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ABSTRACT

Data loss and corruption are common incidents that often lead to catastrophic
consequences in both theoretical and experimental facets of data analytics. The
aspiration to minimize the impacts of such consequences drives the demand for
the development of effective data analytic tools and imputation methods to replace
missing, corrupted, or artifacted data. The focus of this paper is on multivariate
time series imputation, for which we develop a dynamical systems-theoretic deep
learning approach. The central idea is to view a multivariate time series as a
trajectory of a dynamical system. Then, we construct a deep reservoir computing
architecture to model the temporal evolution of the system by using existing data
in the time series. In particular, this architecture is composed of a cascade of echo
state network (ESN) layers with diminishing reservoir sizes. We then propose a
layer-by-layer training scheme, which gives rise to a deep learning-based time
series imputation algorithm. We further provide a rigorous convergence analysis of
this algorithm by exploiting the echo state property of ESN, and demonstrate the
imputation performance as well as the efficiency of the training process by utilizing
both synthetic and real-world datasets arising from diverse applications.

1 INTRODUCTION

With the rapid advancement in sensing and data storage technology, acquiring multivariate time series
data has become easily achievable and increasingly popular across various fields, including medicine,
economics, and climate science(Wu et al., 2017; Fernández-Gómez et al., 2017; Nguyen et al., 2020).
Accompanying the abundance of data is a common occurrence of data irregularity, where partial
recordings, such as sparse snapshots or multiple segments, are lost or damaged due to software
corruption or hardware impairment. Missing data undoubtedly poses a significant challenge in data
analytics tasks and may eventually lead to bottlenecks that hinder progress in scientific research.
Driven by the critical need to minimize the impact of missing data, imputation—concerned with
replacing missing data with appropriate substituted values—has garnered prominent attention in the
realm of machine learning (ML).

The predominant focus of research in data imputation lies in crafting statistics-driven interpolation
strategies and ML-enabled methods to deduce the values of absent data points, especially when those
points are isolated, sparse, or randomly omitted. Yet, in the realm of multivariate time series, missing
data can span consecutive (long) snapshots and multiple spatial dimensions. Imputing such data
exceeds the capacities of many current techniques, necessitating the creation of novel methodologies.

Our contributions. In this work, we propose a novel dynamical systems-theoretic deep learning
architecture for imputation of multivariate time series with isolated, sparse, or randomly omitted data
samples as well as time series with missing data spanning consecutive (long) snapshots and multiple
spatial dimensions. Specific contributions of this work are summarized below.

(1) We construct a deep reservoir computing network (RCN) architecture, composed of multiple
layers of echo state network (ESN) layers with diminishing reservoir size to learn the underlying
dynamical system generating the multivariate time series. (2) We propose a layer-by-layer training
scheme for the proposed deep RCN, which gives rise to the DL-DRCN algorithm for multivariate
time series imputation. (3) Rigorous convergence analyses of the DL-DRCN algorithm are provided.
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(4) The high computational efficiency and performance of the algorithm are demonstrated by using
both synthetic and real-world data.

2 RELATED WORKS

Missing value imputation problems have been widely studied over the past decades, with comprehen-
sive insights provided in various works, such as (Schafer & Graham, 2002; Little & Rubin, 2002;
Fang & Wang, 2020; Osman et al., 2018; Lin & Tsai, 2020; Emmanuel et al., 2021). The main
body of works concerning adding and removing datapoints from time series focuses on regularizing
irregularly sampled data. This refers to instances where the sampling rate is not uniform across the
entire time series (Li & Marlin, 2020; Cao et al., 2018; Shukla & Marlin, 2021; Weerakody et al.,
2021). Some of the regularizing techniques proposed in these works have also been tailored to tackle
time-series imputation problems, where the missing data are filled in by mechanisms that adhere to
certain assumptions on the distribution of the time series (Moritz et al., 2015; Kim et al., 2023; Little
& Rubin, 2002; Azur et al., 2011; Fortuin et al., 2020). Interpolation is a popular non-probabilistic
times-series imputation technique, e.g., linear interpolation (Shukla & Marlin, 2018; Junninen et al.,
2004) and spline interpolation (Zhang, 2016; Junninen et al., 2004), where the values of missing
data are estimated by fitting the observed data to linear and higher-order polynomials, respectively.
However, these traditional methods often struggle to deliver satisfactory performance when applied
to multivariate time series characterized by high spatial dimensions.

Due to their extraordinary computing power, various neural network-based multivariate time series
imputation methods have been proposed, which have also achieved significant successes (Kidger
et al., 2020; Che et al., 2018; Chen et al., 2018; Luo et al., 2018; Shan et al., 2021). These include
methods that utilize static, deep generative models, such as generative adversarial network (GAN)
(Gong et al., 2024; Luo et al., 2018), attention networks (Shukla & Marlin, 2021; Du et al., 2023),
graph neural networks (Cini et al., 2022), and diffusion models (Tashiro et al., 2021; Alcaraz &
Strodthoff, 2023; Rasul et al., 2021), as well as dynamic, recurrent neural networks (RNN) (Liu et al.,
2019; Cao et al., 2018; Che et al., 2018; Yoon et al., 2019; Weerakody et al., 2021; Lipton et al., 2016).
For instance, gated recurrent unit (GRU) models have gained in popularity in multivariate time-series
imputation due to their capability to infer missing patterns and integrate them into observed data
(Che et al., 2018; Cho et al., 2014; Chung et al., 2014; Kim et al., 2023). Typical examples of
GRU-integrated imputation techniques include filling missing values with zero (GRU-zero), the mean
of observed data (GRU-mean), the last observed values (GRU-forward), and an exponential decay
mechanism between observations (GRU-D) (Che et al., 2018). Furthermore, a GAN-based framework
is introduced, which employs a modified GRU to capture the complex dynamics of multivariate time
series (Luo et al., 2018).

More recently, Neural Ordinary Differential Equation (Neural ODE) (Chen et al., 2018; Habiba &
Pearlmutter, 2020) has been demonstrated as an efficient framework for the purpose of multivariate
time series imputation. Different from traditional RNNs with discrete sequences of hidden layers,
Neural ODEs are continuous-depth models whose outputs can be computed by solving ODEs. This
characteristic of Neural Ordinary Differential Equations (ODEs) has been demonstrated to offer
improved imputation performance and greater computational efficiency when compared to RNN-
based methods. Further, ODE-RNNs have been introduced to further enhance the data imputation
capabilities of Neural ODEs, exhibiting a notable advantage in handling irregularly sampled time
series (Rubanova et al., 2019). Nevertheless, there is scarce literature addressing the imputation of
multivariate time series with significant gaps, such as consecutive missing data spanning the temporal
dimensions across various spatial dimensions. This gap persists despite increasing concern across
diverse fields (Liu et al., 2020; Wu et al., 2022; Velasco-Gallego & Lazakis, 2022). In this work,
we aim to address this gap by integrating techniques in dynamical systems theory with reservoir
computing networks (RCNs), particularly echo state networks (ESNs) (Jaeger, 2007; 2005; Millea,
2014; Luko!evičius, 2012; Lu et al., 2017). We will begin by introducing ESNs from the perspective
of dynamical systems theory in the next section and introduce a novel deep RCN architecture in
section 4.1, which is fundamentally different from the deep ESN structures proposed in (Gallicchio
et al., 2017; Jaeger, 2008) or other variations of RC frameworks as discussed in (Gauthier et al., 2021;
Li et al., 2024).
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3 BACKGROUND: DYNAMICAL SYSTEMS-THEORETIC TIME SERIES
IMPUTATION

In this section, we carry out a dynamical systems-theoretic formulation of multivariate time series
imputation. Then, we briefly review Echo State Networks (ESNs) from the perspective of dynamical
systems, which are the learning models constituting the deep learning architecture for time series
imputation proposed in this work.

3.1 MULTIVARIATE TIME SERIES IMPUTATION FROM DYNAMICAL SYSTEM VIEWPOINTS

Notations. We represent a multivariate time series in terms of a matrix X1:T = [x1, . . . ,xT ] →
Rd→T , where the tth column xt → Rd is the tth snapshot and the ith row x

i
→ R1→T is the ith

component of the mutivariate time series. We further assume that in each snapshot xt, at least one
component is not missing. The imputation task considered in this work is to infer the missing values
in some components of X1:T , denoted by Y1:T = [y1, . . . ,yT ] → Rq→T , by using the data in the
complemented components U1:T = [u1, . . . ,uT ] → Rp→T with p = d ↑ q. We also allow U to
contain missing data under the condition that ut and yt do not simultaneously have missing values
for all t = 1, . . . , T . We further associate the imputation target Y with mask M1:T → Rq→T , whose
(i, j)-entry is defied as mij = 0 if yij , the (i, j)-entry of Y1:T , is missing and mij = 1 otherwise.

Missing scenarios. The scenarios of missing data can be classified into two types: (1) data points
are absent without discernible patterns, referred to as random missing scenario, which is similar
to the case proposed in (Alcaraz & Strodthoff, 2023); (2) some components have missing data in
consecutive snapshots, referred to block missing.

Dynamical systems-theoretic approach to time series analytics. The main idea is to think of
the time series Y , that is, the imputation target, is a trajectory of a dynamical system in the form
of yt = f(yt↑1,ut). Of course, if the equation, specifically the function f : Rp

↓ Rq
↔ Rp,

modeling the system is discerned, the missing data in Y can be directly restored by evolving the
system. From this perspective, the time series imputation task can be formulated as a dynamical
system model learning task, for which recurrent neural networks (RNNs), owing to their dynamical
system characteristic, stand out as the prime candidate for the learning tool.

3.2 DYNAMICAL SYSTEM REPRESENTATION OF ECHO STATE NETWORKS

Reservoir computing networks (RCNs) are a special class of RNNs, each of which contains a single
hidden layer with no training parameter. The training-free hidden layer of an RCN is referred
to as the reservoir, whose state, denoted as rt → RN , is determined by the dynamical system
rt = !!(rt↑1,ut), where N is the reservoir dimension, equivalently the number of neurons in the
hidden layer, ut → Rp is the network input, and !! : RN

↓ Rp
↔ RN is called the reservoir map,

parameterized by the set ” of the hyperparameters of the RCN, e.g., the reservori dimension N , and
the reservoir weight matrices and bias vectors. In particular, in this work, we always pick N < T ,
the number of snapshots in the given time series. The output layer projects the reservoir state to a
low-dimensional space Rq with q ↗ N by using the readout map ŷt = h(rt), which will be trained
to minimize the discrepancy between the RCN output ŷt and the desired output yt. In general, the
instantaneous discrepancy is evaluated by using a loss function L so that the cumulative discrepancy
is given by ω(h;D) =

∑T
t=1 L(ŷt,yt), where D is the given dataset and T is the number of snapshots.

In the training phase, the output layer weights are learned to obtain h↓ = argminh ω(h;D).

Echo state property In the terminology of dynamical systems theory, echo state property (ESP) is
essentially asymptotic stability of the reservoir system (Yildiz et al., 2012; Gonon & Ortega, 2021).
Formally, given any input sequence (ut)t↔N in Rp, there exists a unique r → RN such that rt ↔ r as
t ↔ ↘. A sufficient condition to guarantee ESP is that the reservoir map !! : RN

↓ Rp
↔ RN ,

given by, (r,u) ≃↔ !!(r,u), is a contraction mapping in r → RN and uniformly in u → Rp, meaning,
there is L” < 1 such that ⇐!!(r,u)↑!!(s,u)⇐ for all r, s → RN and u → Rp. Under this condition,
given arbitrary initial reservoir states r0, s0 → RN ,⇐rt ↑ st⇐ = ⇐!!(rt↑1,ut)↑!!(st↑1,ut)⇐ <
L”⇐rt↑1 ↑ st↑1⇐ holds so that ⇐rt ↑ st⇐ < Lt

”⇐r0 ↑ s0⇐ by induction, yielding ⇐rt ↑ st⇐ ↔ 0 as
t ↔ ↘. Notice that the equilibrium state r↓ = limt↗↘ rt depends on the input sequence (ut)t↔N.

3
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is a contraction mapping in the reservoir state (second) component, namely, ⇐!!(r,u)↑!!(s,u)⇐ <
⇐r ↑ s⇐ for any r, s → RN and u → Rp. Then, for any two initial reservoir states r0, s0 → RN ,
⇐rt ↑ st⇐ = ⇐!!(rt↑1,ut) ↑ !!(st↑1,ut)⇐ < ⇐rt↑1 ↑ st↑1⇐ holds so that (⇐rt ↑ st⇐)t↔N is a
monotonically decreasing nonnegative sequence, and hence, necessarily converges to 0. Notice that
the equilibrium state r depends on the choice of the input sequence (ut)t↔N.

In general, the hidden layer of an RCN has the structure of the composition of a linear network and
an activation function. In this case, the reservoir map is given by !!(r,u) = ε(Ar +Bu), where
A → RN→N and B → RN→p are the hidden layer and input layer weight matrices, respectively, and
ε : R ↔ R is the activation function acting on the vector Ar +Bu → RN component-wisely.
Proposition 3.1. An RCN with the reservoir map given by !!(r,u) = ε(Ar +Bu) has ESP if
ε is Lipschitz continuous and ⇐A⇐ < L↑1, where L is the Lipschitz constant of ε and ⇐ · ⇐ is the
spectral norm of matrices, that is, the largest singular values.

Proof. The main idea is to show ⇐!!(r,u)↑!!(s,u)⇐ < L”⇐r ↑ s⇐ for any randomly chosen
r, s → RN with some L” > 0, which follows directly from the fact that ε is Lipschitz continuous.
See Appendix B.1 for more details.

The ESP constraint is crucial, as we require the reservoir states to not only converge asymptotically
but also be independent of the choices of initial states and rely solely on the input. Therefore, to
ensure the designed ESN possesses ESP property, we impose the constraints described in 3.1 on the
designed reservoir mapping in the following section.

4 DEEP RESERVOIR COMPUTING ARCHITECTURE FOR MULTIVARIATE TIME
SERIES ANALYTICS

Figure 1: Illustration of the proposed DL-DRCN framework. The
top panel demonstrates that the proposed model consists of mul-
tiple ESN layers, highlighting that the dimensions of ESN layers
are decreasing layer-by-layer. The reservoir unit in each layer is
demonstrated in the bottom left panel, where ut is the input to the
reservoir unit at time t. The bottom middle panel showcases that, in
the kth iteration of the algorithm (the kth ESN layer), the values
of the missing datapoints in Yω:T are substituted by those of the
corresponding datapoints in the output Ŷω:T of the kth ESN layer.
The structure of an ESN and the imputation process are depicted in
the bottom right panel.

In this section, we first propose the
deep RCN architecture for multivari-
ate time series analytics, which is com-
posed of a cascade of ESN layers with
diminishing reservoir dimensions and
referred to as DL-DRCN. Then, we de-
velop the multivariate time series im-
putation algorithm and prove its con-
vergence.

4.1 MULTIVARIATE TIME
SERIES IMPUTATION ALGORITHM

The central idea is to project the time
series Y to the reservoir space de-
termined by U in each ESN layer.
This procedure results in a complete
time series Ŷ , which constitutes the
learning reference for the successive
ESN layer. The workflow of this DL-
DRCN architecture is illustrated in
Figure 1.

DL-DRCN architecture. The reser-
voir map !!(k) : Rp

↔ RN(k)

of the
kth layer of an ESN is chosen to be in
the form of a leaky unit as

r
(k)
t = (1↑ ϑ(k))r(k)t↑1 + ϑ(k)ϖ(k)(A(k)

r
(k)
t↑1 +B

(k)
ut), (1)

with the set of hyperparameters is given by ”(k) = {A
(k),B(k),ϖ(k)(·),ϑ(k)

}, in which the input
weight matrix B

(k)
→ RN(k)→p is randomly chosen and the leakage rate ϑ(k)

→ [0, 1] is picked to be

4
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close to 1. To guarantee the ESP of this ESN layer, by Proposition 3.1, the condition ⇐A
(k)

⇐ < 1/L(k)

with L(k) the Lipschitz constant of the activation function ϖ(k) : R ↔ R must be satisfied (see
Appendix B.2 for more details). To construct such a weight matrix A

(k), we first pick a sparse
matrix Ã

(k)
→ RN(k)→N(k)

according to some preselected node degree Nd (the number of nodes
connected for each reservoir node), and then define A

(k) = Ã
(k)/⇐Ã(k)

⇐L(k) (see Appendix H for
more details). We then choose the readout map in the affine form h(k)(r(k)t ) = C̃

(k)
r
(k)
t + b

(k) =

C
(k)

r̃
(k)
t , where the matrix C

(k) =
[
C̃

(k)
b
(k)

]
→ Rq→(N(k)+1), composed of the weight matrix

and bias vector of the output layer, contains all the trainable parameters of this ESN layer, and

r̃
(k)
t =

[
r
(k)
t

1

]
. Note that during the training process only the “tails" are used instead of the

entire reservoir state, which eliminates the impact of the choice of the initial reservoir state r
(k)
0

according to ESP. Specifically, a washout length 1 < ϱ < T is chosen in the way that Y (k)
1:(ω↑1)

does not have missing value and T ↑ ϱ > N (k). In particular, C
(k) is tuned to minimize

ω(C(k);D(k)) = ⇐C
(k)

R
(k)
ω:T ↑ Y

(k)
ω:T ⇐

2
F + ς⇐C(k)

⇐
2
F , yielding

C
(k)↓ = argmin

C(k)↔Rq→N

ω(C(k);D(k)) = Y
(k)
ω:T R

(k)
ω:T

≃
(
R

(k)
ω:T R

(k)
ω:T

≃
+ ςI

)↑1

:= Y
(k)
ω:TR

(k)
ω:T

†
, (2)

where R
(k)
ω:T =

[
r̃
(k)
ω , . . . , r̃(k)T

]
→ R(N(k)+1)→(T↑ω+1) and D

(k) = {U1:T ,Y
(k)
1:T } with Y

(k)
1:T the

imputed Y1:T obtained from the previous ESN layer.

Layer-wise time series imputation. The output of the kth ESN layer is then given by ŷ
(k+1)
t =

C
(k)↓

r̃
(k)
t = Y

(k)
ω:TR

(k)
ω:T

†
r̃
(k)
t .We then define the values of the missing datapoints in Y1:T to be

values of the corresponding datapoints, meaning those in the same snapshots and components, in
Ŷ

(k)
1:T . Computationally, this imputation procedure can be operated by using the mask matrix M as

y
(k+1)
t = yt ⇒mt + ŷ

(k+1)
t ⇒ (1↑mt), (3)

where ⇒ denotes the Hadamard product. The imputed time series Y (k+1)
1:T =

[
y
(k+1)
1 , . . . ,y(k+1)

T

]

is then used as the desired output to train the (k + 1)th layer. This then gives rise to an iterative
imputation algorithm, as shown in Algorithm 1, so that the imputation performance is improved
layer-by-layer. The sequence of imputed time series Y (k)

1:T resulting from this algorithm is guaranteed
to converge to the groundtruth time series, which will be proved in the next section.

Algorithm 1 DL-DRCN algorithm for multivariate time series imputation
Input: Dataset D = {U1:T ,Y1:T }, total layers number K
Output: Imputed result Y (K)

1:T

1: while k < K do
2: Generate ”(k) = {A

(k),B(k),ϖ(k),ϑ(k)
} and r

(k)
0 φ Define ESN hyperparameters

3: for t = 1 to T do φ Compute the evolution of the reservoir state
4: r

(k)
t = (1↑ ϑ(k))r(k)t↑1 + ϑ(k)ϖ(k)(A(k)

r
(k)
t↑1 +B

(k)
ut)

5: end for
6: C

(k)↓ = Y
(k)
ω:T R

(k)
ω:T

≃
(R(k)

ω:T R
(k)
ω:T

≃
+ ςI)↑1 φ Compute the output weight

7: Y
(k+1)
1:T = Y

(0)
1:T ⇒m1:T +

(
C

(k)↓
R

(k)
1:T

)
⇒ (1↑m1:T ) φ Compute the update

8: k = k + 1
9: end while

10: Return: Y (K)
1:T

4.2 CONVERGENCE ANALYSIS OF DL-DRCN

RCN projection and reservoir space. By representing the output output time series of the kth

ESN layer in the matrix form as Ŷ (k+1)
ω:T = Y

(k)
ω:T R

(k)
ω:T

†
R

(k)
ω:T , we observe that Ŷ (k+1)

ω:T is essentially

5
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the projection of Y (k)
ω:T , the time series resulting from the kth iteration of the proposed DL-DRCN

algorithm, onto the space of reservior states, i.e., the vector space spanned by the row vectors R(k)
w:T .

Convergence of DL-DRCN. If the reservoir space of each ESN layer contains the groudtruth time

series Ȳω:T , then Ȳω:T necessarily satisfies the fixed point equation Ȳω:T = Ȳω:TR
(k)
ω:T

†
R

(k)
ω:T for

all k. From this perspective, Algorithm 1 presents a deep learning based iterative algorithm to solve

this fixed point equation in the way that Y (k)
ω:T = Y

(k)
ω:T R

(k)
ω:T

†
R

(k)
ω:T as k ↔ ↘. This interpretation

further motivates us to measure the deviation between the imputated and groundtruth time series by

using the projection error e(k) = ⇐e
(k)

⇐ = ⇐Y
(k)
ω:T ↑ Ŷ

(k+1)
ω:T ⇐ = ⇐Y

(k)
ω:T (I ↑R

(k)
ω:T

†
R

(k)
ω:T )⇐.

In practice, an effective way to warrant Ȳ1:T to be in the reservoir space of an ESN layer is to ensure
that the number of neurons in the reservoir, equivalently, the dimension of the reservoir space, is large
enough. However, higher dimension of the reservoir space leads to more expensive computational
cost. To balance between the imputation performance and computational cost, we adopt the notion of
minimal realization ESNs.
Definition 4.1. Given a fully observed time series Y1:T and some positive number ↼ > 0, then
an ESN of reservoir dimension NY

ε is said to be a minimal ↼-realization ESN for Y1:T if e =
⇐Y1:T (I ↑ R1:T

†
R1:T )⇐ ⇑ ↼ and there exists no other ESN of reservoir dimension N < NY

ε
satisfying e ⇑ ↼. In addition, if ↼ = 0, then the ESN is called a perfect realization ESN for Y1:T .
Theorem 4.2 (Convergence of DL-DRCN). Given a multivariate time series D =

{
U1:T , Y1:T

}

and a projection error tolerance ↼ > 0. Let Ȳ1:T be the groundtruth of Y1:T , then the sequence
of time series Y

(k)
1:T imputing Y1:T generated by Algorithm 1, using a deep reservoir computing

network composed of multiple ESN layers with the reservoir dimensions greater than or equal to N Ȳ
ε ,

converges to a time series Y ↓
1:T as k ↔ ↘ satisfying ⇐Y

↓
1:T ↑ Ȳ1:T ⇐ < ↽ for some ↽ depending on ↼.

Proof. The main idea is to show that the map Y
(k)
1:T ≃↔ Y

(k)
1:T R

(k)
1:T

†
R

(k)
1:T is a contraction mapping so

that the sequence of projection errors e(k) is monotonically decreasing. This implies e(k) ↔ 0, and

hence Y1:T ↔ Y
↓
1:T for some time series Y ↓

1:T → Rp→T satisfying Y
↓
1:T = Y

↓
1:TR

(k)
1:T

†
R

(k)
1:T for all k.

See Appendix C for the details.

Corollary 4.3. If each ESN layer in the deep reservoir computing network generating the imputation
sequence Y

(k)
1:T is a perfect realization ESN for Ȳ1:T , then ⇐Ȳ1:T ↑ Y

(k)
1:T ⇐ ↔ 0 as k ↔ ↘.

Proof. The result direct follows from Theorem 4.2 by taking the projection error tolerance ↼ = 0.

In addition to the convergence guarantee of Algorithm 1, we also derive the convergence rate as
follows.
Proposition 4.4 (Convergence rate of DL-DRCN). Given an error tolerance ↼ > 0, the projection

error of the imputation time series satisfies e(k) < ↼ whenever k >
ln
(
ϑ↑⇐

qϖ
)
↑ln

(
EY ↑⇐

qϖ
)

ln
(
ϱ
) ,

where q is the dimension of the output time series, ↽ is the error bound defined in Theorem 4.2,
EY =

⇓
qmaxqi=1 ⇐e

(0)
i ⇐, and ⇀ = ⇐Y1:T ⇐/⇐Ȳ1:T ⇐ = ⇐Ȳ1:T ⇒M1:T ⇐/⇐Ȳ1:T ⇐ with M1:T being

the mask of Y1:T .

Proof. The result directly follows from the projection error analysis present in Theorem 4.2 with the
given error tolerance. See Appendix D for the details.

Reservoir dimension decreasing DL-DRCN. Notice that the monotone decreasing property of the
projection error sequence ⇐e(k)⇐ indicates that the imputation performance is improved layer-by-layer.
In other words, the imputation time series becomes closer to the limiting time series iteration-by-
iteration. This observation enables us to decrease the dimension N (k) of the reservoir space of
the kth ESN layer as k increases without compromising the imputation performance, provided that
N (k) is greater than to the dimension of the minimal ↼-realization ESN. This is also an effective
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way to improve the computational efficiency of the algorithm. Specifically, the total floating point
operations (flops) counts of our DL-DRCN is K(4N2T +2N3+2dNT +2ST +3NT +3qT +2N)
(with the detailed calculation of flops provided in Appendix G), or simply, O(KN2T ) flops. The
main complexity of our algorithm comes from the matrix inverse operation, yielding a O(KN2T )
complexity with N = N (1) being the number of neurons in the first ESN layer and K being the total
number of ESN layers.

5 EXPERIMENTS

In this section, we demonstrate the performance and efficiency of the proposed DL-DRCN structure by
using both synthetic and real-world datasets. Detailed descriptions of the used datasets are provided in
Appendix I. In particular, the datasets with missing values were constructed by removing data points
from the complete datasets according to predetermined mask matrices. The imputation performance
were evaluated in terms of mean squared error (MSE), root mean squared error (RMSE), or mean
absolute error (MAE) between the imputed values and groundtruth. Without further explanations, we
always used the default choices of the hyperparameters of DL-DRCN illustrated in Appendix H. All
simulations were run on a single GPU on an Apple M1 system with 16GB RAM.

5.1 SYNTHETIC DATA IMPUTATION

The synthetic dataset was generated by solving the Rössler System, a 3-dimensional ordinary
differential equation (see Appendix I.1 for the detail).

Imputation results. In the construction of the datasets with missing values, we considered both
of the block and random missing scenarios. Following the assumption of DL-DRCN presented in
Section 3.1 that the input and imputation target do not simultaneously have missing values in any
snapshot, without loss of generality, we let the first component x1:T of the Rössler time series to be
complete, which is used as the input of DL-DRCN, and the second component y1:T be the imputation
target. In particular, in each experiment, we randomly removed p% of datapoints from y1:T for
imputation, and then computed the mean square error (MSE) between the imputed values and the
groundtruth. The missing ratio p is chosen to be 10, 30, 50, and 70, and each experiment was run for
40 times. Table 1 shows the averaged MSE over the 40 runs of each experiment by using different
imputation methods. We observe that DL-DRCN outperforms all baseline methods in the block
missing cases and is also robust to the missing ratio.

Figure 2: The inference result of the Rössler time series,
which the inference time interval is indicated by the green
block, and the groundtruth and inferred time series are plotted
in blue and red, respectively.

Time series inference. In the case in
which the missing data are in the snap-
shots towards the end of the time series,
imputation coincides with inference (pre-
diction). To showcase the applicability of
DL-DRCN to this case, we inferred the
last 70% of the datapoints in both y1:T and
z1:T , the third component of the Rössler
time series. Figure 2 plots the groundtruth
(blue) and DL-RCN inferred (red) values,
from which we observe that the discrep-
ancy between them is minor. This in turn
expand the scope of DL-DRCN to focasting tasks in dynamical systems and time series analysis.

Hyperparameter selections and ablation studies. In addition to the comparison with baseline
methods, we also use the synthetic Rössler time series to conduct hyperparameter selections and
ablation studies of the proposed DL-DRCN. Similarly, we compute the averaged MSE between the
groundtruth and imputed values over 40 runs of the DL-DRCN imputation for the y-component of
the time series with random 50% block missing data.

The hyperparameters in DL-DRCN include the reservoir size (N ), the activation function (ϖ), the
leakage rate (ϑ), the regularization parameter (ς), and the reservoir node degree (Nd), whose default
values are N = 500, ϖ = tanh, ϑ = 0.8, ς = 10↑8, and Nd = 300. The results are shown in Figure
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Block missing Random missing

Models 10% 30% 50% 70% 10% 30% 50% 70%

L-ODE-RNN 5.5391±1.2913 4.8986±0.3960 4.8848±0.2623 4.8909±0.1293 5.0634±0.2545 5.1027±0.1238 5.1480±0.2182 5.1611±0.4090
Neural ODE 5.6278±0.8260 4.7667±0.1639 4.9224±0.2004 4.8826±0.2393 5.053±0.411 5.1167±0.0930 5.1950±0.1070 5.1457±0.0634
GRU-zero 5.4321±1.2453 4.86±0.3962 4.8576±0.2483 4.8329±0.132 4.5291±0.3222 4.6207±0.3107 4.6779±0.2297 4.6967±0.2077
GRU-mean 6.4649±1.5812 5.3611±0.5092 5.0388±0.2782 4.8792±0.1472 1.0372±0.399 1.4415±0.5502 1.6429±0.5767 2.0858±0.5514

GRU-D 5.6112±1.3978 4.9461±0.4436 4.9503±0.2788 4.9193±0.149 3.6564±0.2716 3.7073±0.0940 3.7101±0.0847 3.7746±0.0421
GP-VAE 1.9044±0.0624 2.6999±0.5012 4.0845±1.2245 6.0013±1.0067 1.5057±0.0501 1.7922±0.5507 3.5998±1.0031 5.1105±1.5403
SAITS 4.9883±1.1233 4.94108±1.0760 5.7992±2.8246 5.2765±1.7186 2.1246±0.3111 2.3497±0.2234 2.7257±0.2856 3.1991±0.2083

TimesNet 6.2726±1.5298 5.5440±0.4867 5.2829±0.4752 4.9800±0.4095 0.4530±0.0905 0.5866±0.1320 1.0234±0.1394 2.7227±0.4164
transformer 4.9245±1.4567 4.3373±0.5615 4.3716±0.5022 4.5576±0.5580 4.2841±0.5683 4.5107±0.6466 4.4075±0.5729 4.5877±0.5336

KNN 5.3702±0.8923 5.2876±0.2499 5.8934±0.1618 7.0707±0.2493 4.9874±0.2522 5.3411±0.1644 5.8412±0.1234 6.5141±0.1341
MICE 5.4474±1.2441 4.8527±0.3979 4.8586±0.2367 4.8354±0.1166 5.0210±0.2410 5.0615±0.0851 5.0707±0.0665 5.0504±0.0480

CubicSpline 8.17±6.60 (↓101) 5.88±7.02 (↓102) 2.18±1.67 (↓103) 3.66±3.05 (↓103) 3.35±3.71 (↓10↑11) 1.73±3.17 (↓10↑9) 4.10±5.50 (↓10↑8) 0.53±1.52 (↓10↑4)
Linear 8.1378±2.9647 8.2769±3.5128 8.4306±2.9128 9.7103±5.7490 6.49±1.17 (↓10↑6) 2.61±0.69 (↓10↑5) 1.32±0.32 (↓10↑4) 1.20±0.41 (↓10↑3)

vanilla ESN 0.0589±0.0024 0.5351±0.0030 1.9140±0.0026 3.1112±0.0054 0.1497±0.0019 0.7324±0.0035 1.7280±0.0014 3.1157±0.0025

DL-DRCN 0.0569±0.0199 0.0512±0.0055 0.0539±0.0030 0.0626±0.0040 0.0472±0.0051 0.0492±0.0027 0.0522±0.0026 0.0573±0.0024

Table 1: Averaged mean squared error (mean ± std) between the groundtruth and imputed values over 40
runs of the Rössler time series imputation by using the proposed DL-DRCN and baseline methods. The best
and second-best results are highlighted in bold and underlined. In particular, DL-DRCN outperforms all other
baselines, especially in the block missing scenarios with high missing percentages. In addition, the averaged
MSE of DL-DRCN decreases mildly with respect to the increase of the missing percentage, showing the
robustness of DL-DRCN to the amount of missing data.

3, in which each subfigure plots the averaged MES versus the layer (iteration) number with different
selections of one hyperparameter and others fixed. We observe that distinct hyperparameter values
do not lead to drastically different imputation performance, and quantitatively, the averaged MSE
stays in the same order in all the cases. Moreover, the algorithm always converges in no more than 10
iterations. These indeed demonstrate the stability, with respect to hyperparameter values, and fast
convergence of DL-DRCN. In the ablation studies, we investigate the impact of the bias vectors in
the ESN output layers and the results are shown in Figure 3 (f).

Figure 3: The comparisons of various hyperparameter selections, including the reservoir size (Nx), the
activation function (ω), the leakage rate (ε), the regularization parameter (ϑ), and the reservoir node degree,
are shown in panels (a)-(e); while the results of ablation studies assessing the impact of the output bias term is
present in (f).

5.2 REAL WORLD DATA IMPUTATION

Gesture phase segmentation dataset (Gesture). We considered the gesture phase segmentation
dataset from (Madeo et al., 2014), which consists of regularly recorded video data with no missing
values (see Appendix I.3 for the detailed description of this dataset). We extracted 32 time series from
the provided processed file, each of which characterizes the velocity or acceleration of the hand or
wrist movement over time. We kept 7 of them complete, which then used as the DL-RCN input, and
then randomly removed p% of the data in each of the remaining time series by using both of the block
and random missing schemes with p = 30, 50, 70. Similar to the synthetic dataset case, we computed
the averaged MSE between the groundturth and imputed values over 40 runs of each experiment,
and the imputation results are reported in Table 2. It can be observed that the proposed DL-DRCN
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significantly outperforms almost all the existing imputation methods applied to this dataset with
different missing schemes and percentages. To be more specific, in the case of randomly missing
30% datapoints, the averaged MSE resulting from DL-DRCL is about 50% of those resulting from
other methods, demonstrating the practical applicability and excellent performance of the proposed
methods.

Imputation for medical datasets. Applications of machine learning and artificial intelligence
techniques to medical fields are emerging and prosperous research topics in this decade. In this
example, we demonstrate the applicability of the proposed DL-DRCN to medical datasets, including
the PTB-XL Electrocardiography (ECG) Dataset (Goldberger et al., 2000) and the clinical intensive
care unit (ICU) dataset from the PhysioNet Challenge 2012 (Silva et al., 2012).

For the PTB-XL ECG Dataset, we preprocessed it to a mutivariate time series composed of 12-lead
ECG signals (12 components) with 1000 snapshots by using the method presented in (Alcaraz &
Strodthoff, 2023). For each component, we randomly drop 20% of the datapoints by carrying out
the block missing scenario, and then applied DL-DRCN to impute the constructed multivariate time
series with missing data component-by-component. Specifically, for each component to be imputed,
we pick another component, whose missing data are located at different snapshots as this one, as the
input to DL-DRCN, and then computed the averaged MSE over 5 runs of the imputation. The results
are shown in the right column of Table 3 as well as in Figure 4.

The ICU dataset, obtained from the MIMIC II database, comprises 4000 multivariate time series
documenting up to 41 vital signs of 4000 patients measured over 2-hour periods. We first applied
the preprocessing method presented in (Tashiro et al., 2021; Che et al., 2018) to select 35 key vitals
and eliminate the patients’ data with less than 5 snapshots, which results 3980 (patients) multivariate
time series of 35 components (vitals). For each patient, we used the same removal strategy with
10% missing percent and imputation procedure as the ECG dataset to compute the averaged MSE.
Then, we took the mean of the resulting averaged MSE over the 3980 patients as the imputation
performance measure, which are shown in the left column of Table 3.

Imputation results for real datasets. We summarize the imputation results of Gesture in Table
2 and both ECG and Physionet datasets in Table 3, with the best results highlighted in bold. The
results with asterisks are cited from the original paper. In the Gesture dataset, our model consistently
outperforms them in all scenarios when the missing percentage exceeds 50% compared to other
baseline methods. In the ECG dataset, our model perform similarly to the state-of-the-art imputation
and is capable of capturing dynamic patterns (the peaks of all 12 signals) as shown in Figure 4.
In the Physionet dataset, since the assumption described in section 4.1 is not necessarily satisfied,
we first applied linear interpolation to those time points before imputation. The imputation results
demonstrate our model offers consistent performance across both datasets and provides meaningful
imputation in the block missing scenario.

6 CONCLUSION

In this paper, we present a novel RCN-based method for analyzing multivariate time series data.
By utilizing the dynamical system characterization of RCNs, we propose a deep RCN architecture,
composed of a sequence of ESN layers, to learn the systems generating the data so that the missing
data can be recovered by the temporal evolution of the learned systems. To improve the computational
efficiency, the reservoir size of an ESN layer is decreased compared to that of its predecessor, and the
deep RCN is trained layer-by-layer, which gives rise to an iterative multivariate time series imputation
algorithm. We further provide the computational analysis as well as the convergence proof of the
algorithm, and demonstrate its excellent performance by using both synthetic and real-world data.

Limitations and future works. Since the ESP is required to be satisfied while training the proposed
DL-DRCN to eliminate the impact of the choices of the initial reservoir states on the imputation
result, the proposed algorithm may not perform satisfactorily if the missing data are located at the
beginning of the time series. On the other hand, the convergence of the algorithm requires that
the dimension of the reservoir state in each ESN layer is set to be greater than a lower bound (the
dimension of minimal realization ESN). Since this requirement is highly dependent on data and varies
across different scenarios, this design parameter often relies on empirical experiments.
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In this work, the deep RCN is trained by using the observed components of multivariate time series.
The model requires the input and the imputed target sequences to contain no overlapping time slots
where data is missing. In principle, the algorithm is still applicable if there are overlapping missing
data in both input and target time series. This will be investigated in our future works. In addition, the
requirement mentioned above, that is, the reservoir dimension is greater than the spatial dimension
of the time series is primarily due to the use of linear ESN output layers for projecting the desired
outputs to the reservoir spaces. In the future, we will design ESNs with nonlinear readout maps in the
output layers to waive this requirement, which gives another approach to improve the computational
efficiency of the algorithm.

Figure 4: The imputation result of a block missing scenario for
ECG dataset. The missing blocks (highlighted in red) demonstrate
the reconstruction results of applying DL-DRCN model to fill in
missing values, where the reconstructed trajectories and the truth
trajectories are highlighted in blue and red, respectively.

Block missing

Models 30% 50% 70%

L-ODE-RNN 11.97±4.79 13.97±16.42 14.42±12.43
GRU-zero 4.67±0.56 5.05±0.52 4.87±0.86
GRU-mean 5.05±0.58 4.85±0.89 5.13±0.85

GRU-D 4.13±0.87 4.60±1.21 5.34±2.72
KNN 9.61±2.20 8.77±1.03 8.98±0.42

DL-DRCN 4.732±1.060 4.003±0.525 4.709±0.648

Random missing

Models 30% 50% 70%

L-ODE-RNN 13.15±5.06 16.36±8.60 17.64±7.52
GRU-zero 4.76±0.244 4±0.297 4.89±0.430
GRU-mean 4.79±0.27 4.88±0.37 5.01±0.48

GRU-D 4.11±0.46 4.09±0.47 4.29±0.71
KNN 8.92±0.78 9.11±0.63 9.51±0.50

DL-DRCN 2.866±0.435 3.154±0.395 3.460±0.357

Table 2: MSE (mean ± std) (→10→5) of
imputation results for the Gesture dataset.

Models Physionet ECG

Linear 0.615±0.056 0.266±0.004
KNN 0.662±0.056 0.232±0.002

CSDI/SSSD 0.217±0.001* 0.023±9e-4*

DL-DRCN 0.103±0.001 0.055±7e-3

Table 3: MAE/RMSE (mean ± std) of im-
putation results for PhysioNet/ECG datasets.

POTENTIAL BROADER IMPACT

This paper presents a deep reservoir computing architecture and an associated training algorithm for
missing data imputation in multivariate time series. The method itself is broadly applicable to diverse
domains where artifacted time series data are abundant. For instance, data lost due to measurement or
process noise, sensor failure or downtime, and other environmental factors can cause missing data or
data loss, and the proposed approach is applicable in all these scenarios to recover the time series.
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