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ABSTRACT

We revisit LLM reasoning through two competing decoding paradigms: au-
toregressive large language models (AR LLMs) with next-token prediction, and
diffusion-based large language models (DLLMs) with iterative denoising; yet
the community lacks compute-controlled, apples-to-apples comparisons. We re-
cast reasoning as trajectory formation, contrasting sequential commitment in AR
LLMs with iterative refinement in DLLMs, and run a matched-scale study across
mathematics, logic, natural-language inference, and commonsense QA, with ro-
bustness and efficiency analyses. Empirically, DLLMs outperform AR LLMs
on most reasoning benchmarks, especially those requiring global constraints
and long-range coherence, whereas AR LLMs remain competitive on shorter,
commonsense-oriented tasks. Mechanistic analyses show DLLMs gradually cor-
rect early errors and enforce sequence-wide consistency; robustness experiments
reveal graceful degradation under prompt noise and distribution shift. We quantify
accuracy–efficiency trade-offs: DLLMs increase FLOPs and wall-clock latency;
compute-matched comparisons preserve their advantage, indicating benefits arise
from the generative mechanism rather than added budget. Ablation studies further
reveal the influence of diffusion-specific design factors and demonstrate how these
parameters affect reasoning performance. While DLLMs incur higher inference
cost, our results delineate regimes where diffusion decoding is advantageous and
provide practical guidance for model configuration under deployment constraints.

1 INTRODUCTION

(a)

(b)

Figure 1: (a) Autoregressive gener-
ation: outputs are produced sequen-
tially one token at a time.
(b) Diffusion-based generation: text
is gradually refined from noise

(a)

(b)through iterative denoising steps.

Large language models (LLMs) have shown strong rea-
soning across a wide range of tasks. Mainstream systems
(e.g., GPT-4 (Achiam et al., 2023), Llama (Touvron et al.,
2023), Mistral (Jiang et al., 2023), and DeepSeek (Dai et al.,
2024)) use next-token prediction with autoregressive, left-
to-right decoding. Formally, an AR LLM factorizes the se-
quence probability into conditional next-token terms and is
trained with token-level cross-entropy. This design scales
well, aligns with hardware and streaming constraints, and
yields predictable inference latency, especially at scale. Yet
its virtues also crystallize failures: early choices are irre-
versible, exposure bias compounds along the chain, and lo-
cal normalization can induce “myopia,” i.e., steps that are
locally plausible but globally inconsistent. Recent de facto
Chain-of-Thought supervision helps by injecting intermedi-
ate reasoning, but the underlying process still predicts one
token at a time (see Fig. 1(a)).

Inspired by the success of their counterparts in other domains, DLLMs (Li et al., 2022; Karimi Ma-
habadi et al., 2024) are emerging as a compelling alternative for reasoning. Instead of generating
text sequentially like autoregressive models, a diffusion-style model starts from noise and iteratively
denoises a representation toward a high-probability sequence (see Fig. 1(b)). If AR decoding is like
“speaking,” DLLM is like “editing,” allowing the model to revise its reasoning trajectory. This pro-
vides two key theoretical advantages: reversibility, where late steps can correct early mistakes, and
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coarse-to-fine planning, which allows the model to first establish the high-level structure before fill-
ing in details. Recent scale-up DLLMs (Ye et al., 2025b; Nie et al., 2025) have shown this paradigm
can match or even surpass AR baselines on general tasks. However, operational challenges remain,
including a nuanced trade-off between quality and compute governed by discretization strategy,
guidance strength, and so on, which directly impacts inference latency.

Despite significant momentum, the community lacks a timely and comprehensive analysis that com-
pares these two paradigms specifically as mechanisms for reasoning, rather than just as alternative
decoders. Existing reports (Ye et al., 2024; Deschenaux & Gulcehre, 2024; Feng et al., 2025; Gul-
rajani & Hashimoto, 2023) vary widely in their benchmarking, metrics, and decoding schedules,
making direct, apples-to-apples comparisons difficult. We therefore explicitly frame LLM reason-
ing as trajectory formation. In this view, AR LLMs construct a discrete trajectory with committed
steps, while DLLMs iteratively refine a sequence of partially masked states via re-masking and
resampling until convergence. This perspective enables a feasible, systematic comparison across ac-
curacy, robustness, and efficiency. Motivated by this framework, we pose three research questions:

RQ1: What is the performance gap between autoregressive LLMs and DLLMs in reasoning
across representative tasks under matched model scales?
RQ2: When do DLLMs outperform autoregressive LLMs, and why?
RQ3: What settings (e.g., guidance strength, schedule length, discretization and related param-
eters) enable DLLMs to facilitate their performance across different winning scenarios?

These research questions comprehensively review DLLM, as a new alternative to AR LLM, high-
lighting its methodological distinctions, practical advantages, and potential to reshape future direc-
tions in LLM reasoning. Our contributions and anticipated benefits include: ① A first-of-its-kind
same-scale evaluation. We perform a systematic, same-scale comparison of DLLMs and AR LLMs
of similar size (7∼8B) across 20 diverse reasoning tasks. Our findings reveal that DLLMs yield
higher accuracy on tasks requiring global constraints, while LLMs remain competitive on simpler
commonsense QA. This work provides an empirical guide on when DLLMs offer gains and when
AR LLMs is sufficient, thus supporting informed model choice under deployment needs. ② An em-
pirical analysis of DLLM’s advantages. Through fine-grained case studies, we provide an analysis
of why DLLMs outperform LLMs on certain benchmarks. Our findings show that DLLMs’ iterative
refinement effectively corrects errors, enforces sequence-wide consistency, and avoids local traps
that mislead LLMs. Furthermore, we demonstrate that DLLMs are more robust to prompt noise and
distribution shift, revealing that their parallel refinement paradigm enables a level of robustness and
global coherence that is inherently difficult to achieve with AR decoding. ③ Systematic insights
into efficiency and design. We present a detailed investigation into the key design parameters of
DLLMs, including remasking strategy, guidance strength, and schedule length, along with their
computational and latency trade-offs. The results show that DLLM’s performance is maintained in
compute-matched settings. This provides a practical guide with principles for balancing accuracy
and latency and identifies where diminishing returns begin to appear in the design space.

In short, this paper presents a head-to-head comparison of autoregressive and diffusion-based
paradigms for reasoning. The rest of the paper is organized as follows. In §2, we review relevant lit-
erature. We then provide some preliminary knowledge regarding the two LLM reasoning paradigms
in §3. Our major empirical analysis is presented in §4∼5, and we conclude with a discussion and an
outlook on future work in §7.

2 RELATED WORK

2.1 AUTOREGRESSIVE REASONING

Autoregressive large language models (AR LLMs) decode left-to-right, predicting one token at a
time conditioned on the current prefix (Vaswani et al., 2017; Brown et al., 2020; Touvron et al., 2023;
Jiang et al., 2023; Du et al., 2022). The procedure is operationally simple and hardware-efficient:
computation factorizes into a chain of conditional predictions, latency grows approximately linearly
with sequence length, and mature serving stacks deliver high throughput at scale (Narayanan et al.,
2021; Rajbhandari et al., 2020; Korthikanti et al., 2022). As a result, AR decoding is the efficiency
baseline for long-form inference (Achiam et al., 2023).
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The same sequential commitment creates characteristic liabilities (Finlayson et al., 2024). Because
decoding is unidirectional and effectively irreversible, early missteps propagate forward and are
hard to repair; small local slips can induce long-range inconsistencies and brittle chains of reasoning
(Schmidt, 2019; Ranzato et al., 2016; Bengio et al., 2015). Contemporary practice therefore leans
on methods such as test-time scaling: spending additional inference compute to sample multiple
rollouts, elicit intermediate steps, rerank candidates, or verify solutions with external checks (Wang
et al., 2025b; Yu et al., 2025; Kumar et al., 2025; Hao et al., 2025; Chen et al., 2024; Joshi et al.,
2025; Hao et al., 2025). These procedures improve robustness but remain auxiliary to the core
mechanism—they patch rather than remove the fragility of strictly sequential next-token prediction
(Zhang et al., 2023; 2024c). Conceptually, AR reasoning resembles human System 1, which aims
for fast and intuitive responses when the initial trajectory is sound, yet vulnerable to systematic error
when early cues mislead (Chang et al., 2024; Liu & Thoma, 2024; Wu et al., 2024b).

2.2 DIFFUSION-BASED REASONING

Diffusion-based language models (DLLMs) introduce a distinct generative paradigm centered on
iterative denoising at inference (Sahoo et al., 2024; Chung et al., 2025; Do et al., 2025; Zheng
et al., 2023; Austin et al., 2021; He et al., 2023). In contrast to one-pass AR decoding, DLLMs
update multiple positions in parallel and repeatedly reconsider the global structure of their output.
This provides a principled mechanism for self-correction, allowing the model to overwrite earlier
commitments when accumulating evidence contradicts them (Xu et al., 2025; Cardei et al., 2025; Wu
et al., 2025; Sahoo et al., 2025). The annealed nature of the denoising process naturally facilitates a
coarse-to-fine planning strategy, where early steps focus on high-level semantic structure and later
steps fill in details (Zhou et al., 2024a; Karimi Mahabadi et al., 2024; Huang & Tang, 2025). This
hierarchical refinement is particularly advantageous for tasks requiring long-range planning, where
a global understanding is critical to avoiding local inconsistencies (Lovelace et al., 2023; Xiong
et al., 2024). The ability to revisit and revise any part of the sequence provides a powerful new tool
for robust and controllable generation, transcending the immutable, left-to-right approach of AR
LLMs (Han et al., 2023; Varma et al., 2025; Wang et al., 2025c). Recent large-scale systems extend
DLLMs to multimodal and instruction-following settings (Yang et al., 2025; Zhu et al., 2025a; You
et al., 2025), showing the paradigm’s versatility. These DLLMs fall into two primary families:
discrete (based on mask tokens) and continuous (operating on latent spaces), with discrete models
currently dominating in performance. For our work, all compared DLLMs are of the discrete type.

Despite rapid progress, systematic, compute-matched comparisons between DLLMs and strong AR
baselines on multi-step reasoning remain scarce. This paper offers a timely analysis: a controlled,
side-by-side study of efficiency, accuracy, and failure modes that clarifies AR- versus diffusion-style
reasoning paradigms, and distills implications for future research.

3 PRELIMINARIES

We view reasoning as trajectory formation conditioned on an input x (prompt) that yields an output
sequence y = (y1, . . . , yT ). AR LLMs directly generate discrete tokens; DLLMs refine a continuous
latent trajectory (z1, . . . , zK) and then discretize to tokens.

3.1 AUTOREGRESSIVE LLMS

An AR LLM factorizes the conditional distribution as:

pθ(y | x) =
T∏

t=1

pθ(yt | x, y<t) , (1)

and is trained by minimizing token-level cross-entropy,

LCE(θ) = −E(x,y)

T∑
t=1

log pθ(yt | x, y<t) . (2)

Left-to-right decoding (e.g., greedy, beam, or stochastic sampling, optionally with post-training
supplements, such as chain-of-thought prompting (Wei et al., 2022; Zhou et al., 2023; Kojima et al.,
2022; Suzgun et al., 2023; Fu et al., 2023), test-time scaling (Wang et al., 2023b; Yao et al., 2023;
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Cobbe et al., 2021; Wu et al., 2024b;a; Chen et al., 2024; Wang et al., 2025d; Knappe et al., 2024;
Yu et al., 2025; Kumar et al., 2025; Zhang et al., 2024b; Joshi et al., 2025)) is commitment-based:
once a token is emitted, later steps condition on it, which yields scalability and streamability while
making early mistakes hard to repair without external search.

For cost intuition, if L denotes the number of generated tokens (including any CoT-like attempts),
S the number of independent samples, B the beam width, and V the number of verifier/reranking
passes, a rough per-query accounting is:

CostAR ≈ ctok L (S +B + V ), (3)
with ctok the per-token forward cost. Test-time scaling aligns naturally with this decomposition. The
most well-known attempts are self-consistency (Wang et al., 2023b), which increases S and beam
search, which enlarges B (Vijayakumar et al., 2018). Note that in our study, we exclude the results
that AR LLMs trained with reinforcement learning (RL) for fair comparisons, as diffusion-based
LLMs remain in an early stage (Christiano et al., 2017; Ouyang et al., 2022; Zelikman et al., 2022;
Hao et al., 2025) and RL approaches for them are not yet sufficiently developed.

3.2 DIFFUSION-BASED LLMS

DLLMs are another visible path to achieve the intelligence exhibited by AR LLMs (Nie et al., 2025;
Gong et al., 2025b): A forward masking process gradually replaces tokens in the original sequence
x0 with special [MASK] tokens (i.e., M), producing a partially masked sequence xt via:

L(θ) ≜ −Et, x0, xt

[
1

t

L∑
i=1

1
[
x i
t = M

]
log pθ

(
x i
0 | xt

)]
, (4)

Its text generation follows a reverse-time refinement zK → z0 before a discretization map y =
g(z0;x) yields tokens. Because refinement edits the whole latent, DLLM supports global reorgani-
zation and backtracking prior to discretization. Its inference cost scales primarily with the number
of denoising steps K (and optional restarts R),

CostDiff ≈ cstep KR+ cdisc, (5)
where cstep is the per-step cost and cdisc the discretization overhead. In our study, we vary schedule
length K and guidance under matched computational budgets (see §5) so that any observed gains
reflect the pathway rather than the extra compute.

Notice the difference between the cost of AR LLMs (see Eq. 3) and DLLMs (see Eq. 5), we hold
constant datasets, prompts, model size and evaluation scripts to set up a fair benchmark. To test their
stability, we sweep AR knobs (i.e., beam width, self-consistency samples) and diffusion knobs (i.e.,
schedule length K, guidance scale) under controlled settings.

4 UNDER MATCHED SCALE, DLLMS OUTPERFORM AR LLMS ON MOST
REASONING TASKS BUT INCUR MUCH HIGHER COMPUTATIONAL LATENCY

Our investigation starts with experimental analysis to address RQ1, assessing differences in reason-
ing performance between AR and DLLMs. We outline the baselines and datasets used in this study,
which also apply to address RQ2 (see §5).

Baselines. We evaluate AR and DLLMs of comparable scale (i.e., 7∼8B parameters). AR baselines
include Llama 3.1 8B (Touvron et al., 2023), Mistral 8B (Jiang et al., 2023), and DeepSeek 7B (Dai
et al., 2024). DLLM baselines are Dream 7B (Ye et al., 2025b) and LLaDA 8B (Gong et al., 2025a).

Datasets. Our evaluation covers 13 benchmarks, which span a total of 20 tasks across four repre-
sentative categories: quantitative reasoning, logical consistency, semantic entailment, and common-
sense QA, following prior surveys (Yu et al., 2024; Sprague et al., 2025). Among them, Minerva
Math consists of 7 sub-tasks and ANLI is composed of 3 rounds, which we count separately as tasks.

For mathematical reasoning, we use GSM8K (Cobbe et al., 2021), MathQA (Amini et al., 2019),
and Minerva Math (Hendrycks et al., 2021). For natural language inference, we include ANLI (Nie
et al., 2020), MNLI, and RTE (Williams et al., 2018). For logical reasoning, we test on LSAT-LR
and LogiQA-en (Liu et al., 2020). For commonsense QA, we consider COPA (Roemmele et al.,
2011), PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), and HellaSwag (Zellers
et al., 2020). All datasets are accessed via Hugging Face.

4
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Figure 2: (a) DLLMs achieve higher accuracy on math,
logic, and NLI benchmarks. (b) AR LLMs achieve higher
accuracy on commonsense QA. Here, MATH refers to the
Minerva MATH dataset (Hendrycks et al., 2021).

Evaluation Metrics. We use ex-
act match accuracy for GSM8K,
MathQA, and Minerva Math; classi-
fication accuracy for ANLI, MNLI,
and RTE; and multiple-choice ac-
curacy for LSAT-LR, LogiQA-en,
COPA, PIQA, Hellaswag, and Open-
BookQA. More details are shown in
Appendix §S1.

Benchmark Results. DLLMs achi-
eve consistent advantages on bench-
marks that demand stronger global
consistency reasoning. Their itera-
tive refinement helps in complex rea-
soning (see §2.2), whereas AR LLMs
follow a fast left-to-right pathway, which remains competitive on simpler commonsense tasks. This
motivates the deeper mechanism analyses in §5. In Fig. 2, we present the overall trends of AR
LLMs and DLLMs, reporting average performance derived from AR LLMs and three DLLMs eval-
uated over 20 tasks. As seen, DLLMs averagely outperform AR counterparts on the majority of
benchmarks, achieving higher accuracy on 16 of 20 tasks (e.g., GSM8K, MathQA, LogiQA, ANLI,
MNLI). AR LLMs remain competitive on a smaller subset of commonsense QA tasks (e.g., PIQA,
COPA, OpenBookQA, and Hellaswag). This demonstrates a clear performance gap in favor of dif-
fusion decoding under matched model scales. On average, DLLMs improve accuracy by ∼12 points
over comparable AR LLMs under matched scale. For completeness, Appendix §S2 provides the
detailed results of each individual AR LLM and DLLM, where the trend remains consistent.

Table 1: Computational efficiency comparison on GSM8K.
� denotes DLLMs (same for Table 2∼4).

FLOPs/Token Avg. Tokens Throughput LatencyModel (GFLOPs) per Answer (samples/s) (vs. Llama)
Dream-7B � 16,1201 55.18 0.101 25.9×
LLaDA-8B � 19,5901 63.37 0.064 27.4×
Llama-3.1-8B 15.0 53.05 2.49 1.0×
Mistral-7B 14.2 57.44 1.85 0.5×
DeepSeek-7B 14.0 54.77 1.92 0.4×

Computational Efficiency Results.
We further report FLOPs/token, av-
erage output length, throughput, and
latency in Table 1. As seen, DLLMs
require higher computational cost
per token than AR baselines (e.g.,
16,120 GFLOPs/token for Dream-
7B vs. 15 GFLOPs/token for Llama-
3.1-8B), and also produce slightly
longer outputs on average. Throughput is correspondingly low, with DLLMs generating only ∼0.1
samples/s compared to 1.8–2.5 samples/s for AR LLMs. Latency comparisons further confirm this
gap: diffusion decoding is consistently slower, often by 10×–200× depending on the number of
denoising steps (e.g., on GSM8K, Dream-7B is 25.9× slower and LLaDA-8B is 27.4× slower). All
these trends stem from the DLLMs’ iterative refinement process, which demands many denoising
steps per output. AR, on the other hand, is highly efficient, producing sequences in a single forward
pass with much higher throughput. This highlights the key bottleneck of current DLLMs: while they
improve reasoning accuracy, their practical deployment is constrained by computational efficiency.
For completeness, results on other tasks are shown in Appendix §S5.

Table 2: Effect of CoT prompting.
GSM8K MATHModel w/o CoT w/ CoT w/o CoT w/ CoT

LLaDA-8B � 70.7 70.4 31.5 28.0
Llama-3.1-8B 49.9 58.8 18.2 20.1

Chain-of-thought (CoT) Prompting Results.
Among post-training methods, CoT prompting
is widely adopted to improve reasoning in AR
LLMs (Wei et al., 2022). We thus naturally extend
CoT to DLLMs, and evaluate CoT+AR LLMs’ and
CoT+DLLMs’ performance, respectively.

Following prior work showing that mathematical reasoning benchmarks most clearly reveal the ben-
efits of CoT prompting (Sprague et al., 2025), we evaluate their performance on the GSM8K(Cobbe
et al., 2021) and Minerva Math (Hendrycks et al., 2021) , which consists of 7 sub-tasks. As shown
in Table 2, LLaDA (DLLM) shows a slight decrease in accuracy on both GSM8K and MATH, while
Llama (AR) improves substantially on both benchmarks (e.g., +9 on GSM8K, +2 on MATH).
These results demonstrate that CoT prompting yields substantially greater benefits for Llama than
for LLaDA. These results highlight that DLLMs remain stronger in absolute terms, but AR LLMs
benefit far more from CoT prompting. It suggests that DLLMs already rely on iterative refinement to
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enforce intermediate consistency, so additional explicit reasoning offers limited gains. By contrast,
AR LLMs profit markedly from such external scaffolding, which helps mitigate their vulnerability
to early commitment errors. More detailed CoT results are provided in Appendix S6.

5 DLLMS OUTPERFORM AR LLMS ON GLOBAL-CONSTRAINT TASKS,
UNDER NOISY PROMPTS, AND AT MATCHED COMPUTATIONAL BUDGET

After establishing the overall performance study (RQ1), we turn to RQ2, analyzing when DLLMs
outperform AR LLMs and further ask why. We first define the task taxonomy based on our evaluated
datasets, and further observe three consistent patterns.
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Figure 3: DLLMs outperforms AR LLMs
on tasks requiring muti-constraints, including
math reasoning, multi-premise logic, and NLI.

Tasks Taxonomy. In our study, we catego-
rize tasks into two types: single-constraint and
multi-constraint tasks. Single-constraint tasks
generally require a single dominant decision
guided by local cues. For example, the task
is to choose the most plausible option in com-
monsense QA benchmarks such as PIQA and
COPA (see Appendix §S3). Multi-constraint
tasks, on the other hand, require satisfying mul-
tiple interdependent constraints jointly. For in-
stance, math tasks such as GSM8K and MATH
demand consistency across intermediate vari-
ables, where each step’s result must align with
subsequent operations. Similarly, logical rea-
soning in LogiQA requires identifying which
premises are relevant to the question and rea-
soning about their interrelations, ensuring con-
sistency across multiple pieces of evidence.
Natural language inference tasks such as ANLI
further demand global semantic alignment be-
tween premise and hypothesis, covering all
relevant details rather than relying on surface
overlap. In our study, while AR LLMs prefer single-constraint tasks (see Appendix S3), DLLMs
achieve noticeable advantages in multi-constraint tasks (see Finding I).

Finding I: DLLMs win on global, multi-constraint consistency. DLLMs achieve superior ac-
curacy on tasks requiring muti-constraint satisfaction and global coherence, such as math with in-
termediate bookkeeping, multi-premise logic, and sentence-pair entailment. DLLMs’ iterative de-
noising updates the entire sequence in parallel, enabling repeated checks and repairs of cross-token
dependencies. This allows the model to satisfy multiple constraints simultaneously (e.g., content,
numeric validity, logical structure), instead of committing early to a single trajectory. Concretely,
we examine the strengths of DLLM reasoning compared to AR LLMs on three representative multi-
constraint tasks (i.e., mathematical reasoning, natural language inference, and logical reasoning).

As presented in Fig. 4, the example DLLM (i.e., LLaDA) demonstrates its effectiveness in com-
plying with multiple constraints where AR LLM (i.e., Llama) fails to do so. I. On GSM8K, a
mathematical reasoning benchmark of math word problems where multiple quantitative constraints
are given, correct solutions require satisfying all given constraints simultaneously. In Fig. 4(a), AR
LLM Llama neglects constraints 1 and 2, resulting in a fatal error that incorrectly calculates the cost
of supplies for 20 candles, which finally leads to a completely wrong solution. In contrast, DLLM
LLaDA successfully captures all the key quantitative constraints and produces a final correct solu-
tion. II. On ANLI, a natural language inference benchmark where models must respect semantic
and lexical constraints as well as factual boundaries established by the premise to make logically
consistent inferences about the hypothesis, we observe similar patterns. The example in Fig. 4(b)
demonstrates that Llama fails to comply with the lexical constraints, while LLaDA successfully
detects the lexical inconsistency and predicts the correct answer. III. On a more challenging log-
ical reasoning benchmark LogiQA, as shown in Fig. 4(c), Llama fails to satisfy spatial constraint

1FLOPs data for Dream-7B and LLaDA-8B are reported from (Liu et al., 2025).
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Charlie wants to sell beeswax candles. For 

every pound of beeswax, Charlie can 

make 10 tapered candles. [Quantitative 

Constraint 1] One pound of beeswax and the 

wicks cost $10.00 in 

supplies. [Quantitative Constraint 2] If he sells 

each candle for $2.00 [Quantitative Constraint 

3] What is his net profit if he makes and 

sells 20  candles? [Quantitative Constraint 4]

The cost of supplies for 20 candles is  

$10*10=100. The revenue from selling 20 

candles is  2*20=40. The net profit is $40 - 

$100 = $40-$100=-60.

He makes 20 candles with 20/10=2 pounds 

of beeswax. His supplies will cost him 

$2*10=20. He makes $20*2=40 selling the 

candles. His net profit is $40-$20=20.

Neglected Quantitative Constraint 1 and 2

Complied with Quantitative Constraint 1 and 2

Premise: “How Could I Want More” is the 

debut single by American actress and singer 

Jamie Lynn Spears. The song was written by 

Spears and Rivers Rutherford, and was self-

released (under Sweet Jamie Music, Inc.) on 

November 25, 2013 as the lead single from 

Spears’ debut EP, The Journey. 

 

The question asks whether the title of 

Spears’ debut EP was “Journeys.” Based on 

the information provided, the correct title is 

The Journey, not “Journeys.”

True. The title of Spears’ debut EP was 

The Journeys.

Neglected Lexical Constraints

Complied with Lexical Constraints

Passage: There are five stations set up from 

west to east along a section of the high-

speed railway along the river. Fuyi east of 

Haoyun [Spatial Constraint 1], west and 

adjacent to Huyao [Spatial Constraint 2]; 

Jiushang adjacent to Yinling [Spatial 

Constraint 3]. 

Fuyi is the second, Huyao the third. 

Jiushang is the fourth, Yinling the fifth. So, 

the order from west to east is: Haoyun, 

Fuyi, Huyao, Jiushang, Yinling.

The order of the five stations from west to 

east is: Haoyun, Huyao, Fuyi, Jiushang, 

Yinling.

Neglected Spatial Constraint 2

Complied with Spatial Constraint 2

LLaDA

(DLLM)

Llama

(AR LLM)

(a)

[Lexical 

Constraints]

Q: “The title of Spears’ debut EP was 

Journeys.” True, False, or Neither?

LLaDA

(DLLM)

Llama

(AR LLM)

LLaDA

(DLLM)

Llama

(AR LLM)

Q: If Haoyun is adjacent to Yinling [Spatial 

Constraint 4], what is the stantion order from 

west to east?

(b) (c)

Figure 4: Case analysis of AR LLM and DLLM on multi-constraint reasoning tasks. Examples
show AR LLM (Llama) failures due to constraint neglect on (a) GSM8K mathematical reasoning,
(b) ANLI natural language inference, and (c) LogiQA logical reasoning. The colors indicate whether
one or more constraints are neglected or complied with during the reasoning process.

2, leading to incorrect logical reasoning. In contrast, LLaDA captures all the logical cues and con-
straints, demonstrating superior constraint adherence. These observations highlight that DLLMs’
parallel decoding mechanism provides robustness against constraint neglecting and multi-constraint
satisfaction failures that AR LLMs suffer from. Additional cases are provided in Appendix S4.

Table 3: Accuracies under
noise perturbations.

Model Clean Prefix Suffix
LLaDA � 100 68 50
Llama 100 31 36

Finding II: DLLMs are more robust to prompt noise. Under
prefix and suffix perturbations, AR decoding couples tightly to cor-
rupted input, causing small changes to cascade through the entire
sequence. DLLMs, in contrast, gradually correct errors via mul-
tiple denoising steps under full context, enabling partial or strong
recovery depending on noise severity.

Q: Janet's ducks lay 16 eggs per day. She eats three for 
breakfast and bakes four daily. She sells the rest at \$2 
each. How much money does she make per day?

Janet eats 3 eggs per day, and she bakes 4 eggs per day. 
So, she sells 16 - 3 - 4 = 9 eggs per day. She sells 9 eggs 
per day at \$2 per egg, so she makes \$2 x 9 = 18 per 
day.

Janet sells 16 eggs - 3 eggs - 4 eggs = <<16-3-4=9>>9 
eggs at the farmers' market every day.\nShe makes $2/
egg x 9 eggs = $<<2*9=18>>18 every day at the 
farmers' market.\n#### 18

Llama
(AR LLM)

Gre china 2zz Fern Shortcut chol nog iddleware MOST 
fede backstage tas ereg ilst  thumbnail Q: Janet's ducks 
lay 16 eggs per day. She eats three for breakfast and 
bakes four daily. She sells the rest at \$2 each. How 
much money does she make per day?

Output: 16-3-4-2=7. Explanation: 16-3-4-2=7

Llama
(AR LLM)

LLaDA
(DLLM)

Step-by-step reasoning

Janet has 16 - 3 - 4 = 9 eggs left after eating and baking. 
She sells 9 * $2 = $18 every day at the farmers' market. 
The answer is 18.\n"

Noise → Early hallucination → error accumulates

LLaDA
(DLLM)

Step-by-step reasoning
Step-by-step reasoning

Figure 5: Adversarial noise triggers AR LLMs error accu-
mulation, while DLLM remains stable

To evaluate robustness, we construct
a GSM8K subset where both Llama
(AR LLM) and LLaDA (DLLM)
solve all problems correctly under
clean prompts, and then inject 15 ran-
domly sampled adversarial tokens ei-
ther before (i.e., prefix) or after (i.e.,
suffix) the query (Gan et al., 2024;
Qiang et al., 2024; Anantheswaran
et al., 2024). As shown in Table 3,
results are evaluated on a GSM8K subset where both models are correct under clean prompts.

Under prefix and suffix noise attacks, Llama’s accuracy collapses to 34%, while LLaDA maintains
substantially higher robustness at 50%. This gap reflects the distinct error behaviors of the two
paradigms under perturbations. DLLMs, though still affected by perturbations, can partially recover
and preserve reasoning consistency, whereas AR LLMs are more tightly coupled to the injected
noise. Under clean prompts, both models produce step-by-step arithmetic reasoning and correct
answers. After injection, Llama often outputs an anomalously large spurious number as its first step
and then rationalizes it, revealing irreversible error accumulation. By contrast, LLaDA maintains
stable intermediate computations and recovers the correct answer (see Fig. 5). This suggests that
iterative denoising mitigates perturbations and stabilizes the reasoning trajectory.

Overall, these results connect task demands with decoding dynamics: DLLM’s parallel refinement
favors tasks needing global consistency and robustness to perturbations, while AR’s causal compo-
sition favors tasks reducible to a single left-to-right reasoning chain.

Finding III: DLLMs maintain their advantages under matched computational budget.

We further examine computational overhead using inference FLOPs. DLLMs inherently require
multiple denoising iterations during decoding, resulting in higher computational demands compared
to AR LLMs. To isolate the effects of model architecture from computational cost, we adopt the
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compute-matching setting from Wu et al. (2024a). In this controlled setting, AR LLM inference
is executed multiple times via test-time scaling (Wang et al., 2023b; Wu et al., 2024a; Wang et al.,
2025d), while LLaDA-8B (DLLM) are equipped with KV cache (Liu et al., 2025) matching the
caching mechanism in Llama-3.1-8B (AR LLMs) to ensure a fair comparison. As shown in Table 4,
we run n = 140 and n = 560 samples for Llama, aligned to 256 denoising steps and 512 steps with
generate length 512 for LLaDA, respectively. Even under these matched-compute settings, LLaDA
continue to consistently outperform Llama (i.e., 74 vs. 68% at 1.0×, and 78% vs. 69% at 4.0×).

Table 4: Accuracy under matched com-
pute resources. † LLaDA results are re-
ported with KV cache.

Configuration FLOPs Acc. (%)

LLaDA-8B �†, 256 steps 1.0× 74
Llama-3.1-8B, n = 140 1.0× 68
LLaDA-8B �†, 512 steps + 512 gen 4.0× 78
Llama-3.1-8B, n = 560 4.0× 69

LLaDA delivers consistently higher accuracy than Llama.
The advantage persists across budgets, showing that ad-
ditional AR test-time sampling cannot close the gap. This
finding underscores that DLLMs’ strengths come from
their refinement mechanism rather than from extra com-
putational resources. Due to computational resource lim-
its, these matched-compute comparisons were conducted
on a 100-example subset of GSM8K. We also tested alter-
native test-time scaling methods, such as beam search, but found that AR LLMs still underperform
DLLMs. More details and results are provided in Appendix §S7.

6 DLLMS REQUIRE STRUCTURED DISCRETIZATION, LONG SCHEDULES,
AND BALANCED HYPERPARAMETERS

Table 5: Ablation studies for DLLM (LLaDA) on GSM8K. Unless otherwise specified, the default
setting uses 256 denoising steps, generates length 256, block length 256, low-confidence masking,
CFG 0.0, and temperature 0.0. The adopted designs are marked in red.

(a) Discretization (b) Guidance (c) Schedule (d) Generate (e) Block (f) Temperature
Scheme Acc. (%) Strength Acc. (%) Steps Acc. (%) Length Acc. (%) Block Size Acc. (%) Temp Acc. (%)
Random 15.6 CFG 0.0 70.7 64 steps 40.5 256 70.7 256 70.7 0.0 70.7
LowConf 70.7 CFG 0.5 70.2 128 steps 61.2 512 69.3 128 69.0 0.2 71.1

— — CFG 1.0 65.5 256 steps 70.7 1024 47.2 64 68.4 0.7 68.9
— — CFG 1.5 61.3 — — — — — — 1.0 68.1

We then answer RQ3, searching the hyperparameter trends for DLLMs to maximize their reason-
ing performance. Specifically, we conduct systematic ablations on GSM8K, varying discretization
schemes, guidance strengths, denoising schedules, temperature, and sampling strategy, where we
recognize that these factors directly control how DLLM refines sequences.

Discretization Strategy. Diffusion decoding refines sequences by repeatedly re-sampling a sub-
set of tokens at each step. There are two common schemes: (i) random masking, where tokens
are re-sampled uniformly at random regardless of model uncertainty, and (ii) low-confidence mask-
ing, where only tokens with the lowest predicted confidence are re-sampled (Li et al., 2022; Sahoo
et al., 2024). Shown in Table 5(a), the low-confidence strategy consistently achieves strong accu-
racy (e.g., 70% on GSM8K), whereas random masking collapses performance to 16%. This pattern
demonstrates that DLLMs depend on structured refinement. Focusing updates on uncertain tokens
enables the model to progressively repair errors without disturbing already correct tokens. In con-
trast, unstructured randomness introduces noise into stable regions, disrupting global coherence and
breaking the refinement trajectory.

Classifier-free Guidance (CFG). CFG (Ho & Salimans, 2021; Li et al., 2022; Chung et al., 2025;
Han et al., 2024) scales the conditional score against the unconditional one, controlling how strongly
the model follows the prompt versus exploring alternative completions. As shown in Table 5(b),
moderate guidance (i.e., 0.0 − 0.5) preserves accuracy at 70%, while stronger guidance (i.e.,
1.0 − 1.5) reduces accuracy to 66−61%. Why does strong guidance hurt? High guidance am-
plifies already confident tokens overly, which in turn suppresses diversity and the model’s capacity
for self-correction. As a result, early errors are reinforced instead of revised. Moderate guidance, in
contrast, preserves a balance between following the prompt and leaving flexibility to repair mistakes,
which is sufficient for DLLMs since its iterative process already enforces global consistency.

Denoising Schedule Length. A key advantage of DLLMs lies in their ability to correct errors
through iterative denoising (Ye et al., 2025a; Zhao et al., 2025). As shown in Fig. 6, performance
improves as the number of iteration steps increases.
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Q: Henry's 60-mile bike trip: first stop at 20 miles, 

second stop 15 miles before the end. Distance 

between stops?

He traveled 60-15 = 45 miles after his first stop. 

He traveled 45-20 = 25 miles between the first 

and second stops. 

The first stop was 20 miles or 20/100 * 60/

600 =1/3 [Error 1]  of the trip. The second stop 

was 15 miles before the end of the trip or 15/

100 * 60/600 =1/4 [Error 2]  of the trip. The 

distance between the first and second stops is 

1/3 - 1/4 = 1/12..... [Error 3] 

The first stop was at 20 miles. The second 

stop was 15 miles before the end of the trip, 

so it was at 60 - 15 = 50 miles.[Error 4] The 

distance between the first and second stops is 

50 - 20 = 30 miles. 

STEP 64 STEP 128

STEP 256

Figure 6: Error correction in DLLMs as denoising progresses.

At 64 steps, multiple mistakes
remain, and the reasoning pro-
cess is unstable to DLLM. At
128 steps, most errors are elim-
inated, and the overall struc-
ture becomes gradually coher-
ent. At 256 steps, all errors
are corrected, and the solution
converges to the correct an-
swer. This progression shows
that DLLMs refine incomplete or faulty reasoning into coherent solutions through repeated denois-
ing cycles. The number of steps determines the refinement depth. Too few leave many errors unre-
solved, while additional iterations gradually enforce global consistency. As reported in Table 5(c),
accuracy increases from 40.5% at 64 steps to 61.2% at 128 steps, and reaches 70.7% at 256 steps.

Generate Length. Increasing the generate length Lg produces longer outputs but splits decoding
into more blocks, thereby reducing refinement steps per block (Arriola et al., 2025). While the total
denoising iterations remain constant, each block receives fewer updates, weakening local correc-
tion. As shown in Table 5(d), accuracy peaks at Lg=256, whereas longer lengths gradually cause
reasoning drift and steadily reduce overall coherence of the solution process.

Block Length. The block length specifies the span of each local update. Table 5(e) shows that
DLLM’s accuracy reaches the highest when the block length is set to 256. In this case, the generate
and block lengths are identical, allowing the model to refresh the entire sequence per iteration. Under
this setting, DLLM avoids semantic fragmentation and ensures that local updates remain consistent
with the global context. Reducing the block length (e.g., 128 or 64) fragments the updates, which
weakens coordination across reasoning steps and results in lower accuracies.

Temperature. DLLM’s temperature regulates randomness in token sampling. At T=0, decoding is
deterministic. At very high T (e.g., 0.7∼1.0), outputs become unstable and reasoning drifts (Fin-
layson et al., 2024; Renze, 2024; Shih et al., 2023; Chang et al., 2023; Zhang et al., 2024a). Shown in
Table 5(e), a moderate value around 0.2 achieves best balance. It enables exploration of alternatives
while maintaining coherence, allowing DLLM to fix local errors without losing track.

Overall, the results indicate that DLLMs’ effectiveness is strongly shaped by parameter choices. It
is important to adopt principled configurations to achieve reliable performance.

7 DISCUSSION AND CONCLUSION

We distill our findings into immediate guidance for practitioners. Our analysis suggests that AR
LLMs and DLLMs resemble computational analogues of fast and slow thinking, respectively: AR
LLMs generate rapidly via greedy, token-by-token decoding (i.e., System 1–like efficiency), whereas
DLLMs iteratively refine a global representation (i.e., System 2–like deliberation). We use this lens
to analyze each paradigm’s characteristic strengths and liabilities in reasoning.

The primary engineering challenge for DLLMs is computational cost. Iterative refinement is pow-
erful but raises FLOPs and latency, limiting suitability under strict service-level constraints in pro-
duction and large-scale serving contexts. Promising mitigation include step distillation (Chen et al.,
2025; Xie et al., 2024; Salimans et al., 2024; Zhou et al., 2024b; Zhu et al., 2025b; Ho & Salimans,
2022), rectified-flow and related training (Lee et al., 2024; Zhu et al., 2024; Lipman et al., 2023;
Wang et al., 2025a), and consistency training (Song et al., 2023; Song & Dhariwal, 2024; Dao et al.,
2025). In particular, learned step-size schedules and adaptive stopping criteria should be prioritized
to tighten the quality–latency trade-off without eroding DLLMs’ capacity for global correction.

Our evaluation also reveals a clear crossover regime. For tasks with short causal chains and tight
latency budgets, AR LLMs tend to dominate; additional DLLM iterations add unnecessary delibera-
tion and may even depress accuracy. Conversely, on problems with multi-variable dependencies and
long-range coherence requirements, DLLMs excel by progressively enforcing global consistency
and reducing internal contradictions. These results naturally motivate hybrid designs: use a two-
stage pipeline where an AR LLM produces a draft and a DLLM refines it to enforce constraints and
resolve inconsistencies, or adopt dynamic routing that estimates task difficulty online and selects the
appropriate pathway, allocating compute where it yields the highest return.
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mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model: Discrete
diffusion models via binary classification. In ICLR, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasaath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse Beam Search: Decoding Diverse Solutions from Neural
Sequence Models. In AAAI, 2018.

Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffusion:
Straightness is not your need in rectified flow. In ICLR, 2025a.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. In
TMLR, 2023a.

Hongru Wang, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, and Kam-Fai
Wong. Self-Reasoning Language Models: Unfold Hidden Reasoning Chains with Few Reasoning
Catalyst. arXiv preprint arXiv:2505.14116, 2025b.

Jin Wang, Yao Lai, Aoxue Li, Shifeng Zhang, Jiacheng Sun, Ning Kang, Chengyue Wu, Zhenguo
Li, and Ping Luo. Fudoki: Discrete flow-based unified understanding and generation via kinetic-
optimal velocities. arXiv preprint arXiv:2505.20147, 2025c.

Weiqin Wang, Yile Wang, and Hui Huang. Ranked voting based self-consistency of large language
models. In ACL, 2025d.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. In ICLR, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In NAACL, 2018.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
compute-optimal inference for problem-solving with language models. In NeurIPS, 2024a.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
language models can self-correct with key condition verification. In EMNLP, 2024b.

Sirui Xie, Zhisheng Xiao, Diederik P. Kingma, Tingbo Hou, Ying Nian Wu, Kevin P. Murphy, Tim
Salimans, Ben Poole, and Ruiqi Gao. EM distillation for one-step diffusion models. In NeurIPS,
2024.

Yida Xiong, Kun Li, Jiameng Chen, Hongzhi Zhang, Di Lin, Yan Che, and Wenbin Hu. Text-
guided multi-property molecular optimization with a diffusion language model. arXiv preprint
arXiv:2410.13597, 2024.

Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon, and
Arash Vahdat. Energy-based diffusion language models for text generation. In ICLR, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
NeurIPS, 2023.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Zhenguo
Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. In Neurips, 2024.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond Autoregression: Discrete Diffusion for Complex Reasoning and Planning. In ICLR,
2025a.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025b.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(7):1–36, 2024.

Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang, Jingjing Xu, and Di He. Enhancing auto-
regressive chain-of-thought through loop-aligned reasoning. arXiv preprint arXiv:2502.08482,
2025.

Eric Zelikman, Yuhuai Wu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning.
In NeurIPS, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In ACL, 2020.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Marcin Choromanski, Adrian Wong, Stefan
Welker, Federico Tombari, Aveek Purohit, Michael S. Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning
with language. In ICLR, 2023.

Shimao Zhang, Yu Bao, and Shujian Huang. Edt: Improving large language models’ generation by
entropy-based dynamic temperature sampling. arXiv preprint arXiv:2403.14541, 2024a.

Xiang Zhang, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Autoregressive+ chain of
thought= recurrent: Recurrence’s role in language models’ computability and a revisit of recurrent
transformer. arXiv preprint arXiv:2409.09239, 2024b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In ICLR, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ziqi Zhang, Cunxiang Wang, Xiao Xiong, Yue Zhang, and Donglin Wang. Nash cot: Multi-path
inference with preference equilibrium. In EMNLP, 2024c.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling Reasoning in Diffu-
sion Large Language Models via Reinforcement Learning. In NeurIPS, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In ICLR, 2023.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting discrete
diffusion for non-autoregressive text-to-text generation. In EACL, 2024a.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In ICML, 2024b.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models. arXiv preprint arXiv:2505.19223, 2025a.

Yuanzhi Zhu, Xingchao Liu, and Qiang Liu. Slimflow: Training smaller one-step diffusion models
with rectified flow. In ECCV, 2024.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2026 submission, titled “Beyond Next-Token
Prediction: Diffusion vs. Autoregressive Reasoning in LLMs”. The appendix is organized as follows:

• §S1 introduces the datasets, covering statistics, task categories, and evaluation metrics.
• §S2 reports additional results, and shows radar charts that compare models across benchmarks.
• §S3 presents failure cases in single-constraint tasks and explains why AR LLMs outperform

DLLMs in these settings.
• §S4 presents failure cases in multi-constraint tasks and shows that DLLMs outperform AR

LLMs when multiple interdependent constraints must be satisfied.
• §S5 provides an analysis of efficiency scaling, and reports memory usage and latency as a func-

tion of sequence length for AR and DLLMs.
• §S7 provides an examination of test-time scaling, and compares AR LLMs with beam search.
• §S9 offers a summary of licenses and consent, and lists usage terms for all models and datasets.
• §S10 provides a discussion of social impact and limitations, and highlights broader implications

and open challenges.
• §S11 provides an AI disclosure, and notes that AI assistance was limited to grammar checking.

S1 DATASETS AND EVALUATION METRICS

S1.1 DATASETS

We evaluate our models on a broad set of benchmarks spanning mathematical reasoning, natural
language inference, logical reasoning, and commonsense question answering. Below we provide
dataset descriptions and links for reproducibility.

Mathematical reasoning.

• GSM8K (Cobbe et al., 2021): a grade school math word problem benchmark. Available at
https://huggingface.co/datasets/openai/gsm8k.

• MathQA (Amini et al., 2019): a collection of math word problems derived from AQuA.
Available at https://huggingface.co/datasets/allenai/math_qa.

• Minerva Math (Hendrycks et al., 2021): a large-scale dataset covering 7 sub-
fields of mathematics. Available at https://huggingface.co/datasets/
EleutherAI/hendrycks_math.

Natural language inference.

• ANLI (Nie et al., 2020): an adversarially collected NLI benchmark. Available at https:
//huggingface.co/datasets/facebook/anli.

• MNLI (Williams et al., 2018): a broad-coverage NLI dataset. Available at https://
huggingface.co/datasets/nyu-mll/glue.

• RTE (Williams et al., 2018): a textual entailment dataset from the GLUE benchmark.
Available at https://huggingface.co/datasets/nyu-mll/glue.

Logical reasoning.

• LSAT-LR: logical reasoning problems from the LSAT exam. Available at https://
huggingface.co/datasets/hails/agieval-lsat-lr.

• LogiQA-en (Liu et al., 2020): an English logical reasoning benchmark. Available at
https://huggingface.co/datasets/hails/agieval-logiqa-en.

Commonsense QA.

• COPA (Roemmele et al., 2011): a causal reasoning dataset. Available at https:
//huggingface.co/datasets/super_glue/viewer/copa.
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• PIQA (Bisk et al., 2020): a physical commonsense reasoning benchmark. Available at
https://huggingface.co/datasets/ybisk/piqa.

• OpenBookQA (Mihaylov et al., 2018): multiple-choice science QA benchmark. Available
at https://huggingface.co/datasets/allenai/openbookqa.

• HellaSwag (Zellers et al., 2020): commonsense completion benchmark with adver-
sarial filtering. Available at https://huggingface.co/datasets/Rowan/
hellaswag.

S1.2 EVALUATION METRICS

For mathematical reasoning tasks (GSM8K, MathQA, Minerva Math), we use Exact Match (EM)
accuracy. We consider both strict and flexible EM (the latter allows normalization such as removing
commas, units, and checking mathematical equivalence, e.g., 0.5 = 1/2), as well as Math Verify
(MV) for Minerva Math. Following standard practice, we report the highest score among these
metrics for each dataset to ensure comparability with prior work.

For natural language inference tasks (ANLI, MNLI, RTE), we use classification accuracy, i.e.,
the percentage of samples where the predicted label exactly matches the gold label.

For multiple-choice QA tasks (LSAT-LR, LogiQA-en, COPA, PIQA, OpenBookQA, HellaSwag),
we use multiple-choice accuracy, defined as the proportion of questions where the correct option is
selected. We primarily report standard accuracy in the main paper for consistency.

For multi-subtask datasets (Minerva Math, ANLI), accuracy is first computed per subtask and then
aggregated using sample-weighted averages. This weighting reflects the relative size of each subtask
and avoids distortions from smaller subsets.

All metrics are case-insensitive and allow minor formatting variations through regex-based normal-
ization. In practice, this normalization accounts for superficial differences such as spacing, capital-
ization, or symbol usage.

S2 ADDITIONAL RESULTS

MNLI

RTE
ANLI

LSAT-LR

LogiQA

MathQA
MATH

GSM8K

CB

52

34

71

24

59

20

6927
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COPA
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21
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Dream-7B
LLaDA-8B
LLaMA-3.1-8B
Mistral-7B
DeepSeek-7B

Figure S1: Radar charts of five models. (a) Tasks where AR LLMs outperform DLLMs. (b) Tasks
where DLLMs outperform AR LLMs.

AR advantages. On commonsense QA benchmarks such as PIQA, HellaSwag, COPA, and Open-
BookQA, AR LLMs consistently achieve the best performance. For instance, Mistral-7B reaches
80.2% on PIQA and 91.0% on COPA, clearly outperforming diffusion-based models. These results
suggest that AR decoding remains more effective on short-context multiple-choice tasks where local
token dependencies dominate.

DLLM advantages. In contrast, DLLMs (Dream-7B and LLaDA-8B) show strong gains on multi-
step reasoning datasets such as GSM8K, MathQA, and RTE. Dream-7B reaches 71.5% on GSM8K
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and 50.0% on MathQA, surpassing AR counterparts by large margins. This highlights DLLMs’
strength in handling structured reasoning under multiple interdependent constraints.

DLLMs achieve consistent advantages on benchmarks that demand strong global consistency and
multi-step reasoning, where iterative refinement enables error correction and coherence. By contrast,
AR LLMs remain competitive on short-context commonsense QA, where fast left-to-right decoding
is sufficient for capturing single causal links and maintaining reasoning chains.

S3 FAILURE CASES IN SINGLE-CONSTRAINT TASKS

Finding: Autoregressive models wins on single-constraint reasoning. When tasks are driven by
one dominant causal or procedural relation, as in commonsense and procedural QA, AR LLMs
perform better. Left-to-right decoding (p(x) =

∏
i p(xi |x<i)) constructs a stable and interpretable

chain, where each step relies directly on the previous one. This concentrates probability mass on the
“next sensible step,” reducing uncertainty and avoiding iterative dilution. Such single-pass reasoning
aligns well with single-constraint tasks. As shown in Fig. S1(a), AR LLMs achieve higher accuracy
on PIQA, COPA, OpenBookQA and Hellaswag.

Premise: The man lost the competition. 

Q: Cause?  [Single Result Constraint]

He was not able to keep up with the 

pace of the race

he was too _ to face the audience
Unstable Convergence

Premise: The man fainted. 

Q: Results?  [Single Casual Constraint]

he was too ______. ()

He ran a marathon.

LLaDA

(DLLM)

Llama

(AR LLM)
Llama

(AR LLM)

Unstable Convergence

LLaDA

(DLLM)

Figure S2: Autoregression outperforms diffusion on single-constraint reasoning. Examples
from commonsense reasoning tasks show that Llama (AR) provides coherent causal links, while
LLaDA (DLLM) produces incomplete or redundant reasoning, illustrating difficulties in converging
on discrete cause–effect constraints.

While DLLMs excel at multi-constraint reasoning, they often underperform AR LLMs on single-
constraint tasks. Figure S2 shows two representative examples from commonsense reasoning bench-
marks. Autoregressive models generate tokens causally, which enforces strong local coherence. This
makes them effective when solving problems reducible to a single causal link (e.g., identifying a di-
rect cause or a single plausible outcome). As seen in the examples, Llama produces fluent and
consistent explanations such as “he was not able to keep up with the pace of the race.” In con-
trast, DLLMs rely on bidirectional denoising, which weakens causal flow and may yield incomplete
fragments rather than converging on the correct relation.

As a result, DLLMs sometimes generate incomplete fragments (“he was too to face the audience”),
failing to capture the intended causal relation. This reflects a general weakness of DLLMs in tasks
where precision hinges on a single constraint.

S4 ADDITIONAL FAILURE CASE ANALYSES IN MUTI-CONSTRAINT TASKS

We provide further failure case analyses to complement the main text. Figure S3 illustrates four
multi-constraint tasks where diffusion consistently outperforms autoregression.

In Fig. S3(a), Llama (AR LLM) ignores constraints 1 and 2, producing inconsistent arithmetic, while
LLaDA (DLLM) satisfies all quantitative conditions. In Fig. S3(b), Llama fails to account for the
temporal relation (2011 vs. 2008), whereas LLaDA preserves lexical consistency. In Fig. S3(c),
Llama omits the total-sum requirement in a story aggregation task, but LLaDA produces the correct
outcome. In Fig. S3(d), Llama misreads the average constraint as a daily increment, leading to
compounding errors, while LLaDA maintains global coherence.

These additional cases further demonstrate DLLMs’ ability to maintain global consistency under
multi-constraint reasoning.
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Neglected Quantitative Constraint 4

Complied with Quantitative Constraint 4

On the first day, there were 50 people at the beach.
On the second day, there were 50 + 20 = 70 people at the beach.
On the third day, there were 70 + 70 = 140 people at the beach.
On the fourth day, there were 140 + 60 = 200 people at the beach.
On the fifth day, there were 200 + 60 = 260 people at the beach.
On the sixth day, there were 260 + 60 = 320 people at the beach.
On the seventh day, there were 320 + 60 = 380 people at the beach.
The total number of people Conor saw at the beach that week is 50 + 70 +
140 + 200 + 260 + 320 + 380 = 1,320.

Alani wrote 20 stories in the first week [Quantitative Constraint 1].
Her brother Braylen wrote 40 stories [Quantitative Constraint 2]. Her
sister Margot wrote 60 stories [Quantitative Constraint 3]. In the
second week, each child doubled the number of stories they had
written in the first week [Quantitative Constraint 4].  
Calculate the total number of stories they wrote
altogether [Quantitative Constraint 5]. 

Neglected Quantitative Constraint 5

Llama
(AR LLM)

Complied with Quantitative Constraint 5

Alani wrote 20 stories in the first week, so she wrote 20*2=40 stories in
the second week.
Braylen wrote 40 stories in the first week, so he wrote 40*2=80 stories in
the second week.
Margot wrote 60 stories in the first week, so she wrote 60*2=120 stories
in the second week.
The total number of stories they wrote altogether is 20+40+80+120=260

In the first week, Alani wrote 20 stories, Braylen wrote 40 stories, and
Margot wrote 60 stories, for a total of 20 + 40 + 60 = 120 stories.
In the second week, they each doubled the number of stories they had
written in the first week, so Alani wrote 20 x 2 = 40 stories, Braylen wrote
40 x 2 = 80 stories, and Margot wrote 60 x 2 = 120 stories, for a total of 40
+ 80 + 120 = 240 stories.
Therefore, the total number of stories they wrote is 120 + 240 = 360 stories.

LLaDA
(DLLM)

LLaDA
(DLLM)

Llama
(AR LLM)

On the second day, there were 50 + 20 = 70 people at the beach.
On the third day, there were 2 * 70 = 140 people at the beach.
For the remaining 4 days, there were 4 * 60 = 240 people at the beach.
The total number of people at the beach for the week is 50 + 70 +140 +
240 = 500 people.

(d) Conor lives near a beach and loves going there every day to
have fun. On a particular week, he found 50 people at the
beach on the first day [Quantitative Constraint 1], On the second
day, 20 more people were present than on the first
day  [Quantitative Constraint 2], and On the third day, the total
number of people increased to twice the number that were
there on the second day [Quantitative Constraint 3] For the
remaining four days, Conor saw an average of 60 people per
day [Quantitative Constraint 4].
Calculate the total number of people Conor saw at the beach
that week [Quantitative Constraint 5].

(c)

(b)(a)

Figure S3: DLLMs win on multi-constraint reasoning.

S5 EFFICIENCY

A critical dimension differentiating reasoning paradigms is computational efficiency, particularly
latency and memory consumption, which directly impact practical deployment. We conducted stress
tests on both LLaDA (DLLM) and Llama (AR LLM) across varying sequence lengths.

As shown in Table S1, Llama’s latency remains nearly constant (5–6s) across prompt lengths from 32
to 2048 tokens, indicating near-linear scalability. In contrast, LLaDA exhibits sharp latency growth:
from 11.2s at 32 tokens to 62.8s at 2048 tokens. This divergence reflects the fundamental difference
between paradigms: AR decoding processes tokens sequentially with stable cost per step, while
diffusion-based decoding incurs iterative refinement, with costs rising sharply as context length
grows. This shows DLLMs face challenges in handling long contexts efficiently.

This analysis confirms a fundamental trade-off: the reasoning strengths of DLLMs come at a sig-
nificant cost in terms of computational efficiency, whereas AR LLM offer a much more scalable
and resource-friendly solution, making them better suited for real-time or resource-constrained ap-
plications. Deploying diffusion decoding therefore requires careful attention to latency despite its
accuracy and robustness gains.
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Table S1: Latency as a function of prompt length. Llama’s cost remains stable, while LLaDA
grows sharply with longer prompts. Latency is measured in seconds.

Prompt Length Llama-3.1-8B LLaDA-8B
32 5.5 11.2
64 5.5 11.5

128 5.6 12.1
256 5.6 15.3
512 5.7 21.1
1024 5.7 35.9
2048 5.7 62.8

This analysis confirms a fundamental trade-off: the reasoning strengths of DLLMs come at a sig-
nificant cost in terms of computational efficiency, whereas AR LLM offer a much more scalable
and resource-friendly solution, making them better suited for real-time or resource-constrained ap-
plications. Deploying diffusion decoding therefore requires careful attention to latency despite its
accuracy and robustness gains.

Table S2 compares end-to-end inference latency across benchmarks, normalized to Llama-3.1-8B.
We find that diffusion decoding is consistently slower, often by 4×–43×, depending on the number
of denoising steps. For instance, on GSM8K, Dream-7B is 25.9× slower, and LLaDA-8B is 27.4×
slower. This highlights the key bottleneck of current diffusion LLMs: while they improve reasoning
accuracy, their practical deployment is limited by inference speed (Li et al., 2022).

Table S2: Latency comparison across different tasks relative to Llama-3.1-8B.
DLLM AR LLMModels Dream LLaDA Llama Mistral DeepSeek

Parameter 7B 8B 8B 7B 7B
Mathematical Reasoning

GSM8K 25.9× 27.4× 1.0× 0.5× 0.4×
MathQA 15.5× 17.4× 1.0× 1.0× 1.0×

Minerva Math 15.6× 17.6× 1.0× 0.7× 0.7×
Natural Language Inference/QA

MNLI 3.3× 3.9× 1.0× 0.9× 1.1×
RTE 9.7× 9.8× 1.0× 1.0× 1.0×
QQP 5.3× 5.3× 1.0× 1.0× 1.0×
ANLI 17.9× 18.0× 1.0× 1.1× 1.1×

Logical Reasoning
LSAT-LR 38.8× 43.0× 1.0× 1.1× 1.0×

LogiQA-en 32.0× 37.2× 1.0× 1.1× 1.0×
Commonsense QA Reasoning

COPA 5.6× 4.5× 1.0× 1.0× 0.9×
PIQA 6.9× 6.4× 1.0× 1.1× 1.0×

OpenBookQA 9.5× 9.4× 1.0× 1.1× 1.0×
HellaSwag 17.3× 11.2× 1.0× 1.0× 0.9×

S6 COT RESULTS

Table S3 reports Math Verify (MV) accuracy for LLaDA-8B (DLLM) and Llama-3.1-8B (AR) on
the Minerva MATH sub-tasks, both with and without CoT prompting.

For DLLMs, CoT generally fails to provide improvements and sometimes lowers accuracy (e.g.,
Algebra 41.5 → 40.0, Number Theory 22.8 → 19.8). In contrast, AR LLMs show modest but
consistent gains from CoT in several sub-tasks (e.g., Prealgebra 33.8 → 38.6, Geometry 11.3 →
13.6). This suggests that iterative refinement in DLLMs already supports multi-step reasoning, so
external CoT scaffolding can interfere with their decoding process.
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Table S3: CoT prompting on Minerva Math sub-tasks. Math Verify (MV) accuracy (%).

LLaDA-8B (DLLM) Llama-3.1-8B (AR LLM)Sub-task w/o CoT w/ CoT w/o CoT w/ CoT
Algebra 41.5 40.0 27.7 29.3
Counting & Prob. 25.9 23.0 17.1 16.2
Geometry 19.8 18.4 11.3 13.6
Intermediate Algebra 9.7 9.4 6.2 7.3
Number Theory 22.8 19.8 9.6 9.6
Prealgebra 50.1 51.7 33.8 38.6
Precalculus 11.4 12.8 7.5 8.4

AR LLMs show consistent gains from CoT, while DLLMs exhibit limited or negative response. This
suggests that CoT prompting (Wei et al., 2022; Kojima et al., 2022) is more effective for AR LLMs,
whereas DLLMs do not benefit under the same setting.

S7 ADDITIONAL RESULTS ON TEST-TIME SCALING

Beam search analysis. We further evaluate the effect of beam search (a common test-time scaling
method (Vijayakumar et al., 2018; Koehn & Knowles, 2017)) on Llama (see Table S4). Specifically,
we compare greedy decoding (B = 1) and beam widths of B = 2, 4, 8 on GSM8K. The accuracies
are 50.2, 37.4, 38.5, and 37.7, respectively. Despite these adjustments, Llama consistently under-
performs compared to diffusion-based models, indicating that simply enlarging the beam does not
bridge the gap. This highlights that DLLMs’ advantage is not attributable to insufficient search at
test time, but rather to their inherent iterative refinement process.

Table S4: Effect of beam width on Llama vs. LLaDA (GSM8K accuracy). Beam search does not
improve AR performance; all settings remain below DLLMs.

Beam width (B) Llama (AR LLM) LLaDA (DLLM)
1 (greedy) 50.2

70.72 37.4
4 38.5
8 37.7

S8 FUTURE DIRECTIONS

Our study highlights both the strengths and limitations of AR LLMs and DLLMs. Several promising
directions emerge for advancing diffusion-based reasoning and hybrid architectures:

1. Sampling and Efficiency Optimization. Current DLLMs still depend on dozens or even hun-
dreds of denoising steps, which makes inference slow and resource-intensive. A key research di-
rection is to design more efficient sampling strategies that reduce steps without degrading accuracy.
One option is to adopt adaptive noise schedules, where the number of refinement steps is dynam-
ically adjusted by token-level uncertainty. Another possibility is budgeted DLLMs, in which the
model runs under a fixed compute or latency budget and applies early stopping once convergence
is detected. In addition, methods such as progressive distillation, caching, or step-sharing across
tokens may further accelerate decoding. Together, these approaches aim to close the gap between
the reasoning ability of DLLMs and the efficiency required for deployment.

2. Hybrid AR–Diffusion LLMs Paradigms. Recent work has already explored various forms
of hybridization, such as Block Diffusion (Arriola et al., 2025), demonstrating that AR LLMs and
DLLMs can complement each other.

As illustrated in Figure S4, one practical pipeline is a two-stage process:

1. AR Seeding (Sketch Creation): An autoregressive model generates an initial, syntacti-
cally sound draft, addressing DLLMs’s weakness in maintaining tight local dependencies.
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2. Diffusion Refinement (Global Improvement): The AR output is then treated as a noisy-
but-structured input for a DLLMs which iteratively refines the sequence to improve global
logic and coherence.

Figure S4: A Hybrid AR-Diffusion Architecture. This model first uses an autoregressive trans-
former to generate a draft or “sketch” of discrete tokens (AR Seeding). This initial output is then
fed into a DLLM for iterative refinement, improving global logic and coherence.

This architecture provides a concrete direction for hybrid reasoning systems. Another promising
avenue is task-adaptive routing, where the decoder dynamically chooses between AR LLMs and
DLLMs updates based on the structure of the problem.

3. Toward Unified Multimodal Reasoning. Diffusion provides a natural framework for multi-
modal reasoning because both discrete and continuous signals can be represented within the same
denoising process. This opens the possibility of building LLMs that seamlessly integrate text, vision,
and other modalities under a shared refinement cycle.

4. DLLMs as Agents. The bidirectional context, parallel decoding, and iterative refinement of
DLLMs make them promising candidates for agentic applications. Unlike purely autoregressive
models, DLLMs can plan and revise their outputs through repeated refinement, which resembles
the cycle of planning, execution, and correction common in decision-making. This structure is
particularly valuable in interactive environments. For example, an agent built on DLLMs could
generate a tentative plan, refine it in response to feedback, and iteratively converge toward a reliable
action sequence. Exploring this agentic potential may bridge the gap between static text generation
and dynamic reasoning required in real-world tasks.

S9 ASSET LICENSE AND CONSENT

All models and datasets used in this work are publicly available. We strictly comply with their
original licenses and use them only for non-commercial academic research. The contents of datasets
do not represent our views or opinions.

Models. We evaluate five open-source models: Llama-3.1-8B (Meta custom license, attribution
required, outputs may not be used to train competing models), Mistral-7B (Apache 2.0, permis-
sive), DeepSeek-7B (DeepSeek custom license, attribution required), Dream-7B (Apache 2.0), and
LLaDA-8B (MIT license). All licenses permit academic research use; detailed terms are available
via the original model repositories.

Datasets. We use standard reasoning and QA benchmarks: GSM8K (MIT), MathQA (Apache 2.0),
Minerva Math (MIT), ANLI (CC-BY-NC 4.0), MNLI (OANC + CC-BY-SA), RTE (GLUE permis-
sive), LSAT-LR (MIT (via AGIEval)), LogiQA-en (CC-BY-NC-SA 4.0), COPA (CC-BY 4.0), PIQA
(MIT), OpenBookQA (CC-BY-SA 3.0 for data, Apache 2.0 for code), and HellaSwag (CC-BY-NC
4.0). We note that some datasets include non-commercial (NC) and/or share-alike (SA) clauses;
our use is strictly for academic purposes in compliance with these restrictions.

Consent. Our study does not involve crowdsourcing or human subjects. All results are derived from
publicly available models and datasets.
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S10 SOCIAL IMPACT AND LIMITATIONS

Our study contributes to understanding how diffusion-based LLMs differ from autoregressive LLMs
in reasoning, highlighting their relative strengths across task types. This provides insights into
designing future reasoning models that better align with human-like problem solving.

However, several limitations remain. First, our evaluation focuses on a subset of reasoning tasks
(mathematics, logic, commonsense, NLI), while broader domains such as multimodal reason-
ing (Driess et al., 2023; Achiam et al., 2023) and interactive agents (Wang et al., 2023a; Zeng
et al., 2023) are not yet covered. Second, we mainly study mid-sized models (7B–8B), leaving open
whether the relative advantages of DLLMs persist or amplify at larger scales (70B–100B). Third,
our work does not introduce a concrete hybrid model that integrates AR and diffusion. A promising
direction for future research is to design such a pipeline, where an AR LLM seeds a draft that is
subsequently refined by diffusion.

Future work should therefore extend task coverage, validate scaling behavior, and develop practical
hybrid pipelines that combine the strengths of both paradigms.

S11 AI DISCLOSURE
We acknowledge the use of GPT-5 for grammar checking only. The model was employed to correct
grammatical errors while ensuring the original meaning and intent of the text remained unchanged.

24


	Introduction
	Related Work
	Autoregressive Reasoning
	Diffusion-Based Reasoning

	Preliminaries
	Autoregressive LLMs
	Diffusion-Based LLMs

	Under matched scale, DLLMs outperform AR LLMs on most reasoning tasks but incur much higher computational latency
	DLLMs outperform AR LLMs on global-constraint tasks, under noisy prompts, and at matched computational budget
	DLLMs Require Structured Discretization, Long Schedules, and Balanced Hyperparameters
	Discussion and Conclusion
	Datasets and Evaluation Metrics
	Datasets
	Evaluation Metrics

	Additional Results
	Failure Cases in Single-Constraint Tasks
	Additional Failure Case Analyses in Muti-Constraint Tasks
	Efficiency
	CoT Results
	Additional Results on Test-Time Scaling
	Future Directions
	Asset License and Consent
	Social Impact and Limitations
	AI Disclosure

