
Received: 28October 2021 Revised: 1 February 2022 Accepted: 3 February 2022

DOI: 10.1002/bies.202100255

P ROB L EM S & PA RAD I GM S

Prospects & Overviews

Bayes andDarwin: How replicator populations implement
Bayesian computations

Dániel Czégel1,2,3,4 Hamza Giaffar5 Joshua B. Tenenbaum6,7,8 Eörs Szathmáry1,2,9

1 Institute of Evolution, Centre for Ecological Research, Budapest, Hungary

2 Parmenides Foundation, Center for the Conceptual Foundations of Science, Pullach, Germany

3 Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary

4 Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA

5 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA

6 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

7 Center for Brains, Minds andMachines, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

8 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

9 Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary

Correspondence

DánielCzégel, InstituteofEvolution, ELKH

Centre forEcologicalResearch, 1121

Budapest,Hungary.

Email: danielczegel@gmail.com

Funding information

TempletonWorldCharityFoundation,

Grant/AwardNumber: TWCF0268;Hungarian

NationalResearch,Development and Inno-

vationOffice -NKFIH,Grant/AwardNumber:

KKP129848

Abstract

Bayesian learning theory and evolutionary theory both formalize adaptive competition

dynamics in possibly high-dimensional, varying, and noisy environments.What do they

have in commonandhowdo theydiffer? In this paper,wediscuss structural anddynam-

ical analogies and their limits, both at a computational and an algorithmic-mechanical

level. We point out mathematical equivalences between their basic dynamical equa-

tions, generalizing the isomorphism between Bayesian update and replicator dynam-

ics. We discuss how these mechanisms provide analogous answers to the challenge of

adapting to stochastically changing environments at multiple timescales.We elucidate

an algorithmic equivalence between a sampling approximation, particle filters, and the

Wright-Fisher model of population genetics. These equivalences suggest that the fre-

quency distribution of types in replicator populations optimally encodes regularities of

a stochastic environment to predict future environments, without invoking the known

mechanisms of multilevel selection and evolvability. A unified view of the theories of

learning and evolution comes in sight.

KEYWORDS

adaptation, Bayesian inference, graphical models, particle filters, replicator dynamics

INTRODUCTION

Learning and evolution both produce adaptive solutions to environ-

mental challenges. The traditional view holds that these processes

unfold via distinct mechanisms at different timescales and in differ-

ent substrates: while evolution happens slowly in populations of repli-
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cating individuals through many generations, learning happens within

the lifetime of an individual. The two adaptive processes are certainly

linked – genetic evolution is the ultimate cause of learning capacities

– however learnt information cannot be passed on to other individu-

als except during social interactions that also evolve. It is legitimate to

wonder about thepossibility of a deeper linkbetween the twodomains,
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going beyond, for example, the resemblance between operant condi-

tioning and evolution by natural selection. An increasing number of

recent studies indeed hint at a deeper link: genetic evolution can store

memories of past selective environments and can even generalize, to

some extent, to previously unseen ones. There is a deep and fruitful

analogybetweenBayesian learning andgenetic evolution,which seems

obvious in hindsight: every hereditary variant is a hypothesis about

how to live in the environment: bad genes diminish in frequency just

as bad hypotheses diminish in the posterior distribution. This and other

insights indicate that aunified viewof adaptiveprocessesmight bepos-

sible.

What is the last word of this sentence? Our mind might be a poor

logical inference machine, but it is an excellent probabilistic inference

machine.[1,2,3] It evolved to be so: betting hedges over whatmight hap-

pen next has been crucial for survival. Two key ingredients of such a

computational process are the representation of hypotheses and the

update of their relative plausibility given new evidence. In a computa-

tional sense, something strikingly similar happens in evolutionary sys-

tems on a different timescale.[4,5] An inherited instruction set builds

a phenotype that represents a hypothesis over possible environments

and the relative frequencies of phenotypes are updated according to

various competitive and cooperative mechanisms. Here we argue that

this analogy is both mathematically well-established in terms of the

dynamical equivalences of their fundamental models and also concep-

tually rich in its consequences.

Brains, artificial intelligence algorithms, and biological organisms all

face a common challenge: they all need to represent a degree of belief

over possible future environments.What is available tomake this guess

is (a partially observed and noisy version of) the time series of past

environments. Both natural environments and complex datasets typ-

ically contain many variables (they are high-dimensional) that change

over multiple timescales. In such settings, it is not sufficient to simply

remember the past; what is needed instead is to extract patterns from

the past in order to assign a non-zero probability to environments that

have never happened but may yet occur. State of the art generative

models, such as generative adversarial networks, do a fairly good job:

after being trained with a million images of different bedrooms, they

are then able to generate a novel bedroom image that is both coherent

and pleasing to the human eye.[6,7] Clearly, the generative model has

learned something about the essence of all bedrooms, not just those

that it has already encountered. It generalized.

What is the essence of past environments that enables organisms

to become adapted to novel environmental conditions?[8] How is this

essence stored in heritable form? Theoretical work suggests that nat-

ural genetic evolution can permit generalization to a novel environ-

ment, provided it is not too novel, that is, it belongs to the same ‘‘gram-

matical class’’ as the environments to which the ancestral population

adapted in the recent past[9]; see also[10] for a general discussion. Our

understanding of how biological organisms express inherited informa-

tion in phenotypes in a possibly environment-dependent way might

benefit from the theory of high-dimensional representations as dis-

cussed in the fields of artificial intelligence and computational cogni-

tive science.[11,12,13] Herewe simply assume that a scalar function over

all possible environments is represented in some way, either explic-

itly or implicitly. In Bayesian learning theory, this is a likelihood func-

tion P(x|hi), which tells us the likelihood of any possible environment

(i.e., data) x, under hypothesis hi. In the case of organismal pheno-

types, it is the fitness fi(x)of type i in environment x. With such high-

dimensional representations as a starting point, in this paper, we dis-

cuss various mathematical and conceptual equivalences of fundamen-

tal dynamical models of statistical inference and evolution. How do

multiple types, representing different hypotheses, compete? Does an

evolutionary system as a whole perform any non-trivial computational

function?Howefficient is this computation compared to a theoretically

optimal one? Statistical learning theory as a mathematical language

connects algorithmic (what are local dynamical rules?) and computa-

tional (what are global goals that the system as awhole achieves?) level

descriptions. Bymapping evolutionary dynamics tomodels of Bayesian

statistical learning we also hope to facilitate discussion about vari-

ous computational functions evolutionary systems might perform in

possibly high-dimensional and varying environments. Students of evo-

lution are likely to know about the usefulness of Bayesian statistics

through theapplicationofmodernphylogeneticmethods.Whatwedis-

cuss here is very different – we question to what extent evolution as

a process can be regarded as Bayesian, that is probabilistic, computa-

tion? Harper[14] raised attention to two striking, formally similar state-

ments. Fisher wrote, inductive inference is the only process known to us

by which essentially new knowledge comes into the world.[15] As Dawkins

asserted fifty years later, the theory of evolution by cumulative natural

selection is the only theorywe know of that is in principle capable of explain-

ing the existence of organized complexity.[16] This article is an argument

for the strong epistemological and ontological link between these two

observations.

REPLICATOR DYNAMICS AND BAYESIAN
INFERENCE

Logical inference is concerned with inferring the values of determin-

istic binary variables given the observation of other variables and a

model describing the logical relationships between variables. Proba-

bilistic inference generalizes logical inference to update degrees of

belief in a model of probabilistic dependencies, not black and white

logical values, upon observation of new data. A model of probabilistic

dependencies specifies a crucial quantity: the likelihoodP(x|hi) of a spe-

cific observation x of observed variables, given a specific setting hi of

hidden variables.

As it turns out, the fundamental dynamics of the process of proba-

bilistic inference and that of replicators with frequency-independent

fitness is equivalent once the right identification is established,[17,14,18]

see Figure 1. This identification posits that prior beliefs (i.e., prior to

observation) over possible values hi of hidden variables are updated

to posterior beliefs (i.e., after observation) just as relative frequencies

of types i are updated in discrete-time replicator dynamics. The factor

that corresponds to fitness fi(x) of type i in replicator dynamics is the

likelihood P(x|hi) of an observation x, associated with a specific value

hi of the hidden variables. Different settings hi of hidden variables
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F IGURE 1 Replicator dynamics and Bayesian update. (A) The graphical model, familiar fromBayesian statistics, corresponding to Bayesian
update and to discrete-time replicator dynamics with frequency-independent fitness. Nodes represent either different settings of a random
variable with its associated probability distribution or different types with their associated relative frequency distribution. Edges between nodes
represent dependencies in a well-definedmathematical sense, seemain text for details. (B) Top. Likelihood and fitness functions over data/possible
environments, corresponding to the different hypotheses (i.e., settings hi of the hidden variable h) and to the different competing types i. Bottom.
The parameter space (x1,x2) of data/environment, with its associated probability of occurrence. (C) Dynamics over many sequential steps.
Hypotheses that fit the current environment well increase their probability according to Bayes’ rule; types that fit the current environment well
increase their frequency according to the discrete-time replicator equation

compete, measured in terms of their degree of belief, as types i com-

pete, measured in terms of their relative frequencies. When observing

the environment repeatedly, Bayesian update is applied sequentially,

according to the rule “today’s prior is yesterday’s posterior”: the

posterior at time t− 1,P(hi|xt−1,. . . , x1), is used as the prior at time t.

Mathematically, the discrete-time replicator equation with

frequency-independent fitness is formulated as

pi(t + 1) =
fi(xt)pi(t)∑
i fi(xt)pi(t)

(1)

while Bayesian update over hypotheses hi, given data xt, is written as

P(hi ||xt, xt−1,… , x1 ) =
P(xt |hi )P(hi |xt−1,… , x1 )∑
i P(xt |hi )P(hi |xt−1 ,… , x1 )

(2)

In the following,wewill not indicate data history xt ,xt−1,. . . , x1 explic-

itly, instead, we focus on the dynamical update at a single timestep

t. Accordingly, the prior at time t, P(hi|xt−1,. . . , x1), is simply written

as P(hi). Another simplification in notation is allowed by the fact that

the normalization factors,
∑

i fi(x)pi(t) and
∑

i P(xt|hi)P(hi|xt−1,… , x1),
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respectively, do not change the ratio of relative frequencies or prob-

abilities. Taken together, replicator dynamics and Bayesian update are

written concisely as pi(t+ 1)∝fi(xt)pi(t) and P(hi|xt)∝P(x|hi)P(hi).

Two limitations of this analogy, viewed from an evolutionary the-

ory perspective, are the following. First, the replication equation in

its general formulation describes frequency-dependent selection: fit-

ness of one type may depend on the frequency of itself as well as

on the frequency of any other type.[19] In this sense it is more gen-

eral than Bayesian update. Second, as it stands, the counterpart of

Bayesian learning, is evolution in populations of asexual (clonal), hap-

loid individuals. It is true, however, that many important applications

(game theory, ecology) of the replicator equation also ignore this com-

plication: game theory is a model of phenotypic evolution, in which

strategies breed.[20] The question how the analogy applies to sexual

haploid and diploid populations is open and requires further investi-

gation (cf. will a sexual population evolve to an evolutionarily stable

strategy?[21]).

Although in the above discussion we described these dynamics

over discrete (geno)types or hypotheses for simplicity, it can be just

as well formulated over continuous (pheno)type spaces or contin-

uous parametrizations of hypotheses. In fact, both are used exten-

sively: in Bayesian statistics, this often relies on the existence of a

conjugate prior-likelihood pair, which ensures that when the prior

is updated to the posterior via the likelihood as described in Equa-

tion (2), it stays in the same parametric family (e.g., Gaussian, Dirich-

let, etc.). This implies that a series of subsequent Bayesian updates

can be viewed as a discrete-time dynamics of a single vector in the

parameter space of the prior/posterior (e.g., mean and variance of

a Gaussian). Models of (frequency-dependent) phenotypic evolution,

such as in game theory and adaptive dynamics, often assume a con-

tinuous trait space.[22,23] The population state can be given by a

probability measure on a measurable space, and the trait space can

have many dimensions.[22] In evolutionary quantitative genetics the

dynamics of a continuous phenotypic distribution is being followed

under the assumption that phenotypic traits are influenced by many

genes, each of them with a small effect on the trait.[24,25] Selec-

tion can act on the mean as well as the variance of the popula-

tion distribution; the genetic variance-covariance matrix plays a cru-

cial role in this approach. Deeper links between evolutionary mod-

els in continuous trait spaces and Bayesian models await systematic

scrutiny.

REPLICATOR-MUTATOR DYNAMICS AND
FILTERING IN HIDDEN MARKOV MODELS

Mutation between types is introduced to replicator dynamics by

allowing probabilistic transitions between types, described by the

replicator-mutator equation. Sequential Bayesian update is extended

to hiddenMarkov models (HMMs)[26] the samemanner.[27] The muta-

tion kernel between types plays the role of the transition matrix

between hidden states (i.e., hypotheses). The replicator-mutator equa-

tion takes the form

pi(t + 1) =

∑
j𝜇i←jfj(xt)pj(t)∑
kfk(xt)pk(t)

(3)

Where µi← j determines themutation probability (in unit time) from

type j to type i and therefore is normalized as
∑

i 𝜇i←j, and the fac-

tor
∑

k fk(x)pk(t) is the average fitness of the population, responsible

for keeping the distribution pi normalized at all times. Equation (3)

describes how fitnessfi(xt) in the current environment, together with

themutation probabilitiesµi← j, update the relative frequency distribu-

tion pi. Similarly to the replicator equation, information about the envi-

ronment is transferred to the relative frequency distribution over time;

here, however, this information is filtered through themutation proba-

bilities, including the diagonal elements µi← j that specify the fidelity of

replication.

As observed by,[27] this model of replication and mutation is equiv-

alent to updating the probability distribution over latent hypotheses

hi in hidden Markov models (HMMs). HMMs extend Bayesian update

by introducing probabilistic transitions between hidden states (i.e.,

hypotheses) hi, and they infer the joint distribution {P(hi,t = 1), P(hi,t

= 2), . . . , P(hi,t = T)} over the hidden states over time given data

history {x1,x2. . .xT}. In order to achieve this, HMMsneed two quantities

to be pre-determined: hypothesis hi’s likelihood of data, P(x|hi), as in

Bayesian update, and the transition probabilities from hj tohi, denoted

by P(hi|hj). This joint probability distribution over hypotheses at all

times, {P(hi,t = 1), P(hi,t = 2), . . . , P(hi,t = T)}, can be reduced, however,

to distributions of interest; if this distribution of interest is the one cor-

responding to the last timestep, P(hi,t), dynamically inferring this last

distribution given data history is called the filtering problem in HMMs,

and it is obtained through the dynamics

P(hi, t + 1) =

∑
j P(hi

||hj )P(xt ||hj )P(hj, t)∑
k P(xt |hk )P(hk, t)

(4)

that is indeed equivalent to Equation (3). Importantly, HMMs can also

be cast as Bayesian graphical models, as illustrated in Figure 2.

MULTILEVEL SELECTION AND BAYESIAN
INFERENCE IN HIERARCHICAL MODELS

When the replication of different replicator types are partially but

not fully synchronized and groups of replicators inherit information

regarding the identity of the group, an effective description of the

system is provided by multilevel selection theory (MLS).[28] Biolog-

ical examples, where selection is possibly nonnegligible at multiple

levels, include genes within protocells, reproducing organelles in the

eukaryotic cell, or individuals in a social insect colony.MLSdecomposes

the full effect of selection hierarchically to selection acting between

and within groups. Partially synchronized replicators form a necessary

intermediate step towards new emerging units of evolution, that is,

transitions in individuality, that is, in turn, a main mechanism respon-
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F IGURE 2 The Bayesian graphical model corresponding to replicator-mutator dynamics and filtering in hiddenMarkovmodels (HMMs).
Relative frequencies of types are updated by both selection andmutation; the probability distribution over hidden variables (hypotheses) is
updated by both their likelihood of fitting current data and transitioning between hidden states. Filtering refers to the fact that the distribution of
interest is always the current distribution over hidden variables given data/environment history

sible for increasing complexity in evolutionary systems. Understanding

MLS is therefore of crucial importance regarding any, natural or engi-

neered, open-endedDarwinian system.

MLS acts on a hierarchical population of replicators: types of indi-

viduals hi are grouped into types of collectives zj. A complete static

description of the population is given by the abundance and compo-

sition of collectives (for further details, see[29]). The composition of

collectivezj, denoted by c
j
i, normalized as∑

i c
j
i = 1, quantifies the relative abundance of individual level repli-

cators within collectives of type zj. The total abundance of collective zj,

measured as the total abundance of individual-level replicators within

collectives of typezj , is denotedby pj andnormalized as
∑

j p
j = 1. These

two sets of relative abundances, the compositions of collectives cji and

their abundance, pj, describe the composition of the hierarchical (two-

level) population completely. From these two quantities, a third one,

the total abundance of individual level replicators of type hi being part

of collective zj, denoted by pji, can be calculated aspji = cjip
j. This quan-

tity connects the two population levels in a sense that the abundance

distribution of any level can be computed by summing over the other

level: at the level of collectives, the abundance distribution, as we have

seen, is given by pj =
∑

i p
j
i; at the level of individuals, the abundance of

type hi, pi, is obtained by adding up the abundances of type hi being in

any collective, pi =
∑

j p
j
i =

∑
j c

j
ip
j.

These quantities above describe the composition of the population

at one time instance. How does selection change this hierarchical pop-

ulation over time? According to the discrete-time replicator dynamics,

abundances change proportionally to their fitness. Here, however, the

fitness of an individual-level type hi might very well depend on the col-

lective zj it is part of; we denote this fitness byf
j
i . We also allow this fit-

ness to dependon the environment x. The replicator dynamics, tracking

the abundance of individuals of type hi being part of collectives zj, then

reads as

pji(t + 1) =
∑

j
fji p

j
i∕f̄ (5)

where the average fitness, f̄, is calculated as f̄ =
∑

i,j f
j
i p

j
i. Tracking the

abundance distribution at any level is then possible by summing over

the other level, as discussed above. This, however, does not mean that

the dynamics at the two levels are decoupled, for example, at the level

of individuals, pi(t + 1) =
∑

j f
j
i p

j
i∕f̄ ≠ (

∑
j f
j
i )(
∑

j p
j
i)∕f̄.

Crucially, fitnesses and abundances are assigned to types that con-

nect the two levels, namely, to individuals of type hi that are part of

collective zj. The replicator equation acts on these quantities, evolving

themultilevel population in time. This conceptualization ofMLS allows

for relating multilevel evolutionary dynamics to hierarchical Bayesian

computations over multivariate distributions: these two hierarchical

dynamics are structurally equivalent, with the identified quantities

listed in Figure 3. Note that this analogy can be extended to arbitrary

number of levels, see[29] for details.

An important aspect of multivariate Bayesian models is that it

is possible to identify a parametrization independent backbone of

the model in terms of conditional independence relations between

variables. This allows for distinguishing between model structure

(topology) and parameters, a necessary step towards modeling

causality.[30] As discussed in,[29] conditional independence relations

imposed on the evolutionary implementation of the corresponding

Bayesian model have a well-defined intuitive meaning, too: it corre-

sponds to freezing compositions at various levels of the hierarchical

population.

Another fundamental feature of hierarchical models is their com-

plexity. Finding the probabilistic model with optimal complexity given

data is a non-trivial task that can be approached frommany directions.

The Bayesian approach is to gauge the model’s performance averaged

over all possible parameter settings of hidden variables.[31] When com-

paring two models, possibly having different number of variables and

different number of hierarchical levels, one has to favor the one that

predicts data better on average. Interestingly, this Bayesian agenda

translates to a general and simple evolutionary interpretation: if the

average fitness of a collection of replicators is higher when they are
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6 of 11 CZÉGEL ET AL.

F IGURE 3 The Bayesian graphical model representingmultilevel selection and Bayesian inference in a hierarchical model. Multilevel selection
is modeled as discrete-time replicator dynamics over a hierarchical population (types within collectives); in the corresponding hierarchical
Bayesianmodel, two hidden variables fit the data directly and through their dependency structure

grouped together in a collective compared to the case when they are

‘‘free”, a new level emerges. Although this model of evolutionary tran-

sition of individuality[32,33] is rather simplistic in terms of dynamics, it

is not in terms of structure, and we believe that this similarity is quite

remarkable, having the potential to be refined later on to understand

and design complexifying evolutionary systems.

TIMESCALES OF ADAPTATION

Environmental change might happen at multiple overlapping

timescales. A great challenge to any adaptive dynamics is to cover all

timescales by various adaptive mechanisms. Evolutionary systems and

Bayesian statistical models use (at least) three algorithmically distinct

mechanisms.

Developmental/behavioral plasticity and generalization. A fast

change from the point of view of a slower adaptive mechanism is per-

ceived as stochastic. In this case, the adaptive mechanism is Bayesian

update with or without transition between hidden states (hypotheses),

or a replicator dynamic with or without mutation. Hypotheses or types

compete to fit all environmental possibilities that might occur at this

fast timescale. This includes those that never exactly happened but

might happen. Being prepared for such novel environments requires

generalization from past experiences. Such adaptedness to all possible

environments (weighted by their expected likelihood) is represented

by the fitness function fi(x) or the likelihood function P(x|hi). Biological

organismsmight utilize developmental and behavioral plasticity mech-

anisms, including environment-dependent changes in gene expression

to flexibly parametrize fi(x); Bayesian hypotheses might use various

parametrizations of high-dimensional probability distributions, includ-

ing artificial neural networks, to represent P(x|hi). Note that fitness and

likelihood functions are not adaptive mechanisms; they are the out-

come of adaptivemechanisms that operate on a slower timescale.

1. Evolution and tracking data. Environmental change that happens

approximately at the timescale of selection and mutation can be

tracked by these mechanisms. Replicator-mutator dynamics and

(filtering) in hiddenMarkovmodels are the simplestmodels of adap-

tation to these timescales.

2. Evolvability/facilitated variation and adaptive transition probabili-

ties. Change at timescale 1 can be followed by replicator-mutator

dynamics or hidden Markov models, but information contained in

the regularities of change is not utilized. Just like prediction at

timescale 0 depends on fitting the regularities of this timescale via

fitness or likelihood functions, prediction at timescale 1 depends on

fitting its regularities via adaptive mutation rates or adaptive tran-

sition probabilities between hidden variables.

3. Transitions in individuality and learning the structure of Bayesian

models. This is adistinct adaptivemechanism thatmightbridgemul-

tiple timescales. Yet exceeding the limits of selection operating at

a single level or of a given structure of a Bayesian model provides

opportunity for complexification and for extracting environmental

regularities that needs a larger (or different) parameter space to fit.

Expanding to new niches and extracting higher-order complex cor-

relations in data are primal examples.

FROM COMPUTATION TO ALGORITHM: PARTICLE
FILTERS

So far, we have discussed computational-level equivalences between

learning dynamics in a Bayesian paradigm and infinite-population

idealizations of evolutionary dynamics. It is a highly non-trivial
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F IGURE 4 Particle filters and theWright-Fisher model of population genetics. Computation of weights and resampling collectively
correspond to selection and replication. This equivalence implies that theWright Fisher model implements unbiased sampling of the filtering
distribution in hiddenMarkovmodels

question whether such equivalences exist between algorithmic-level

finite-population approximations as well. The Darwinian algorithm

builds on the triplet of replication, variation, and selection over a finite

population. It turns out that an equivalent population-based sampling

dynamics, particle filters (PFs), are known to sample the filtering distri-

bution in hidden Markov models.[34,35,36] Mathematically, component

processes of particle filtersmap to those of theWright-Fishermodel of

population genetics.[18,37] Figure 4 summarizes these component pro-

cesses and Table 1 presents the equivalences between them.

The critical resampling step of the particle filter was introduced in

order to maintain diversity in the population of particles by avoiding

particle decay (or blowup). Resampling involves drawing a new set of

particles from aweighted distribution such that the normalizedweight

multiplied by the number of particles is the expected number of times

that particle is drawn. The question of when to apply this computa-

tionally expensive algorithmic step remains an active research topic in

the particle filter field; interestingly, the analogous biological question

of when to resample is also non-trivial. Biological evolution rests on

multiplication and selectable hereditary variation. Populations cannot

persist indefinitely without some form of reproduction; even if organ-

isms were not to age, they would eventually succumb to accidents.

This constraint of reproduction does not necessarily apply so simply to

components of natural and artificial information processing systems,

in which reproduction can be replaced by accumulating scores, as in

the assigning ofweights to particles or scores to grammatical construc-

tions in FluidConstructionGrammar (FCG),[38] for example. Reproduc-

tionbecomesnecessarywhen (i) newvariants are generated fromolder

ones and (ii) these variants that must be tested against alternatives:

template and copy must become distinct. For example, in the case of

FCGs, a newgrammatical rulemust be stored in somenewdistinct data

structure if the ancestor is to be kept as well. In the biological world,

clonal plants[39] and animals[40] come closest to the case of accumu-

lating scores. Members of a clonal population, or ramets, do not sepa-

rate: instead, the colony grows. The size of the colony can be consid-

ered more directly analogous to weights or scores. However, the bio-

logical constraint remains that colony growth results from reproduc-

tion of modules that fail to separate.

Another near ubiquitous mechanism that biological evolution relies

on tomaintaindiversity is genetic recombination. Recombination facili-

tates adaptation in the sense that biological populations respond faster

to directional selection if genes can recombine[41] and permits greater

leaps in mutation space. Recombination as an algorithmic element has

been introduced to particle filters[42] over a continuous state space,

offsprings being set to a weighted average of parent vectors. Genetic

recombination, however, suggests that it is testing different combina-

tions of discrete modules, rather than simply mixing parental informa-

tion, that brings unparalleled advantage over single-parent architec-

tures. A number of evolutionary algorithms have implemented recom-

bination of structured substrates including graphs,[43] matrices[44] and

Bayesian graphicalmodels[45,46] in order to find better solutions faster.

Perhaps the most sophisticated recombination schemes have been

developed for neural networks that rely on modular compressed rep-

resentations of networks called indirect encodings.[47] In the context

of cognition, Monod proposed an evolutionary dynamics of ideas, sug-

gesting that they can also recombine.[48] In the present context we are

compelled to wonder about the recombination of hypotheses and how

this might proceed all the way from the semantic level down to neuro-

biological or machine-based implementation?

The mechanical mapping of (replication, variation, selection) to

the language of particle filters is crucial in understanding (i) what
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TABLE 1 Correspondence between particle filters, a
sampling-based approximation of posterior distribution in Bayesian
statistical learning and theWright-Fisher model of population
genetics

notations particle filter Wright-Fishermodel

hi hypothesis/hidden

variable i
type i

xt data at time t environment at time t

qt(hi) probability of

hypothesis i at
time t

relative frequency of

type i at time t

w(hi,xt) likelihood of

hypothesis i
generates data xt

fitness of type i in
environment xt

algorithm

1. q̃t(hi)←W(hi, xt)qt(hi) computing particle

weights

selection

2. sampleN particles with

probability

proportional to q̃t(hi)

resampling replication

3. relocate each particle

at hi to
hj with probability µj← i

transition between

hypotheses

mutation between

types

4. qt+1(hi)← ki/N, where
ki is the number of

particles at hi

computing the

posterior

next generation

relative

frequencies

limits

N→∞ and µ→ 0 Bayesian update replicator equation

N→∞ exact filtering in

hiddenMarkov

models

replicator-mutator

equation

statistical computations a population of replicators can perform over

their stochastic environment beyond selecting the fittest variant,

and (ii) engineering non-parametric statistical learning algorithms

based on parallel sampling over potentially non-differentiable,

non-parametrized, combinatorial, compositional, and open-ended

hypothesis spaces. We note here that another set of constraints might

apply: the constraint that the (description of the) hypothesis must be

copyable, mutable and evaluable.

DISCUSSION

Bayesian computations form a unique cornerstone of any adaptive

dynamics in uncertain environments. Their power lies in their gener-

ality: the algorithmic and implementational details constrained by the

given physical/informational substrate is not specified. In this paperwe

show that it is possible to implement many of the most relevant types

of Bayesian computations by simple replicator-based systems.

Thepossibility of such implementations suggests that replicator sys-

tems, although not directly selected for it, perform adaptation in a gen-

eralized, system-level, computational sense. It is not only the set of

Box 1.When do replicator systems performadaptive com-

putations?

Finding a Lyapunov function (i.e., a scalar-valued func-

tion over the space of parameters on which the learn-

ing/evolutionarydynamics always followsadownwardspath)

is not always easy, finding one out of many possible ones that

contributes meaningfully to a learning-theory based inter-

pretation of emergent computations is even harder. In evo-

lutionary theory, this line of thought goes back to Fisher’s

fundamental theorem of natural selection, stating that a

scalar function over (phenotypic) parameters, namely, aver-

age fitness, always increases if selection is not frequency-

dependent.[62] It is perhaps less well known that a Lya-

punov function always exists in frequency-dependent sce-

narios as well, now interpretable in the language of infor-

mation theory: it is the KL divergence between the cur-

rent relative abundance distribution over types and the

steady state that always decreases over time.[63,14,64] Fol-

lowing a similar path to find learning theoretically relevant

Lyapunov/potential/cost functions in case of more complex

dynamics of competing structures that are capable of rep-

resenting patterns in high-dimensional data is a potentially

important step towards a more unified theory of adaptation,

incorporating both evolutionary systems composed of com-

peting representations of the environment and learning sys-

tems that learn to represent data, in many cases distributed

over myriads of elementary computing units interacting

locally. A further fundamental conceptual step would be to

account for activemanipulation of the environment, allowing

causal influences between the evolutionary/learning agent

and the environment to be mutual. A work connecting niche

construction to active inference[50] nicely exemplifies this

idea.

types (or those with highest fitness) that are adapted to the series of

past environments; their relative frequencies are maximally informa-

tive. Furthermore, theyaremaximally informative in apredictive sense:

given the series of past environments, the system hedges its bets on

survival in future environments. Crucially, replicator systems are pre-

dictive and perform computations as wholes even without relying on

evolvability or multilevel selection. This Bayesian, probabilistic formal-

ization of system-level adaptation of replicator populations can be con-

sidered as an extension of previous discussions about the existence of a

global cost (energy) function, called the Lyapunov function, over which

the dynamics always follows an adaptive path; see Box 1.

Althoughwe think that the general conceptual similarities are possi-

bly far-reaching, there are explicit gaps andmismatches in this analogy.

They fall into two categories. Structural mismatches cannot be worked

around in the current framework of Bayesian computations, pointing
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at the need for an extended ormodifiedmathematical framework. One

structural mismatch is that fitness functions over all possible environ-

ments are non-normalized whereas likelihood functions are normal-

ized (i.e., sumup to1).Normalization canbe regarded as a hard tradeoff

between being adapted to different environments; in complex biologi-

cal reality fitness functions are instead subject to a set of soft physical-

chemical-design tradeoffs. Yet as we pointed out in the introduction,

the theory of high-dimensional representations (mostly as abstracted

fromartificial neural networks) offer apromisinggeneral directionwith

possible inbuilt soft or hard tradeoffs regardless of whether the fit-

ness/likelihood function to-be-constructed is normalized or not. Sec-

ond, likelihood functions associated with Bayesian hypotheses are not

explicitly dependent on the prior probabilities of those hypotheses,

whereas frequency-dependent fitness plays a key role in modelling the

various behavior of replicator systems. The second category, model

gaps, fit into the framework of Bayesian statistical learning, but they do

not (yet) have exact mathematical analogs. Resource competition can

be regardedas such amodel gap. Phenomenologically, theExpectation-

Maximization algorithm,[49] as used to fit mixture models, builds on

the idea of finite shared resources and quasi-equilibrium evolutionary-

ecological dynamics. Another conceptual similarity worth mentioning

is an added layer to Bayesian computations: the active manipulation

of the environment, forming a closed algorithmic loop with building

statistical representations of the environment. As pointed out under

the specific representational choice of the free energy principle,[4]

this closed loop dynamics is analogous to niche construction[50]: the

evolved, heritable behavior of causal and directed manipulation of the

environment.

When parametrized by neural networks, models of statistical infer-

ence share an interesting parallel with development: the separation of

timescales. In neural networks, activity patterns distribute information

about the stochastic environment at a fast timescale, while synaptic

weights extract and store statistical regularities of an ensemble of envi-

ronments at a much slower timescale. Timescale separation is a simple

yet powerful mechanism preventing the interference of the two pro-

cesses (computation and learning, in the above sense). Fast timescale

activity dynamics that compute the consequences of each stochastic

environment parallels with developmental plasticity. Indeed, the geno-

type and current environment jointly determine the phenotype via

development. On the other hand, slow timescale plasticity that stores

information about regularities of many past environments, maps to

evolutionary adaptation encoded in the genotype.

Explicit understanding of developmental encoding of regularities of

past environments has been gained using RNA folding and genetic reg-

ulatory networks (GRNs) as models of development. RNA folding from

its primary sequence can be considered as a simple form of develop-

ment. The fitness of an RNA structure is given by its structural dis-

tance from a target structure that is favored by selection in regime A.

Then, for a number of generations, another target B is chosen. During

both epochs the RNA population evolves towards the target for a cer-

tain number of generations. When we put the RNAs back into regime

A, readaptation is faster than that of the naive, primary RNA popu-

lation. The population shows memory. The population can generalize

from the training regimes in that it can adapt fast to a novel target

in regime C, provided all target structures belong to the same “gram-

matical” class.[9] Another example is thememory of genetic regulatory

networks (GRNs). The in-silico experiments are similar to the previ-

ous RNA case, using alternating selection epochs; target phenotypes

are defined by gene activity patterns. Again, it is found that develop-

mental memory evolves.[11] It was also shown that the memory capac-

ity of the GRNs behaves as the memory of analogous neural networks

in terms of the number of phenotypes that can be stored, the grace-

ful degradation of memory recall with the progressive removal of reg-

ulatory interactions, and the Hebbian-like behavior (‘genes that are

expressed together have strong mutual, evolved activation’) as a pop-

ulation average.[13] A fascinating new research direction is the extent

of GRNmemory capacity without genetic change by the application of

different stimuli.[51]

With overlapping dynamical principles, genetic evolution and

Bayesian cognitionmight be considered as an outer and inner loop of a

general adaptive paradigm.[52,53] One interesting question is how they

might interact. In particular, whether a Bayesian cognitive mechanism

is so powerful that it would hinder genetic evolution—in the extreme,

it would render genetic evolution obsolete. In order to be able to do

all these calculations better and faster you need classical genetic evo-

lution, including generation and evaluation mechanisms as well as bet-

ter inherited priors. Once you have them, then genetic evolution will

be “allowed” to slow down–at least regarding brain evolution for cog-

nition. As Deacon emphasizes,[54] with a cognitive apparatus hominins

were facing relaxed genetic selection inmany dimensions, and thismay

even have facilitated the emergence of complex natural language. Or

asDawkins argued,[55] themain evolutionary players in our species are

memes rather than genes.

We envisage three aspects of human inquiry that potentially ben-

efit from this correspondence between evolutionary and probabilistic

computations.

First, explaining the adaptive potential of anyDarwiniandynamics in

Nature: those implemented on a genetic basis, and also those that have

not been fully acknowledged, and where the usefulness of replicator-

based modeling is questionable at this point, such as memetics,[55,56]

Darwinian neurodynamics[57,58,59,60] or quantum Darwinism.[61] Such

explanations would mostly be based on either (i) finding global cost

functions that evolutionary systems emergently optimize or (ii) relat-

ing the computations performed by the system to probabilistic compu-

tations that optimally extract information from external data.

Second, many aspects of human and non-human animal cognition

is efficiently modeled by the framework of Bayesian inference and

generative models. This is in line with selective pressures favoring

optimal extraction of information about the environment that in turn

enables action selection that leads tomaximum survival and reproduc-

tion probability. The possible implementations of Bayesian computa-

tions on neural substrates, however, is not fully explored. Here we hint

at one possible implementation, based on copying and evaluation of

any neural information.Wedonot posit that all Bayesian computations

are implemented this way, instead, we point at the possibility that the

effective information extraction provided by Bayesian computations
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might be efficiently combinedwith the open-ended novelty generation

evolutionary systems are capable of.

This leads to our third point: the possibility of leveraging the

combination of evolutionary and Bayesian computations in designing

future AI systems to generate creative yet optimally informed solu-

tions/actions in any probabilistic environment. This direction would,

in the very first place, need a more thorough understanding of the

relation between evolutionary dynamics and learning theories, pos-

sibly unified in the same mathematical language.[10] Indeed, besides

highlighting parallels betweenevolutionary dynamics and learning pro-

cesses, we believe that one of the most important contributions of

this paper is the explicit introduction of Bayesian graphical models

to evolutionary modeling. Bayesian graphical models provide a con-

sistent modular syntax for combinatorial model building, it unloads

the cognitive costs of consistency checks and eases building men-

tal maps of related models. We do not state that all evolutionary

processes fit into this framework, neither that the Bayesian graph-

ical framework will be the ultimate language of evolutionary mod-

eling, but we strongly believe that a similar combinatorial syntax

could aid focusing on relevant aspects of modeling in evolutionary

theory.
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