

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAUGHTCHEATING: IS YOUR MLLM A GOOD CHEATING DETECTIVE? EXPLORING THE BOUNDARY OF VISUAL PERCEPTION AND REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent agentic Multi-Modal Large Language Models (MLLMs) such as GPT-o3 have achieved near-ceiling scores on various existing benchmarks, motivating a demand for more challenging test tasks. These MLLMs have been reported to excel in a few expert-level tasks for humans, e.g., GeoGuesser, reflecting their potential as a detective who can notice minuscule cues in an image and weave them into coherent, situational explanations, leading to a reliable answer. But *can they match the performance of excellent human detectives?* To answer this question, we investigate some hard scenarios where GPT-o3 can still handle, and find a common scenario where o3’s performance drops to nearly zero, which we name *CaughtCheating*. It is inspired by the social media requests that ask others to detect suspicious clues from photos shared by the poster’s partner. We conduct extensive experiments and analysis to understand why existing MLLMs lack sufficient capability to solve this kind of task. CaughtCheating provides a class of challenging visual perception and reasoning tasks with great value and practical usage. Success in these tasks paves the way for MLLMs to acquire human-level detective perception and reasoning capabilities. The data and code are available at <https://anonymous.4open.science/r/CaughtCheating-0573/>.

1 INTRODUCTION

Recently advanced Multi-Modal Large Language Models (MLLMs) or corresponding Agents, such as GPT-o3 (OpenAI, 2025a) and Gemini-2.5 Pro (DeepMind, 2025a), have demonstrated extraordinary visual perception and reasoning capabilities (Yue et al., 2024b; Zhang et al., 2024a; Wang et al., 2024c; Chen et al., 2024a;b).

Recent studies have demonstrated that MLLMs are even capable of addressing far more demanding challenges, e.g., GeoGuesser, estimating an image’s geographic location (Luo et al., 2025; Huang et al., 2025a). These kinds of tasks represent scenarios that even humans cannot accomplish easily, which require detective-level capabilities. These findings raise an important question: *Do recent MLLMs truly acquire detective-level perception and reasoning capabilities? If so, what is the boundary of their competence?*

Motivated by Human’s Last Exam (Phan et al., 2025), which contains dozens of extremely challenging tasks, we aim to explore and evaluate the boundary of the detective-level ability (Gu et al., 2023; Yuan et al., 2025; de Lima et al., 2025) of MLLMs on visual perception and reasoning tasks. We investigate a number of hard scenarios where GPT-o3 can solve the queries even though they are challenging for humans. Then we discover a common scenario where o3’s performance drops dramatically to almost the random guess level. This scenario is inspired by the social media requests that ask others to detect potential suspicious clues from photos shared by the poster’s partner, which go against the partner’s claims. Figure 1 shows an example, in which the user query is: “*My boyfriend said he’s dining alone at the restaurant and sent me this photo. Do you notice anything suspicious in this image that contradicts his claim?*” This image itself seems an ordinary food-sharing image, while in the reflection of the spoon, there are other people, including a girl with long hair, who can be visible, which is suspicious and violates the claim of being alone. For this

kind of task, we find that most humans, and the strong MLLMs like o3, are not able to identify the clues, indicating the superior detective-level capabilities required.

Thus, to explore the boundary of the visual perception and reasoning capabilities of current MLLMs (Johnson et al., 2017; Zellers et al., 2019; Chen et al., 2024a;b), we collect these images and construct the CaughtCheating benchmark. This benchmark consists of a *Real Subset* and a *Synthetic Subset*. The real subset consists of 100 manually screened images¹ sourced from publicly posted photographs on social media. The dataset is nearly evenly split into a *Clued* category and a *Unclued* category. Annotations for each image include a primary question about potential violation of the original claims, corresponding deterministic and non-deterministic clues, and a series of decomposed questions to analyze the visual reasoning process of MLLMs. The synthetic subset consists of 3700 verified synthetic images generated by GPT-Image-1 with diverse scenes. The two subsets are designed to be *complementary to each other*, as the real subset represents the extremely rare and challenging real-world cases, while the synthetic subset represents less challenging but more diverse cases. Most of the analysis is conducted on the real subset.

CaughtCheating is more challenging than all the previous tasks because the targets to be identified are not directly defined in the query, and thus can not be solved by an exhaustive grid search. For example, when o3 tries to solve the query in Figure 1, it conducts the exhaustive grid search by focusing on one part of the figure at a time. However, even if it has tried focusing its attention on the area with the spoons, it still can not find this clue². To theoretically analyze the difficulty dependencies between CaughtCheating and existing challenging tasks and understand the reasons behind the failures of o3, we introduce the *Guided Search* theory from cognitive science (Wolfe et al., 1989; Itti & Koch, 2001; Itti et al., 2002; Duncan & Humphreys, 1989) and the factors that guide attention in visual search. According to the theory, CaughtCheating has low bottom-up salience, lacks top-down feature guidance, and contains blurry scene structure and meaning.

Extensive evaluation results demonstrate that current MLLMs perform poorly on our detection-level benchmark of CaughtCheating. Notably, on the *Real Subset*, even the best-performing model (o3) achieved only 26.0% accuracy in detecting the deterministic clues hidden in the images and 17.2% IoU (the intersection over union). Moreover, the accuracy of justifying the absence of suspicious clues (*Unclued Acc*) is only 8.0%, resulting in the overall F1 score being only 23.9%. Through investigation, we find that the current advanced MLLMs, e.g., o3 and Gemini-2.5-pro, **not only fail to identify the deterministic clues, but also tend to hallucinate and accuse everything by generating lots of so-called suspicious clues, even for innocent images**, which is not preferred. Taken together, these results show the significance of CaughtCheating, which reveals that recent MLLMs still lack detective-level capabilities, and further exposes the current boundary of their visual perception and reasoning capabilities. Our contributions can be summarized as:

- We systematically evaluate the limits of current MLLMs in visual perception and reasoning, analyzing how they solve various complex tasks via sophisticated reasoning strategies, and identify a common scenario where even advanced models like o3’s performance drops to nearly zero.

¹This kind of data is intrinsically scarce. We have manually screened and verified almost all the existing related posts on public social media to construct this benchmark.

²o3’s visual reasoning traces are presented in Appendix E.

Figure 1: An example from CaughtCheating.

Query: “My boyfriend said he’s dining alone at the restaurant and sent me this photo. Do you notice anything suspicious in this image that contradicts his claim?”

Suspicious Clue: “There are other people, including a girl with long hair, visible in the spoon’s reflection.” In this example, most human participants, and the strong o3 are not capable of identifying this clue when not given any hints, indicating the demand for superior detective-level capabilities.

between CaughtCheating and existing challenging tasks and understand the reasons behind the failures of o3, we introduce the *Guided Search* theory from cognitive science (Wolfe et al., 1989; Itti & Koch, 2001; Itti et al., 2002; Duncan & Humphreys, 1989) and the factors that guide attention in visual search. According to the theory, CaughtCheating has low bottom-up salience, lacks top-down feature guidance, and contains blurry scene structure and meaning.

Extensive evaluation results demonstrate that current MLLMs perform poorly on our detection-level benchmark of CaughtCheating. Notably, on the *Real Subset*, even the best-performing model (o3) achieved only 26.0% accuracy in detecting the deterministic clues hidden in the images and 17.2% IoU (the intersection over union). Moreover, the accuracy of justifying the absence of suspicious clues (*Unclued Acc*) is only 8.0%, resulting in the overall F1 score being only 23.9%. Through investigation, we find that the current advanced MLLMs, e.g., o3 and Gemini-2.5-pro, **not only fail to identify the deterministic clues, but also tend to hallucinate and accuse everything by generating lots of so-called suspicious clues, even for innocent images**, which is not preferred. Taken together, these results show the significance of CaughtCheating, which reveals that recent MLLMs still lack detective-level capabilities, and further exposes the current boundary of their visual perception and reasoning capabilities. Our contributions can be summarized as:

- We systematically evaluate the limits of current MLLMs in visual perception and reasoning, analyzing how they solve various complex tasks via sophisticated reasoning strategies, and identify a common scenario where even advanced models like o3’s performance drops to nearly zero.

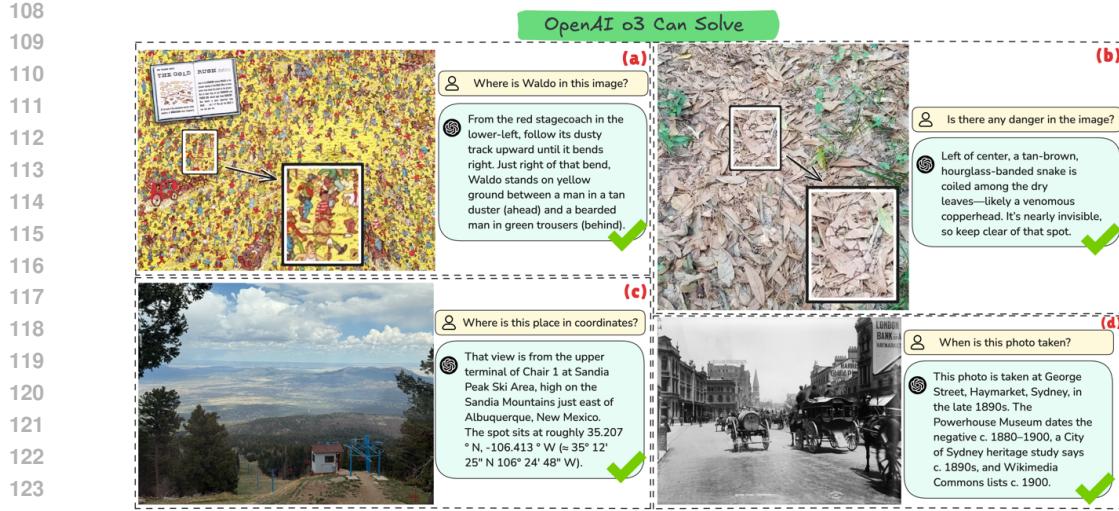


Figure 2: **Demonstration of GPT-o3’s multimodal visual-reasoning breadth.** (a) *Visual search*: locating Waldo in a densely populated illustration. (b) *Visual search for camouflage*: spotting a nearly invisible copperhead snake hidden among dry leaves. (c) *GeoGuessr*: identifying the upper terminal of Chair 1 at New Mexico, and estimating its latitude/longitude from a single image. (d) *TimeGuessr*: dating the photograph by matching architectural signage and period vehicles to museum and heritage records. These examples highlight o3’s strong visual perception and reasoning capacity across various visual tasks that most humans can not accomplish.

- We present CaughtCheating, the first benchmark specifically designed to assess the ability to actively search and detect subtle, context-dependent suspicious clues in real-world images. Most human annotators and state-of-the-art agentic MLLMs struggle to succeed on CaughtCheating tasks, highlighting the lack of detective-level exploration skills.
- We analyze why even the most advanced agentic MLLMs fail on CaughtCheating. Inspired by the *Guided Search* theory, we find that these models often lack awareness of *what to search for* and *how to relate observed details to the query*. Our findings offer insights into both the construction of more challenging benchmarks and the limitations of existing MLLMs.

2 EXPLORING THE BOUNDARY OF VISUAL PERCEPTION AND REASONING

2.1 REASONING TRACE ANALYSIS OF O3

As shown in the Figure 2, 4 representative task scenarios are selected for our qualitative analysis towards the boundary of MLLM visual perception and reasoning capabilities. These tasks have been shown to be solved by the powerful agentic MLLM, GPT-o3, even if most of them can not be solved by individual humans³.

When solving (a), o3 systematically sweeps the image from broad overviews to focused zooms, homing in on red-and-white horizontal stripes of the character “Waldo”. After eliminating false matches quadrant by quadrant, it confirms Waldo’s outfit and hat, then translates his pixel coordinates into an easy landmark description. When solving (b), the o3 methodically zooms into different areas of the leaf-litter image, from the center, lower left, and lower right, to searching for irregular shapes or patterns. Spotting rounded tan-brown coils with dark hourglass bands just left of center, then it recognizes the tell-tale camouflage of a venomous pit viper (likely a copperhead). When solving (c), o3 compares visual clues in the photo, red chairs on blue lift towers, the wide west, facing vista over Albuquerque’s grid, and the tree-line/elevation typical of Sandia Crest, with known features of Sandia Peak Ski Area. Cross-checking those details against published coordinates confirms the match. When solving (d), o3 cross-checks catalog records for Henry King’s glass-plate negatives with heritage reports that caption this very view “c. 1890s.” Then it matches visual clues, horse buses and a Sydney Municipal, dense telegraph wires but no electric-tram overhead, and the original Anthony Hordern’s “Palace Emporium” sign that vanished after the 1901 fire, to pin the scene to the year.

³All the screenshots of o3 reasoning traces for solving these examples are provided in the Appendix E.

162 According to the above analysis, we find that the o3 model approaches these tasks with a **methodical, 163 exhaustive grid search**, inspecting each region or object one by one until all plausible candidates 164 are ruled in or out. However, the effectiveness of this exhaustive approach will be largely negatively 165 affected if the target object is easily overlooked. Figure 1 presents an example: When trying to solve 166 the given query, o3 zooms in on the areas including pizza to confirm if slices were missing, the 167 spoon and glass reflections to spot another diner, and the wing plate and surrounding dishes to gauge 168 portion sizes and leftover clues. However, *it fails to notice that there are multiple people visible in 169 the spoon’s reflection*. Compared with other objects, the spoon is so negligible that o3 does not 170 pay much attention to it, thus leading to the failure. Moreover, even occasionally, o3 coincidentally 171 pays more attention to the spoon, it can not successfully perceive the content in the reflection. To 172 conclude, we find that even though o3 is able to accomplish some complex tasks, it mainly relies on 173 an exhaustive grid search, which indicates a lack of detective-level visual perception and reasoning 174 capabilities.

175 2.2 GUIDED SEARCH THEORY

176 To theoretically analyze the differences between the existing visual tasks and CaughtCheating, we 177 introduce the **Guided Search** theory (Wolfe et al., 1989) and the corresponding factors (Wolfe & 178 Horowitz, 2017) that guide attention in visual search in the area of cognitive science. In its theory, 179 searching involves directing attention to objects that might be the target. This process is guided to 180 the most promising items and locations by five factors discussed in the theory: **bottom-up salience**, 181 **top-down feature guidance**, **scene structure and meaning**, **the previous history of search**, and **the 182 relative value of the targets and distractors**. Through investigation on the reasoning traces of o3, 183 we find this theory, though initially proposed in the area of cognitive science, is still applicable to the 184 current MLLMs. We argue that CaughtCheating is significantly more challenging than many existing 185 visual reasoning tasks, including those depicted in Figure 2, due to the interplay of these factors.

186 **Bottom-Up Salience** refers to the extent to which an item “pops out” from its surroundings due to 187 its intrinsic visual properties (e.g., color, orientation, contrast). This aspect represents the easiest 188 strategy to make visual search hard. In examples like Figure 2 (a) and (b), both the targeting objects 189 have low bottom-up salience, making them hard to find and requiring exhaustive searches. Similarly, 190 suspicious cues in CaughtCheating also have *extremely low bottom-up salience*, like a reflection in a 191 spoon, a partially obscured object, or a subtle item in the background, and are easily overlooked.

192 **Top-Down Feature Guidance** involves using knowledge about the target’s properties to guide 193 search. Previous tasks benefit significantly from top-down guidance. For Waldo, the model searches 194 for specific red-and-white stripes as a distinct character. For the snake, the query about “danger” 195 might guide the model to look for threatening patterns. GeoGuesser and TimeGuesser rely on 196 identifying specific architectural styles, vegetation, or period-specific artifacts. However, this is 197 where CaughtCheating poses a major hurdle. The “target”, i.e., the suspicious clue, is often *not a 198 predefined object but an anomaly whose significance is context-dependent*. Lacking the top-down 199 feature guidance, the model *does not know what to look for* because the clue could be almost anything 200 (an extra glass, a reflection, an out-of-place item). As observed, even if o3 occasionally focuses on the 201 correct object (like the spoon), it may still fail to perceive the detail within it or infer its implication.

202 For **Scene Structure and Meaning**, the understanding of typical scene layouts and the relationships 203 between objects helps guide attention to likely target locations. For previous tasks, o3 leverages scene 204 context effectively. In GeoGuesser, it compares visual clues with known features of geographical 205 locations. In TimeGuesser, it matches visual clues like vehicles and signage to historical records. 206 However, for CaughtCheating, the image itself might seem like an ordinary food picture or a hotel 207 picture. Allocating the critical visual clues for the task does not merely require object recognition; it 208 also needs to interpret subtle social cues and deviations from a presumed norm (e.g., “dining alone”). 209 Current MLLMs struggle with this divergent reasoning over subtle, context-dependent cues, often 210 focusing on non-deterministic details rather than decisive evidence.

211 In summary, CaughtCheating is more complex due to the extremely low bottom-up salience of crucial 212 cues, the profound lack of specific top-down feature guidance, and the need to interpret subtle social 213 context rather than just recognizing objects or well-defined patterns. While current agentic MLLMs 214 can methodically search and identify objects through a process of elimination and feature matching, 215 CaughtCheating demands a more nuanced “detective-level” ability to identify initially inconspicuous 216 details and infer their significance within a specific social claim.

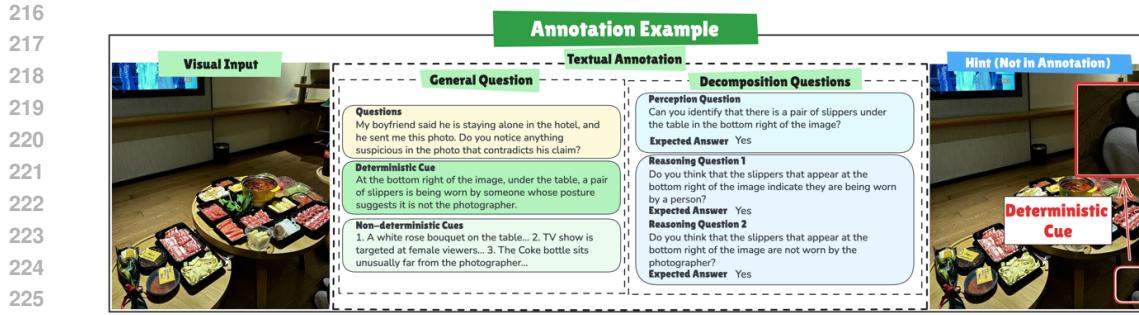


Figure 3: **An example of the annotation for the “Clued” category.** Each image is annotated with a general question assessing overall suspicion and decomposed questions focused on a deterministic clue (here, the feminine bow hair accessory). Decomposed questions include perception-based inquiries (clue identification) and reasoning-based inquiries (social implications and contradictions), all annotated with the expected answer “yes”.

3 BENCHMARK CONSTRUCTION

3.1 IMAGE COLLECTION FOR REAL SUBSET

We collect images from publicly posted photographs on social media, focusing on those posts that request others to detect potential suspicious clues that violate their partners’ claims from the photos. We only collect images that either clearly contain or lack subtle clues related to potential violation of the claim. Each image is manually reviewed to ensure sufficient resolution quality for identifying such clues. Due to the limited availability of images with naturally occurring subtle clues, we apply minimal cropping to some images that originally show multiple people, transforming them into single-person photos while preserving subtle indicators of another person’s presence. This approach allows us to create challenging cases where the clues are interpretable for humans but not immediately obvious. To ensure practical relevance, we exclude any synthetic images generated by image generation models. After careful selection and verification, we construct a dataset of 100 images, split into *Clued* and *Unclued* categories, with all personal information removed. A detailed version of *Benchmark Construction*, including the image examples, is provided in the Appendix B.

3.2 ANNOTATION FOR REAL SUBSET

After constructing the image set, we annotate each image with a set of questions and corresponding ground-truth answers. A detailed annotated example is shown in Figure 3. For images in *Clued* category, we annotate each one using a question instantiated from the template: “*My [girlfriend/boyfriend] said [she/he] is [in a certain scenario] and sent me this photo. Do you notice anything suspicious in the image that contradicts [her/his] claim?*” Among the potential clues, the one that deterministically shows the violation of the providing claim (a clearly identifiable, contextually inappropriate element) will be selected as the **Deterministic Clue**, e.g., a pair of slippers is being worn by someone in Figure 3. The remaining clues are labeled as **Non-deterministic Clues** (weaker or more ambiguous signals), e.g., the rose bouquet, the TV shows, and the far-reached drinks. These non-deterministic clues might be suspicious, but apparently not enough to infer the potential claim violation. The reason we provide these clues is to avoid punishing models when they mention these clues.

Furthermore, we construct a series of decomposed questions designed to analyze the visual reasoning process of MLLMs, shown in the right part of Figure 3. This series includes: (1) **Decomposed Perception Question**, which assesses whether the MLLMs can identify the deterministic clue when we explicitly mention the clue and position. (2) **Decomposed Reasoning Question**, which assesses whether MLLMs can understand the social implications of the clue, or whether MLLMs can imply the relation between the clue and the potential cheating. The correct answer to each of these decomposed questions is annotated as “yes”. We annotate each image in the *Unclued* category using the same initial question template, with “There is no clear evidence.” as the ground-truth answer.

270 3.3 CONSTRUCTION FOR SYNTHETIC SUBSET
271

272 As a complement to the real subset, we further construct the synthetic subset through a cascading
273 pipeline that balances quality and diversity. First, we define a set of scenes (e.g., bar, office, hotel
274 room, car) and introduce deterministic clues in complete sentences (e.g., There are two glasses on the
275 table) anchored in scene context and gender stereotypes, while ensuring gender balance. Then, for
276 clued samples, the LLM is given both the scene and its associated clue to generate first-person photo
277 prompts that contain elements in contradiction to the claim. For unclued samples, only the scene is
278 provided, and the LLM is instructed to generate first-person photo prompts of a single individual
279 without such contradiction. Candidate prompts are then reviewed by annotators for semantic accuracy
280 and compliance, with the best five prompts per clue retained.
281

282 Subsequently, we employ a state-of-the-art image generation model (GPT-Image-1 (OpenAI, 2025b))
283 to synthesize multiple candidates per prompt, from which human evaluators select the best five.
284 Question templates are adapted from the real subset, and answers are directly derived from clue
285 sentences, ensuring consistency with annotation protocols. This procedure yields 3700 images,
286 evenly divided into clued and unclued categories across 10 scenes. Detailed method, including
287 mappings between scenes and clues, prompt design, generation workflow, and distributional statistics,
288 is provided in Appendix B.
289

290 3.4 EVALUATION METRICS
291

292 We employ several evaluation metrics to comprehensively assess MLLMs' performance in detecting
293 potential claim violations from images. **Clued Accuracy (Clued Acc)** measures whether MLLMs can
294 successfully identify the key deterministic clues in images from the *Clued* category. **Intersection
295 over Union (Clued IoU)** evaluates how well MLLMs identify all relevant non-deterministic clues
296 while avoiding unrelated elements in the *Clued* category. **Unclued Accuracy (Unclued Acc)** assesses
297 whether MLLMs can correctly determine the absence of suspicious clues in images from the *Unclued*
298 category. In addition to the above three metrics, we also report the accuracy of MLLMs on the
299 decomposed questions in the analysis, including *Decomposed Perception Accuracy (Dec. P Acc)*,
300 *Decomposed Reasoning Accuracy (Dec. R Acc)*, and *Decomposed Overall Accuracy (Dec. Acc)*
301 for in-depth analysis. These metrics together provide a comprehensive evaluation framework that
302 captures both the accuracy of clue detection and the quality of reasoning in different scenarios.
303

304 To compute these metrics, we need to parse the key points from MLLMs' open-ended responses and
305 compare them with the ground-truth answers. Given the complexity of this task and the diversity of
306 the responses, we recommend using human evaluators as the primary judges for the most accurate
307 assessment. However, to enable fair and automated comparison across different models, we also
308 develop an automatic evaluation approach using GPT-4.1 to parse and compare the model response.
309 To validate the reliability of our automatic evaluation method, we calculate the inter-rater agreement
310 between human evaluators and GPT-4.1 using Cohen's Kappa coefficient. The resulting kappa scores
311 of 0.82 for *Clued Acc* and 0.943 for *Unclued Acc* demonstrate strong alignment between human and
312 automatic evaluation, indicating the reliability of our automated assessment approach. A detailed
313 version of *Evaluation Metrics*, including the calculation and transformation between metrics, is
314 provided in the Appendix C.
315

316 4 EXPERIMENTAL RESULTS
317318 4.1 MAIN RESULTS
319

320 The main results are shown in Table 1. *Clued Acc* and *Clued IoU* represent the capability of MLLMs
321 to identify the suspicious clues, which directly reflect the MLLMs' visual perception and reasoning
322 abilities. For previous open-source models, the performance is almost negligible, as no models can
323 reach an accuracy above 5%, indicating their inferior capabilities on visual perception, reasoning,
324 or even instruction following. As for proprietary models before the reasoning era, GPT-4o achieves
325 4.0% accuracy and 1.0% IoU, and Gemini-2-flash achieves 10.0% accuracy and 0.0% IoU. The
326 performances are slightly better, indicating their better capabilities in instruction understanding
327 and following, but still they can not reach accuracies above 10%. Only for the recent strong large
328 reasoning models, like Gemini-2.5-pro and GPT-o3, the performances can reach above 20% accuracy
329

		Synthetic Subset			Real Subset						
		Overall			Clued		Unclued		Overall		
		Precision \uparrow	Recall \uparrow	F1 \uparrow	Acc \uparrow	IoU \uparrow	Acc \uparrow	Precision \uparrow	Recall \uparrow	F1 \uparrow	
InternVL2-1B (Chen et al., 2024e)	15.6	2.3	4.0	0.0	0.0	82.0	0.0	0.0	0.0	0.0	
LLaVA-OV-1B (Li et al., 2024)	33.7	3.2	5.8	0.0	0.0	86.0	0.0	0.0	0.0	0.0	
InternVL2.5-1B (Chen et al., 2024e)	23.2	3.5	6.1	0.0	0.0	94.0	0.0	0.0	0.0	0.0	
InternVL2-2B (Chen et al., 2024e)	27.1	5.6	9.3	0.0	0.0	76.0	0.0	0.0	0.0	0.0	
InternVL2.5-2B (Chen et al., 2024e)	26.3	4.5	7.7	0.0	0.0	68.0	0.0	0.0	0.0	0.0	
Qwen2.5-VL-3B (Bai et al., 2025)	52.2	37.6	43.7	2.0	0.0	50.0	3.8	2.0	2.6		
LLaVA-v1.6-Mistral-7B (Li et al., 2024)	69.7	7.6	13.7	0.0	0.0	82.0	0.0	0.0	0.0	0.0	
LLaVA-OV-7B (Li et al., 2024)	88.7	10.2	18.3	2.0	0.0	52.0	4.0	2.0	2.7		
Qwen2.5-VL-7B (Bai et al., 2025)	62.6	45.6	52.8	2.0	3.9	66.0	5.6	2.0	2.9		
InternVL2-8B (Chen et al., 2024e)	44.2	7.6	13.0	0.0	0.0	76.0	0.0	0.0	0.0	0.0	
InternVL2.5-8B (Chen et al., 2024e)	65.4	34.2	44.9	0.0	0.0	72.0	0.0	0.0	0.0	0.0	
LLaVA-1.6-Vicuna-13B (Li et al., 2024)	20.5	3.3	5.7	0.0	0.0	72.0	0.0	0.0	0.0	0.0	
InternVL2-26B (Chen et al., 2024e)	61.0	33.7	43.4	2.0	1.8	10.0	2.2	2.0	2.1		
InternVL2.5-26B (Chen et al., 2024e)	73.8	38.9	50.9	0.0	0.0	80.0	0.0	0.0	0.0	0.0	
InternVL2.5-38B (Chen et al., 2024e)	65.5	39.5	49.3	2.0	0.0	76.0	7.7	2.0	3.2		
InternVL2-40B (Chen et al., 2024e)	71.8	37.6	49.3	4.0	0.7	12.0	4.4	4.0	4.2		
InternVL2-72B (Chen et al., 2024e)	88.4	46.3	60.8	4.0	0.8	16.0	4.5	4.0	4.3		
InternVL2.5-72B (Chen et al., 2024e)	75.5	44.7	56.2	2.0	0.8	80.0	9.1	2.0	3.3		
LLaVA-OV-72B (Li et al., 2024)	77.6	42.3	54.8	0.0	1.3	72.0	0.0	0.0	0.0	0.0	
GPT-4o (OpenAI et al., 2024)	81.1	53.2	64.2	4.0	1.0	54.0	8.0	4.0	5.3		
Gemini-2-flash (DeepMind, 2025b)	71.4	50.0	58.8	10.0	0.0	6.0	9.6	10.0	9.8		
Gemini-2.5-flash (DeepMind, 2025a)	71.1	84.5	77.2	18.0	5.1	22.0	18.8	18.0	18.4		
Gemini-2.5-pro (DeepMind, 2025a)	72.6	87.2	79.2	20.0	15.1	22.0	20.4	20.0	20.2		
GPT-o3 (OpenAI, 2025a)	68.6	94.7	79.6	26.0	17.2	8.0	22.0	26.0	23.9		
Human	97.0	95.8	96.4	56.0	/	68.0	63.6	56.0	59.6		

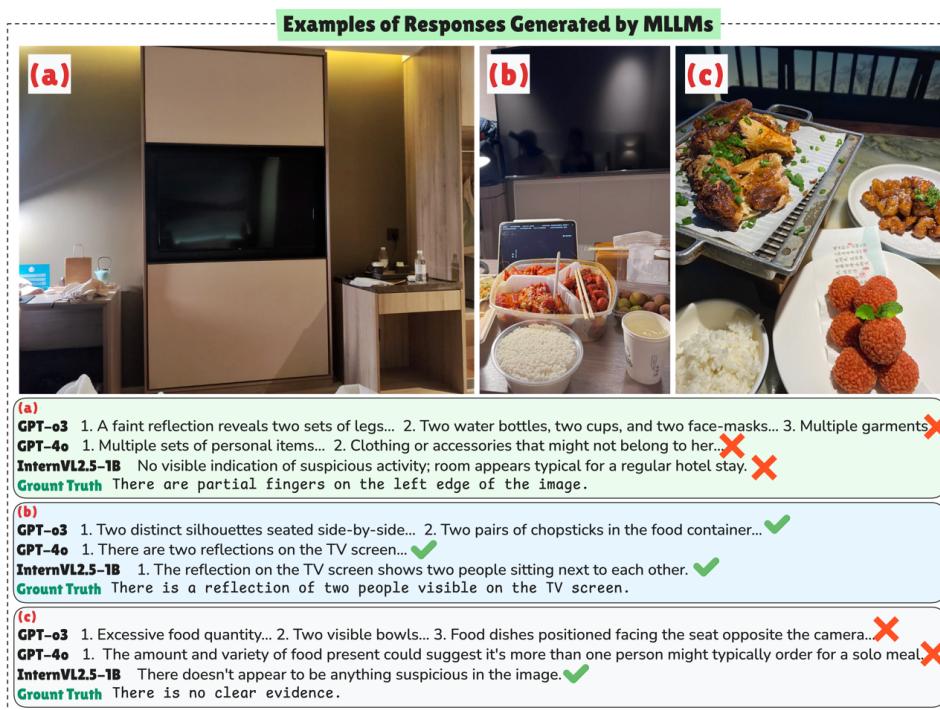
Table 1: The overall precision, recall, and F1 score for the *Synthetic Subset*, and the accuracies, IoU on the *Clued* category, and the accuracy on the *Unclued* category for the *Real Subset*, and the overall precision, recall, and F1 score for the *Real Subset*. Models are grouped by parameter size and type (open-source vs. proprietary). *Clued Acc* and *IoU* represent the capability of MLLMs to identify the suspicious clues, which directly reflects the MLLMs’ visual perception and reasoning abilities. *Unclued Acc* represents the capability of MLLMs to not generate any suspicious clues if the image is unclued. On the *Real Subset*, even the best performing model, *GPT-o3*, only achieves 26.0% accuracy and 17.2% IoU, indicating the current boundary of MLLMs’ capabilities. *F1* score shows the overall capability of MLLMs on CaughtCheating, where *GPT-o3*, achieves only 23.9%. The highest *F1* score is 23.9%, which is much lower than the human performance, indicating the current boundary of MLLMs’ capabilities.

and 10% IoU, indicating their strong capabilities on visual perception and reasoning. But still, even the best performing model, *GPT-o3*, only achieves 26.0% accuracy and 17.2% IoU, **indicating the current boundary of MLLMs’ capabilities**. We believe this benchmark is challenging enough and shows the current boundary of their visual perception and reasoning capabilities.

In the meantime, we also report the *Unclued Acc* to evaluate the capability of MLLMs to not generate any suspicious clues if the image is unclued. This is also important for the real-world application, as **we do not prefer MLLMs to suspect and accuse anything if the image providers are innocent**. As shown in the table, most of the models reach high accuracies on this category; however, this performance is due to their inability to generate any suspicious clues. On the contrary, the advanced agentic models, Gemini-2.5-pro and GPT-o3, achieve low accuracies on this category, indicating their hallucination of nonexistent suspicious clues even on unclued images. These low accuracies reveal **their lack of strong reasoning abilities to identify if something is suspicious or not**.

Finally, the *F1* scores represent the overall performance of the model, which is the harmonic mean of the *Precision* and *Recall*. The highest *F1* score is 23.9%, which is much lower than the human performance, indicating the current boundary of MLLMs’ capabilities.

Alternatively, on the *Synthetic Subset* with 3,700 images, though previous models still perform poorly, existing state-of-the-art MLLMs like GPT-o3 and Gemini-2.5-pro can reach F1 scores of almost to 80%. The main reason is that the current image synthesis model, GPT-Image-1, is not able to generate scenes with subtle and non-obvious suspicious clues, e.g., the vague reflections in the mirror. On the contrary, current SOTA MLLMs can already have the ability to identify the clues generated by image synthesis models. Further discussion on the quality of synthetic data is provided in Appendix B.

378
379
380
381
382
383
384
385
386
387
388
389
390

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: **Case studies of the models' performance on the CaughtCheating examples.** 3 representative models are selected, including GPT-o3, GPT-4o and InternVL2.5-1B, and 3 images are selected: (a) A difficult *Clued* image, (b) An easy *Clued* image, and (c) An *Unclued* image. The models' responses are truncated for better visualization. High-resolution versions of each subfigure are provided in the Appendix F.

4.2 DECOMPOSITION ANALYSIS

To better understand why the current advanced MLLMs can not perform well in this task, we design a set of decomposed questions for each image in the *Clued* category. These questions are divided into two types: perception questions, which test whether the model can accurately identify the key deterministic clue when it is explicitly mentioned, and reasoning questions, which assess whether the model can correctly infer the implications or contradictions associated. This fine-grained analysis helps reveal whether a model's failure is due to not seeing the clue at all, or seeing it but not understanding its significance, thus providing deeper insight into the limitations.

As shown in Table 2, the *Dec. P* is far higher than the *Clued Acc*, indicating that the models can identify the key deterministic clue when it is explicitly mentioned. When the human participants are given the image, it's hard for them to identify the suspicious clues at the first place, e.g. the refelction in Figure 1 and the feminine bow hair in Figure 3, but once they are explicitly mentioned or pointed out, they will admit the presense of the items. This human behavior leads to the relatively high *Dec. P* for humans. For the *Dec. R*, the performances are all relatively lower, especially for GPT-4o and o3.

These results together indicate that current advanced MLLMs can identify the key subtle items in the image if they are explicitly mentioned. However, in CaughtCheating, when being asked to identify the suspicious clues without being given any hints, they tend to do an exhaustive search and generate

432 lots of clues without really judging if the clues are suspicious or not, and at the same time, ignore the
 433 key but subtle deterministic clues. These behaviors are similar to humans and verify the hypothesis
 434 based on *Guided Search* theory.

436 5 CASE STUDIES

438 In this section, we provide some examples to show how exactly different models perform on
 439 CaughtCheating, shown in Figure 4. In the figure, 3 representative models are selected, includ-
 440 ing GPT-o3, GPT-4o, and InternVL2.5-1B, and 3 images are selected: (a) A difficult *Clued* image,
 441 (b) An easy *Clued* image, and (c) An *Unclued* image.

442 In (a), there is an elbow, and fingers are visible at the left edge of the photo, clearly indicating the
 443 presence of another person. However, all the models fail to identify this subtle but deterministic clue
 444 and focus on the reflection of the television, even though there are no visible clues in the reflection,
 445 as another person is sitting by the table. What’s worse, o3 and 4o keep mentioning the two bottles or
 446 cups, which are obviously provided by the hotel and can not be the suspicious clues. On the contrary,
 447 InternVL2.5-1B can not provide any clues by saying this is a normal hotel image. In (b), the reflection
 448 in the TV clearly shows there are two people on the bed, thus all the selected models can identify this
 449 clue. These 2 examples, (a) and (b), show that: (1) models are able to see through reflections, and (2)
 450 Reflection does not always contain suspicious clues, which further verifies that **CaughtCheating is**
 451 **challenging since there are no fixed rules for the suspicious clues.**

452 (c) shows an *Unclued* image, which is merely an ordinary food-sharing image. However, o3 still tries
 453 to generate a lot of *so-called suspicious clues*, including the amount of food, the place settings, etc.
**This behaviour is not expected since we only want models to generate clues that are really suspi-
 454 cious, rather than accusing everything, which further indicates the values of CaughtCheating.**
 455 Similarly to the above examples, InternVL2.5-1B can not provide any clues by saying this is a normal
 456 food-sharing image, that’s why it reaches the highest on the *Unclued Acc.*

458 6 CONCLUSION

460 In this work, we introduce CaughtCheating, a benchmark that stress-tests detective-level visual
 461 perception and social reasoning by asking models to find subtle, context-dependent clues that
 462 contradict a subject’s claim. Grounded in Guided Search theory, our analysis reveals why these cases
 463 are uniquely challenging—targets exhibit extremely low bottom-up salience, lack top-down feature
 464 guidance, and hinge on scene meaning, making exhaustive scan strategies ineffective. The benchmark
 465 combines a carefully curated real subset and a complementary synthetic subset with a validated
 466 automatic evaluator, enabling reproducible, fine-grained assessments. Results on the real subset
 467 reveal stark limitations: even strong agentic MLLMs significantly underperform—GPT-o3 attains
 468 only 26.0% clued accuracy, 17.2% IoU, 8.0% unclued accuracy, and an overall F1 of 23.9%. As
 469 society continuously expects more sophisticated capabilities from LLMs, we anticipate that real-world
 470 complex tasks requiring detective-level abilities will become increasingly important for MLLMs to
 471 master. In summary, CaughtCheating not only provides a challenging new benchmark for evaluating
 472 multimodal reasoning, but also exposes critical weaknesses in current MLLMs, highlighting the
 473 urgent need for further research into the detective-level capabilities of MLLMs.

474 7 ETHICS CONCERNs AND LIMITATIONS

475 Because our benchmark relies exclusively on publicly available for the *Real Subset*, annotatable
 476 social-media photographs, the source pool overwhelmingly features cisgender, heterosexual couples.
 477 The scarcity of labeled images depicting LGBTQ+ or non-monogamous relationships, therefore
 478 compelled us to centre this demographic. The same constraint restricted the dataset to a handful
 479 of commonplace settings, such as hotels, restaurants, cafés, and vacation scenes, leaving contexts
 480 such as nightlife, workplaces, or culturally specific environments underrepresented. The benchmark
 481 addresses a single, socially charged form of visual reasoning, detecting suspected infidelity, rather
 482 than the broader universe of complex social-reasoning inferences people may draw from images.
 483 These limitations stem from the paucity of suitable public data. To alleviate these concerns, we
 484 further construct the synthetic subset through a cascading pipeline that balances quality and diversity.
 485 Although the synthetic subset is not as challenging as the real-world scenarios, it alleviates the
 486 potential ethical concerns and expands the dataset to a more diverse set of scenes.

486 REPRODUCIBILITY STATEMENT
487488 All the prompts for evaluation, prompts for generating the synthetic data, along with the scene
489 distribution, have been provided in the Appendix B. Moreover, all the code and data are available at
490 <https://anonymous.4open.science/r/CaughtCheating-0573/>.
491492 THE USE OF LARGE LANGUAGE MODELS
493494 Large Language Models were utilized solely as writing aids during the preparation of this manuscript.
495 These models assisted with enhancing sentence clarity, improving readability, and maintaining
496 stylistic coherence throughout the text. All suggestions provided by the LLMs were thoroughly
497 examined, edited, and refined by the authors before incorporation. The LLMs played no role in
498 conceptual development, experimental design, data interpretation, or the formulation of scientific
499 insights. The entirety of the research contributions, analytical interpretations, and conclusions
500 presented herein is the original work of the authors.
501502 REFERENCES
503504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
506 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
507 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
508 <https://arxiv.org/abs/2502.13923>.509 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
510 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
511 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.512 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
513 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
514 models? *arXiv preprint arXiv:2403.20330*, 2024a.515 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M3 cot: A novel bench-
516 mark for multi-domain multi-step multi-modal chain-of-thought. *arXiv preprint arXiv:2405.16473*,
517 2024b.519 Ruxiao Chen, Chenguang Wang, Yuran Sun, Xilei Zhao, and Susu Xu. From perceptions to decisions:
520 Wildfire evacuation decision prediction with behavioral theory-informed llms. *arXiv preprint*
521 *arXiv:2502.17701*, 2025.523 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu,
524 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking of
525 o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024c.526 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
527 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
528 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024d.530 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
531 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
532 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
533 *Vision and Pattern Recognition*, pp. 24185–24198, 2024e.534 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
535 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
536 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
537 2023.538 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
539 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

540 Edirlei Soares de Lima, Marco A Casanova, Bruno Feijó, and Antonio L Furtado. Characterizing
 541 the investigative methods of fictional detectives with large language models. *arXiv preprint*
 542 *arXiv:2505.07601*, 2025.

543

544 Google DeepMind. Gemini 2.5 pro preview model card. Technical report, Google DeepMind,
 545 May 2025a. URL <https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf>.

546

547 Google DeepMind. Gemini 2.0 flash, 2025b. URL <https://deepmind.google/technologies/gemini/flash/>.

548

549

550 Huilin Deng, Ding Zou, Rui Ma, Hongchen Luo, Yang Cao, and Yu Kang. Boosting the generalization
 551 and reasoning of vision language models with curriculum reinforcement learning. *arXiv preprint*
 552 *arXiv:2503.07065*, 2025a.

553

554 Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, Quanquan Gu, James Y Zou, Kai-Wei Chang, and
 555 Wei Wang. Enhancing large vision language models with self-training on image comprehension.
 556 *Advances in Neural Information Processing Systems*, 37:131369–131397, 2024.

557

558 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
 559 An early exploration to complex vision-language reasoning via iterative self-improvement. *arXiv preprint arXiv:2503.17352*, 2025b.

560

561 John Duncan and Glyn W Humphreys. Visual search and stimulus similarity. *Psychological review*,
 562 96(3):433, 1989.

563

564 Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. Missing premise exacerbates overthinking: Are
 565 reasoning models losing critical thinking skill? *arXiv preprint arXiv:2504.06514*, 2025.

566

567 Xingyu Fu, Minqian Liu, Zhengyuan Yang, John Corring, Yijuan Lu, Jianwei Yang, Dan Roth, Dinei
 568 Florencio, and Cha Zhang. Refocus: Visual editing as a chain of thought for structured image
 569 understanding. *arXiv preprint arXiv:2501.05452*, 2025.

570

571 Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. Understanding
 572 social reasoning in language models with language models. *Advances in Neural Information
 573 Processing Systems*, 36:13518–13529, 2023.

574

575 Rynaa Grover, Jayant Sravan Tamarapalli, Sahiti Yerramilli, and Nilay Pande. Huemanity: Probing
 576 fine-grained visual perception in mllms. *arXiv preprint arXiv:2506.03194*, 2025.

577

578 Zhouhong Gu, Lin Zhang, Jiangjie Chen, Haoning Ye, Xiaoxuan Zhu, Zihan Li, Zheyu Ye, Yan Gao,
 579 Yao Hu, Yanghua Xiao, et al. Piecing together clues: A benchmark for evaluating the detective
 580 skills of large language models. *arXiv preprint arXiv:2307.05113*, 2023.

581

582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 583 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 584 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

585

586 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
 587 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
 588 benchmark. *arXiv preprint arXiv:2501.05444*, 2025.

589

590 Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, and Jieyu Zhao. Vlms
 591 as geoguessr masters: Exceptional performance, hidden biases, and privacy risks. *arXiv preprint*
 592 *arXiv:2502.11163*, 2025a.

593

594 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 595 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 596 *arXiv preprint arXiv:2503.06749*, 2025b.

597

598 Laurent Itti and Christof Koch. Computational modelling of visual attention. *Nature reviews
 599 neuroscience*, 2(3):194–203, 2001.

594 Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for
 595 rapid scene analysis. *IEEE Transactions on pattern analysis and machine intelligence*, 20(11):
 596 1254–1259, 2002.

597

598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 600 *arXiv:2412.16720*, 2024.

601 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
 602 Tang, Suhang Wang, Yu Meng, et al. Graph chain-of-thought: Augmenting large language models
 603 by reasoning on graphs. *arXiv preprint arXiv:2404.07103*, 2024.

604

605 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 606 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 607 learning. *arXiv preprint arXiv:2503.09516*, 2025.

608 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
 609 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 610 reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 611 2901–2910, 2017.

612

613 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 614 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 615 22199–22213, 2022.

616

617 Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang,
 618 Sejin Kim, and Sundong Kim. Reasoning abilities of large language models: In-depth analysis on
 619 the abstraction and reasoning corpus. *ACM Transactions on Intelligent Systems and Technology*,
 2024.

620

621 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 622 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024.
 623 URL <https://arxiv.org/abs/2408.03326>.

624

625 Ming Li, Zhengyuan Yang, Xiyao Wang, Dianqi Li, Kevin Lin, Tianyi Zhou, and Lijuan Wang.
 626 What makes reasoning models different? follow the reasoning leader for efficient decoding. *arXiv*
 627 *preprint arXiv:2506.06998*, 2025a.

628

629 Ming Li, Ruiyi Zhang, Jian Chen, Jiuxiang Gu, Yufan Zhou, Franck Dernoncourt, Wanrong Zhu,
 630 Tianyi Zhou, and Tong Sun. Towards visual text grounding of multimodal large language model.
 631 *arXiv preprint arXiv:2504.04974*, 2025b.

632

633 Yijun Liang, Ming Li, Chenrui Fan, Ziyue Li, Dang Nguyen, Kwesi Cobbina, Shweta Bhardwaj,
 634 Juhai Chen, Fuxiao Liu, and Tianyi Zhou. Colorbench: Can vlms see and understand the colorful
 635 world? a comprehensive benchmark for color perception, reasoning, and robustness. *arXiv preprint*
 636 *arXiv:2504.10514*, 2025.

637

638 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 639 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 640 *International Conference on Learning Representations*, 2023.

641

642 Feiran Liu, Yuzhe Zhang, Xinyi Huang, Yinan Peng, Xinfeng Li, Lixu Wang, Yutong Shen, Ranjie
 643 Duan, Simeng Qin, Xiaojun Jia, et al. The eye of sherlock holmes: Uncovering user private
 644 attribute profiling via vision-language model agentic framework. In *Proceedings of the 33rd ACM*
 645 *International Conference on Multimedia*, pp. 4875–4883, 2025.

646

647 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 648 *neural information processing systems*, 36:34892–34916, 2023.

649

650 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 651 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 652 pp. 26296–26306, 2024.

648 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 649 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 650 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 651 2022.

652 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 653 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 654 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

655 Weidi Luo, Qiming Zhang, Tianyu Lu, Xiaogeng Liu, Yue Zhao, Zhen Xiang, and Chaowei Xiao.
 656 Doxing via the lens: Revealing privacy leakage in image geolocation for agentic multi-modal large
 657 reasoning model. *arXiv preprint arXiv:2504.19373*, 2025.

658 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 659 Han, Botian Shi, Wenhui Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal
 660 reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

661 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 662 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 663 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

664 OpenAI. Openai o3 and o4-mini system card. Technical report, OpenAI, April 2025a. URL
 665 <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

666 OpenAI. Introducing 4o image generation. <https://openai.com/index/introducing-4o-image-generation/>, 2025b.

667 OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
 668 AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, and etc. Gpt-4o system card, 2024. URL
 669 <https://arxiv.org/abs/2410.21276>.

670 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 671 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 672 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 673 27744, 2022.

674 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math
 675 word problems? *arXiv preprint arXiv:2103.07191*, 2021.

676 Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath: Bridging
 677 visual and mathematical reasoning for large language models. *arXiv preprint arXiv:2409.00147*,
 678 2024.

679 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 680 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 681 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

682 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 683 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint
 684 arXiv:2501.14249*, 2025.

685 Chenhui Qiang, Zhaoyang Wei, Xumeng Han, Zipeng Wang, Siyao Li, Xiangyuan Lan, Jianbin Jiao,
 686 and Zhenjun Han. Ver-bench: Evaluating mllms on reasoning with fine-grained visual evidence. In
 687 *Proceedings of the 33rd ACM International Conference on Multimedia*, pp. 12698–12705, 2025.

688 Leonardo Ranaldi and Andrè Freitas. Self-refine instruction-tuning for aligning reasoning in language
 689 models. *arXiv preprint arXiv:2405.00402*, 2024.

690 Zinan Tang and Qiyao Sun. Big escape benchmark: Evaluating human-like reasoning in language
 691 models via real-world escape room challenges. In *Proceedings of the Fourth Workshop on
 692 Generation, Evaluation and Metrics (GEM²)*, pp. 488–503, 2025.

702 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 703 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 704 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

705 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
 706 and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. *arXiv
 707 preprint arXiv:2205.14100*, 2022a.

708 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
 709 Tom Goldstein, Parminder Bhatia, Furong Huang, et al. Enhancing visual-language modality
 710 alignment in large vision language models via self-improvement. *arXiv preprint arXiv:2405.15973*,
 711 2024a.

712 Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin Lu, Yuancheng Xu, Chung-Ching Lin, Kevin
 713 Lin, Furong Huang, and Lijuan Wang. Scaling inference-time search with vision value model for
 714 improved visual comprehension. *arXiv preprint arXiv:2412.03704*, 2024b.

715 Xiyao Wang, Zhengyuan Yang, Chao Feng, Yongyuan Liang, Yuhang Zhou, Xiaoyu Liu, Ziyi Zang,
 716 Ming Li, Chung-Ching Lin, Kevin Lin, et al. Vicrit: A verifiable reinforcement learning proxy
 717 task for visual perception in vlms. *arXiv preprint arXiv:2506.10128*, 2025a.

718 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 719 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 720 visual reasoning self-improvement. *arXiv preprint arXiv:2504.07934*, 2025b.

721 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 722 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 723 *arXiv preprint arXiv:2203.11171*, 2022b.

724 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 725 Wu, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understanding in
 726 multimodal llms. *Advances in Neural Information Processing Systems*, 37:113569–113697, 2024c.

727 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 728 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 729 neural information processing systems*, 35:24824–24837, 2022.

730 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 731 Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
 732 *arXiv preprint arXiv:2503.10460*, 2025.

733 Jeremy M Wolfe and Todd S Horowitz. Five factors that guide attention in visual search. *Nature
 734 human behaviour*, 1(3):0058, 2017.

735 Jeremy M Wolfe, Kyle R Cave, and Susan L Franzel. Guided search: an alternative to the feature
 736 integration model for visual search. *Journal of Experimental Psychology: Human perception and
 737 performance*, 15(3):419, 1989.

738 Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic reasoning: Reasoning llms with tools for the deep
 739 research. *arXiv preprint arXiv:2502.04644*, 2025.

740 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Minds
 741 eye of llms: Visualization-of-thought elicits spatial reasoning in large language models. In *The
 742 Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

743 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 744 Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024.

745 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
 746 Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *arXiv
 747 preprint arXiv:2405.00451*, 2024.

748 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
 749 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

756 Weiye Xu, Jiahao Wang, Weiyun Wang, Zhe Chen, Wengang Zhou, Aijun Yang, Lewei Lu, Houqiang
 757 Li, Xiaohua Wang, Xizhou Zhu, et al. Visulogic: A benchmark for evaluating visual reasoning in
 758 multi-modal large language models. *arXiv preprint arXiv:2504.15279*, 2025.

759

760 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 761 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 762 *information processing systems*, 36:11809–11822, 2023.

763

764 Bin Yu, Hang Yuan, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen. Long-short chain-
 765 of-thought mixture supervised fine-tuning eliciting efficient reasoning in large language models.
 766 *arXiv preprint arXiv:2505.03469*, 2025.

767

768 Weihsiao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 769 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
 770 *preprint arXiv:2308.02490*, 2023.

771

772 Yuan Yuan, Muyu He, Muhammad Adil Shahid, Jian Huang, Ziyang Li, and Li Zhang. Turnaboutllm:
 773 A deductive reasoning benchmark from detective games. *arXiv preprint arXiv:2505.15712*, 2025.

774

775 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 776 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 777 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 778 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert
 779 agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 780 (CVPR), pp. 9556–9567, June 2024a.

781

782 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 783 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 784 understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024b.

785

786 Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
 787 commonsense reasoning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 788 *pattern recognition*, pp. 6720–6731, 2019.

789

790 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
 791 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams
 792 in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer,
 793 2024a.

794

795 Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei Yang,
 796 Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought reasoning.
 797 *arXiv preprint arXiv:2410.16198*, 2024b.

798

799 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 800 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.

801

802 Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R McKee, Ari Holtzman,
 803 Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh, et al. How far are large language
 804 models from agents with theory-of-mind? *arXiv preprint arXiv:2310.03051*, 2023.

805

806 Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao Wang,
 807 Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models. *arXiv*
 808 *preprint arXiv:2405.14622*, 2024.

809

810 TABLE OF CONTENTS FOR APPENDIX
811

812	A Relate Work	17
813	A.1 LLM reasoning	17
814	A.2 MLLM reasoning	17
815	A.3 Detective-Style Multimodal Reasoning	18
816		
817		
818		
819	B Detailed Benchmark Construction	19
820	B.1 Image Collection for Real Subset	19
821	B.2 Annotation for Real Subset	19
822	B.3 Construction for Synthetic Subset	20
823	B.4 Discussion for Synthetic Subset	20
824	B.5 Data Distribution for Real Subset	21
825	B.6 Data Distribution for Synthetic Subset	22
826	B.7 Prompt for Synthetic Subset Construction	24
827		
828		
829		
830		
831	C Evaluation Metrics	25
832		
833	D Evaluation Prompt	27
834		
835	E o3 Reasoning Traces for Qualitative Examples	30
836		
837		
838	F High-Resolution Figures	39
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864
865

A RELATE WORK

866
867

A.1 LLM REASONING

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

The chain-of-thought technique (Wei et al., 2022; Kojima et al., 2022) represents the early efforts in exploring the reasoning capabilities of large language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2023). By explicitly generating intermediate reasoning steps, this method notably enhances performance across various reasoning tasks (Patel et al., 2021; Cobbe et al., 2021). Moreover, advances in decoding strategies have introduced additional test-time computation to further boost performance. For instance, Self-Consistency sampling (Wang et al., 2022b), which employs voting mechanisms to select from multiple reasoning paths, has notably increased reliability. Expanding beyond linear reasoning processes, structured frameworks such as Tree-of-thought Yao et al. (2023) or Graph-of-thought (Jin et al., 2024) facilitate the exploration of multiple candidate reasoning paths within branched subspaces before reaching a final conclusion. Other research investigates manipulating the reasoning process to generate longer chains of thought than those typically observed, either by explicitly prompting extended reasoning chains (Muennighoff et al., 2025) or by integrating human-like cognitive theory foundations into the inference process (Zhou et al., 2023; Gandhi et al., 2023; Lee et al., 2024; Chen et al., 2025). Furthermore, supervised fine-tuning (SFT) not only improves general instruction-following performance (Ouyang et al., 2022; Xia et al., 2024) but has also been demonstrated to significantly enhance multi-step reasoning capabilities when trained on structured chain-of-thought (CoT) traces, where models learn to explicitly generate intermediate reasoning steps (Ranaldi & Freitas, 2024; Wen et al., 2025; Muennighoff et al., 2025; Yu et al., 2025; Li et al., 2025a). Additionally, prior research has employed reward models during training to evaluate each intermediate reasoning step individually, rather than solely assessing final outcomes, further improving reasoning performance (Uesato et al., 2022; Lightman et al., 2023). This approach integrates effectively with Monte Carlo Tree Search techniques (Xie et al., 2024), providing valuable insights into performance gains achieved through fine-grained value estimations. Beyond training, many studies augment the reasoning process with the ability to invoke external tools and knowledge sources, a paradigm known as “agentic reasoning” (Wu et al., 2025). In this paradigm, LLMs call tools such as calculators, code interpreters, web search, and other utilities to provide context from the tools’ results into the reasoning process to solve complex tasks. For instance, Jin et al. (Jin et al., 2025) introduce the Search-R1, which lets an LLM query a search engine and condition subsequent reasoning on the retrieved evidence. Recent developments in large-scale reinforcement learning, relying solely on outcome-based rewards, have demonstrated potential for inducing emergent multi-step reasoning capabilities (Guo et al., 2025; Jaech et al., 2024). While the advancements in reasoning also potentially lead to the emergence of overthinking issues (Chen et al., 2024c; Fan et al., 2025). Such advancements underscore the importance of tasks that can be automatically verified (e.g., RL can be effectively scaled up with minimal noise in its reward signals).

A.2 MLLM REASONING

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Recent developments in MLLMs (Wang et al., 2022a; Liu et al., 2023; OpenAI et al., 2024; Liu et al., 2024; Chen et al., 2024e;d; Bai et al., 2025) have led to the exploration of multimodal chain-of-thought techniques aimed at enhancing performance on visual reasoning tasks (Yu et al., 2023; Lu et al., 2023; Hao et al., 2025) with both textual reasoning process (Lu et al., 2022; Zhang et al., 2023) and multimodal reasoning path (Wu et al., 2024; Fu et al., 2025). Methods such as rationale distillation and self-reflection have also been employed to strengthen reasoning capabilities (Zhang et al., 2024b; Zhou et al., 2024; Wang et al., 2024a;b; Deng et al., 2024). Besides, LLaVA-01 (Xu et al., 2024) proposes a fine-tuning strategy that leverages a dataset enriched with structured reasoning annotations (e.g., summarization, visual analysis, logical deduction, conclusion), achieving substantial performance improvement. Inspired by successes in reinforcement learning of LLMs, recent efforts have similarly applied this method to visual math problems and other visual question-answering tasks (Deng et al., 2025b; Huang et al., 2025b; Wang et al., 2025b; Peng et al., 2025; Meng et al., 2025). For example, Curr-ReFT (Deng et al., 2025a) introduces a three-stage progression paradigm that blends RL with curriculum design to mimic the student learning process, significantly improving generalization and step-by-step reasoning capability. Although these approaches have improved performance on visual math and STEM-related questions, substantial progress in fine-grained visual perception remains limited. For instance, MMMU (Yue et al., 2024a) shows that current MLLMs, though strong on everyday tasks, stumble on domain-specific reasoning and complex, specialized

918 imagery; many items can be solved from textual cues or memorized facts without genuine visual
 919 grounding. Its successor, MMMU-Pro (Yue et al., 2024b), reinforces these findings and demonstrates
 920 that prompts encouraging explicit multi-step linguistic reasoning boost performance, provided the
 921 model truly incorporates visual evidence at each step. Similarly, MultiMath (Peng et al., 2024) reveals
 922 that many MLLMs are underperforming with purely visual inputs with minimal text, indicating
 923 that the understanding of complex spatial reasoning in mathematical or scientific diagrams remains
 924 challenging. TRIG (Li et al., 2025b), proposing the first visual text grounding task, shows the inability
 925 of MLLMs to perform visual reasoning and grounding. ColorBench (Liang et al., 2025) introduces
 926 the first comprehensive benchmark for color perception, reasoning, and robustness, showcasing the
 927 low capability of MLLMs on color-related perception and reasoning. ViCrit (Wang et al., 2025a), on
 928 the other hand, introduces the verifiable reinforcement learning proxy task for visual perception in
 929 VLMs.

930 A.3 DETECTIVE-STYLE MULTIMODAL REASONING

931 A growing body of multimodal evaluation benchmarks has investigated distinct components of
 932 perceptual sensitivity, structured visual reasoning, and high-level multimodal inference. However,
 933 none of these efforts fully capture the open-ended discovery of low-salience visual cues in natural
 934 scenes or the subsequent linking of such cues to social–semantic contradictions, an ability central to
 935 our benchmark.

936 Previous work such as HueManity (Grover et al., 2025) emphasizes fine-grained perceptual discrimination
 937 using Ishihara-style dot patterns, revealing that MLLMs struggle even with low-level visual
 938 sensitivity. While this capability forms an essential precursor to our task, the setting in HueManity is
 939 purely perceptual and lacks contextual grounding or semantic interpretation. VisuLogic (Xu et al.,
 940 2025) instead targets diagrammatic and relational reasoning through salient, unambiguous geometric
 941 structures. These tasks isolate structured logic but provide fully specified evidence, meaning models
 942 never need to identify which visual elements are relevant. VER-Bench (Qiang et al., 2025) advances
 943 evaluation toward real-world photographs by requiring models to integrate fine-grained visual clues
 944 into coherent reasoning chains. Yet, the benchmark offers annotated clue regions, so models reason
 945 over known and pre-identified evidence rather than inferring what constitutes evidence within a
 946 complex scene. EMMA (Hao et al., 2025) similarly probes multimodal STEM reasoning across
 947 diagrams and scientific plots, highlighting deficiencies in multi-step inference; however, the presented
 948 visuals remain explicit, high-information, and foregrounded rather than subtle or ambiguous.

949 More recent benchmarks have begun to explore richer, integrative multimodal tasks. Big Escape
 950 Bench (Tang & Sun, 2025) evaluates multi-step puzzle solving in realistic narrative scenarios,
 951 requiring some coordination of perception and reasoning. Nonetheless, its visual environments offer
 952 strong narrative affordances and clearly defined clue types, limiting the need for open-ended evidence
 953 discovery. TurnaboutLLM (Yuan et al., 2025), while adopting a narrative format adjacent to ours,
 954 operates on textualized testimonies and evidence, and visual content is converted to text, and the model
 955 receives an enumerated clue set instead of inferring visual cues autonomously. DOXBench (Luo et al.,
 956 2025) demonstrates that MLLMs can detect subtle real-world signals for geolocation inference but
 957 restricts cue types to known categories such as architecture or signage, again providing a constrained
 958 hypothesis space. In parallel, HolmesEye (Liu et al., 2025) further shows that agentic MLLM-LLM
 959 pipelines can perform strong multi-image inference, achieving high accuracy in privacy-related
 960 attribute profiling. However, its visual cues are abundant and semantically foregrounded, meaning it
 961 does not address open-ended discovery of tiny, low-salience clues in unconstrained scenes, which
 962 remains central to our benchmark..

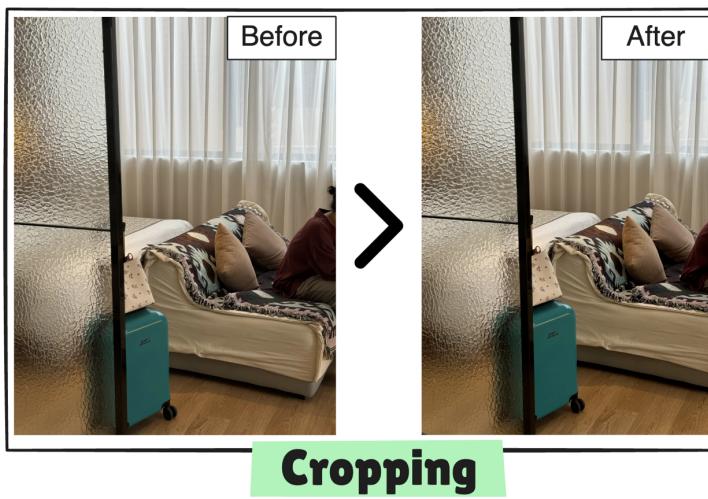
963 Therefore, these benchmarks illuminate specific deficiencies in perception, structured reasoning, and
 964 multimodal inference, yet none require identifying tiny, ambiguous, low-salience visual anomalies
 965 embedded in unconstrained natural images, nor linking such anomalies to emergent social–semantic
 966 contradictions without top-down specification.

967
 968
 969
 970
 971

972 B DETAILED BENCHMARK CONSTRUCTION
973974 B.1 IMAGE COLLECTION FOR REAL SUBSET
975

976 For CaughtCheating images, we use publicly posted photographs from social media. We manually
977 search and review all the comments for each image to assess their suitability. Selected images must
978 either contain or lack subtle, suspicious clues related to potential claim violation. The judgment of
979 image candidates is based not only on the comments but also on human evaluation. Additionally,
980 each image must have sufficient resolution quality to allow us to directly identify such clues, rather
981 than rely on implications from blurred or indistinct objects.

982 Due to the limited availability of images with clear, subtle clues from public sources, we also include
983 minimally modified versions of images containing direct clues (e.g., a clearly visible person or
984 untypical belongings suggesting the presence of another individual). We apply simple cropping
985 to these images to obscure the direct clues. As shown in Figure 5, the original photo shows a
986 person sitting on the couch. After cropping, only their back remains visible, making the clue still
987 interpretable for humans, yet challenging for MLLMs.



1005
1006 Figure 5: **Example of cropping an image for *with-clue* category.** The original photo shows part of
1007 the person sitting on the sofa (Before). By cropping (After), we can still infer there is a person, but
1008 identifying the clue is more subtle and challenging for MLLMs.

1009 After collecting a sufficient number of candidate images, we meticulously selected 100 images, split
1010 into *Clued* and *Unclued* categories, to construct the image set for CaughtCheating benchmark. These
1011 images are collected from the *Real Subset*. All the images are verified manually to make sure the
1012 clues are solid and no personal information exists on the image.

1014 B.2 ANNOTATION FOR REAL SUBSET
1015

1016 After constructing the image set, we annotate each image with a set of questions and corresponding
1017 ground-truth answers. A detailed annotated example is shown in Figure 3. For images in *Clued* cate-
1018 gory, we annotate each one using a question instantiated from the template: “*My [girlfriend/boyfriend]*
1019 *said [she/he] is [in a certain scenario] and sent me this photo. Do you notice anything suspicious in*
1020 *the image that contradicts [her/his] claim?*” Among the potential clues, the one that deterministically
1021 shows the violation of the providing claim (a clearly identifiable, contextually inappropriate element)
1022 will be selected as the ***Deterministic Clue***, e.g., a pair of slippers is being worn by someone in Figure
1023 3. The remaining clues are labeled as ***Non-deterministic Clues*** (weaker or more ambiguous signals),
1024 e.g., the rose bouquet, the TV shows, and the far-reached drinks. These non-deterministic clues might
1025 be suspicious, but apparently not enough to infer the potential claim violation. The reason we provide
these clues is to avoid punishing models when they mention these clues.

1026 Furthermore, we construct a series of decomposed questions designed to analyze the visual reasoning
 1027 process of MLLMs, shown in the right part of Figure 3. This series includes: (1) **Decomposed**
 1028 **Perception Question**, which assesses whether the MLLMs can identify the deterministic clue when
 1029 we explicitly mention the clue and position. (2) **Decomposed Reasoning Question**, which assesses
 1030 whether MLLMs can understand the social implications of the clue, or whether MLLMs can imply
 1031 the relation between the clue and the potential lie. The correct answer to each of these decomposed
 1032 questions is annotated as “yes”. These decomposed questions can be utilized for in-depth analysis on
 1033 why MLLMs can not solve the question.

1034 These decomposed questions can be utilized for in-depth analysis on why MLLMs can not solve the
 1035 question. (1) If the MLLMs have low accuracy on perception-related decomposed questions, it means
 1036 the low performance is caused by their poor visual perception ability. (2) If the MLLMs have low
 1037 accuracy on reasoning-related decomposed questions, it means the low performance is caused by
 1038 their poor visual reasoning ability. (3) If the MLLMs have relatively high accuracy on both types of
 1039 decomposed questions, it means they have the necessary capabilities to solve the task, but they do not
 1040 know where to start. For images in the *Unclued* category, we annotate each using the same initial
 1041 question template, with the ground-truth answer labeled as “There is no clear evidence.”

1042 B.3 CONSTRUCTION FOR SYNTHETIC SUBSET

1043 We construct the synthetic subset through a cascading pipeline that balances image quality and
 1044 diversity, starting from predefined scenes and deterministic clues.

1045 First, we define a set of scenes potentially involving suspicious behaviors (e.g., bar, office, hotel room,
 1046 car). For each scene, deterministic clues are provided solely for the clued category, and their design
 1047 is anchored to the scene’s context. These clues are drafted as complete sentences (e.g., there are two
 1048 glasses with wine on the table) rather than keywords in practice, and they are designed according
 1049 to gender stereotypes while ensuring a balanced distribution across genders. For instance, wine
 1050 glasses may appear as a clue in the bar scene but not in other contexts, such as the scene inside the
 1051 car. While clues are restricted to the clued category, scene definitions apply to both the clued and
 1052 unclued categories. Notably, while detailed mappings between scenes, clues, and their statistics of
 1053 our experiment are given in the Table 4 and Table 5, they can still be further scaled as needed.

1054 Subsequently, we employ a LLM to generate multiple candidate prompts for both categories. For
 1055 the clued category, the LLM is provided with both the scene and its associated clue; for the unclued
 1056 category, only the scene is provided, with an explicit instruction to depict a single individual.
 1057 To mitigate potential conflicts arising from gender-sensitive stereotypes, information about the
 1058 photographer’s gender is also incorporated where relevant. Moreover, to ensure a balanced number
 1059 of generated images in both categories, the number of prompts corresponding to each gender within
 1060 the same scene is kept identical. After candidate prompts are generated, annotators review them
 1061 for semantic accuracy and compliance with the predefined constraints, and then select the five best
 1062 prompts per clue within each scene. Moreover, to ensure a balanced number of generated images in
 1063 both categories, the number of prompts corresponding to each gender within the same scene is kept
 1064 identical. The prompts we used to produce the image generation prompt are illustrated in Figure 7
 1065 and Figure 8

1066 Finally, we use a state-of-the-art image generation model (e.g., GPT-image-1 (OpenAI, 2025b))to
 1067 synthesize images from these prompts. To scale up the dataset and improve diversity, multiple
 1068 candidates are generated for each prompt, and human evaluators select the top five. Meanwhile, we
 1069 adapt the question templates from the real subset and directly adopt the answers from the clue-defining
 1070 sentences, so that the constructed question–answer pairs are fully consistent with the annotation
 1071 protocol and data organization of the real subset.

1072 As a result, the procedure produces 3700 images in total, evenly split between 1850 clued and 1850
 1073 unclued samples spanning 10 distinct scenes. Comprehensive statistics and distributions are reported
 1074 in the Table 6.

1075 B.4 DISCUSSION FOR SYNTHETIC SUBSET

1076 To enable efficient large-scale data construction, we generate prompts only from the photographer’s
 1077 gender, the scene, and a deterministic clue, rather than drafting case-specific, highly detailed de-

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

scriptions by human experts. This design ensures scalability and consistency, but it also introduces trade-offs: clues are generally more prominent, non-deterministic clues are ignored, and incidental distractions such as irrelevant personal belongings are largely absent. Consequently, compared with the image in the real subset, synthetic images are “cleaner,” with less background variation and fewer competing elements, making them easier for MLLMs to perceive, as demonstrated in Figure 6.

However, although the perceptual difficulty is lower, the deterministic clues still embed non-trivial social semantics and contextual implications. These clues, while visually more salient, continue to convey cultural, gender, and situational meanings that require careful interpretation. For example, the lipstick and handbag on the table in Figure 6 are easy to recognize, yet they still imply the presence of a woman in the room. Furthermore, as shown in Table 1, many MLLMs continue to struggle in detecting the contradiction to the claim under these conditions, reinforcing that the social and semantic challenge remains essential even if perceptual noise has been reduced for scalability. Thus, although the synthetic subset cannot fully replicate the subtlety and complexity of real subset, it represents a trade-off that lowers perceptual difficulty but preserves the benchmark’s practical value for systematic evaluation.

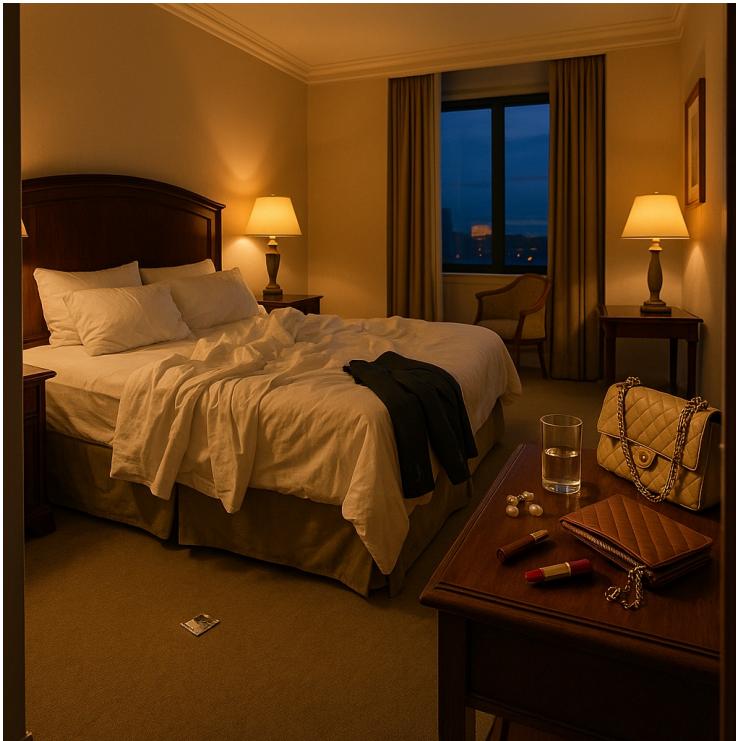


Figure 6: **Example image from the synthetic subset.** Distinct clues, such as a scattered lipstick, are clearly visible. While the image may still contain some irrelevant objects, the overall noise level is low. Compared to the real subset, the perception process is relatively easier, even though the complex social implications remain present.

B.5 DATA DISTRIBUTION FOR REAL SUBSET

Our dataset comprises 100 samples collected from publicly posted photos, each manually annotated with a series of questions accompanied by ground-truth answers. These samples serve as test cases to evaluate the capability of MLLMs in detecting potential claim violations.

The dataset is evenly divided into two categories: the *Clued* category (50 samples), which includes clear indicators of potential claim violation, and the *Unclued* category (50 samples), which lacks explicit indicators. This balanced distribution aims to minimize class bias and ensure fair evaluation. Furthermore, the dataset encompasses three distinct scene types based on photo backgrounds: hotels, dining venues, and karaoke bars. The gender attributes assigned to each sample reflect the photogra-

Category	Scene	Male	Female	# Dec. P	# Dec. R	# Total
<i>Clued</i>	Dining	6	5	11	21	
	Hotel	25	12	37	67	50
	Karaoke bar	2	0	2	3	
<i>Unclue</i>	Dining	7	11	0	0	50
	Hotel	13	19	0	0	

Table 3: Distribution of scenes, interlocutor gender, and question types across the two clue categories.

pher’s gender as inferred from the provided descriptions of the photos. These attributes do not pertain to any individuals depicted within the images. The gender categorization currently includes male and female solely based on limited available descriptive information.

Detailed statistics regarding scenario distribution and gender breakdown are summarized in Table 3. Hotel scenes comprise the majority of the dataset (69%), aligning with their prominence as typical settings for potentially suspicious scenarios. Dining venues account for 29% of the dataset, and karaoke bars represent the remaining 2%. Gender distribution is 55% male photographers and 45% female photographers.

Additionally, the dataset includes annotations for perception and reasoning questions derived from decomposition queries. Specifically, it contains 50 perception questions and 91 reasoning questions, thoroughly evaluating why MLLMs may fail to resolve specific queries. Detailed counts corresponding to scene types are provided in Table 3. Each sample averages approximately two reasoning questions, enabling comprehensive analysis of MLLM performance concerning both explicit clues and the broader social or environmental context.

B.6 DATA DISTRIBUTION FOR SYNTHETIC SUBSET

As illustrated in Section 3, to ensure consistency between clue definitions and dataset distribution, we first curated five human-selected prompts for each scene clue mapping. Each prompt was used to generate multiple candidate images, from which five were carefully chosen. Therefore, data distribution in the synthetic subset is highly correlated to the number of predefined rules under each scene.

The synthetic subset comprises 3700 images, evenly split between the clued subset (1850 images) and the unclued subset (1850 images). The gender of the photographer is balanced across the dataset: 1900 images (51%) are attributed to male and 1,800 images (49%) to female photographers. This balance is deliberately maintained to minimize bias when evaluating model performance.

Scene distribution covers ten distinct environments. The largest categories are Gym, Hospital, and Hotel, each contributing 500 images (14%), collectively representing 42% of the dataset. The Bar scene accounts for 400 images (11%), while Office and Restaurant each contribute 350 images (9%). Mid-scale categories include Beach, Cafe, and Library, with 300 images each (8%). The Car scene contributes the fewest images, with 200 (5%). Importantly, this allocation is consistently mirrored across both Clued and Unclued subsets, ensuring proportional representation of all environments.

Overall, the dataset reflects a carefully controlled design, balancing clue type, gender, and scene. The systematic design ensures that generated samples are faithful to the intended definitions of “clued” and “unclued,” while the proportional scene distribution provides diverse yet structured coverage of everyday contexts. This deliberate construction supports rigorous and fair evaluation of multimodal large language models across a wide spectrum of scenarios.

Scene	# Clues	Clues				
Bar	4	two glasses	lady handbag	another hand	mirror & lipstick	-
Beach	3	another foot	two cups	two bicycle	-	-
Cafe	3	lady clothes	lipstick	makeup mirror	-	-
Car	2	another foot	another leg	-	-	-
Gym	5	two bottles	another arm	mirror figure	lady hair clip	lady bracelet
Hospital	5	another back	rose & love card	lady handbag	extra slippers	card piles
Hotel	5	lady handbag	lady clothes	lady hairclip	doll & rose	lipstick
Library	3	two open book	lady hair clip	two test paper	-	-
Office	4	roses	lunchbox	lady clothes	another foot	-
Restaurant	4	two tableware	lady handbag	two steaks	another arm	-

Table 4: Deterministic clues for the synthetic subset construction categorized by scene in male.

Scene	# Clues	Clues				
Bar	4	two phones	men wallet table	another arm	two straws	-
Beach	3	two sunglasses	another arm	two single kayak	-	-
Cafe	3	two cakes	two coffees	two laptops	-	-
Car	2	another arm	two drinks	-	-	-
Gym	5	two towels	another foot	two earphone cases	men tank top	men watch
Hospital	5	another arm	TV reflection	lunchbox	wet umbrella	another head
Hotel	5	TV reflection	another arm	man shoes	five suitcases	men suit
Library	3	two cups	another arm	two chargers	-	-
Office	3	date note	two ID badges	monitor reflection	-	-
Restaurant	3	two phones	man clothes	two glasses	-	-

Table 5: Deterministic clues for the synthetic subset construction categorized by scene in female.

Scene	Clued			Unclued			# Images
	Male	Female	Total	Male	Female	Total	
Bar	100	100	200	100	100	200	400
Beach	75	75	150	75	75	150	300
Cafe	75	75	150	75	75	150	300
Car	50	50	100	50	50	100	200
Gym	125	125	250	125	125	250	500
Hospital	125	125	250	125	125	250	500
Hotel	125	125	250	125	125	250	500
Library	75	75	150	75	75	150	300
Office	100	75	175	100	75	175	350
Restaurant	100	75	175	100	75	175	350
Total	950	900	1850	950	900	1850	3700

Table 6: Distribution of images in the synthetic subset across scenes, genders, and categories.

1242 B.7 PROMPT FOR SYNTHETIC SUBSET CONSTRUCTION
12431244 These two prompts provide a unified framework for constructing both the clued and unclued categories
1245 of the synthetic subset. By simply specifying the scene and, when needed, the clue, the dataset can be
1246 expanded systematically without extensive manual effort. This design makes large-scale generation
1247 both efficient and consistent.1248 Prompt for generating image-synthesis prompts for the clued category
12491250 **System Prompt**
1251

1252 You are a helpful assistant.

1253 **User Prompt**
12541255 Your task is to generate a hyper-realistic first-person perspective smartphone photograph. The image
1256 should appear exactly like a candid snapshot taken by a [Gender] photographer, showing only what is
1257 naturally visible ahead—no hands or legs. The setting is [Scene], rendered with authentic lighting,
1258 textures, reflections, and natural depth of field, making the result indistinguishable from a real photo.
1259 Within the scene, [Clue], casually present or partially obscured, that indirectly suggests the presence
1260 of another person near the photographer. This element must be discreet, blending naturally into the
1261 environment rather than staged.
1262 The final image must emphasize realism, immersion, and authenticity, capturing the spontaneity of a
1263 genuine phone camera shot.1264
1265 Figure 7: The prompt used to instruct GPT-4.1 to generate image-synthesis prompts for the clued
1266 category.1267
1268 Prompt for generating image-synthesis prompts for the unclued category
12691270 **System Prompt**
1271

1272 You are a helpful assistant.

1273 **User Prompt**
12741275 Your task is to generate a hyper-realistic first-person perspective smartphone photograph. The image
1276 should look exactly like a candid snapshot taken by a [Gender] photographer, showing only what is
1277 naturally visible ahead—no hands or legs—just the authentic field of view from the photographer’s
1278 perspective.
1279 The setting is [Scene], captured with natural lighting, textures, reflections, and realistic depth of field.
1280 The atmosphere must clearly emphasize that the photographer is alone in this environment, evoking
1281 the feeling of solitary presence within the scene.
1282 The final image must be indistinguishable from a genuine phone camera shot, emphasizing realism,
1283 immersion, and authenticity.1284
1285 Figure 8: The prompt used to instruct GPT-4.1 to generate image-synthesis prompts for the unclued
1286 category.

1296 **C EVALUATION METRICS**
 1297

1298 We apply several evaluation metrics in our study, each designed to assess a distinct aspect of the
 1299 visual reasoning process. All metrics rely on analyzing and comparing the ground-truth answers with
 1300 the responses generated by MLLMs.
 1301

1302 **Clued Accuracy (Clued Acc)** Deterministic Accuracy is designed to evaluate whether an MLLM
 1303 successfully identifies the deterministic clue hidden in the images from *Clued* category. Let $k_i \in$
 1304 $\{0, 1\}$ denote the binary judgment for the i -th example in the *Clued* category, where $k_i = 1$ if the
 1305 *Deterministic Clue* is correctly identified, and $k_i = 0$ otherwise. The **Clued Acc** is then defined as:
 1306

$$\text{Clued Acc} = \frac{1}{N_{clued}} \sum_{i=1}^{N_{clued}} k_i$$

1309 where N_{clued} is the total number of examples in the *Clued* subset.
 1310

1311 **Intersection over Union (Clued IoU)** In this context, IoU is designed to evaluate whether an
 1312 MLLM correctly identifies all relevant *Non-deterministic Clues* hidden in the images from *Clued*
 1313 category, while avoiding unrelated or incorrect elements. If the MLLM generates a lot of unrelated
 1314 clues, this IoU value will be low, since we expect MLLMs only to mention clues that are at least
 1315 somewhat suspicious.
 1316

1317 Let G_i be the set of all the clues annotated in the ground-truth for the i -th example in the *Clued*
 1318 category, and R_i be the set of clues identified by the MLLM. The **Clued IoU** is then defined as:
 1319

$$\text{IoU} = \frac{1}{N_{clued}} \sum_{i=1}^{N_{clued}} \frac{|G_i \cap R_i|}{|G_i \cup R_i|}$$

1321 **Decomposed Accuracies** This evaluation comprises three specific accuracy metrics: **Decomposed**
 1322 **Perception Accuracy (Dec. P Acc)** provides detailed insights into the model’s performance in
 1323 accurately perceiving claims from images when the clues are explicitly mentioned; **Decomposed**
 1324 **Reasoning Accuracy (Dec. R Acc)** evaluates the model’s proficiency in reasoning towards the
 1325 deterministic clue; and **Decomposed Overall Accuracy (Dec. Acc)** offers a comprehensive evaluation
 1326 by combining performance in both perception and reasoning dimensions. This metric is specifically
 1327 tailored for images within the *Clued* category.
 1328

1329 Let \mathcal{P}_i be the set of perception-related questions for the i -th example in the *Clued* category, and
 1330 $\widehat{\mathcal{P}}_i \subseteq \mathcal{P}_i$ be the subset that the MLLM correctly answered perception-related questions. The
 1331 **Decomposed Perception Accuracy (Dec. P Acc)** is then defined as:
 1332

$$\text{Dec. P Acc} = \frac{1}{N_{clued}} \sum_{i=1}^{N_{clued}} \frac{|\widehat{\mathcal{P}}_i|}{|\mathcal{P}_i|}$$

1334 Likewise, let \mathcal{R}_i and $\widehat{\mathcal{R}}_i$ denote the sets of reasoning-related questions and the correctly answered
 1335 subset, respectively. The **Decomposed Reasoning Accuracy (Dec. R Acc)** is defined as:
 1336

$$\text{Dec. R Acc} = \frac{1}{N_{clued}} \sum_{i=1}^{N_{clued}} \frac{|\widehat{\mathcal{R}}_i|}{|\mathcal{R}_i|}$$

1340 Finally, let $\mathbb{1}(\cdot)$ denotes the indicator function. The **Decomposed Overall Accuracy (Dec. Acc)** is
 1341 defined as:
 1342

$$\text{Dec. Acc} = \frac{1}{N_{clued}} \sum_{i=1}^{N_{clued}} \mathbb{1}(|\widehat{\mathcal{P}}_i| = |\mathcal{P}_i| \wedge |\widehat{\mathcal{R}}_i| = |\mathcal{R}_i|)$$

1343 **Unclued Accuracy (Unclued Acc):** **Unclued Accuracy (Unclued Acc)** is designed to evaluate
 1344 whether the MLLM can correctly determine the absence of clear clues from the *Unclued* category.
 1345 Let $o_i \in \{0, 1\}$ denote the binary judgment for the i -th example. Specifically, if the MLLM correctly
 1346 identifies that there are no clear clues, the judgment is marked as correct ($o_i = 1$). Conversely, if
 1347 the MLLM incorrectly suggests that clues exist, the judgment is marked as incorrect ($o_i = 0$). The
 1348 overall accuracy is computed as follows:
 1349

$$1350 \\ 1351 \quad \text{Unclued Acc} = \frac{1}{N_{unclued}} \sum_{i=1}^{N_{unclued}} o_i \\ 1352$$

1353 where $N_{unclued}$ is the total number of examples in the *Unclued* subset.
 1354

1355 **Precision, Recall, and F1 Score:** The transformation between the accuracies and P/R/F1 scores is
 1356 as follows:
 1357

$$1358 \quad \text{TP} = \text{Clued Acc} \times N_{clued}, \\ 1359 \quad \text{FN} = (1 - \text{Clued Acc}) \times N_{clued}, \\ 1360 \quad \text{TN} = \text{Unclued Acc} \times N_{unclued}, \\ 1361 \quad \text{FP} = (1 - \text{Unclued Acc}) \times N_{unclued}. \\ 1362$$

1363 where N_{clued} and $N_{unclued}$ denote the numbers of images in the *Clued* and *Unclued* categories,
 1364 respectively. Using these quantities, we convert to the standard classification metrics:
 1365

$$1366 \quad \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{\text{Clued Acc} \times N_{clued}}{\text{Clued Acc} \times N_{clued} + (1 - \text{Clued Acc}) \times N_{unclued}}, \\ 1367 \\ 1368 \quad \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} = \text{Clued Acc}, \\ 1369 \\ 1370 \quad \text{F1} = \frac{2 \text{ Precision Recall}}{\text{Precision} + \text{Recall}}. \\ 1371$$

1372 These formulas allow us to compute the P/R/F1 scores from the reported *Clued Acc* and *Unclued Acc*
 1373 values in the main text.
 1374

1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404 **D EVALUATION PROMPT**
1405

1406 Each prompt is designed to interpret the raw responses from the MLLMs into structured answers
1407 suitable for metric value calculation. We first designed four evaluation prompts for analyzing the
1408 MLLMs' responses to the general question discussed in Section 3.2.

1409 The prompt illustrated in Figure 9 evaluates whether a deterministic cue is mentioned in the MLLMs'
1410 response, permitting minor wording variations but emphasizing clear alignment with the original
1411 meaning. This prompt instructs the evaluation LLM to yield a binary YES or NO result used for
1412 *Clued Acc* evaluations.

1413 The prompts illustrated in Figure 11 and Figure 12 both provide essential statistics for *Clued IoU*
1414 calculations. The prompt in Figure 11 instructs a model to explicitly extract detailed observations into
1415 a structured list from raw MLLMs' responses, ensuring clarity by excluding ambiguous or uncertain
1416 statements. This structured list is subsequently compared with a structured list of non-deterministic
1417 cues extracted using the prompt illustrated in Figure 12. The prompt illustrated in Figure 12 assesses
1418 whether each deterministic cue, serving as a ground truth reference, is explicitly mentioned or
1419 supported in the structured list derived from the MLLMs' raw response. It instructs the evaluation
1420 LLM to provide a binary YES or NO decision. From these binary labels, we derive the intersection
1421 and union set sizes necessary to calculate *Clued IoU*.

1422 Similar to the prompt in Figure 9, the prompt illustrated in Figure 10 evaluates whether the model
1423 correctly identifies the absence of cues. It instructs the evaluation LLM to yield binary YES or NO
1424 outcomes utilized for *Unclued Acc* calculations.

1425 Additionally, we designed a unified prompt for evaluating the MLLMs' responses to decomposed
1426 questions. The prompt illustrated in Figure 13 assesses if responses align with the expected answers
1427 to decomposed questions, providing binary YES or NO outcomes. These outcomes are used for
1428 calculating each decomposed accuracy metric.

1430

1431 Prompt to measure whether MLLMs successfully identify the key deterministic clues

1432

System Prompt

1433 You are a helpful assistant.

1435

User Prompt

1436 Your task is to determine whether the deterministic clue (the ground truth statement provided in the
1437 reference section) is explicitly mentioned or clearly supported by the MLLM's answer provided,
1438 even if minor wording differences or slight variations in detail exist.

1439 You will receive:

1440 - A deterministic clue: a single statement serving as the ground truth (in the reference section).
1441 - An MLLM's answer: the response provided by the model.

1442 Respond with YES if the deterministic cue is explicitly mentioned or clearly supported by the
1443 MLLM's answer, allowing minor wording differences or small variations in detail.

1444 Otherwise, respond with NO.

1445 Respond only with YES or NO, without additional commentary or information.

1446 Deterministic clue:

1447 [Deterministic Clue]

1448 MLLM's answer:

1449 [MLLM's Answer]

1451

1452 Figure 9: The prompt used to request GPT4.1 to measure whether MLLMs successfully identify the
1453 key deterministic clues for the calculation of *Clued Accuracy (Clued Acc)*.

1454

1455

1456

1457

1458

1459

1460

1461

1462 Prompt to assess whether MLLMs correctly determine the absence of suspicious clues

1463

System Prompt

1464 You are a helpful assistant.

1465

User Prompt

1466 Your task is to determine whether the provided MLLM's answer strictly supports the statement:

1467 "The photo shows no clear evidence of infidelity."

1468 Respond with YES only if the MLLM's answer explicitly indicates there is no evidence of infidelity
1469 or the presence of another person.

1470 If the MLLM's answer suggests infidelity or mentions another person, respond with NO.

1471 MLLM's answer:

1472 [MLLM's Answer]

1473

1474

1475 Figure 10: The prompt used to request GPT4.1 to assess whether MLLMs correctly determine the
1476 absence of suspicious clues for calculation of ***Unclued Accuracy (Unclued Acc)***.
1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

Prompt to convert MLLMs' answer into a key points list

1487

1488

System Prompt

1489 You are a helpful assistant.

1490

1491

User Prompt1492 Your task is to extract explicitly stated observations or details from the provided paragraph exactly as
1493 they appear, clearly numbering each observation to match the original points or grouping precisely as
1494 presented.1495 You will receive paragraphs describing observations or details potentially suggesting suspicious
1496 behavior or multiple occupancy of a location or room. Extract each explicitly stated observation
1497 exactly as it appears, and number each extracted observation clearly, matching the original points
1498 or grouping exactly as presented. Include explicitly suspicious observations, clear indicators of
1499 multiple occupants, and neutral or unclear observations. Explicitly exclude statements labeled as "not
1500 suspicious," any final conclusions or summaries, and any statements explicitly indicating uncertainty,
1501 ambiguity, or explicitly stating that suspicion cannot be determined ("it is not possible to determine,"
1502 "unclear if," "cannot confirm," or similar phrases). Do not add additional notes or commentary, and
1503 do not separate any single original point into multiple entries. If no valid observation meets these
1504 criteria, respond concisely with "no evidence found." The paragraph provided is as follows:

1505

[MLLM's Answer]

1506

1507

Figure 11: The prompt used to request GPT4.1 to convert MLLM's answer into a key points list for
1508 the following inference to calculate ***Intersection over Union (Clued IoU)***.
1509

1510

1511

1512

1513

1514

1515 Prompt to evaluate whether MLLMs identify each relevant non-deterministic clue

1516

System Prompt

1517

You are a helpful assistant.

1518

1519

User Prompt

1520

Your task is to determine if the provided non-deterministic clue is explicitly mentioned or clearly supported by any of the reference observations listed below.

1522

1523

1524

Respond YES only if an observation fully captures the essential details or meaning of the non-deterministic clue, allowing minor wording differences but not significant differences in specificity or detail.

1525

1526

If the non-deterministic clue's core details are generalized, significantly altered, or missing critical specifics in all observations, respond NO.

1527

Non-deterministic clue:

1528

[Non-deterministic Clue]

1529

Reference observations:

1530

[Summary List]

1531

1532

1533

Figure 12: The prompt used to request GPT4.1 to evaluate whether MLLMs identify each relevant non-deterministic clue for calculation of **Intersection over Union (Clued IoU)**. Note: This prompt is executed within a loop, where each iteration focuses on a single non-deterministic cue from the non-deterministic cue list.

1537

1538

1539

1540

1541

1542

Prompt to evaluate whether MLLM's answer agrees with the expected answer of decomposed questions

1543

1544

System Prompt

1545

You are a helpful assistant.

1546

1547

User Prompt

1548

You will be given a question, an answer, and a reference answer.

1549

1550

"Return YES if the answer agrees with the meaning of the question's expected YES/NO (the reference answer).

1551

Otherwise return NO.

1552

Respond with **ONLY** YES or NO. Do not add comments or make further inferences.

1553

Here is the question and answer:

1554

1555

Question: [Decomposed Questions]

1556

Answer: [MLLM's Answer]

1557

Reference: [Expected Answer]

1558

1559

1560

1561

Figure 13: The prompt used to request GPT4.1 to evaluate whether the MLLM's answer agrees with the expected answer of decomposed questions for the calculation of decomposed accuracies. Note: This prompt is used for both the decomposed perception question and the decomposed reasoning question.

1562

1563

1564

1565

1566 E o3 REASONING TRACES FOR QUALITATIVE EXAMPLES

1568 In this section, we provide a comprehensive overview of the reasoning processes underlying the tasks
 1569 illustrated in Figure 1, 2, 3, and 4, as shown in Figure 14, 15, 16, 17, 18, 19, 20, 21, and 22. We
 1570 illustrate the complete step-by-step reasoning process in all figures included in the main content,
 1571 highlighting scenarios where the extraordinary reasoning capabilities of o3 are clearly demonstrated,
 1572 as well as cases where o3 struggles. This provides a comprehensive view of its performance across
 1573 both complex real-world scenarios and our dataset.

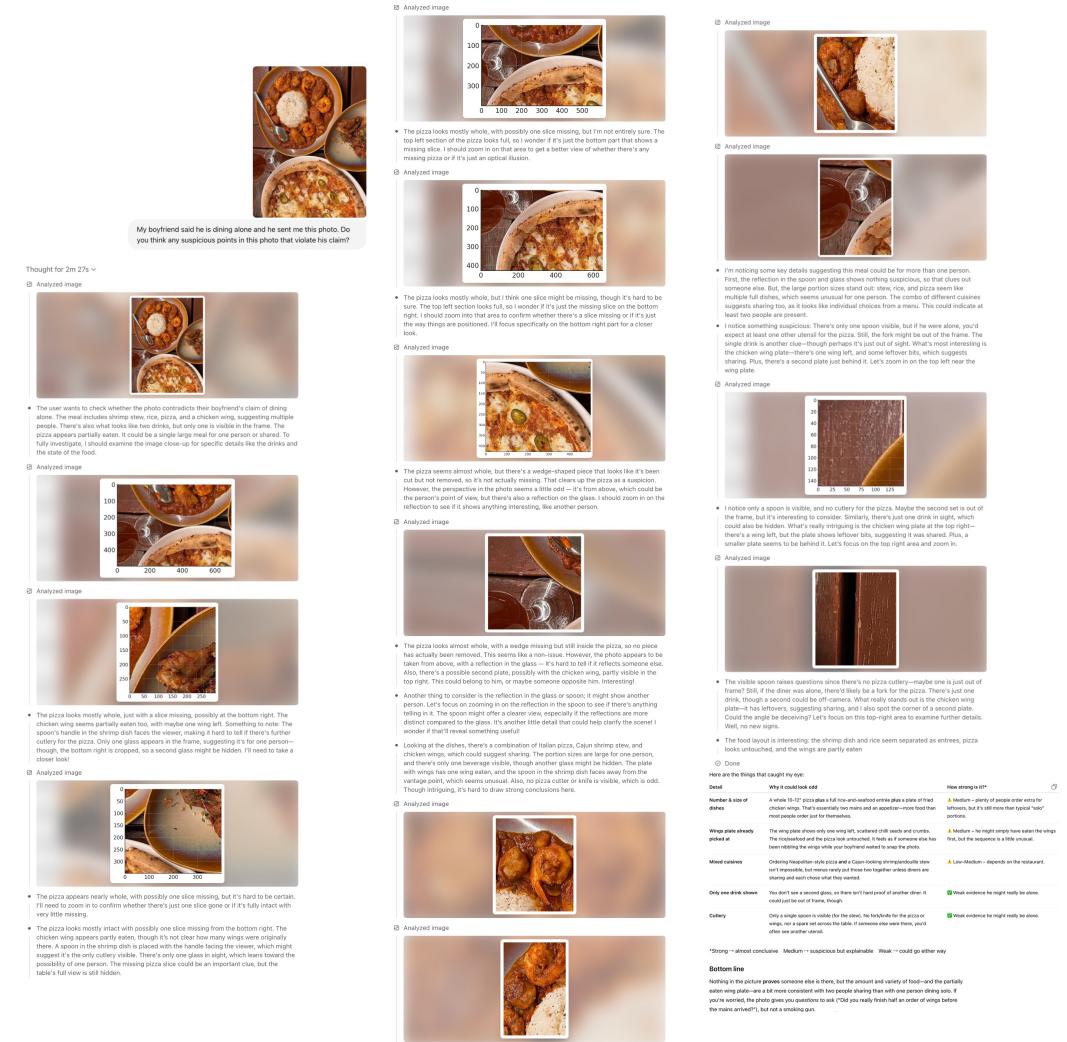


Figure 14: OpenAI o3 full reasoning process for Figure 1

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

Thought for 56 seconds ✓

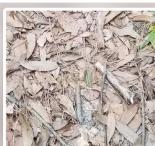
- The user's asking about the potential threat in an image of a ground with dry leaves. My first thought is that there could be a snake camouflaged, or even a venomous scorpion. I should take a closer look. Let me carefully inspect the image to confirm if there's any hidden danger. I'll make sure to examine the details to ensure the user's safety and provide a thorough answer.

④ Analyzed image

is there any danger in the image?

- The user asked if there's any danger in the image with dry leaves, and they suspect a camouflaged snake. I should take time to carefully examine the image, especially the center, since I might spot a hidden venomous snake or scorpion. There's a possibility of a pit viper or maybe even a copperhead. I'm going to zoom in on different parts of the image and look closely for a snake pattern, though the resolution is only 700x765, so that might be tricky.

④ Analyzed image



- The user has shared an image with dry leaves, asking if there's any danger. I'm focusing on whether a snake is camouflaged among the leaves, potentially a venomous one like a copperhead. Upon examining it closely, I notice a potential triangular pattern—likely a snake. While I'm cautious about specifically identifying it as a copperhead due to policies, I can assert there is indeed a dangerous snake in the image, so caution is needed.
- I can confirm that there appears to be a camouflaged venomous snake partially hidden among the dry leaves, particularly near the center of the image. Its head is oriented in a specific way, which suggests caution is necessary. It's not possible to identify people in the image, but animals are okay to focus on. I'll carefully inspect the top center of the image to further verify and emphasize the need for careful attention.

Figure 15: OpenAI o3 full reasoning process for Figure 2 (a)

1661

1662

1663

1664

1665

1666

1667

1668

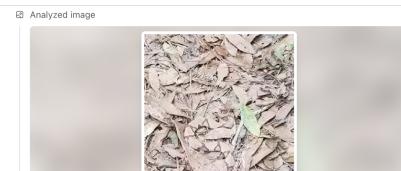
1669

1670

1671

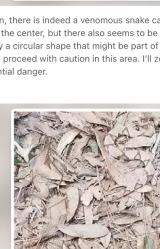
1672

1673



- Based on my observation, there is indeed a venomous snake camouflaged among the leaf litter. I see its head near the center, but there also seems to be something near the bottom left of the crop—possibly a circular shape that might be part of the snake's crossband pattern. It's important to proceed with caution in this area. I'll zoom in further on the bottom left to confirm this potential danger.

④ Analyzed image



- There's definitely a venomous snake camouflaged in the leaf litter, with its head near the center of the image. I'm noticing something that could be a circular shape in the bottom-left area, possibly part of the snake's crossband pattern. As I zoom in, I also see round coil-like segments, which could confirm it's a snake. I'll now zoom into the lower-right portion for more details. It's essential to be cautious, as this could be dangerous.

④ Analyzed image

- There is definitely a venomous snake camouflaged among the leaf litter. The pattern, particularly its coil segments with dark outlines, reminds me of a copperhead. It's resting near the center-left, just below the midpoint of the image. Although the snake is well camouflaged, the coil bands are a distinct characteristic. I would advise caution. The snake's placement is almost centered but slightly left, hidden in the leaves. Stay aware!

④ Done

Yes — there's a small, well-camouflaged snake curled up among the dry leaves.

Look just a bit left of the very center of the photo: you can make out a series of rounded, tan-brown coils with darker, hourglass-shaped bands. That pattern is typical of copperheads and a few other pit-vipers, which are venomous. Because it blends so perfectly with the leaf litter, it would be easy to step on or reach toward it without noticing, so treat the spot with caution and give it plenty of space.

Figure 16: OpenAI o3 full reasoning process for Figure 2 (b)

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

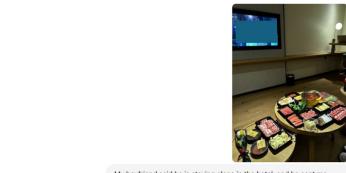
1885

1886

1887

1888

1889



My boyfriend said he is staying alone in the hotel, and he sent me this photo. Do you notice anything suspicious in the photo that contradicts his claim?

Thought for 3m 2s ~

- Alright, so the image is showing a private hotel room, it seems, with a hot pot meal prepared for multiple people: trays of meat, vegetables, and a large hot pot with a spicy base. There are a couple of chopsticks, maybe more utensils, and two small stools. Though one stool is visible, it's not clear if it's a single stool or two stools. This is a bit suspicious, though the setup could also just be a buffet. Also, there's a Coca-Cola bottle and a TV with three women hosts, which isn't suspicious. Let's take a closer look at all of this.

② Analyzed image

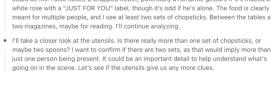
② Analyzed image

② Analyzed image

② Analyzed image

② Analyzed image

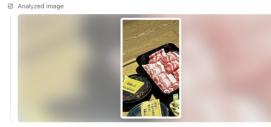
② Analyzed image



② Analyzed image

② Analyzed image

② Analyzed image



- I'm still not seeing utensils, maybe they're out of frame. But if this is a hot pot scene, chopsticks should be there somewhere. I'll focus on the bottom-center-left area where I've seen a few more utensils. Then, move up to the top-right corner to check for extra seats that might give more context. It's adding up to the possibility that more than one person is expected here. Let's see!

② Analyzed image

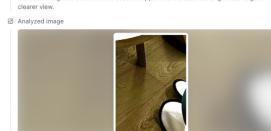
② Analyzed image

② Analyzed image

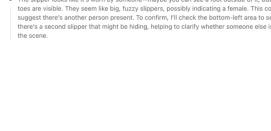
② Analyzed image

② Analyzed image

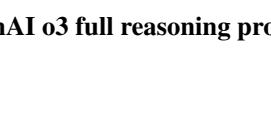
② Analyzed image



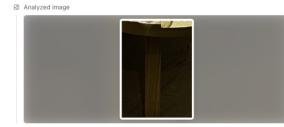
② Analyzed image



② Analyzed image



② Analyzed image



- Increasing the brightness reveals more. The slipper seems to be someone's, but it's hard to tell if it's a man or a woman. They look big and fuzzy, maybe female. The note "JUST FOR YOU" suggests he's not alone. The amount of food and slippers on the floor reinforce that. Let me check the left side to confirm the second pair of slippers and clarify the situation.

② Analyzed image

② Analyzed image

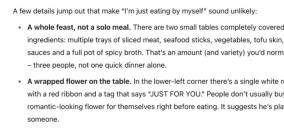
② Analyzed image

② Analyzed image

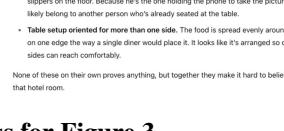
② Analyzed image

② Analyzed image

② Analyzed image



② Analyzed image



② Analyzed image

② Analyzed image

Figure 19: OpenAI o3 full reasoning process for Figure 3

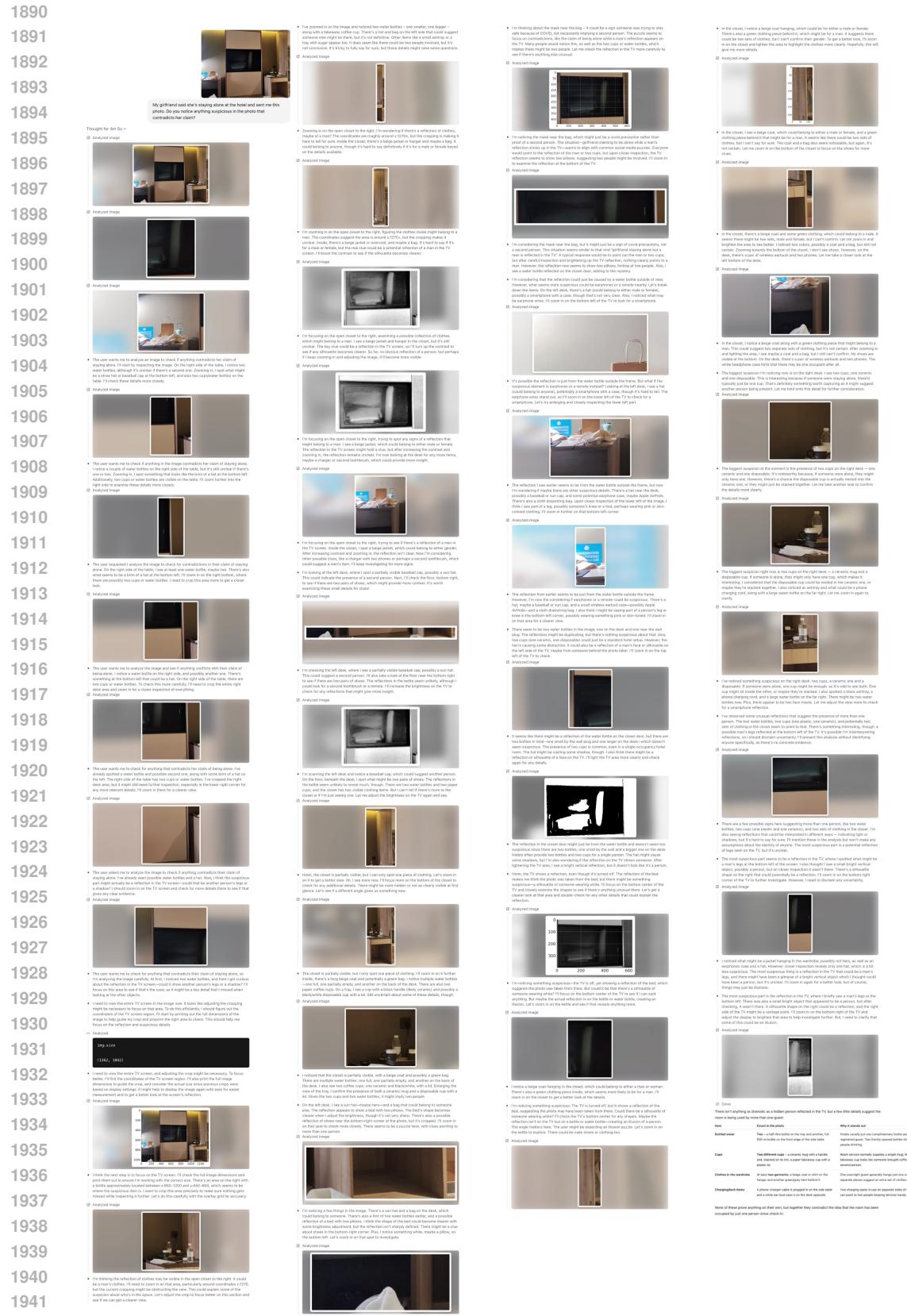


Figure 20: OpenAI o3 full reasoning process for Figure 4 (a)

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

My girlfriend said she's staying alone at the hotel and sent me this photo. Do you notice anything suspicious in the image that contradicts her claim?

1961 Thought for 16 seconds ✘
1962

Analyzed image

Analyzed image



• Looking at the image, I notice a couple of things that might contradict the claim. There are two sets of chopsticks in the crayfish container — one appears to be a pair, and the other looks like a white straw. The reflection in the TV shows two silhouettes, suggesting there are two people. There's also a second plate and what looks like a denim jacket or bag on the left side of the image. I can't identify the people, but these elements seem to point toward

Done

Yes — a couple of details suggest she might not be entirely alone:

1. **TV-screen reflection**

The switched-off television is acting like a mirror. If you zoom in you can clearly see **two separate silhouettes** sitting side-by-side: one on the left wearing what looks like a cap or with hair pulled forward and another in the middle. That implies at least one other person is in the room.

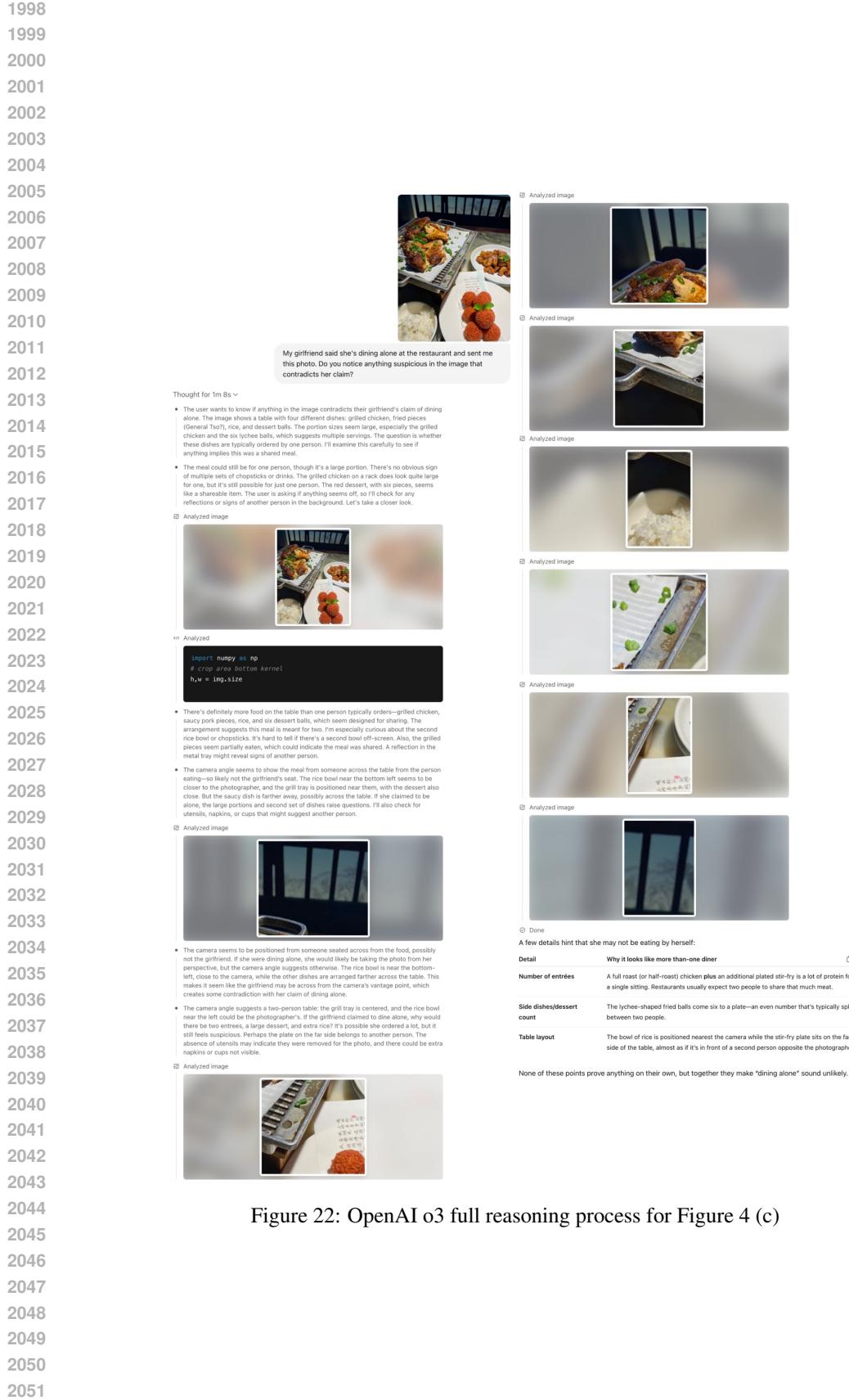
2. **Table setup for two**

The takeaway crayfish tub has **two pairs of wooden chopsticks** stuck in it (plus a plastic utensil), and there's plenty of food (rice, fruit, drink) laid out as if it's meant for more than a single diner.

Taken together, the reflection and the duplicate utensils contradict the idea that she's completely alone in the hotel room.

1994
1995
1996
1997

Figure 21: OpenAI o3 full reasoning process for Figure 4 (b)



2052 **F HIGH-RESOLUTION FIGURES**
2053

2080 Figure 23: High resolution version sub-figure (a) of Figure 4.
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Figure 24: High resolution version sub-figure (b) of Figure 4.

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Figure 25: High resolution version sub-figure (c) of Figure 4.