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Abstract

Plasticity loss refers to a neural network’s diminishing ability to learn in
non-stationary environments. In Reinforcement Learning (RL), existing plasticity
loss mitigation methods like full network resets [8], Plasticity Injection [21],
and ReDo [23] offer partial solutions to this problem, but are limited by issues
such as catastrophic performance collapse and computational inefficiency. This
paper introduces Ridge Regression Reset (R3), a novel approach that maintains
output stability while restoring plasticity through an optimization framework. Our
experiments show that R3 effectively mitigates plasticity loss, avoids catastrophic
performance collapses, and provides better sample efficiency.

1 Introduction

Continual learning is one of the cornerstones of intelligence – the ability to adapt based on new
experiences and re-use old ones [24, 26, 12, 5]. One of the main challenges that are faced in learning
systems is that of maintaining plasticity, i.e. retaining the ability to learn [19]. In particular, Deep
Reinforcement Learning (DRL) as a framework for tackling sequential decision-making problems
tends to suffer from plasticity loss [20, 18] as a result of the non-stationarity of the objective that is
being optimized. Despite having tackled complex problems [9, 17, 15, 3], many pathological cases
in DRL have been noted where plasticity loss significantly impacts the final performance of the
policy [6, 11, 4, 7].

There have been various approaches proposed to mitigate plasticity loss that are based around
regularization of the objective [13, 16], full or selective resampling (resetting) of the parameters [20,
8], adding noise to the parameters [2] or introducing additional parameters to facilitate gradient
flow [21]. In the case of parameter resampling, these approaches tend to suffer from performance loss
to achieve plasticity gain, but are however very scalable, since no additional parameters are necessary
and the objective function that is optimized remains unchanged.

In this work we propose a novel method for mitigating plasticity loss, which we name Ridge
Regression Reset (R3). R3 conducts parameter resets by solving a local convex optimization
problem, enabling us to control the deviation of the network’s predictions from the original ones
while potentially shifting to a more plastic part of the loss landscape. The specific convex problem
that we choose admits a closed-form solution, with low computational overhead. We validate the
viability of our method in several control experiments.
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2 Related Work

Mitigating and Preventing Plasticity Loss. Various approaches attempt to mitigate plasticity loss,
each with unique strategies and specific limitations. Shrink and Perturb [2] shrink the network
weights and perturb them with noise to rejuvenate the model, albeit with unpredictable effects on
performance. Nikishin et al. [20] reset the last few layers at regular intervals, at the cost of temporary
performance drops. Further evolving this concept, D’Oro et al. [8], Zhou et al. [27] propose to fully
reset the network at regular intervals. While they are very effective in mitigating plasticity loss, they
result in a complete loss of performance immediately after the reset. These methods significantly
alter the output of the network, while R3 preserves the network output as much as possible by design.
Orthogonally, Nikishin et al. [21] introduce Plasticity Injection, which adds two additional heads to
the network to inject plasticity. This retains the network output, but increases computational costs
and lacks an efficient way to merge new networks. Sokar et al. [23] focus on identifying and resetting
dormant neurons periodically, yet our experiments indicate it lacks sample efficiency compared to
[8] and can potentially inaccurately identify more dormant neurons in shallow layers when using
leaky ReLU (Supplementary C). Abbas et al. [1] show that using the CReLU activation function
[22] helps mitigate plasticity loss. Dohare et al. [7] show that weight decay helps mitigate plasticity
loss to some extent and propose Continual Backprop, a variation of backpropagation for continual
learning. Loss regularization techniques for plasticity loss prevention such as Regenerative L2 [13]
and Wasserstein regularization [16] have also been proposed.

Identifying and Measuring Plasticity Loss. Identifying and measuring plasticity loss remains a
complex challenge, as the underlying factors are not yet fully understood. Recent literature proposes
several techniques to address this issue. Nikishin et al. [21] introduce a method to diagnose plasticity
loss: if the network’s performance improves following plasticity injection, it suggests that the
network was suffering from plasticity loss. Meanwhile, Lyle et al. [19] explore the factors influencing
plasticity loss, examining the evolution of the loss landscape throughout training and proposes a
metric to quantify plasticity loss. While these methods are valuable for understanding and diagnosing
plasticity loss, our work with R3 focuses solely on mitigation and does not address its identification
or measurement.

3 Method

Addressing plasticity loss in RL requires a solution that is effective, practical, and scalable, especially
in high replay ratio settings. Through our evaluation of existing approaches, we observe several
limitations that hinder their overall effectiveness.
Desiderata 3.1 (Plasticity Loss Mitigation). Considering the limitations of existing approaches, we
identify the following four desiderata of a robust solution to plasticity loss: (1) Scalability: A
robust solution should be scalable, i.e., it can be applied repeatedly without practical limitations.
(2) Output Retention: The intervention should minimize or eliminate disruptions to the network’s
output. (3) Training Efficiency: The solution must not introduce significant overhead that slows down
training. (4) Sample Efficiency: The solution should enable the agent to achieve high performance
with fewer interactions with the environment.

3.1 Ridge Regression Reset

Current approaches to mitigate plasticity loss fail to satisfy at least one of the criteria we discussed in
Desiderata 3.1, thus lacking comprehensiveness. Here, we propose Ridge Regression Reset (R3), a
novel approach designed to meet all the mentioned desiderata. In Section 4, we compare R3 to some
of the existing approaches that we implemented.

The key idea of R3 is to adjust the network weights in a manner that minimizes deviation from
current output while moving the weights closer to a reset matrix. This is achieved by framing the
problem as an Ordinary Least Squares (OLS) optimization with an additional term that controls the
extent of deviation from a newly initialized weight matrix, we formulate this as Problem 3.1.
Problem 3.1 (Ridge Regression Reset). In the following, we assume that the bias term is subsumed
by all weight matrices. We define the new weight matrix Ŵ of a layer as the solution to the problem

Ŵ = argmin
W

E
x∼D

[
∥Wcx−Wx∥2

]
+ β∥Wr −W∥2F . (1)
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Figure 1: Variations of Plasticity Injection in the hopper-stand environment (RR=16, Left) and
comparison of R3 using Wr as the initial weight matrix with baseline, SR-SAC, and ReDo (RR=128,
Right) in the hopper-stand environment; (3 runs, mean ± std).

where Wc is the current weight matrix, Wr is a newly initialized weight matrix of same dimensions,
x is the input to the layer drawn from the data distribution (dataset) D, and β > 0 is a hyperparameter
that controls the strength of the penalty for deviation from Wr. Intuitively, the new weight matrix
should maintain the same output for the observed data but be as close as possible to the reset matrix.

Proposition 3.1 (Closed-form Solution to Problem 3.1). Equation (1) has the unique closed form
solution

Ŵ = (WcX+ βWr)(X+ βI)−1, (2)

where X = E
x∼D

[xx⊤].

Proof. A step by step proof is provided in Supplementary E.

In practice, we scale Wr by multiplying it by the ratio of the norms of Wc and Wr. Additionally, a
small weight decay term with a coefficient of 10−6 is added to handle cases where β = 0 and X is
degenerate. We apply R3 only to the last hidden layer of the agent’s networks, as our experiments
showed that the first layer does not seem to contribute to plasticity loss.

4 Experiments

We evaluate R3 in two experimental settings: (i) a typical RL setting with SAC and mujoco envi-
ronments and (ii) a controlled setting based on the MNIST dataset [14] with continuously changing
labels.

Reinforcement Learning using SAC We conduct our experiments using the Soft Actor-Critic (SAC)
algorithm [10] on two environments from the DeepMind Control Suite [25]: hopper-stand and
walker-run. We choose SAC for its robustness in continuous action spaces, and these environments
due to their complexity, making them suitable testbeds for evaluating plasticity loss. The agent’s
performance is evaluated every 5 episodes by making the agent act deterministically. We compare
results across replay ratios (RR) of 32 and 128. We use ReLU as activation function due to its
compatibility with each approach. We perform our experiments on NVIDIA 2080Ti GPUs, with
100,000 environment interactions taking 32 hours at RR=128 and 9 hours at RR=32.

We implement and compare several approaches: SR-SAC [8], which resets the actor and critic
networks every 2,560,000 updates; Plasticity Injection [21], applied after 2,56,000 updates in three
variations (injecting both actor and critics, only actor, or only critics) at RR=16; ReDo [23], modified
to reset every 256,000 updates to align with environment interactions; and our proposed Ridge
Regression Reset approach. Note that we do not include Plasticity Injection [21] in the comparisons
for higher RRs due to its limitation of not being applicable multiple times. Hyperparameter details
for all implementations are provided in Supplementary A for reproducibility.

Continual MNIST To study plasticity loss in a controlled setting, we construct a sequential learning
problem using the MNIST dataset. We introduce non-stationarity in the training process through
label permutation at fixed intervals of 40 epochs, with each permutation constituting a distinct
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Figure 2: R3 on hopper-stand (RR=128) with different reset intervals (network updates, left) and
with different choices of Wr(right). (3 seeds, mean ± std)

task. The model architecture consists of two convolutional layers, followed by two fully connected
layers, and incorporates max pooling and dropout. Training proceeds sequentially across tasks, with
performance evaluation on the permuted test set after each task completion. We compare R3 against
a baseline without intervention, applying our method at the beginning of each task (except the first)
with β ∈ {1.0, 10.0} across 5 seeds.

4.1 Results

Reinforcement Learning

Full network resets in SR-SAC mitigate plasticity loss, especially at high replay ratios where the issue
is pronounced. Regular application ensures scalability without significant overhead, maintaining
training efficiency. These resets are sample-efficient, enabling swift optimal performance under high
replay ratios. However, a significant drawback is the complete performance collapse immediately
following each reset, indicating a failure to retain output. We find that Plasticity Injection is effective
in SAC only when it is performed on the actor network, while the critics remain unchanged. The
agent’s performance drops over time in cases where critics are injected while in the case where only
the actor is injected with plasticity, the agent is able to maintain performance (Figure 1, left). We
hypothesize that this is due to a drastic change in the loss landscape of the critics after injection,
which the actor network, even with increased plasticity, cannot compensate for. Despite being
excellent at output retention, it is not scalable due to its demand for additional memory every time it
is performed. It also slows down training significantly as the gradients have to pass through additional
networks. ReDo is able to perform well and retains output effectively by resetting only dormant
neurons (Figure 1, right). However, it requires significantly more time to converge. ReDo is scalable,
as it is performed at regular intervals, and it does not add significant overhead to the training process.

Figure 1 demonstrates the performance of R3 in mitigating plasticity loss compared to other ap-
proaches for hopper-stand at RR=128. We provide additional results for hopper-stand (RR=32), and
walker-run (RR=32, 128) in Supplementary D. Although R3 is slightly less sample-efficient than
SR-SAC, we argue that its superior output retention compared to SR-SAC and better performance
compared to other methods makes it a more robust solution. R3 avoids catastrophic performance
collapse and retains output by effectively limiting performance loss, particularly for small values of
β. This advantage enables R3 to be applied at a much higher frequency than full network resets. Our
experiments support this hypothesis, showing that more frequent resets lead to better performance
(Figure 2).

We also observe that selecting a new Wr each time R3 is performed results in significant drops
in performance. We hypothesize that this may occur because the network is forced to adjust in a
different random direction too frequently, hindering its ability to learn. To investigate the impact of
Wr selection, we compare it with scenarios where Wr is either the initial state of the model (R3-init)
or a newly sampled random matrix (R3-new). We find that this choice varies between environments.
While R3-init performs better for hopper-stand, R3-new performs better for walker-run (Figure 12).

Additionally, R3 is not able to reach the optimal performance for walker-run unlike SR-SAC (Fig-
ure 12). However, it maintains its advantage in sample efficiency over ReDo. We hypothesize that this
is because the optimal value of β = 1 and reset interval doesn’t translate well among environments.
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Figure 3: Performance comparison on Continual MNIST between baseline (no intervention) and
R3 with β ∈ {1.0, 10.0}. Applying R3 mitigates performance degradation over time, with higher β
values preserving performance longer. (5 seeds, mean ± std)

Continual MNIST

The controlled MNIST setting provides clear evidence of R3’s ability to mitigate plasticity loss.
Figure 3 depicts the effectiveness of R3 in mitigating plasticity loss. While the performance begins
degrading immediately without intervention, applying R3 is able to help in retaining performance
for longer. Additionally, a higher value of β preserves performance for longer. This reinforces our
hypothesis from the RL setting regarding the sensitivity of R3 to the choice of β. While R3 helps in
retaining plasticity, the optimal value of β appears to be task-dependent, supporting our conclusion
about developing an adaptive mechanism for β selection. A detailed analysis of network gradients in
this setting (Supplementary B) confirms previous findings that plasticity loss is primarily concentrated
in the deeper layers of the network.

5 Conclusion and Future Work

In this paper, we motivate the need for a robust solution to mitigate plasticity loss in Deep Rein-
forcement Learning and propose Ridge Regression Reset, a novel approach which resets the network
weights by efficiently solving a local convex problem, specifically designed to satisfy Desiderata 3.1.
We validated our proposed approach with several experiments, comparing to existing plasticity loss
mitigation techniques. Results indicate that R3 successfully balances performance drop and network
plasticity, without the cost of additional parameters.

The main limitation of R3 is its sensitivity to the choice of β, as evident from its performance with
different β values in Figure 3, and high variation in Figure 1. We believe that an improved version with
an adaptive β will alleviate this drawback. Additionally, the choice of reset interval is also non-trivial
and can vary among environments based on the sparsity of rewards. Future work on understanding
the reasons behind its effectiveness can provide significant insights towards understanding plasticity
loss.
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A Hyperparameter Details

This section of the appendix contains tables with hyperparameter values for all of our implementations
for the purposes of reproduction.

Table 1: Common hyperparameters for SAC
Parameter Value

Initial Collect Steps 105

Discount Factor 0.99
Minibatch size 256
Optimizer(All) Adam
Optimizer(All): learning rate 0.0003
Optimizer(All): β1 0.9
Optimizer(All): β2 0.999
Optimizer(All): eps 0.00015
Networks(All): activation ReLU
Networks(All): hidden units 256
Initial Temperature 1
Replay Buffer Size 106

Target network update period 1
τ (EMA coefficient) 0.995

Table 2: Hyperparameters for Ridge Regression Reset
Parameter Value

Network(All): n. hidden layers 2
Resetting Period(update steps) 51200
β 1.0
Minibatch size for calculating X 2048
Updates per Step (Replay Ratio) 128

Table 3: Hyperparameters for ReDo
Parameter Value

Network(All): n. hidden layers 2
Recycling Period(update steps) 256000
τ -Dormant 0
Minibatch size for estimating scores 256
Updates per Step (Replay Ratio) 128

Table 4: Hyperparameters for SR-SAC
Parameter Value

Network(All): n. hidden layers 2
Reset Intervals(gradient steps) 2560000
Layers getting hard reset All
Updates per Step (Replay Ratio) variable(up to 128)
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Table 5: Hyperparameters for Plasticity Injection
Parameter Value

Network(All): n. hidden layers 3
N. Hidden Layers(encoder) 2
N. Hidden Layers(heads) 1
Updates per Step (Replay Ratio) 16

Figure 4: MNIST performance on continuously evolving tasks

B Analysis of Gradient Flow in Continual MNIST

To investigate the mechanisms of plasticity loss, we analyze gradient flow in our Continual MNIST
setting by comparing two model checkpoints: one where plasticity loss had occurred (non-plastic)
and one where it had not (plastic). Figure 4 shows the performance of the run under investigation
across tasks, where we observe that after a certain number of tasks, the network loses its ability to
learn. Without updating the weights, we pass the entire dataset through each checkpoint, collecting
the following quantities per layer for each batch: (i) norm of the activations, (ii) norm of the gradients,
and (iii) norm of the gradients with respect to activations.

The density estimation curves for these quantities are shown in Figure 5, Figure 6, and Figure 7
respectively. While the gradients with respect to activations remain non-zero in the deeper layers,
the weight gradients approach zero. This prevents gradient flow to the initial layers, confirming
observations from previous works, such as [20], that plasticity loss is concentrated in deeper network
layers.

C Limitations of ReDo

Sokar et al. [23] propose a score function for each neuron to identify dormant neurons. In our
experiments, this function works well with the ReLU activation function and a threshold of zero.
However, with a threshold of zero, one could simply count neurons with zero activations, rendering
the score somewhat redundant. To understand more, we take a checkpoint from a training run using
leaky ReLU as the activation function and plot the distribution of (i) average activations for each
neuron of a minibatch (Figure 8), and (ii) corresponding score values (Figure 9) according to the

Figure 5: Density plot of Activation Norms for a plastic (blue) and non-plastic (orange) checkpoint
of MNIST
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Figure 6: Density Plot of Gradient Norms

Figure 7: Density plot of norms of Gradients with respect to Activation for a plastic(blue) and
non-plastic (orange) checkpoint of MNIST

paper. We observe that any meaningful threshold value here, and in most other checkpoints indicates a
higher fraction of dormant neurons in the first hidden layer compared to the second. This observation
directly contradicts the findings of other studies, as well as our own results from Supplementary B,
which show that plasticity loss is concentrated in the deeper layers of the network.

Figure 8: Distribution of mean activations of a minibatch trained on hopper-stand at RR=128 and
activation function leaky ReLU.
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Figure 9: Distribution of score values of a minibatch trained on hopper-stand at RR=128 and activation
function leaky ReLU.

Figure 10: Comparison of 2 variations of R3 (R3-init and R3-new) based on the choice of Wr with
SAC, SR-SAC, and ReDo (RR=32) in the hopper-stand environment (3 runs ± std).

D Additional Results

In this section we provide additional results comparing Ridge Regression Reset with SAC, SR-SAC,
and ReDo. We show the performances of 2 variations of R3 based on the choice of Wr: R3-init
where Wr is chosen to be the initial weights of the agent, and R3-new where WR is chosen to be a
newly initialized set of weights, kept the same throughout for the whole training runs in both cases.
Figure 10 shows this comparison for the task hopper-stand for RR=32. Figure 11 and Figure 12 show
this comparison for the task walker-run for RR=32 and RR=128 respectively.

E Proof of Closed form Solution to Ridge Regression Reset

Proposition E.1 (Closed-form Solution to Problem 3.1). Equation (1) has the unique closed form
solution

Ŵ = (WcX+ βWr)(X+ βI)−1, (3)

where X = E
x∼D

[xx⊤].
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Figure 11: Comparison of 2 variations of R3 (R3-init and R3-new) based on the choice of Wr with
SAC, SR-SAC, and ReDo (RR=32) in the walker-run environment (3 runs ± std).

Figure 12: Comparison of 2 variations of R3 (R3-init and R3-new) based on the choice of Wr with
SAC, SR-SAC, and ReDo (RR=128) in the walker-run environment (3 runs ± std).
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Proof. Convexity of the Objective Function

The objective function can be expressed as:

L(W) = Ŵ = argmin
W

E
x∼D

[
∥Wcx−Wx∥2

]
+ β∥Wr −W∥2F .

Expanding the first term:

E
x∼D

[
∥Wcx−Wx∥2

]
= E

x∼D

[
(Wcx−Wx)T (Wcx−Wx)

]
,

= E
x∼D

[
xT(WT

c Wc −WT
c W −WTWc +WTW)x

]
.

To simplify further, we introduce the trace operator. Using tr(a) = a and tr(a) = tr(aT ) for any
scalar quantity a, we get:

E
x∼D

[
∥Wcx−Wx∥2

]
= E

x∼D

[
tr(xT(WT

c Wc − 2WT
c W +WTW)x)

]
.

Using the linearity of expectation and the cyclic property of trace, we can further simplify to:

E
x∼D

[
∥Wcx−Wx∥2

]
= tr(WTWX)− 2tr(WT

c WX) + const,

where X = E
x∼D

[xxT].

Since X is positive semi-definite, tr(WTWX) is convex in W. The second term of L(W)),
β∥Wr −W∥2F , is also convex for β > 0 since it is a quadratic function in W.

Since the sum of convex functions is convex, L(W) is convex, implying that any local minimizer is
also a global minimizer.

Compute the gradient and solve for stationary points

To find the minimizer, we compute the gradient of L(W) with respect to W:

∇W L(W) = 2WX− 2WcX+ 2βW − 2βWr.

Setting the gradient equal to zero to find the stationary points:

W(X+ βI) = Wc + βWr

Thus, we get the solution:
Ŵ = (WcX+ βWr)(X+ βI)−1

Uniqueness of the solution

Given that X + βI is a positive definite matrix (since X is positive semi-definite and β > 0), the
inverse (X+ βI)−1 exists and is unique. This confirms that the solution Ŵ is unique.

Since L(W)is convex and the stationary point is unique, Ŵ is the unique global minimum.
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