vast amounts of
unlabeled text via language modeling, LLMs have demonstrated remarkable generalization abilities.
This enables them to answer various user queries across many applications such as reasoning (Tang
et al.,|2024; Xiong et al.,[2024) and recommender systems (Lei et al., 2023;Wu et al.|, 2024). However,
despite their potential, LLMs still have limitations. Due to their statistical nature, LLMs occasionally
make reasoning mistakes (Jung et al.|[2022; Wang et al., 2023), which can undermine user trust and
the reliability of their applications. A significant challenge is that the knowledge mining process
is implicit, making it difficult to discern what LLMs are particularly good or bad at. This lack of
transparency hinders targeted improvements and quality assurance of LLMs. Additionally, relying on
users for sufficient and effective feedback is often difficult and impractical, as it requires extra effort
and users typically seek answers to questions they do not fully understand. This situation poses a
significant obstacle in continually improving LLMs based on massive label-free user queries.

To enhance LLMs, current researches predominantly follow two methodologies: unsupervised
language modeling (Fujii et al., [2024; |Guo et al., 2024b)) and supervised fine-tuning (SFT) (Mitra
et al.,[2023} | Xu et al., [2024)), which are respectively shown in Figureﬂ](a) and (b). Unsupervised
language modeling uses vast amounts of unlabeled data, enabling LLMs to learn knowledge implicitly.
In contrast, SFT involves training LLMs on labeled datasets tailored to specific tasks. Despite their
advantages, both approaches have limitations. First, they can be inefficient as it necessitates the
inclusion of extensive data indiscriminately, which may not address enough reasoning mistakes of
LLMs. Second, they still lack a comprehensive understanding of LLMs, leading to the inability to
make targeted improvements. As a result, this further leads to ineffectiveness in addressing specific
and long-tail questions. Moreover, labeling user queries can help to reveal some mistakes of LLMs,
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while it is costly and challenging to use limited labeled samples to thoroughly evaluate LLMs that
generalize well (Liu et al.| 2023; Zheng et al.,[2024). These limitations highlight the need for more
efficient and cost-effective methods to diagnose and improve LLMs.

To tackle the above challenges, and consider- )
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proach ensures that LLMs remain current and
adaptable, capable of handling specific and long-
tail user demands, avoiding costly data labeling
processes, and promoting a more efficient on-
line development cycle. In this paper, as shown
in Figure[T] (c), we design an indirect supervision method called label-free curricular meaningful
learning (LaMer), which first diagnoses the knowledge deficiencies of a specific LLM in a label-free
setting, and then devise curricular meaningful learning to efficiently and effectively remedy the defi-
ciencies of corresponding LLM. Specifically, LaMer first extracts relevant knowledge for user queries.
Subsequently, inspired by information theory (Shannon, |1948)), where relative entropy (Kullback &
Leibler,|1951)) can estimate the extra information needed to change from a distribution to another. We
leverage relative entropy with the extracted knowledge to diagnose the knowledge deficiencies of
LLMs without relying on labels. Finally, we adopt curricular meaningful learning, which initially
uses meaningful learning (Xiong et al.l[2024) to adaptively synthesize augmented data across various
scenarios based on the severity of the deficiencies, and then employ curricular deficiency remedy to
progressively address these deficiencies from minor to severe.

(c) Indirect Supervision (Ours)

Figure 1: (a) Unsupervised language modeling,
(b) supervised fine-tuning, and (c) our proposed
indirect supervision method.

We conduct extensive experiments on 4 open-source LLMs and evaluate LaMer and baselines across 7
out-of-distribution (OOD) reasoning benchmarks. The results show that LaMer proficiently diagnoses
the knowledge deficiencies in various LLMs, leading to more efficient and effective improvements
compared to baselines. It achieves comparable results to baselines with only 40% training data.
Further analyses reveal that LaMer not only surprisingly surpasses methods relying on labeled data to
detect deficiencies but also highlights its efficiency and effectiveness in diagnosing and remedying
knowledge deficiencies in LLMs, offering a more robust solution for improving their application. We
summarize our contributions as follows:

* We incorporate relative entropy to effectively diagnose knowledge deficiencies in LLMs
without labels, breaking the limitation of relying solely on existing labeled datasets.

* We develop curricular meaningful learning to remedy the knowledge deficiencies in LLMs.

* Our proposed LaMer excels in diagnosing and remedying the knowledge deficiencies,
towards maximizing the potential of existing open-source LLMs.

2 METHOD: LABEL-FREE CURRICULAR MEANINGFUL LEARNING

We design a label-free curricular meaningful learning framework named LaMer, which utilizes
user queries to efficiently diagnose and remedy the knowledge deficiencies in LLMs without labels.
As illustrated in Figure [2] LaMer consists of 3 steps: (1) Knowledge Extraction obtains relevant
knowledge from an external knowledge base for each query to help diagnose knowledge deficiencies;
(2) Label-free Knowledge Deficiency Diagnosis leverages relative entropy to automatically diagnose
and quantify the deficiencies in LL.Ms, which does not rely on labels; (3) Curricular Meaningful
Learning incorporates the idea of human conducting meaningful learning (Tenenbaum), 2018)) to first
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Figure 2: The whole workflow of LaMer to automatically diagnose and remedy the knowledge
deficiencies of LLMs in a label-free setting.

adaptively synthesize examples in various scenarios for each knowledge deficiency, and then utilize a
curricular remedy strategy to effectively repair the knowledge deficiencies from minor to severe.

2.1 KNOWLEDGE EXTRACTION

To acquire knowledge for the following deficiency diagnosis step, we employ an external knowledge
base GenericsKB (Bhakthavatsalam et al.,[2020)) to obtain knowledge for each query d in the given
query set D. GenericsKB is a large-scale resource with more than 3.4M naturally occurring generic
facts (such as “Trees remove carbon dioxide from the atmosphere” and “Dog barks”).

Specifically, to ensure the quality of GenericsKB, we first filter out facts with a confidence score
lower than 0.7 and remove duplicates. Next, we employ FlagEmbedding (Zhang et al, [2023a)) to
represent the facts in GenericsKB and each query d in D as a dense embedding. Finally, for each
query d € D, we apply cosine similarity to match m pieces of knowledge K = {k1,--- , ky, } from
GenericsKB. The matched knowledge K and example d are used in step 2 to diagnose knowledge
deficiencies in a specific LLM L through relative entropy.

2.2 LABEL-FREE KNOWLEDGE DEFICIENCY DIAGNOSIS

To diagnose the knowledge deficiencies of a specific LLM L in a label-free setting, we propose to
use relative entropy (Kullback & Leibler, |1951). This measure quantifies the additional information
needed to transition from one distribution to another. Thus, by computing the relative entropy (RE)
between predictive distributions of £ before and after the introduction of knowledge, we can estimate
the volume of information that this knowledge imparts to £. If £ exhibits a high RE on this
knowledge, it suggests that the model either lacks this knowledge or is unable to integrate it into its
problem-solving processes, a knowledge deficiency in £ is diagnosed.

Specifically, given a query d € D, which possesses an input /. We first send d to LLM L to

obtain n responses O = {01, 02, -+ ,0,} and the negative log-likelihood (NLL) of each response o;
conditioned on x. Hereafter, we acquire a prior distribution of £ over O:
pi = L(0i| 1),

P = Softmax([p1,- -, pn]), @

where p; denotes the NLL of response o; conditioned on I according to £. P € R"™ denotes the prior
distribution of £ over O. Softmax is the normalization function.
Secondly, for each extracted knowledge k£ € K of d, we additionally introduce k to L to fetch a
knowledge-based posterior distribution of £ over O:

g = L(oilk, I),

Q = Softmax([g1, -+, ¢n]),

where g; denotes the NLL of response o; after introducing k to £. @ € R™ denotes the knowledge-
based posterior distribution of £ over O.

@)

Next, we compute relative entropy RE between P and () to quantify the difficiency of Lon k € K:

- ZPz' x (log(Qi) — log(Fr)). (©)
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Finally, after estimating RE on each knowledge of each query based on £, we filter the knowledge
and corresponding queries that result in an RE larger than a threshold 7. Each filtered knowledge
and its associated query are treated as a unit, representing a knowledge deficiency in L. RE is also a
quantification of the knowledge deficiency in L.

Note that there might be two situations: (1) Helpful: the extracted knowledge has a positive impact
on L, resulting in higher confidence in the correct answer; (2) Misleading: the obtained knowledge
has a negative impact on £, resulting in higher confidence in the wrong answer. We suppose that
both situations can expose the knowledge deficiencies in £. The first situation suggests £ might not
grasp this knowledge or cannot properly apply this knowledge to problem-solving, while the second
situation indicates that £ does understand this knowledge but is easily misled by it.

2.3 CURRICULAR MEANINGFUL LEARNING

Humans adopt meaningful learning (Tenen] Table 1: Grouped knowledge deficiencies and the
baum), 2018}, Xiong et al.,[2024) to induce and corresponding size of synthesized examples.
learn new knowledge through its application

across diVE?I‘SG situa.tions, l.eading to a deep  Group RE Interval ~ Synthesized Examples
understanding and integration of knowledge.

Moreover, Humans exploit curriculum learn- Easy 0.1 <RE <04 1
. . . Normal 04 <RE < 0.7 2
ing (Bengio et al.}|2009) to effectively learn new Hard 07 <RE < 1.0 3
knowledge by progressing from easy to hard lev-  ypgair  mE > 1.0 4

els. In light of this, we combine them and design
curricular meaningful learning to effectively remedy the diagnosed knowledge deficiencies of L.

Firstly, we employ meaningful learning strategy to synthesize varying examples in diverse scenarios
according to the deficiency severity. It is inspired by meaningful learning in humans and the insights
that LLMs typically require more tokens or examples to learn the knowledge if they have less prior
understanding of it (Ovadia et al., 2023 |Gekhman et al., [2024). This strategy can reduce the cost and
make deficiency remedy more efficient. Specifically, for the diagnosed deficiencies of £, we divide
them into 4 groups according to the severity (RE) of them. For each group, we heuristically assign a
number, which indicates the number of diverse examples we should synthesize for each deficiency in
the group. The detailed groups and assigned numbers are shown in Table[I] Subsequently, we adopt
ChatGPT (Achiam et al.,2023) to synthesize the specified number of examples for the deficiencies in
each group. The deficiency (knowledge and the corresponding query) is harnessed to guide the data
synthesis process. Each synthesized example contains an input X and an output Y.

Secondly, we devise a curricular remedy strategy to remedy the knowledge deficiencies in LLM £
from minor to severe. Specifically, we sort the generated examples in ascending order based on the
severity of their knowledge deficiencies, and then feed them into training £ sequentially. For each
example < X,Y >, we train £ autoregressively to maximize a conditional probability:

L(X,Y,0) = = logy, (Vi X, Y<), )
t

where 6 denotes parameters of £. This approach results in an updated £ with deficiencies remedied.

3 EXPERIMENTS

3.1 INVESTIGATED LLMS

We adopt 4 open-source LLMs for experiments to illustrate the general applicability of our pro-
posed LaMer: (1) Mistral-7B-Instruct-v0.2 (Jiang et al.,[2023) (Mistral) is an efficient chat LLM.
(2) LLaMA-3-8B-Instruct (Metal, [2024) (LLaMA-3) is a dense LLM with massive pre-training.
(3) Qwen2-7B-Instruct (Yang et al.|[2024) (Qwen2) is a powerful multilingual LLM. (4) Gemma-
1.1-2B-IT (Team et al.l 2024) (Gemma-1.1) is a powerful small-scale chat LLM.

3.2 BASELINES

We adopt a wide range of baselines for comprehensive comparisons: (1) Base employs the base
LLMs in Section t0 answer questions in each benchmark. (2) AugGPT (Dai et al.,[2023)) uses
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Table 2: Overall performance of LaMer and baselines. Bold numbers denote the best performance
among all methods. Average denotes the performance averaged across all benchmarks.

LLMs Size Methods Comm. AGIEval ARC MMLU BBH CRASS GSM-Plus Average
Base 67.56  32.82 74.15 49.75 2847 71.67 2991 50.62
AugGPT 74.53  33.03 7693 5256 33.82 81.67 13.78 52.33
Mistral 7B Naive 6742 3360 72.66 50.58 3222 80.00 31.19 52.52
Single 69.47 3487 74.85 5144 29.53 80.00 29.03 52.74
LaMer (Ours) 75.10 3450 77.22 54.52 33.72 88.33 29.23 56.09
Base 74.84 3945 86.29 59.72 39.85 76.67 61.93 62.82
AugGPT 76.75  38.13 86.04 60.29 36.60 76.67 14.92 55.63
LLaMA-3 8B Naive 7128 3386 84.50 57.86 40.93 83.33 61.56 61.90
Single 7636  39.72 84.72 5897 3653 76.67 55.85 61.26
LaMer (Ours) 78.15  40.85 86.41 60.24 39.69 88.33 59.22 64.70
Base 71.88  42.10 85.48 59.53 37.58 85.00 61.79 63.34
AugGPT 7941 4271 89.78 63.66 40.00 90.00 14.75 60.04
Qwen2 7B Naive 75.62 4280 88.40 6250 39.34 86.67 61.82 65.31
Single 7641 4430 87.64 6198 39.69 80.00 56.62 63.81
LaMer (Ours) 78.13  45.02 88.62 6248 40.56 86.67 61.44 66.13
Base 5326 2580 49.97 33.73 2329 3833 7.08 33.07
AugGPT 5542 25776 47.73 33.69 2431 36.67 3.95 32.50
Gemma-1.1 2B Naive 5538 25778 47.79 3223 2424 36.67 5.99 32.58
Single 52.85 2451 46.67 34.00 25.03 31.67 5.86 31.51

LaMer (Ours) 55.81  25.81 4891 34.40 25.26 41.67 6.69 34.08

ChatGPT (Achiam et al.| [2023)) to generate questions and answers to augment LLMs with SFT.
AugGPT does not provide chain-of-thought (Wei et al.,[2022) in generated examples. (3) Naive is
an SFT method that randomly samples several pieces of knowledge from the knowledge base to
synthesize new examples without considering whether the specific LLM possesses deficiencies on the
sampled knowledge. (4) Single follows a similar process to LaMer but synthesizes only 1 example
per knowledge deficiency. Hence, the training data of Single is 40% of LaMer or the other methods.

3.3 EVALUATION BENCHMARKS

We choose 7 OOD benchmarks ranging from reasoning to language understanding, to evaluate
the performance of LaMer and baselines: (1) Comm. (Xiong et al., [2023) is a collection of 6
commonsense reasoning datasets. (2) AGIEval (Zhong et al.| 2024) consists of diverse sets of
standardized tests ranging from college admission tests (such as GRE and GMAT) to national civil
service examinations. (3) ARC (Clark et al.l [2018)) is the AI2 Reasoning Challenge, which is a
benchmark of science exams spanning Grade 3 to Grade 9 with easy (ARC-e) and challenge (ARC-c)
subsets. (4) MMLU (Hendrycks et al., [2021)) aims to evaluate language comprehension, knowledge,
and reasoning skills of LLMs with 57 tasks. (5) BBH (Suzgun et all 2023) is a subset of Big-
Bench (Srivastava et al.| |2023)), which contains 23 hardest tasks focusing on challenging scenarios.
(6) CRASS (Frohberg & Binder| 2022)) measures counterfactual reasoning in language models.
(7) GSM-Plus (Li et al.|[2024b) is a comprehensive math benchmark for evaluating the robustness of
LLMs. We only keep the examples that possess valid answers for evaluation.

3.4 IMPLEMENTATION DETAILS

For knowledge extraction, we choose e-CARE (Du et al., [2022)) and GSMS8K (Cobbe et al.| [2021]),
discarding the labels to obtain query set D. The size of GenericsKB after filtering is 200K. We utilize
FlagEmbedding (Zhang et al.,2023a)) with beg-large-en-v1.5 to encode facts and queries. We acquire
m = 4 facts for each query. Since GSM8K is far from GenericsKB, we use ChatGPT to generate
m = 4 pieces of knowledge for GSM8SK. We generate n = 2 responses for each query.

For the label-free knowledge deficiency diagnosis step, the knowledge and corresponding query with
an RE higher than 7 = 0.1 is treated as a knowledge deficiency of L. The size of selected knowledge
deficiencies can refer to Appendix
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For the meaningful learning strategy, we utilize a prompt to instruct ChatGPT to synthesize examples.
Finally, we synthesize 3,750 examples to enhance Mistral, Qwen2, and Gemma-1.1, while 1,250
examples are synthesized to enhance LLaMA-3 due to denser knowledge in it.

For the curricular deficiency remedy strategy, we adopt LoRA (Hu et al.| 2022) for parameter-efficient
fine-tuning. The rank r and « of LoRA are 128 and 8, respectively. We train LaMer for 3 epochs
with a learning rate of 5e-5. The batch size is 32. The optimizer we used is Adam (Kingma & Bal
2014). Two NVIDIA A100 80GB PCle GPUs are used for training and the following evaluation.

For AugGPT and Naive, we randomly sample 3,750 facts from GenericsKB and the generated
knowledge of GSMB8K to generate the same number of training examples as LaMer for each LLM.
While for Single, we randomly sample one example for each deficiency from the training data of
LaMer. Therefore, Single enhances Mistral, Qwen2, and Gemma-1.1 with 1,500 examples, and it
utilizes 600 examples to enhance LLaMA-3. The whole data synthesis process and the training setup
are the same as LaMer. All prompts for the preprocess and data synthesis can refer to Appendix [C]
We utilize gpt-3.5-turbo-0125 for all relevant implementations based on ChatGPT.

3.5 EVALUATION DETAILS

For all benchmarks, we utilize free-form generation to evaluate all methods, the evaluation prompts
for different LLMs can refer to Appendix|D| The performance of each method on each benchmark is
averaged across all tasks in the corresponding benchmark.

3.6 OVERALL RESULTS

(a) Initial Query & Knowledge Retrieval -

Query: The boy swallowed a piece of silver by accident. What
. ?
The overall results are shown in Table[J] from | hoppenedesaresult

. ; . A '+ poisoned (B) He got toxi
which we can have the following observations: | (4)Hewasn'T poisoned (B) He got foxic

. Retrieved Knowledge: Silver is a mildly toxic element.
(1) On average, LaMer outperforms all baselines — —
across different LLMs, which is mainly due to ;-
the effectiveness of LaMer in diagnosing and | response without knowledge 1
remedying knowledge deficiency. This also re- \?9

'/’Swallowing a piece of silver by accident does not |
cessarily mean the kid was poisoned or got :

veals the general applicability of LaMer, making | LLMCToxic. So the answer is (A). P = [0.63,0.37]
it a plug-and-play method to improve LLMs. ‘ wknowledge ‘ ’ S”;;ZZ Entropy (P, Q):

(2) Data augmentation methods can surpass the
base LLM on most benchmarks, while Naive ! @ > . . . ;
X i is tissues can absorb silver, leading to toxic. :
and Single show performance drops compared : ‘ Therefore, the answer is (B). Q = [0.15, 0.85] ‘ ;
to LLaMA-3 and Gemma-1.1, as LLaMA-3 and (YM e
Gemma-1.1 possess dense knowledge in its pa-
rameters. Naive and Single could supplement
some knowledge to them but cause them to for-
get more useful knowledge.

esponse with knowledge< 0 normal deficiency

i| Input: A chemist accidentally spilled a solution containing silver
i| on their skin. What is the likely outcome? (A) Skin irritation
i| (B) No effect (C) Allergic reaction

i| Output: Silver is a mildly toxic element that can cause skin
i| irritation upon contact. Therefore, the answer is (A).

(3) Interestingly, Single, which is trained with
40% training data of LaMer (one example for
each knowledge deficiency), can achieve com-
parable performance with Naive on Mistral and

!| Input: What is a potential risk of using silver nanoparticles in
i| consumer products? (A) Allergy (B) Enhanced durability
i1 (€) Improved scent

i| Output: Silver nanoparticles can cause allergic reactions in some

LLaMA-3 with much fewer training data. This
indicates Naive method can produce more re-
dundant data that the base LLM already pos-
sesses, while detecting knowledge deficiencies
in LLMs can apply targeted improvements, mak-
ing it more efficient and less costly than other
data synthesis methods.

(4) LaMer excels Single across all LLMs, this
is because more severe knowledge deficiencies
require more and diverse examples for LLMs to
effectively remedy them (Gekhman et al.||2024).

i individuals due to the mildly toxic nature of silver. Therefore,
i| the answer is (A).

C - D Remed
———————

oo Swallowing a piece of silver is not poisonous, but
3 y it can cause toxicity due to the release of silver
! LLM | ions in the body. Therefore, the answer is (B).

Figure 3: A case showing how LaMer diagnoses
and remedies a knowledge deficiency in Mistral.

LaMer synthesizes more examples for knowledge deficiencies with higher severity, whereas Single
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generates only one example for each knowledge deficiency. As a result, many knowledge deficiencies
in the LLMs are not adequately remedied by Single.

(5) AugGPT achieves the worst results on GSM-Plus, this is because math problems demand multiple
reasoning steps to solve. AugGPT directly offers the answer to the math problems, making it hard
to develop precise calculations to arrive at the right answer. Furthermore, AugGPT can reach the
best performance on several benchmarks (such as ARC on Qwen2), this is because problems in these
benchmarks might be better answered with just a step, which is also indicated in Zhang et al.|(2023b).

(6) Qwen?2 could exceed LLaMA-3 across different methods with fewer parameters, we suppose this
is mainly due to the massive post-training efforts on Qwen?2.

4 CASE STUDY

Figure [3|shows a case to demonstrate how LaMer diagnoses and remedies a deficiency in Mistral:
(a) For an query about “silver”, we obtain the knowledge that “silver is a mildly toxic element”.
(b) The LLM offers a wrong response which produce a distribution P = [0.63, 0.37] over the options.
After providing the LLM with the knowledge, the LLM offers a new response with a different
distribution @ = [0.15,0.85]. The relative entropy between P and @ is 0.60, which means the
knowledge brings a lot of information to the LLM. Hence, the combination of the knowledge and the
query is a knowledge deficiency of the LLM. (c) According to Table[] this knowledge deficiency is
in normal group. Thus, we ask ChatGPT to synthesize two examples for this deficiency. These two
examples are two different applications of the knowledge in this deficiency. Next, the synthesized
examples are used to train the LLM. (d) After curricular meaningful learning, Mistral offers correct
answer. The deficiency is remedied.

Table 3: Effectiveness of different methods on
detecting difficiencies of Mistral based on e-
CARE (Du et al., [2022) dataset.

5 FURTHER ANALYSIS

To further investigate the effectiveness of LaMer,
we design several ablation studies and in-depth

. Methods Label-free P R F1
analyses: (1) comparisons between LaMer and
label-reliant methods to demonstrate the effi- ~Golden Label No 100 100 100
ciency and strengths of LaMer; (2) an effec- Perplexity No 48.46 34.24 40.10
Random Yes 35.23 35.23 3523

tiveness analysis of LaMer on remedying de-
ficiencies by obtain the statistics on remedied
examples of each method; (3) an ablation study
to investigate the effect of curricular deficiency remedy strategy; (4) a significance analysis to inspect
the roles of helpful and misleading situations in label-free knowledge deficiency diagnosis.

Relative Entropy Yes 40.34 64.30 49.58

5.1 COMPARISONS TO LABEL-RELIANT METHODS

We conduct an analysis to reveal the efficiency
of different methods in diagnosing deficiencies
based on Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023)) and e-CARE (Du et al.l [2022). Details
can refer to Appendix Results are shown in
Table [3] our proposed relative entropy method
outperforms perplexity by recalling more defi-
ciencies. This proves the feasibility of our pro-
posed relative entropy method. Mistral  LLaMA-3  Qwen2  Gemma-1.1

(%]
L

Base
LLM2LLM
LaMer (Ours)

o o
! \ !

o wn
! L

Average Performance (%)
wasEZOaQ

w
\

Furthermore, we adopt a label-reliant method  Figure 4: Average performance across all bench-

LLM2LLM for comparison. LLM2LLM (Lee| marks of base LLMs, LLM2LLM, and LaMer.
et al., 2024) uses labeled data to identify erro-

neous examples in existing LLMs, and then synthesizes similar examples to improve a specific LLM.
We use the labels of e-CARE and GSMSK to obtain 3,750 error examples, and then we generated
similar examples based on the error examples. The number of training examples is the same as LaMer
for each LLM. Results are shown in Figure [ (full results can refer to Appendix [F.2), we can find:
LaMer has varying advantages over LLM2LLM across LLMs. Although LLM2LLM can precisely
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detect the errors of each LLM, the errors are limited to the given initial dataset. LaMer diagnoses
knowledge deficiencies, which can improve the coverage of diagnosed deficiencies in each LLM.

5.2 EFFECTIVENESS IN REMEDYING DEFICIENCIES

—— AugGPT Naive —— LLM2LLM —— LaMer
We conduct an analysis to examine if LaMer can (a) Mistral (b) LLaMA-3
effectively remedy more error examples. Specif- AGIEval AGIEval
ically for each method, we first tally the number
of examples in each benchmark that base LLM AR
is wrong but correct after the enhancement by
each method (denote as remedied examples). Af-
ter that, we normalize the values across different
methods. Finally, we use spider charts to visual-
ize them. We choose Mistral and LLaMA-3 for  Figure 5: Normalized remedied examples on (a)

investigation. Results are in Figure[5} Mistral and (b) LLaMA-3 across benchmarks.

(1) LaMer has advantages over baselines on all benchmarks, this is attributed to that LaMer can
diagnose more deficiencies via relative entropy, and remedy them via curricular meaningful learning.

Comm. AR Comm

MMLU CRASS MMLU CRASS

(2) In Table[2} although AugGPT can exceed LaMer on some benchmarks, it does not get the upper
hand in Figure[5] This is mainly due to AugGPT cannot diagnosis the deficiencies of LLMs.

5.3 EFFECT OF CURRICULAR DEFICIENCY REMEDY Table 4: Ablation study on curricu-

lar deficiency remedy.
To investigate the effect of curricular deficiency remedy in

LaMer, we randomly shuffle the data synthesized by LaMer to s Size Methods Average
train the base LLMs (LaMer*). All the training and evaluation ] LaMor o
settings are the same as LaMer. We denote LaMer with shuffled ~ Mistral B LaMer* 5564
data as LaMer*. The results are shown in Table |4 (full results LaMer 64.70

LLaMA-3 8B ' Mer* 64.47

LaMer 66.13
LaMer* 65.50

can refer to Appendix [F.3), we can observe:

(1) LaMer outperforms LaMer* regarding each LLM, since = Qwen2 7B
remedying less severe deficiencies helps remedy more severe
ones. Curricular meaningful learning can make LLMs learn =~ Gemma-1.1 2B
new knowledge more efficiently (Xiong et al., 2024]).

LaMer 34.08
LaMer™ 33.80

(2) When switched to randomly shuffled data, LaMer* only suffers small performance drops. This
claims that the performance of LaMer improvement is stable and LaMer has robust applicability.

(3) LaMer™* achieves higher performance than baselines in Table [2]on Mistral, LLaMA-3, and Qwen2.
It clarifies that the advantages of LaMer primarily stem from the deficiencies diagnosis process.

5.4 HELPFUL AND MISLEADING KNOWLEDGE (a) Mistral

301 Helpful
Misleading

The knowledge deficiencies can be caused by two
kinds of knowledge: (1) helpful knowledge has a very
positive impact on the correct answer; (2) misleading
knowledge leads LLMs to choose the wrong answer
with higher confidence than the right answer.

Significance (%)

Comm. AGlEval BBH ARC MMLU GSM-Plus

(b) LLaMA-3

To find out the significance of the deficiencies caused Helpful
by these two kinds of knowledge, we split the discov- | Misteading
ered knowledge deficiencies into two groups (Helpful
and Misleading) with the help of golden labels. Then
we respectively train the LLM with data synthesized
based on Helpful and Misleading deficiencies. Fi- Comm.  AGIEval  BBH . ARC MM GSM-Plus
nally, after evaluation, we respectively analyze the
unique remedied examples brought by the data syn- -+ - 1o remedied based on the deficiencies
thesized based on Helpful and Misleading deficien- ., <04 by helpful and misleading knowledge
cies. Results are shown in Figure[6] we can have the | (a) Mistral and (b) LLaMA-3.

following observations:

Figure 6: The portion of unique examples
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(1) Deficiencies caused by helpful and misleading knowledge are similarly significant. They can help
remedy comparable yet distinct examples. Both highlight valid knowledge deficiencies.

(2) Deficiencies caused by misleading knowledge have slightly greater significance than those caused
by helpful knowledge, as they often have a larger impact, and is often more difficult and complex.

6 RELATED WORK

6.1 CONTINUAL TRAINING ON LLMS

LLMs (Jiang et al.| | 2023; Metal, 2024) have demonstrated strong generalization capabilities, may not
always perform well on general or specific individual capabilities. Recent works involved additional
training to customize or enhance LLMs.

For enhancing the general capabilities of LLMs, Xie et al.|(2023)) and [Li & Lee|(2024) conducted
continual pre-training on LLMs for alignment. (Cui et al.[(2023) and |Huozi-Team| (2024) conducted
adaptions with massive Chinese data to enhance the Chinese capabilities of LLaMA (Touvron
et al., [2023)). Taori et al.|(2023) utilized 52K instruction data from ChatGPT (Achiam et al., [2023])
to obtain a strong instruction-following LLM. Vicuna (Chiang et al., 2023)) adopted data from
ShareGPT (ShareGPT| |2023)) to train LLaMA and achieved 90% quality of ChatGPT. Orca (Mukher{
jee et al.| 2023) and Orca-2 (Mitra et al., |2023) adopt progressive learning and more data from
GPT-4 (Achiam et al.} [2023) to further enhance the general abilities of LLMs. Different from the
others, WizardLM (Xu et al.|[2024) designed an evolve-instruct prompt to distill instruction data from
ChatGPT with varying difficulty, encouraging LLM:s to follow complex instructions. Zephyr (Tunstall
et al., [2023) employed DPO (Rafailov et al., [2024) to align LLMs with human preference, while
SPIN (Chen et al.,2024) devised a self-play method to achieve this. For enhancing specific abilities of
LLMs, researchers used task-specific data to improve the desired abilities of LLMs such as math (Luo
et al.,[2023; Tang et al., 2024), code (Guo et al.,|2024a), and reasoning (Ying et al., [2024)).

Our work aims to detect the knowledge deficiencies of LLMs and apply appropriate remedies to
repair them, which can serve as a complement to existing methods.

6.2 EVALUATION OF LLMS

Since LLMs have broad capabilities, evaluating LLMs becomes a tough and widely concerned
issue. Some works constructed benchmarks or evaluation data to evaluate LLMs from general and
specialized perspectives, such as natural language understanding (Hendrycks et al., [2021} |Li et al.,
2023; |Wang et al., 2024)), reasoning (Frohberg & Binder, 2022; [Suzgun et al.,|2023}; Zhong et al.|
2024), math (Li et al., [2024b} |Liu et al.| 2024), coding (Peng et al.| 2024} |Zhang et al., [2024), etc.
Different from using benchmarks with objective questions, some works started adopting LLMs to
evaluate LLMs subjectively. [Liu et al.|(2023) applied GPT-4 as to assess the quality of generated text
in various pesperctives (such as coherence) and achieved better alignment with human evaluators. Bai
et al.[(2024) evaluated the performance of existing LLMs with self-evaluation and peer-evaluation,
achieving more precise judgments of existing LLMs. Furthermore, |Zheng et al.| (2024)) devised a chat
framework to evaluate LLMs based on the discussions among LLMs.

Our work emploies relative entropy to diagnose the knowledge deficiencies in LLMs based on a
knowledge base. We also follow previous work to adopt objective benchmarks to evaluate LLMs.

7 CONCLUSION

In this paper, we design a label-free curricular meaningful learning framework (LaMer) based
on relative entropy to first automatically discover the knowledge deficiencies from massive label-
free user queries. Then we devise curricular meaningful learning which consists of a meaningful
learning strategy and a curricular deficiency remedy strategy, to efficiently and effectively remedy the
discovered knowledge deficiencies of corresponding LLM. The experiments show that our proposed
LaMer can improve the coverage of diagnosed deficiencies, and surpass the baselines, making LLMs
enhancement free of labeled data. The relative-entropy-based deficiency method provides a robust,
efficient, and label-free deficiency diagnostic tool for existing LLMs to further unlock their potential.
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A USE OF LLMS

We use ChatGPT to check the grammar and polish writing. We do not use LLMs for experiments or
idea creating.

B LIMITATIONS

This paper still have some limitations: (1) We require a related knowledge base for given queries.
While for domain-specific queries, obtaining such a knowledge is difficult. (2) LaMer does not work
well on math datasets. (3) Complex scenarios such complex reasoning could be further discussed.

C PROMPTS FOR IMPLEMENTATION

C.1 PROMPT FOR PROCESS GSM8K

Prompt for Processing GSM8K

You are an expert in math problems.

First, please generate some background knowledge which can be used to solve this
question. The knowledge SHOULD be general and applicable, Your generated knowledge
CANNOT be question-specific. Like commonsense reasoning, I can give the knowledge ”Acid
is corrosive.” Just list the knowledge.

Second, please answer this question by giving a short explanation and then give the
answer. Third, please generate some distractors for your answer and index them like “(A)__
(B)__ .

The answer and distractors should be as concise as possible. Your response SHOULD
follow the following format: Background Knowledge: [The generated knowledge] Explanation:
[Steps to achieve the answer] Answer: [A pure math part] Distractors: [Wrong answers]

Since GSM8K (Cobbe et al., 2021)) contains math problems and without options, we adopt ChatGPT
to generate distract options and knowledge for each query in GSM8K. The following is the prompt:

14
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C.2 PROMPT FOR SYNTHESIZING DATA

LaMer: e-CARE

You are an expert in creating reasoning and language understanding questions.

Here are the requirements:

1. You are given a fact and some examples for reference, the fact can implicitly guide the
solution for the reference examples. You should understand the Internal Mechanism of this
guidance to make new examples.

2. Each created example should contain a question, several options (;=3), an answer, and a short
explanation for the answer.

3. The options should be a short sentence or phrase rather than a single word whenever possible.
4. Don’t make any commonsense mistakes and ensure that your solutions are accurate.

5. You SHOULD propose totally new reasoning questions in various areas, including but not
limited to history, law, medical, math, science, computer science, psychology, Al, politics,
€conomics, etc.

6. NOTE that the fact should be an implicit explanation for obtaining the true answer, which
means the fact SHOULD NOT appear explicitly in the questions or the options.

7. Only one option is the correct answer, the other options should be much less plausible than
the correct option or they are just wrong options.

8. Therefore is no explanation in the reference examples, you SHOULD generate an explanation
first and then give the answer for your generated new questions.

9. The question could be in any form, such as "Why, What, How, Which” etc. You can also add
a premise to form a question.

10. The created examples cannot be different just in nouns.

Reference:
Knowledge: { }
Examples: { }

You MUST generate { } new examples. The examples MUST be totally different
from each other and the reference examples. Please return your response in the form:
Question: [QUESTION]

Options: [CANDIDATE OPTIONS]

Answer: [The option index of the answer such as (B)]

Explanation: [A concise explanation for the answer]

Question: [QUESTION]

Options: [CANDIDATE OPTIONS]

Answer: [The option index of the answer such as (B)]
Explanation: [A concise explanation for the answer]
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LaMer: GSM8K

You are an expert in creating math questions. Your goal is to generate a set of new math
questions based on the reference fact and examples.

Here are the requirements:

1. The example should contain a question, a solution to derive the answer to the question,
several options (;=3), and an answer.

2. Don’t make any commonsense mistakes and ensure that your solutions are accurate.

3. You SHOULD propose totally new reasoning questions.

4. NOTE that the fact should be an implicit guidance for obtaining the true answer, which means
the fact SHOULD NOT appear explicitly in the questions, solutions, or options.

5. Only one option is the correct answer.

6. There are no solutions in the reference examples, you SHOULD generate solutions first and
then give the answer for your generated new questions.

7. The question could be in any form. You can also add a premise to form a question.

Reference:
Knowledge: { }
Examples: { }

You MUST generate { } new examples. The examples MUST be totally different
from each other and the reference examples. Please return your responses in the form:
Question: [QUESTION]

Solution: [A CONCISE step-by-step SOLUTION to DERIVE the ANSWER to the Question]
Options: [CANDIDATE OPTIONS containing the answer]

Answer: [The option of the answer such as (B) $15]

Question: [QUESTION]

Solution: [A CONCISE step-by-step SOLUTION to DERIVE the ANSWER to the Question]
Options: [CANDIDATE OPTIONS containing the answer]

Answer: [The option of the answer such as (B) $15]

D PROMPT FOR EVALUATION

[INST]Question: {
Options: { }H/INST]

LLaMA-3 and Qwen2

user

Question: { }
Options: { }

assistant
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Table 5: Overall performance of LaMer, LLM2LLM, and baselines. Bold numbers denote the best
performance among all methods. Average denotes the average performance across all benchmarks.

LLMs Size Methods Label-free Comm. AGIEval ARC MMLU BBH CRASS GSM-Plus Average
Base - 67.56 32.82 7415 4975 2847  71.67 29.91 50.62
AugGPT Yes 74.53 33.03 7693 5256 33.82  81.67 13.78 52.33
Mistral Naive Yes 67.42 33.60 72.66  50.58 3222 80.00 31.19 52.52
7B Single Yes 69.47 34.87 7485 5144  29.53  80.00 29.03 52.74
LLM2LLM No 74.59 34.44 78.66  55.03  34.58  83.33 16.33 54.00
LaMer (Ours) Yes 75.10 34.50 7722 5452 3372 8833 29.23 56.09
Base - 74.84 39.45 86.29 59.72 39.85 76.67 61.93 62.82
AugGPT Yes 76.75 38.13 86.04 60.29 36.60 76.67 14.92 55.63
LLaMA-3 N_aive Yes 71.28 33.86 8450 57.86 4093  83.33 61.56 61.90
8B  Single Yes 76.36 39.72 8472 5897 36.53 76.67 55.85 61.26
LLM2LLM No 75.86 36.92 8736  60.24 3995 88.33 56.58 63.61
LaMer (Ours) Yes 78.15 40.85 8641  60.24  39.69  88.33 59.22 64.70
Base - 71.88 42.10 8548 59.53  37.58  85.00 61.79 63.34
AugGPT Yes 79.41 42.71 89.78  63.66  40.00  90.00 14.75 60.04
Qwen2 Naive Yes 75.62 42.80 8840 6250 3934  86.67 61.82 65.31
7B Single Yes 76.41 44.30 87.64 6198 39.69 80.00 56.62 63.81
LLM2LLM No 80.29 43.74 89.72  63.21  40.88  80.00 60.09 65.42
LaMer (Ours) Yes 78.13 45.02 88.62 6248 4056  86.67 61.44 66.13
Base - 53.26 25.80 4997 3373 2329  38.33 7.08 33.07
AugGPT Yes 55.42 25.76 4773 33.69 2431  36.67 3.95 32.50
Gemma-1.1 Naive Yes 55.38 25.78 47,79 3223 2424 36.67 5.99 32.58
2B Single Yes 52.85 24.51 46.67 34.00 25.03  31.67 5.86 31.51
LLM2LLM No 54.03 25.56 49.50 3577  25.60  40.00 7.81 34.04
LaMer (Ours) Yes 55.81 25.81 4891 3440 2526 41.67 6.69 34.08

Table 6: The size of selected knowledge deficiencies.

LLMs Easy Normal Hard Unfair
Mistral 375 375 375 375
LLaMA-3 150 150 150 150
Qwen2 375 375 375 375

Gemma-1.1 375 375 375 375

user

Question: { }
Options: { }
model

E Si1zZE OF SETECTED KNOWLEDGE DEFICIENCIES

The size of selected knowledge deficiencies of each LLM in each group can refer to Table 6]

Table 7: Statistics of e-CARE

Dataset  Train Dev Test Total
e-CARE 14,928 2,132 4,264 21,324
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Table 8: Ablation study results of the effect of the curricular deficiency remedy, LaMer* denotes that
we train corresponding LLMs with randomly shuffled data. Bold numbers denote better performance
between LaMer and LaMer™.

LLMs Size Methods Comm. AGIEval ARC MMLU BBH CRASS GSM-Plus Average

LaMer 75.10 3450 7722 5452 33.72 88.33 29.23 56.09
LaMer*  74.90 3407 7748 5430 33.66 86.67 28.42 55.64

LaMer 78.15 40.85 86.41 60.24 39.69 88.33 59.22 64.70
LaMer*™  77.67 4093 86.28 60.07 3847 88.33 59.55 64.47

LaMer 78.13 45.02 88.62 62.48 40.56 86.67 61.44 66.13
LaMer*  77.51 4433 8836 62.12 39.80 85.00 61.36 65.50

LaMer 55.81 25.81 4891 3440 2526 41.67 6.69 34.08
LaMer®  55.05 2532 48.63 34.16 25.18 41.67 6.60 33.80

Mistral 7B

LLaMA-3 8B

Qwen2 7B

Gemma-1.1 2B

F FURTHER ANALYSIS

F.1 DEFICIENCY DIAGNOSIS
We formally describe the baselines as follows:

* Golden Label adopt the labels to judge the response of a specific LLM, this LLM would
answer each question in a chain-of-thought (Wei et al., 2022) way. If the LLM gives the
wrong answers according to the labels on some examples, then the examples are treated as
the deficiencies of this LLM. We treat this method as the golden standard for diagnosing the
knowledge deficiencies of LLMs.

* Perplexity computes the perplexity of each option based on a specific LLM, the option with
the lowest perplexity is treated as the answer of the LLM, and then labels are introduced the
judge the correctness of the LLM. Similar to Golden Label, wrongly answered examples are
treated as the deficiencies of this LLM.

* Random method randomly samples the examples from a dataset.

* Relative Entropy is the method proposed in this paper.
We choose e-CARE (Du et al.| 2022) as the dataset for experiments, which is an explainable causal
reasoning dataset with two options in each example. The whole set of e-CARE (train, dev, and

test) is adopted for experiments. Statistics of e-CARE can refer to Table [/} The LLM we used is
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).

F.2 FULL RESULTS OF LLM2LLM

We provide the full results of LaMer, all baselines, and LLM2LLM in Table E} which demonstrates
the advantages of our proposed LaMer.

F.3 FULL RESULTS OF THE EFFECT OF CURRICULAR DEFICIENCY REMEDY

We provide the full results of the effect of curricular deficiency remedy Table[§] which demonstrates
the curricular deficiency remedy strategy.

F.4 VISUALIZATION OF GENERATED EXAMPLES
F.5 CAUSES FOR THE ADVANTAGES OF LAMER
To explore the potential causes for the advantages of LaMer, we visualize the data synthesized by
baselines and LaMer into 2D space. Specifically, we utilize FlagEmbedding (Zhang et al.| 2023a)

to represent each example in the synthesized data, and then reduce the dimensionality to 2 with the
help of t-SNE (Van der Maaten & Hintonl 2008). Finally, we employ DBSCAN (Ester et al., [1996)
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Figure 7: The distribution of synthesized data by baselines and LaMer on (a) Mistral and (b) LLaMA-
3.

to discover clusters and remove the noise data points. The eps and min samples of DBSCAN are
1.5 and 3, respectively. We also adopt Mistral and LLaMA-3 for experiments. The visualization
is shown in Figure[7] from which we can infer that, data synthesized by LaMer has a significantly
higher proportion at the outer edges of the whole distribution (LaMer and baselines). This might be a
potential cause for the advancement of LaMer, since LaMer can utilize relative entropy to effectively
discover more deficiencies.
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