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ABSTRACT

Homonyms are words with identical spelling but distinct meanings, which
pose challenges for many generative models. When a homonym appears in
a prompt, diffusion models may generate multiple senses of the word simul-
taneously, which is known as homonym duplication. This issue is further
complicated by an Anglocentric bias, which includes an additional transla-
tion step before the text-to-image model pipeline. As a result, even words
that are not homonymous in the original language may become homonyms
and lose their original meaning after translation into English. In this pa-
per, we introduce a method for measuring duplication rates and conduct
evaluations of different diffusion models using both automatic evaluation
utilizing Vision-Language Models (VLM) and human evaluation. Addition-
ally, we investigate methods to mitigate the homonym duplication problem
through prompt expansion, demonstrating that this approach also effec-
tively reduces duplication related to Anglocentric bias. The code for the
automatic evaluation pipeline is publicly available.

1 INTRODUCTION

In recent years, diffusion models Ho et al. (2020) have made remarkable progress in the
field of image generation; however, they still face challenges in accurately mapping text to
images, especially in cases of lexical ambiguity. It occurs when a single word or phrase
has multiple meanings, resulting in uncertainty or multiple possible interpretations within
a given concise context. A specific instance of lexical ambiguity is homonyms, words that
have multiple distinct, unrelated meanings (e.g., “palm” referring to the part of the hand or a
type of tree). While humans typically resolve such ambiguities using real-world information,
diffusion models often lack access to extended context.
Human communication adheres to the single-meaning-per-symbol axiom Rassin et al. (2022),
whereby each word in a sentence conveys only one specific meaning and there can be no
other. However, as noted in several recent studies Rassin et al. (2022); White & Cotterell
(2022), diffusion models exhibit behavior inconsistent with this principle: a single word
can be interpreted as two entities (see examples in fig. 1). When a homonym appears in a
prompt, in an attempt to satisfy all possible variants of the word, diffusion models adopt
a precautionary strategy and generate multiple possible senses within a single image (i.e.,
duplication of the homonym is observed). This behavior is attributed to the way CLIP
(Contrastive Language–Image Pretraining) Radford et al. (2021) represents homonyms: it
encodes each word as a linear superposition of their different meanings White & Cotterell
(2022).
This problem is further compounded by the prevalence of English data in training sets of
image generation models. Such an anglocentric bias results in the homonym duplication,
even in cases where the homonym is not present in the original language of the prompt.
For example, the Russian non-homonymous word “свидание’’ (meaning social meeting)
translates to the English homonym “date’’, which can cause unintended image generations
of either the fruit or a calendar date. This behaviour occurs because English is used as
the anchor language, and the text encoder processes only the translated prompt, where an
original unambiguous word may become a homonym.
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Figure 1: Homonym duplication examples. Words in the top row (from left to right):
“basket”, “fan”, “bark”. Words in the bottom row: “cricket”, “trunk”, “palm”.

This study aims to quantify the frequency of homonym duplication in diffusion models.
We introduce two evaluation methods: automatic ranking with VLM-like and CLIP-like
models, and human evaluation via crowdsourcing. Eleven diffusion models are assessed
using a novel multimodal homonym benchmark. Additionally, we explore prompt expansion
guided by large language models to mitigate homonym duplication, including translation-
induced cases. Our source code for automatic evaluation and prompt expansion is publicly
available at https://anonymous.4open.science/r/Un-Doubling-Diffusion-662E/.
Our contributions can be summarized as follows:

• We propose a Human Evaluation (HE) pipeline to measure the frequency of
homonym duplication, and use it to quantify duplication rates in several diffusion
models.

• A benchmark of homonyms with their English and Russian senses has been compiled
and released as open-source. While this study focuses on English and Russian, the
findings may be extended to other languages.

• We perform VLM-based Automatic Evaluation (AE), while also conducting a com-
parative analysis between automatic and human evaluation methods. The source
code is publicly available.

• This study provides the first quantitative evidence that LLM-based prompt expan-
sion reduces duplication rates, including translation-related homonym duplication.

2 RELATED WORK

Homonym duplication in diffusion models. Numerous studies have investigated the
phenomenon of polysemous words in natural language processing and computer vision, fo-
cusing on how these words are represented within models and the behaviors they elicit. Arora
et al. (2018) demonstrated that the various meanings of polysemous words are encoded as
a linear superposition within the embedding of the word. Consequently, the duplication of
homonyms observed in generative models can be attributed to the polysemy that is inher-
ently present in embedding spaces. Rassin et al. (2022) conducted the first study devoted to
the problem of homonym duplication in diffusion models (specifically in DALLE-2 Ramesh
et al. (2022)). The authors utilize a specialized contextual prompt to trigger multi-sense
generation and achieve ambiguity in the generated results. However, this work only focuses
on DALLE-2 and does not examine other diffusion models. White & Cotterell (2022) in-
troduces the term “superposition of homonyms” in the context of image generation with
diffusion models. This term refers to the tendency of diffusion models to simultaneously

2

https://anonymous.4open.science/r/Un-Doubling-Diffusion-662E/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

generate visual representations corresponding to all possible senses of a homonym until
sufficient disambiguating context is provided.
In addition to describing the problem, several studies have focused on developing methods to
address homonym duplication. For example, Lee (2021) proposes an approach that involves
detecting homonyms in text using word embeddings and replacing them with synonymous
words that are not homonyms, thus reducing ambiguity. Mehrabi et al. (2022) propose to
use an additional filter language model during generation to determine user intent. The
model can ask clarifying questions or produce multiple candidate outputs simultaneously.
Furthermore, the authors introduce a benchmark designed to evaluate the effectiveness of
disambiguation following user feedback. It is important to note that their work addresses
the broader issue of lexical ambiguity rather than focusing specifically on homonyms, which
is the primary focus of this paper. The previously mentioned White & Cotterell (2022)
proposes using linear algebra techniques to shift the homonym embedding to the desired
meaning.
Anglocentrism in generation models. Models are trained predominantly on English
data; consequently, their performance in other languages is lower than in the predominant
language (even when the tokenizer accounts for tokens from multiple languages). For exam-
ple, Xing et al. (2025) shows that Pixart Alpha Chen et al. (2023) has an average CLIPScore
Hessel et al. (2022) on non-English prompts that is 9.2 points lower than on English prompts
(29.8 vs 39.0), while translating the prompts from the source language into English increases
the metric to 38.3 and 39.7 by two different translators. As a result, current methods for
non-English image generation generally use a translation-first approach, where non-English
prompts are translated into English prior to processing, as stated in Derakhshani et al.
(2025). This approach causes semantic drift, where subtle meanings may shift, and origi-
nally unambiguous words can become homonyms after English translation.

3 HOMONYM BENCHMARK

3.1 HOMONYM LIST COMPILATION

LLM Usage. We employ LLMs to help with data collection and processing. In particular,
LLMs are used to (1) compile the initial list of candidate homonym words, (2) to obtain
the most common homonym meanings and their corresponding frequency of use. As a
first step, 330 homonym words and 765 corresponding meanings (2 to 5 most common
meanings per homonym, including both noun and verb senses) are obtained using modern
LLMs: DeepSeek-R11 DeepSeek-AI et al. (2025) and GPT-4o2 OpenAI et al. (2024). Models
are asked to retrieve a list of homonyms (candidates), along with their senses ranked by
frequency of use, accompanied by examples for each sense. After that, models validate each
other’s candidate lists, and the resulting combined list is sent to experts.
Linguists further validate the compiled list by selecting words based on their frequency
of use. After compiling the list of homonyms and their meanings, for each meaning, En-
glish and Russian definition is taken from open-source resources and dictionaries such as
COCA Davies (2015) and BNC Consortium (2007) corpuses, online dictionaries Cambridge
University Press (n.d.); Merriam–Webster (n.d.), as well as English homonym dictionaries
Malakhovskiy (1995); Gorulko-Shestopalov (2021).

3.2 VALIDATION AND VISUAL-BASED AGGREGATION

Further processing and verification of the list is carried out manually by experts with a
higher education degree in linguistics. To guarantee the highest quality of the final list, we
employ a triple overlap method that adheres to specific criteria:

• Meaning relevancy. Preference is given to modern and frequently used meanings.
Outdated or highly specialized meanings are excluded.

1WebUI: chat.deepseek.com; usage window: 22 January–10 February 2025.
2WebUI: chatgpt.com; usage window: 22 January–10 February 2025.
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• Feasibility of visual representation. The final list includes only meanings that
can be clearly and unambiguously visualized. For example, the meanings of “well”
as a hydraulic structure (visualizable) and as an adverb indicating quality (not
visualizable) are excluded. In contrast, the meanings of ”mole” as a small mammal
and as a dark skin mark (both visualizable) are included.

• Semantic distinction. Meanings of a homonym must be distinct, not just vari-
ations of the same concept. For example, ”cart” can mean a small hand-pushed
carrier, a horse-drawn vehicle with two or four wheels, or specifically a two-wheeled
horse-drawn vehicle. These related senses can be difficult to distinguish in generated
images; therefore, they are excluded from the list.

• Meanings are not nested within each other. For instance, the word “orange”
can denote both “the fruit of the citrus tree” and “the color between red and yellow”.
Because oranges are inherently orange in color, it is challenging to separate these
meanings distinctly. To address this, we exclude such words from our list.

Based on these criteria, each expert assigns a rating to each meaning according to the
following scale: (0) — does not match the criteria (to be excluded from the final list), (1)
— partially matches the criteria (to be discussed), (2) — fully matches the criteria (to be
included in the final list). In cases of rating discrepancies, a joint discussion is held using
the aforementioned online resources and dictionaries. As a result, the final list comprises
171 homonyms, each with its corresponding senses in both English and Russian.

3.3 EXPERTS AND ROLES

Two groups of experts are involved in the comprehensive development of the dataset:

1. 3 linguists are involved in the creation of the final list of homonyms. The selected
experts hold a master’s degree in linguistics, possess relevant professional experience,
and are familiar with using LLMs.

2. 2 translators are involved for validation and enrichment of homonym meanings,
initially obtained using LLMs. The translators also hold a master’s degree in lin-
guistics, as well as over three years of experience in translation.

4 HUMAN EVALUATION

4.1 IMAGE GENERATION

To estimate duplication frequency, it is necessary to generate images for each homonym that
will be evaluated for the simultaneous presence of multiple meanings. We explore the follow-
ing open-source models: Stable Diffusion 3 (Medium) Esser et al. (2024), Stable Diffusion
3.5 (Medium, Large) Esser et al. (2024), Stable Diffusion XL Podell et al. (2023), Pixart
(Alpha, Sigma) Chen et al. (2023; 2024), Kandinsky 3 Arkhipkin et al. (2024), Playground
2.5 Li et al. (2024), Flux 1 (schnell, dev) Labs (2024), CogView 4 Zheng et al. (2024).
We utilize the Hugging Face Diffusers framework von Platen et al. (2022) and configure the
generation parameters according to the official model specifications. We set the height and
width to 1024 pixels for all generations. Seeds are selected from 0 to 49 inclusive, so that
50 generations are performed for each homonym by all models in single‑sample inference
mode, while maintaining determinism. In total, for all 11 models, we generate 50 · 171 · 11
= 94.050 images to ensure a reliable evaluation.

4.2 CROWDSOURCE ANNOTATION PIPELINE

Human evaluations of homonym duplication in the generated images were obtained using
the TagMe 3 and Yandex Tasks 4 crowdsourcing platforms. To ensure the reliability of

3https://tagme.sberdevices.ru
4https://tasks.yandex.ru
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these evaluations, we implemented training and examination phases, along with several
quality control measures, including dynamic overlap aggregation, daily task limits, honeypot
tasks, and response-time blocking mechanisms. For more information on the crowdsource
annotation pipeline, please see appendix A.1. Overall, the image labeling task involved
a pool of 1,436 annotators who collectively completed a total of 438,667 samples. Of the
104,450 images, 94,954 (90%) were successfully aggregated. The crowdsourcing task interface
and the annotation statistics can be seen in fig. 2.

Figure 2: Annotation characteristics and distribution analysis. a) Crowdsourcing task in-
terface for image labeling. b) Number of images labeled per annotator. c) Distribution of
annotation overlap. d) Distribution of annotation confidence. e) Distribution of semantic
duplication of annotation.

5 AUTOMATIC EVALUATION

Feizi et al. (2025); Yasunaga et al. (2025) demonstrate that the VLM-as-a-judge approach
shows great potential for reliable evaluation in vision-language tasks. We experiment with
automatic evaluation, and use Qwen2.5-VL Bai et al. (2025) as a judge. We sample N
independent sequences per image from the stochastic decoder, parse the binary verdicts,
and compute the empirical probability as in 1, using the indicator function defined in 2
to assign decisions to each sequence. We adopt a chain-of-thought prompt to elicit long,
step-by-step explanations Zhang et al. (2025). From each sequence of VLM responses, we
take the final sentence of the form “DUPLICATE: TRUE” or “DUPLICATE: FALSE” from
which the binary answer vi is parsed by the deterministic parser π 3.

p̂(x; θ) =
1

N

N∑
i=1

r
(
yi
)
, i = 1, . . . , N, (1)

r
(
yi
)
= 1{vi = true} ∈ {0, 1}, (2)

vi = π
(
yi
)
, (3)

where yi is the i-th sequence from VLM, x is the prompt (image, text) and θ is the generation
parameters. The overall evaluation pipeline is shown in fig. 3.
We experiment with two setups: one-stage and multi-stage inference prompts. The one-
stage prompt directly asks the model if each sense is present in the image. The multi-
stage prompt breaks the task into sequential steps, such as listing objects and analyzing
the meanings of homonyms. For the one-stage setup, we test different ways of verbalizing
homonym meanings: in setup p1, each meaning is given with both a Russian translation
and definition; in p2, the translation is in Russian but the definition is in English; and in p3,
only the English definition is provided without a Russian translation. In the p2 setting, the
second language is employed to help the model effectively disentangle the representations of
meanings within the image. Examples of one-stage and multi-stage p3 prompts, as well as
the model answer, can be found in appendix A.2.1.
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Figure 3: The overall pipeline of automatic evaluation. VLM evaluates images generated
for each homonym sense, providing multiple reasoned responses, and images are flagged as
duplicates if “duplicate” votes exceed a set threshold.

6 RESULTS

Figure 4: Per-model Homonym Duplication Rate (HDR) and Prompt Following Failure Rate
(PFFR) with corresponding model sizes.

We define the Homonym Duplication Rate (HDR) metric 4 as the average duplication per-
centage of the selected model for each homonym:

HDR =
1∑H

i=1 Ki

·
H∑
i=1

Ki∑
j=1

1{m(pici,j) = true} · 100%, (4)

where H is the number of homonyms, Ki is the number of generation seeds (Ki is 50 for
all homonyms), pici,j is the j-th image in the row generated for the i-th homonym and m
is either human preferences or model evaluation aggregation, depending on the evaluation
type (human or automatic). In the case of human preferences, for stability, we define m as
a majority vote over the set of options (i.e., if the most frequent response indicates multiple
meanings, the image is classified as a duplicate). In contrast, for VLM evaluation, an image
is deemed a duplicate if all N of its chains-of-thought (where N is set to 10) contain a “True”
verdict.

6.1 HUMAN EVALUATION

The per-model results of human preferences are shown in fig. 4; model sizes are also repre-
sented. In addition, we include the Prompt Following Failure Rate (PFFR) metric, which
represents the number of cases where workers label the depicted senses as “nothing from
the list above”, implying that the model does not follow the prompt. As can be noted,
Playground 2.5 is the most frequently duplicating model. Cogview 4 duplicates the least,
but it can be attributed to the fact that it rarely follows the prompt, considering the PFFR.
It is also worth noting that there is no correlation between HDR and the size of the vision
and text components of the model.
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Table 1: Alignment between homonym evaluation and VLM-based automatic evaluation
results. We denote AUROC* with an asterisk (*) to indicate the lack of ground-truth labels
in this task. Sense representation type indicates the different ways in which homonym senses
can be embedded into a prompt (see section 5).

Prompt type Sense repre-
sentation type

r ↑ ρ ↑ JSD ↓ OPA ↑ AUROC* ↑

one-stage p1 0.269 0.232 0.840 0.919 0.722
p2 0.248 0.215 0.849 0.918 0.707
p3 0.265 0.232 0.840 0.920 0.718

multi-stage p1 0.369 0.338 0.790 0.918 0.830

6.2 AUTOMATIC EVALUATION

VLLM-based Evaluation. We measure the alignment of VLLM responses with human
evaluation in terms of the Pearson correlation coefficient r, Jensen–Shannon divergence
(JSD), Spearman’s rank correlation coefficient ρ, AUROC*, and Overall Percent Agreement
(the percentage of total samples for which the two methods produce the same binary out-
come). The results can be seen in table 1. Human evaluation results cannot be considered
ground truth due to task complexity, as one in ten images lacked consensus among crowd
workers (section 4). Nevertheless, to assess the alignment between human and automatic
evaluations, we compute AUROC, treating human labels as the ground truth, denoted as
AUROC* to highlight this distinction. Despite low correlation coefficients, the overall per-
cent agreement (OPA) is high due to class imbalance, as 95% of images are labeled as
non-duplicates according to human evaluation (fig. 2(e)).
Ablation Study on different sense representation types. We calculate the alignment
metrics between automatic evaluation results with different sense verbalization types in the
prompt, as described in section 5. The results are shown in table 2. The correlation between
the metrics is moderate overall: a relatively strong correlation is observed between p1 and
p2, while the correlations between p1 and p3 and between p2 and p3 are weaker. The JSD
values for these comparisons are below the moderate threshold of 0.5.
CLIP-based Evaluation. Additionally, we assess three CLIP-like rankers as a tool for
the automatic evaluation of homonym duplication and compare the obtained metric with
human evaluation results. We utilize two multilingual SigLIP models Zhai et al. (2023);
Tschannen et al. (2025) as well as the OpenAI CLIP L-14 model Radford et al. (2021). One
can observe a negligible correlation between CLIPScores and human judgments in terms
of correlations (see table 4 in the Appendix). Across models, the highest AUROC* occurs
with top-2 (second-highest CLIPScore), matching one-stage VLM inference but falling short
of multi-stage. This discrepancy stems from CLIP’s limited ability to handle cases where
meanings are linked through associations.

6.3 PROPER NAME BIAS

In certain cases, the model demonstrates a bias toward proper names. For instance, when
given the word “stitch”, the model frequently produces the cartoon character named Stitch.
Similarly, for the word “bat”, it often generates the character Batman, even though the
words “bat” and “Batman” are spelled differently. In the Appendix, table 5 presents several
examples comparing the frequency of proper name generation relative to other meanings;
the HDR metrics are obtained through human evaluation for all 11 diffusion models. Gen-
erations depicting this bias can be seen in fig. 7.

7 LLM-BASED PROMPT EXPANSION

Studies show that techniques such as prompt beautification Arkhipkin et al. (2024) and
prompt expansion Datta et al. (2023) enhance image aesthetics and diversity. We aim

7
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Table 2: Ablation study of the correlation between automatic evaluation for different sense
representation types in the prompt.

Sense representation
type

r ↑ ρ ↑ JSD ↓ OPA ↑

(p1, p2) 0.829 0.766 0.388 0.802
(p1, p3) 0.731 0.694 0.481 0.786
(p2, p3) 0.722 0.693 0.485 0.784

to demonstrate that using a pretrained LLM to expand single-word ambiguous prompts
lowers duplication rates in diffusion-based generation. We utilize the compiled homonym
benchmark (see section 3) and, for each of 171 words, iterate the seed from 0 to 49 to
generate expanded text sequences with the LLM, which are then used as prompts for the
diffusion model. We intend to demonstrate a working proof of concept using a single Pixart
Alpha model, rather than replicating the demonstration across all models, which would
double the annotation effort.
We prompt Qwen3-A3B-30B Yang et al. (2025) model to write an expanded text-to-image
generation prompt for each homonym word, and measure the resulting HDR. Specifically, we
calculate the count of duplicates over 50 generations for each homonym and then aggregate
these rates across all homonyms. We compute the HDR using human evaluation and auto-
matic evaluation. According to human evaluation, the HDR metric scores are 5.54 before
prompt expansion and 5.03 (−9.2%) after, while automatic evaluation yielded scores of 9.58
and 5.66 (−41%), respectively. One can observe a decrease in HDR after the prompt ex-
pansion, regardless of the evaluation method, indicating that LLM-based prompt expansion
can effectively alleviate the duplication problem.

8 ANGLOCENTRISM AS A RELATED PROBLEM

To study Anglocentrism related to homonym duplication, we simulate a pipeline generating
images from short, unambiguous non-English prompts (in Russian). Our primary goal is to
determine the frequency of unintended or duplicated meanings. For the experiment, we uti-
lize homonyms collected from our benchmark along with their corresponding short Russian
translations. To ensure a valid comparison, we apply the following criteria: (1) homonyms
that include at least one verb sense are excluded, as single-word verbs are less likely to
be used as prompts; (2) all English translations of homonyms are verified to be consistent
with the Russian source through back-translation. Specifically, the madlad-7b translator
Kudugunta et al. (2023) in Russian-English mode is used to obtain the English homonyms.
After following these steps, we obtain 37 senses of 17 homonym words that have a bipartite
English-Russian matching: each meaning’s English translation reversely translates into the
same Russian word, establishing a bidirectional one-to-one mapping between their mean-
ings across languages. We expand the prompt using a method similar to that described in
section 7, with the expansion applied to the Russian input text before the translation.
For translated original and expanded prompts, images are generated by the Playground
2.5 model. An illustration of the prompt expansion pipeline for a non-English prompt is
provided in fig. 5. To measure the effect of prompt expansion, we calculate two metrics:
the homonym duplication rate (note that homonyms appear in the English translation) and
the wrong sense rate (WSR). The WSR represents the proportion of instances where the
model generates images reflecting an unintended homonymous meaning rather than the one
intended by the user. The results are presented in table 7 in the Appendix. The average
WSR decreases significantly after prompt expansion, dropping from 50% to 22%. That is,
without prompt expansion techniques, a non-English-speaking user encounters an alternative
(unrequested) sense in 50% of generations. Prompt expansion in the source language before
translation improves the situation significantly. Concurrently, the HDR also reduces from an

8
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Figure 5: The example of a prompt expansion pipeline for non-English prompts (in this case,
Russian) to avoid homonym duplication and sense entanglement caused by translation.

average of 16.5% to 8.9%. These results indicate that prompt expansion effectively mitigates
issues related to homonym duplication that occur when translating into English.

9 LIMITATIONS AND FUTURE WORK

Perception bias. Identifying duplicates is a complex task heavily influenced by individual
perceptions and associations. It is not always possible to make definitive judgments for all
images. To simplify the evaluation, certain words and their specific meanings, as described
in section 3.2, were excluded from consideration. This approach diminishes the uncertainty
but does not eliminate it. The examples of easy and complex cases can be found in fig. 6 in
the Appendix.
Absence of sense frequencies. Another limitation of our study is that the selection
of individual homonym senses mentioned in section 3.1 is based on approximate frequency
estimates due to the absence of publicly available statistical data. A possible direction
for future research would be to analyze English language corpora to determine the actual
frequency of each sense for homonymous words.
Alternative image generation methods. In this work, we focus specifically on the issue
of homonym duplication in diffusion models, excluding other image generation approaches
such as autoregressive models (e.g., Tian et al. (2024)) from our scope. The behavior of
these models when processing homonyms in prompts may differ substantially and could
require alternative solutions, representing a valuable direction for future research.
Sensitive content. To avoid unintentional distribution of potentially unacceptable
(NSFW) material, we do not publish the generated images. Since single-word homonyms
involve few tokens, models, which are trained on average token counts of 15–18 Wu et al.
(2024); Byeon et al. (2022), may still output sensitive content. Prior work Betker et al.;
Chen et al. (2024); Esser et al. (2024) confirms that training on long synthetic descriptions
improves metrics but worsens out-of-distribution issues when inferring from few tokens,
supporting our concern.

10 CONCLUSION

This paper addresses the challenge of homonym duplication in diffusion models. Our pro-
posed benchmark and comprehensive evaluations provide a systematic framework for quanti-
fying duplication rates across different models. To the best of our knowledge, this is the first
study to investigate the homonym duplication problem in the context of the Anglocentric
bias in image generation models. We also demonstrate that prompt expansion effectively
reduces duplication, including translation-related cases. These findings contribute valuable
insights toward improving the reliability of text-to-image generation systems, and the pub-
licly available evaluation pipeline offers a practical tool for future research in this area.

9
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11 ETHICS STATEMENT

Certain words were excluded from consideration due to ethical concerns. For instance, the
word “race” often leads models to reproduce racial biases by generating images of people of
color in racing attire. Detecting duplicates in such cases is challenging without perpetuating
these biases. Therefore, the word “race” was omitted from our benchmark.
All crowd workers participating in the benchmark creation were fairly compensated. Since
homonym duplication labeling is non-trivial and heavily influenced by individual associa-
tions, workers were still paid even if they were blocked after making an error in the verifi-
cation honeypot task (see appendix A.1 for more information).

12 REPRODUCIBILITY STATEMENT

To perform VLM-based evaluation, we use the vllm framework Kwon et al. (2023) ver-
sion 0.10.0. Even when employing greedy decoding with a temperature of 0 and fixing
the seed, strict determinism is not guaranteed by the official vllm documentation5. To
address this limitation and enhance the reliability of the metrics, we generate and eval-
uate N sequences per image, as described in section 5. For all generation tasks (in-
cluding image generation and prompt expansion in both English and Russian) we set
seeds ranging from 0 to 49 inclusive to ensure complete determinism. It is important
to note that, for prompt expansion, the seed used to generate each expanded prompt is
recorded and subsequently applied to generate the corresponding image within the origi-
nal pipeline. To ensure reproducibility, we provide the complete source code for all stages
of this work, including VLM evaluation, image generation, prompt expansion, and met-
ric calculation, as well as the specifications for the conda environment requirements at
https://anonymous.4open.science/r/Un-Doubling-Diffusion-662E/.
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A APPENDIX

A.1 CROWDSOURCE ANNOTATION PIPELINE

As stated in section 4, we utilized crowdsourcing platforms to perform human evaluation. A
key advantage of the crowdsourcing approach is its capacity to gather annotations from a de-
mographically and professionally heterogeneous group of participants, mitigating potential
biases inherent in homogeneous annotator pools. The task instructions required crowdwork-
ers to view an image and select all applicable associations and semantic duplications from
a provided list, or to indicate that the image contained no such associations.

A.1.1 PARTICIPANTS SELECTIONS.

A two-stage system involving training and exam tasks is used to select crowdworkers. The
training and exam tasks are based on pre-defined, unambiguous correct answers.
Training. The purpose of the training phase is to screen crowdworkers for their ability to
understand the instructions and navigate the task interface. The training phase consists of
five tasks. A total of 7,765 crowdworkers began the training phase, but only 6,477 correctly
completed at least three tasks, meeting our 50% accuracy threshold.
Exam. Сrowdworkers who achieve a score of more than 50% correct answers in the training
phase are admitted to the qualification exam. The exam consists of 21 tasks. As in the
training phase, these tasks feature pre-defined gold-standard tasks with unambiguous correct
answers. A total of 6,477 crowdworkers began the exam phase; 5,297 completed all 21 tasks,
but only 1,138 correctly completed at least 18 tasks, meeting our 85% accuracy threshold.

A.1.2 IMAGES ANNOTATION.

Access to the main annotation tasks is granted only to crowdworkers who achieve an exam
accuracy score of at least 85%. Since we have not screened the images for potentially NSFW
content (see more details in section 9), the task pool requires participants to be 18 years
or older. To enhance the quality of image annotation, three safeguard mechanisms are
implemented: (1) rapid responses — annotators who label images too quickly (in less than
1 second) are temporarily blocked for 14 days+, (2) daily task limit — each annotator is
assigned no more than 200 tasks per day to ensure user heterogeneity, (3) honeypot tasks —
main tasks are interspersed with honeypot tasks (pre-annotated items with known correct
answers), incorrect responses to honeypot tasks lead to the annotator’s block. Honeypot
tasks are introduced with a 10% probability per task assignment. In total, the unique set
of honeypot images accounted for roughly 2% (∼ 2000 images) of the dataset.

A.1.3 LABELING AGGREGATION.

For reliable image annotation, we apply a dynamic overlap approach. The initial overlap for
each image is set to 3, i.e., each image is independently annotated by at least three different
annotators. If the required response agreement is below 0.7, the overlap is increased until the
desired agreement level is reached. The maximum overlap is set to 9; for overlaps of 8 and 9,
the response agreement threshold is lowered to 0.6. The responses are considered consistent
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only if they match exactly: both the specific associations selected from the proposed list
and the number of associations provided. Images that do not reach the required agreement,
even with 9 responses, are labeled as “not_aggregated”.

A.1.4 CHARACTERISTICS.

The image labeling task involved annotators ranging in age from 18 to 94 years, who collec-
tively completed a total of 438,667 assignments and 57,822 honeypot tasks. Of the 104,450
images, 94,954 were successfully aggregated. The required inter-annotator agreement could
not be achieved for 9,496 images. On average, annotators spent 3.8 seconds labeling each
image. A total of 455 annotators were disqualified as a result of failing honeypot assign-
ments.

Figure 6: Two hard and one easy labeling examples. From left to right: “bark’’, “pot’’,
“crane’’. The first two examples are considered difficult to label as duplicates since their
meanings are linked implicitly through an association. The animal depicted in the first
image, appearing to emerge from the tree bark, resembles a cat. Although cats are known
not to bark, the cat’s presence may evoke associations with a barking dog, thereby justifying
the classification of the image as a duplicate. The word “pot’’, which is depicted in the
second image, has 4 different meanings (flower pot, tea pot, saucepan, boiling pot), making
it challenging to reliably identify which meanings are actually depicted in the image. The
last example is easy to label since there is no second meaning present, and the image is
clearly not a duplicate.

A.2 PROMPT EXAMPLES

A.2.1 VLLM-BASED AUTOMATIC EVALUATION

Example of one-stage prompt for duplicate detection

There is a problem, which is called as Homonym Duplication. It is when in the
image, which was generated by text2image model, there are several senses of the
input prompt. This image is generated by a neural network for a multi-senses
short prompt: ``basket''. This prompt can take several values:
1) a wicker item that serves as a storage, packing or carrying case. It is
usually a handicraft, the methods of making which vary from region to region.
2) a structure made of a metal ring with a net hanging from it for throwing the
ball. It is used for playing basketball. Possibly there are other values. The
meaning of the homonym may be implicit in the picture. For each meaning, reason
step-by-step and mark the presence in the picture and provide the answer in the
following template:
sense_1: [Explicit|Implicit|Absent], justification
sense_2: [Explicit|Implicit|Absent], justification
...
[Reasoning, summarization].
DUPLICATE: [TRUE|FALSE].
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An image may be connected to a meaning implicitly, through association or
related meaning. Therefore, be very attentive and carefully study the picture
for the presence of the listed meanings, even if they are presented implicitly.
Note:
* Implicit covers metaphors, hints, visual puns.
* Base judgments only on what is visible (including any text shown).
* Base your final words in answer as DUPLICATE: TRUE, or DUPLICATE: FALSE.

Example of multi-stage prompt for duplicate detection

You are analyzing an image generated by a diffusion model for potential Homonym
Duplication.
TASK: Determine if this image contains multiple meanings of the word
``basket''.
STEP 1 - VISUAL INVENTORY
List all objects, elements, and visual features you observe in the image.
STEP 2 - MEANING ANALYSIS
The word ``basket'' can have these meanings:
1) a wicker item that serves as a storage, packing or carrying case. It is
usually a handicraft, the methods of making which vary from region to region.
2) a structure made of a metal ring with a net hanging from it for throwing the
ball. It is used for playing basketball. Possibly there are other values.
For each meaning, analyze:
- EXPLICIT presence: Direct visual representation
- IMPLICIT presence: Suggested through context, associations, or related
elements
- ABSENT: No connection to this meaning
Format:
meaning_X: [EXPLICIT|IMPLICIT|ABSENT] - detailed justification
STEP 3 - ASSOCIATION MAPPING
Check for indirect connections:
- Visual metaphors or symbols
- Contextual clues that suggest meanings
- Objects that relate to but don't directly represent meanings
STEP 4 - FINAL DETERMINATION
Count meanings with EXPLICIT or IMPLICIT presence.
If 2 meanings present: DUPLICATE: TRUE
If < 2 meanings present: DUPLICATE: FALSE
Provide your structured analysis following each step.

Model answer example

sense_1: Absent, justification
The image does not contain any elements that explicitly or implicitly suggest a
bass guitar. There are no musical instruments, strings, or any related imagery
present.
sense_2: Explicit, justification
The image clearly depicts a fish, specifically one resembling a bass fish.
The underwater setting, coral reefs, and the fish's features such as its fins,
scales, and open mouth are all consistent with the depiction of a bass fish.
[Reasoning, summarization].
The image contains an explicit representation of a bass fish, aligning with
the second sense of the word ``bass''. There is no indication of the first
sense, which refers to a bass guitar. Since the image only represents one
of the possible meanings of the word ``bass'', it does not exhibit homonym
duplication.
DUPLICATE: FALSE.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.2.2 PROMPT EXPANSION

Example of the prompt used to expand the original single-word prompts

You are a prompt engineer. Your mission is to expand prompts written by user.
You should provide the best prompt for text to image generation in English in
1-2 sentences. You MUST INCLUDE given word in its original form in a prompt.
Expand prompt for this word: ``bass''. Respond ONLY WITH the example of an
expanded prompt, nothing else.

Example of the expanded prompt for the word “bass”

A serene lake at sunrise, with a sleek bass leaping out of the water,
surrounded by lush greenery and mist.

A.3 NAMED ENTITY BIAS

Figure 7: Examples of named entity bias. On the left, the image generated for the prompt
“beetle” depicts a car resembling a Volkswagen Beetle in the form of an actual insect. On the
right, the image for the prompt “jelly” shows a girl (interpreting “Jelly” as a female name)
morphing into jelly.

A.4 ADDITIONAL TABLES

Table 3: Distribution of homonym duplication in an image by
homonyms. We present statistics on the checkboxes: no selection,
one selection, and two or more selections.

General Prompt Expansion
homonym nothing one two+ nothing one two+
agent 5.8 94.2 0 2 98 0
anchor 0.9 99.1 0 0 100 0
angle 61.5 38.5 0 86 14 0
ash 72.4 26 1.6 0 40 60
baby 0.2 99.5 0.3 0 100 0
ball 6 84.2 9.8 22 58 20
band 3.5 96.5 0 0 100 0
bank 7.1 92.4 0.5 0 100 0
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Table 3: Distribution (%) of homonym duplication in an image by
homonyms (continuation).

General Beautification
homonym nothing one two+ nothing one two+
bar 0.4 99.6 0 0 100 0
bark 1.6 89.3 9.1 0 98 2
barrel 0.2 99.5 0.3 0 100 0
basket 0.7 91.8 7.5 0 100 0
bass 3.5 92.7 3.8 2 98 0
batter 31.1 68.9 0 8 92 0
bead 1.1 95.8 3.1 0 84 16
beam 28.2 66.2 5.6 0 96 4
bed 0 99.8 0.2 0 100 0
bench 1.1 96.7 2.2 2 96 2
berth 45.6 53.8 0.6 4 96 0
block 14.4 71.6 14 0 94 6
blow 44.2 51.8 4 78 18 4
boil 15.5 84.5 0 10 90 0
bolt 51.8 47.5 0.7 4 94 2
bow 18.5 81.1 0.4 62 38 0
bowl 0 99.5 0.5 0 100 0
box 6 93.6 0.4 2 96 2
brush 26.5 61.3 12.2 12 82 6
buck 0.4 99.6 0 0 100 0
bucket 2.4 96.7 0.9 0 100 0
bug 3.1 96.9 0 0 100 0
button 5.5 68.7 25.8 2 54 44
cane 18.7 77.8 3.5 10 90 0
canvas 6.5 92 1.5 26 74 0
cape 10 69.5 20.5 0 16 84
capital 6.5 51.3 42.2 0 100 0
case 66.9 28.2 4.9 30 60 10
cell 46.2 53.8 0 0 100 0
charm 30.2 67.8 2 48 52 0
chest 4 88.9 7.1 0 100 0
chip 19.5 77.3 3.2 14 86 0
clove 53.1 46.9 0 18 82 0
club 33.8 61.1 5.1 2 92 6
coach 36 63.1 0.9 8 90 2
cobbler 25.3 74.4 0.3 8 92 0
collar 2.5 68 29.5 4 72 24
court 24.2 74.5 1.3 36 62 2
crane 0 97.5 2.5 0 100 0
cricket 9.8 89.5 0.7 0 100 0
crown 1.6 98.2 0.2 0 100 0
date 44.4 48.7 6.9 4 96 0
deck 6.9 83.8 9.3 0 100 0
diamond 0.2 42.4 57.4 0 62 38
ear 3.6 96.4 0 38 60 2
fan 30.9 66.2 2.9 18 80 2
fence 0.4 99.6 0 0 100 0
file 73.6 26.4 0 36 64 0
flask 10.5 81.6 7.9 0 96 4
flute 10.4 89.5 0.1 22 78 0
font 26.7 69.5 3.8 24 76 0
fork 6.4 93.5 0.1 12 84 4
funnel 9.3 78.5 12.2 40 60 0
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Table 3: Distribution (%) of homonym duplication in an image by
homonyms (continuation).

General Beautification
homonym nothing one two+ nothing one two+
gate 0.4 99.6 0 0 100 0
ghost 0.4 73.3 26.3 0 20 80
gin 13.5 86.5 0 0 100 0
glasses 0.5 98.2 1.3 2 98 0
ground 3.8 76.5 19.7 0 80 20
gum 27.8 62.5 9.7 50 50 0
hatch 47.5 50.4 2.1 62 38 0
heel 6 34.5 59.5 2 62 36
horn 6.4 78.9 14.7 2 98 0
jam 33.3 66.5 0.2 14 86 0
jar 0.2 98.9 0.9 0 100 0
jet 9.5 80.5 10 0 94 6
jumper 4.9 74.9 20.2 2 98 0
junk 32 67.6 0.4 10 90 0
lace 0.5 99.1 0.4 0 100 0
leg 7.8 77.1 15.1 0 96 4
line 33.8 56 10.2 30 48 22
litter 22.2 74.2 3.6 0 100 0
lock 3.3 96.7 0 2 98 0
log 21.8 78.2 0 0 100 0
magazine 24 76 0 10 90 0
mail 10.5 89.5 0 2 98 0
match 46.2 48.4 5.4 4 80 16
mate 25.6 74.2 0.2 8 92 0
mine 71.5 24.7 3.8 4 88 8
mint 17.5 82.4 0.1 4 96 0
model 12 88 0 18 82 0
mold 16.9 82.9 0.2 18 82 0
mole 24.9 66 9.1 14 86 0
mouse 0 98.9 1.1 0 100 0
mug 1.3 90.9 7.8 0 98 2
nail 6.4 93.5 0.1 4 96 0
needle 23.3 52.5 24.2 20 70 10
net 16.7 75.3 8 28 32 40
note 22.4 76.5 1.1 0 98 2
notebook 7.1 92 0.9 0 100 0
nut 17.6 81.1 1.3 0 100 0
oil 24.7 66.7 8.6 44 52 4
organ 16.5 83.1 0.4 30 70 0
pack 26.2 70.9 2.9 0 98 2
palm 0 95.3 4.7 0 100 0
park 0.2 97.6 2.2 0 100 0
party 0.5 99.5 0 0 100 0
pen 21.8 78.2 0 0 100 0
pipe 2.4 93.1 4.5 14 86 0
pitcher 6.4 92.7 0.9 0 100 0
plane 0 99.8 0.2 0 100 0
plant 0 100 0 0 100 0
plate 0.5 99.5 0 34 66 0
plot 31.5 67.1 1.4 16 84 0
plug 11.6 88.2 0.2 98 2 0
pod 61.3 36.7 2 8 92 0
pole 7.6 92.4 0 2 98 0
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Table 3: Distribution (%) of homonym duplication in an image by
homonyms (continuation).

General Beautification
homonym nothing one two+ nothing one two+
pool 0.2 99.5 0.3 2 98 0
pot 4.7 82.5 12.8 0 96 4
press 54.7 42.5 2.8 24 48 28
pump 13.1 86.4 0.5 30 70 0
quiver 44.9 54.5 0.6 84 16 0
rail 5.3 90.4 4.3 0 98 2
ring 0.5 99.5 0 0 100 0
roll 18.9 78.2 2.9 62 38 0
row 31.3 52.2 16.5 30 66 4
rug 14.2 72.4 13.4 0 80 20
ruler 12.2 87.5 0.3 12 88 0
scale 21.8 69.5 8.7 14 86 0
screen 16.7 80.9 2.4 24 76 0
seal 9.5 78.4 12.1 0 100 0
sewer 2.2 97.8 0 2 98 0
sheet 17.3 78.2 4.5 18 82 0
shower 13.1 85.3 1.6 22 74 4
sink 6.5 92.5 1 2 98 0
skate 0.7 97.8 1.5 0 100 0
skeleton 0 100 0 4 96 0
slough 35.8 64.2 0 0 100 0
sole 40.9 45.8 13.3 6 90 4
sow 38.5 61.5 0 0 100 0
space 0.2 99.6 0.2 0 100 0
spirit 28.4 71.6 0 4 96 0
spoon 2.5 97.3 0.2 4 96 0
spring 0.2 83.6 16.2 0 20 80
spur 81.1 18.9 0 10 90 0
square 10.9 76.5 12.6 2 88 10
squash 0.4 99.1 0.5 4 96 0
staff 14.2 85.3 0.5 18 82 0
stamp 1.5 85.6 12.9 8 82 10
store 0.4 82 17.6 0 100 0
straw 5.1 90.2 4.7 8 92 0
string 14.5 82.4 3.1 68 30 2
table 0.4 99.6 0 0 100 0
tail 27.6 71.5 0.9 2 98 0
tank 0.4 99.1 0.5 0 100 0
tear 36.2 61.3 2.5 44 56 0
temple 0 100 0 0 100 0
tick 34.5 64.4 1.1 22 78 0
tie 23.5 76.5 0 6 94 0
tip 83.5 16.5 0 30 70 0
toast 6.7 92.7 0.6 0 100 0
track 38.5 51.5 10 4 84 12
train 0.4 99.6 0 0 100 0
trunk 12 72.2 15.8 0 88 12
urn 11.1 88.9 0 0 100 0
vane 75.1 22.4 2.5 0 88 12
veil 0.9 97.3 1.8 0 46 54
vessel 6.4 90.5 3.1 0 100 0
washer 10.9 88.5 0.6 0 100 0
watch 4 85.1 10.9 0 100 0

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 3: Distribution (%) of homonym duplication in an image by
homonyms (continuation).

General Beautification
homonym nothing one two+ nothing one two+
wave 0.2 96.5 3.3 0 96 4
whiskers 16.4 82 1.6 0 100 0
window 0.2 99.6 0.2 0 100 0
wing 0.5 95.6 3.9 2 98 0
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Table 4: Alignment between human evaluation and CLIP-based automatic evaluation. Sense
representation type in a prompt differs from those described in section 5. For CLIP-like
rankers, g1 denotes the English sense definition, g2 the Russian sense definition, and g3
a short Russian translation equivalent. For each image, we obtain between two and six
CLIPScore values (depending on the number of senses of the given homonym). The Factor
column indicates which CLIPScore value is used to calculate the correlation with the results
of human evaluation (i.e., to what extent the coefficient explains and correlates with human
evaluations).

Model Sense represen-
tation type

Factor r ↑ ρ ↑ AUROC* ↑

OpenAI CLIP-
L/14 Radford
et al. (2021)

g1 top-1 0.054 0.049 0.565

top-2 0.159 0.166 0.722
top-1 + top-2 0.123 0.127 0.669
top-2 - top-1 0.101 0.103 0.638

g2 top-1 0.023 0.025 0.534
top-2 0.023 0.025 0.533

top-1 + top-2 0.024 0.026 0.535
top-2 - top-1 0.003 0.002 0.503

mSigLIP Zhai
et al. (2023)

g1 top-1 0.058 0.047 0.563

top-2 0.192 0.202 0.769
top-1 + top-2 0.146 0.153 0.705
top-2 - top-1 0.126 0.128 0.670

g2 top-1 0.052 0.056 0.575
top-2 0.125 0.122 0.663

top-1 + top-2 0.098 0.097 0.629
top-2 - top-1 0.081 0.088 0.617

g3 top-1 0.066 0.057 0.577
top-2 0.153 0.160 0.713

top-1 + top-2 0.126 0.126 0.668
top-2 - top-1 0.101 0.096 0.627

SigLIP2 Tschan-
nen et al. (2025)

g1 top-1 0.043 0.04 0.553

top-2 0.184 0.183 0.744
top-1 + top-2 0.132 0.134 0.679
top-2 - top-1 0.119 0.119 0.658

g2 top-1 0.061 0.055 0.573
top-2 0.155 0.158 0.711

top-1 + top-2 0.133 0.133 0.677
top-2 - top-1 0.092 0.095 0.626

g3 top-1 0.049 0.035 0.546
top-2 0.182 0.185 0.747

top-1 + top-2 0.134 0.128 0.67
top-2 - top-1 0.135 0.133 0.678
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Table 5: Frequency of proper name occurrences. We evaluate the number of generations
of different meanings across all models. It can be observed that if a homonym word has a
proper name as one of its meanings, the model exhibits a pronounced bias toward generating
that proper name.

Word Translation equivalents

stitch cartoon
character
Stitch

sewing stitch stitch in
abdomen

63.6% 18.0% 0%

bug Volkswagen
Beetle

sledgeham-
mer

beetle

10.9% 0% 90.2%

bill Person
named Bill

payment bill banknote bird’s bill

69.1% 2.5% 23.3% 0.4%

bat Batman baseball bat bat (animal)
38.5% 0% 87.3%

jelly Person
named Jelly

gelatine
dessert

0.2% 93.8%

jack Person
named Jack

OR an
animal

named Jack

jack fish plug perforator

95.63% 0% 0% 0%

mark Person
named Mark

OR an
animal

named Mark

mark on
paper

trade mark

58.73% 2.18 % 10.73%

Table 6: Distribution (%) of the number of senses per image annotated by human evaluation.
Each model generated 8,550 images, ensuring that the resulting metrics are statistically
reliable. Statistics for prompt expansion are reported only for the Pixart Alpha model
owing to the high cost of annotation.

General Prompt Expansion
model nothing one two+ nothing one two+
Pixart Alpha 29.7 64.8 5.5 10.7 84.3 5.0
Cogview 4 25.3 71.8 2.9 - - -
Flux 1 dev 10.6 84.5 4.9 - - -
Flux 1 schell 9.9 84.1 6.0 - - -
Kandinsky 3 11.9 82.0 6.1 - - -
Pixart Sigma 25.6 70.3 4.1 - - -
Playground 2.5 9.1 83.9 7.0 - - -
SD 3 Medium 13.7 81.8 4.5 - - -
SD 3.5 Large 7.4 87.6 5.0 - - -
SD 3.5 Medium 12.3 83.0 4.7 - - -
SD XL 28.5 68.1 3.4 - - -
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Table 7: Prompt expansion results for Russian prompts. The resulting HDR and WSR
metrics are obtained via human evaluation.

W/o prompt
expansion

With prompt
expansion

Russian
word

English translation
equivalent WSR ↓ HDR ↓ WSR ↓ HDR ↓

финик date (fruit) 68 20 58 0
дата date (social meeting) 100 0 72 0

свидание date (in the calendar) 14 20 4 0
весна spring (season) 0 46 0 30
родник spring (water) 54 46 0 84
пружина spring (metal coil) 100 0 44 0
ноготь nail (part of the finger) 0 0 34 0
гвоздь nail (fastener) 100 0 44 0
таблица table (chart) 100 0 100 0
стол table (desk) 0 0 0 0

линейка ruler (measuring tool) 30 0 14 0
правитель ruler (leader) 98 0 4 0
почтовая
марка stamp (post) 8 2 36 12

штамп stamp (mark) 90 2 4 0
тростник cane (plant) 94 0 0 0
трость cane (walking aid) 68 0 34 2

пепел ash (powder left after
burning) 44 4 8 44

ясень ash (tree) 90 4 2 0
мята mint (plant) 0 0 0 0

монетный
двор mint (coin factory) 100 0 58 0

дуло barrel (of a gun) 100 0 48 4
бочка barrel (container) 0 0 0 0
масло oil (for cooking) 28 6 12 0
нефть oil (petroleum) 84 6 20 2
столица capital (metropolis) 18 50 0 2

капитал capital (money and
possesions) 100 0 92 8

капитель capital (part of the
pillar) 36 50 18 0

джемпер jumper (clothing) 24 76 12 0

прыгун jumper (someone who
jumps) 0 76 4 4

ромб diamond (rhombus) 20 80 4 88
алмаз diamond (stone) 0 80 10 20
джонка junk (vessel) 100 0 0 0
барахло junk (trash) 4 0 0 0
пальма palm (tree) 0 20 0 0
ладонь palm (part of the hand) 80 20 58 28
крикет cricket (sport game) 78 2 16 0
сверчок cricket (insect) 20 2 8 0
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