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Abstract

AT led chess systems to a superhuman level, yet these systems heavily rely on black-
box algorithms. This is unsustainable in ensuring transparency to the end-user,
particularly when these systems are responsible for sensitive decision-making. Re-
cent interpretability work has shown that the inner representations of Deep Neural
Networks (DNNs) were fathomable and contained human-understandable concepts.
Yet, these methods are seldom contextualised and are often based on a single hidden
state, which makes them unable to interpret multi-step reasoning, e.g. planning.
In this respect, we propose contrastive sparse autoencoders (CSAE), a novel frame-
work for studying pairs of game trajectories. Using CSAE, we are able to extract
and interpret concepts that are meaningful to the chess-agent plans. We primarily
focused on a qualitative analysis of the CSAFE features before proposing an auto-
mated feature taxonomy. Furthermore, to evaluate the quality of our trained CSAE,
we devise sanity checks to wave spurious correlations in our results.

1 Introduction

Chess is one of the very first domains where superhuman AT shined, first with DeepBlue (Campbell
et al., 2002) and more recently with Stockfish (Nasu, 2018) and AlphaZero (Silver et al., 2018). While
the design of these superhuman programs is intended to gain performances, e.g. by optimising the
tree search, the node evaluation or the training procedure, a lot remains to be done to understand
the intrinsic processes that led to these performances truly. In this respect, the first component to
decipher is thus the DNN heuristic that guides the tree search. While DNNs are often thought of as
black-box systems, they learn a basic linear representation of features. During the last decade, argu-
ments to support this hypothesis have been demonstrated repeatedly for language models (Mikolov
et al., 2013; Burns et al., 2022; Tigges et al., 2023) but also vision models (Radford et al., 2015;
Kim et al., 2017; Trager et al., 2023) and others (Nanda et al., 2023; Rajendran et al., 2024). This
strong hypothesis also transferred to chess (McGrath et al., 2022), showing that traditional concepts
like "attacks" or "material advantage" were linearly represented in the latent representation of the
model.

In this work, we focus on the open-source version of Alpha Zero, Leela Chess Zero (Pascutto, Gian-
Carlo and Linscott, Gary, 2019), interpreting the neural network heuristic in combination with the
tree search algorithm. In particular, we extend the dynamic concepts introduced in Schut et al.
(2023). We state our contributions as follows:

e New dictionary architecture to encourage the discovery of differentiating features between
latent representations

o Automated sanity checks to ensure the relevance of our dictionaries

e Discovery and interpretation of new strategic concepts creating a feature taxonomy
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Figure 1 summarises our approach and illustrates our aim at disentangling planning concepts. With
this paper, we release the code! used to create the datasets and to discover and analyse concepts.

<

Figure 1: Better viewed in colour. Our proposed framework aims to retrieve planning concepts,
represented as icons at the bottom. For that, we analyse the plans of a chess-playing agent. A
sampling of an optimal trajectory S_;(so) (in green) and a suboptimal trajectory S;,)(so) (in blue)

from a root node sqg. The star represents a concept meaningfully to the optimal trajectory while the
lightning represents a concept relevant to the suboptimal trajectory.

2 Background

2.1 Chess Modelling

Heuristic network The studied agent, introduced as AlphaZero (Silver et al., 2018), is a heuristic
network used in a Monte-Carlo tree search (MCTS) (Coulom, 2006; Kocsis & Szepesvari, 2006).
The network is traditionally trained on self-play to collect data, i.e. the network is frozen and plays
against a duplicate version of itself. After the collection phase, the network is trained to predict a
policy vector for the next move based on the MCTS statistics and a current state value based on
the outcomes of the played games. Here, more specifically, the full network Fy, parametrized by 6,
can be describe as a tuple,

Fo(s) = [Po(s), Wo(s), Mg(s)], (1)

with Py(s) the policy vector, Wy(s) the win-draw-lose probability and My(s) the moves left. The
three heads share a Squeeze-and-Excitation (SE) backbone (Hu et al., 2019), based on ResNet (He
et al., 2016). The state s fed to the network is made of the current board as well as the 7 previous
boards. These boards are decomposed into one-hot planes that we describe in the next paragraphs.
The computation process is illustrated in figure 2; for more details, we refer the reader to the exact
implementation in (Pascutto, Gian-Carlo and Linscott, Gary, 2019).

Tree-search The AlphaZero (Silver et al., 2018) and its open-source version LeelaZero (Pascutto,
Gian-Carlo and Linscott, Gary, 2019) are based on evaluation and tree search similar to Stockfish
NNUE. The search algorithm is based on MCTS (Coulom, 2006; Kocsis & Szepesvéri, 2006) using
a slightly modified version of the upper bound confidence of the PUCT algorithm (Rosin, 2011),
equation 2.

Zb N(Sv b)

U(S, a) = Q(S, a) + Cpuct * P(S, a) : m (2)

1 Available in supplementary materials and released upon publication.
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Here, we focused on the policy P(s,a) = Py(s,a) directly outputted by the network. We further
detail the computation of the Q-values and their links to the WDL head Wy(s, a) and the ML head
My(s,a) in the appendix A.

(b) Network backbone

(c) Heads prediction (d) MCTS

Figure 2: Modelling components; first, the boards are encoded into planes (a) and fed to the network
backbone (b). The different heads use the extracted features to make heuristic predictions (c¢) guiding
the MCTS when encountering new nodes (d).

2.2 Discovering Concepts

Sparse autoencoders While linear probing (Alain & Bengio, 2018) requires labelled concepts,
sparse autoencoders are an efficient tool for discovering concepts at scale without supervision, which
were introduced concurrently in Cunningham et al. (2023) and Bricken et al. (2023). The funda-
mental idea is to decompose the latent activations h on a minimal set of features, formulated as the
minimisation of

1= D113 + Allflo- (3)

D is the feature dictionary and f is the feature decomposition with f > 0 for the combination view.
In practice, sparse autoencoders (SAEs) have been proposed to solve sparse dictionary learning and
have already proven to find a wide range of interpretable features (Bricken et al., 2023). In their
simplest form, with only one hidden layer, the architecture can be described as

f = ReLU(Woh +b.), h = Waf + bq. (4)

Where the encoder weights (W, be) and decoder weights (Wy, bq) are trained using an MSE recon-
struction loss with [; penalisation to incentivize sparsity:

Lsas = Ep [|1h = hlI3 + A 7]1] (5)

We describe in appendix B.2 some additional architectural changes and hyperparameters we used
and how we evaluated those.

Dynamical concepts While traditional concepts only rely on a single position (McGrath et al.,
2022), dynamical concepts consider sequences of states and are still discoverable using linear prob-
ing (Schut et al., 2023). In order to find these concepts, we need to consider an optimal rollout,
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according to the chosen sampling method, ST;.(so) = (s,s4,...,55) with 7 being the maximal

depth considered starting at state sg. This rollout is associated with other sub-optimal rollouts
SZr = (s1,85,...,57). A linear probe can then be trained to differentiate the origin set of a state
s using the model’s hidden state h; the process is illustrated in Figure 1.

3 Methods

3.1 Disantangling Planning Concepts

The basic idea proposed here is to study a latent space vector in contrast with others. The intuition
is that we want to know what additional concepts are present in subsequent states. So, for a depth
t, we use a pair of vectors defined as a concatenation of the search root sy with s} from the optimal
rollout and s; from a suboptimal rollout; similarly to Schut et al. (2023).

h' = [h(s0); h(s{)] (6)
h™ = [h(s0); h(s; )] (7)

We introduce a feature constraint in order to train SAEs with a contrastive loss, equation 8. By
dividing the feature dictionary into a set of common features ¢ and a set of differentiating features
d, we can separate the sy dependence and focus on planning concepts contained in d. In practice,
the separation is made using tensor concatenation f = [¢;d] as illustrated in the figure 3a.

Lecontrast = Ep, U|C+ - C_||1 + ||d+ © d_”l] (8)

In order to concentrate the sy dependence into the c-features, we added an additional SAE loss term
(reconstruction and sparsity) to reconstruct h(sg) from ¢t and ¢~. Additionally, to ensure that the
d-features account for differentiability, we train a linear probe on this intermediate representation
of our SAEs using the binary cross-entropy, equation 9. We present the results as part of our first
sanity checks in the section 4.1.

Ly =E, [— log {P(d+)} —log {1 — P(d_)}] (9)
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(a) Contrastive SAE (b) Rollouts concepts extraction

Figure 3: Better viewed in colour. (a) Contrastive SAEs are trained using a contrast of an optimal
trajectory (green) and suboptimal trajectories (blue). They take in input the root hidden state
h(so) and a subsequent node’s hidden state h(si). The c-features are represented in red, and the
d-features are in blue and green. (b) Schematic view of concepts extraction from different rollouts.
The dynamical concepts from the rollout S£,(so) is extracted in d* and for SZ;(so) in d~.
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3.2 Concepts Interpretation

Interpreting individual features In order to decipher the nature of the learned dictionary
features, a first qualitative analysis can be run using activation maximisation based on data sample
(Chen et al., 2020). As illustrated in figure 4, for a given feature, it is possible to investigate the
most activated samples. Here, the samples are latent pixels and thus can be visualised on the
corresponding chess boards. It is thus possible to create a basic feature categorisation based on the
samples they activate in and whether they activate on a wide or restricted range of samples.

Categorising concepts While the learned features appear to be relatively interpretable, it does
not scale well with respect to the required human labour. Recent work proposed automated methods
to interpret models based on causal analysis (Conmy et al., 2023), using a language model interpreter
(Bills et al., 2023) or a multimodal model (Shaham et al., 2024). Yet these methods are hard to
supervise humanly and are adding an additional black box layer. We investigate a frugal alternative,
creating an automated taxonomy of features using hierarchical clustering. To test this taxonomy,
presented in section 4.2, we propose a last sanity check based on the c-features in section 4.1.

aaaaaaaa

nnnnn

S p e e o

b ¢ a e T o %

|
0000000000

Figure 4: (a) Hlustration of the process of interpreting a feature using activation maximisation. The
most activated samples are retrieved and analysed. (b) In order to compare a pair of features, the
first indicator is the correlation of the feature activation (right). It is also possible to count common
samples retrieved using activation maximisation.

4 Experiments

4.1 Sanity Checks

Partitioned features Then, to understand the coarse-grained difference between c-features and
d-features, we compute a set of metrics reported in the table 1. The metrics are computed on unseen
examples (test) similarly to validation but were not optimised against. We reported additional
metrics in the appendix B.2.

Metric | F <0.1% | F > 10% | H(A,) | H(A) | Fi(P) | P(P) | R(P) |

c-features 153 58 2.18 2.81 0.537 | 0.541 | 0.534
d-features 0 119 2.33 3.24 0.566 | 0.575 | 0.557
f 153 177 2.25 3.02 0.578 | 0.584 | 0.571

Table 1: Sanity check metrics. F is the feature activation frequency, H is the entropy, and A,
(respectively A;) is the activation rate on the different squares (respectively trajectories). P is a
linear probe trained to differentiate optimality, with F-score (F}), precision P and recall (R).
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We report more dead (frequency F' < 0.1%) c-features, i.e. an over-specification of the c-features,
and more overactive (frequency F > 10%) d-features, i.e. over-generalisation of d-features. We see
that the entropy H(Ag), the entropy of activation distribution over the square, and respectively
H(A;), the entropy over the trajectories, is smaller for c-features, especially for trajectories. The
c-features have overfitted certain trajectories, making them sort of look-up tables. Finally, we train
a linear classifier to find the difference between activations originating from optimal or suboptimal
trajectories. Notably, the probe P performances are better using c-features than d-features.

Correlation of features To further compare the c-features and d-features, we clustered the sam-
ples using either of them. The visualisation, figure 5, looks alike for both, but the attribution of
classes is uncorrelated, with a maximum person coefficient per cluster pair averaging over 0.1.
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(a) c-features clustering (b) d-features clustering

Figure 5: Agglomerative clustering of the test samples after an NMF followed by a t-SNE for the
visualisation (van der Maaten & Hinton, 2008; Pedregosa et al., 2011). We present the first 100
clusters, and colours are repeated. Each colour represents 5 different clusters, and the colours are
independent of (a) and (b). While the structures are similar (due to the t-SNE projection), the
labels are uncorrelated, suggesting a difference in representations for the c-features and d-features.

To categorise the two clusterisation approaches, we explored the cluster specificity with respect to
the square, state optimality, and trajectory. For that, we computed the respective entropy Hj,
H,, and H; for each cluster, reported in table 2. We found no clear distinction between the two
clusterisations. This informs us that both sets of features contain overspecific features that should
be removed, as reported in appendix E, but overall, they can be used in combination.

Metric ‘ H, ‘ H, ‘ H; ‘
c-features 22+1.0 25+13 | 0.57+0.23
d-features | 2.534+092 | 294+ 1.1 | 0.62+0.17

Table 2: Entropy measures across the clusters of figure 5 (mean and standard deviation).

4.2 Dynamic Concept Clustering

We present a way to explore features by grouping them. For that, we used an agglomerative clustering
of features and reported the results in figure 6. It seems here that a lot of features are outliers, but
overall clusters appear. We found that the cluster can be found on the activation patterns of the
feature, but it is not possible to use the feature vectors, i.e., the columns of Wy. Finally, we report a
dendrogram in figure 7, i.e. an automated taxonomy of our elicited features. This analysis could be
leveraged to adopt a more or less-grained view of the feature dictionary and thus explore it easily.
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Figure 6: (a) Clustering of the elicited features using an agglomerative clustering approach after an
NMEF followed by a t-SNE for the visualisation. (b) Cosine similarities of feature vectors originating
from two significant clusters. There is no correlation between the intra and extra-cluster similarities.
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Figure 7: Dendrogram of the clustered features. The dendrogram can help visualise features and be
leveraged to explore and interpret groups of features.

5 Discussion

5.1 Limitations

Having good SAEs SAE is still an active field of research, and there is an ongoing effort to find
better training strategies and extract the most knowledge from them. It has also proven to be a
challenge in this article. We present certain unwanted features in appendix E.

Feature interpretation In order to interpret the features, human analysis cannot be totally
replaced. We presented automated analyses in addition to our qualitative results, and we are excited
about automated interpretability methods. Yet, having a human in the loop might be the only way
not to defer to yet another black box, especially if it requires expert knowledge.

Contrastive interpretations Here, we didn’t focus all our attention on finding contrastive in-
terpretations, e.g. comparing the heatmap obtained on the root board and the trajectory board.
Yet they might be more prominent, naturally emerging from our contrastive architecture. Thus, we
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should aim to interpret the features in a pair of root and trajectory visualisation. In this respect
features also show a blinking problem, i.e. features can have a different facet for white and black.
Indeed, two similar boards will be encoded quite differently for white and black since the board is
flipped for black. Because of this, we might need to pair black root boards with black trajectory
boards.

5.2 Future Work

Concept sampling While we presented our sampling results in the appendix B, our choices
might have introduced inductive biases. It would be important to quantify the impact of different
strategies for suboptimal sampling. For example, it is unclear to what extent the pairing strategy
should take deeper trajectory boards and to what extent optimal and suboptimal trajectories can
share a common state path.

Weak-to-strong generalisation We already mentioned that using a pair of latent activations
is a more flexible interpretability method. But to go further, it is also possible to use the latent
activation of smaller models to explain bigger models’ strategies, as depicted by Burns et al. (2023).
While we only covered an introductory analysis, we think this track is highly promising and relevant
to the safety of such models.

Different architectures A direct extension of this work would be to apply the same methodology
to a model with the same architecture but a different number of layers. The scaling law could be
compared across models w.r.t. the ELO and layer. Furthermore, it would be interesting to use
SAEs with a common feature dictionary and a specific encoder and decoder layer for each layer and
checkpoint to compare feature transferability.

6 Related Work

Discovering concepts in DNNs Linear probing is a simple idea where you train a linear model
(probe) to predict a concept from the internals of the interpreted target model (Alain & Bengio,
2018). The prediction performances are then attributed to the knowledge contained in the target
model’s latent representation rather than to the simple linear probe. In practice, a lasso formulation,
i.e. l; penalty, has been a default choice as it encourages sparsity (Tibshirani, 1996), and has been
augmented as sparse probing for neuron attribution (Gurnee et al., 2023). Linear probing has also
been derived with concept activation vectors (Kim et al., 2018), which often require training a linear
probe (Dreyer et al., 2023).

Explaining chess models Chess has always been a good playground for Al, and explanability
is no exception (McGrath et al., 2022). Simplified versions of this game have even been created to
make research easy (Hammersborg & Strimke, 2023b;a). It is even possible to explore planning,
including tree search, through dynamical concepts (Schut et al., 2023).

Explainable tree search It is possible to make tree search explainable by default. By extracting
a policy using a surrogate model (Soemers et al., 2022) or using a simpler heuristic model (Soemers
et al., 2019).

7 Conclusion

This article explored multiple approaches to gaining knowledge from superhuman chess agents.
We designed principles to try to elicit knowledge from the neural network’s latent spaces. We
successfully found interpretable features that were linked to the model plans. Furthermore, we
proposed an automated feature taxonomy to help explore features, keeping a human in the loop.
While presenting our key results, we also showed automated sanity checks. Finally, we presented
the limitations and possible future directions to tackle them or to continue this project.
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Appendix
A Additional Chess Modelling Details

Board encoding The current position is encoded using planes, formally channels, equivalent to
the colours in images, in a tensor of the shape 112x8x 8. The 112 planes can be first decomposed into
two parts, the first 104 planes corresponding to the history planes (8 last boards) and 8 additional
planes encoding the game metadata. Each board of the history is encoded through 13 distinct planes,
comprising two sets of 6 sparse planes each for the current? player’s and the opponent’s pieces, as
illustrated in figure 2a. The last 8 planes are always full planes and represent meta information like
the castling rights, the current player’s colour and the half-move clock value.

2Note that the player is the same for all 8 boards of the history.
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Move encoding The policy outputted by the network is a vector of size 1858. This number
is obtained considering each starting position and counting all accessible ending positions using
queen and knight moves. The different promotions should also be accounted for, with promotion to
knight being the default in Ic0. Note that as the corresponding moves are relative to the swapped
board, promotion is only possible at rank 8. This table is hardcoded within the chess engine for
programming efficiency and readability.

Tree-search In practice, the Q-values Q(s,a) are obtained through the value V(s + a), and by
adding the move-left-head utility Mp(s + a) defined in equation 10. The value is simply computed
using the network outputted probabilities and the defined reward Wy(s + a) - R. These engineering
tricks make the network tuning flexible, e.g., to incentivise drawing or aiming for short games.

M(s+a)=sign(-V(s+a)) I, [m- (Mg(s+a) — Mu(s))] - x [XN/(S + a)} (10)

With x a second-degree polynomial function and V' the extra-value ratio defined as:

~ (V(s +a)| - Vthreshom> (11)

V(s+ a) = ReLU
( ) 1-— V;:hrcshold

Here, the final bound used, equation 12, doesn’t rely on the visit could N (s, a). It thus can be used
with the raw output of the neural network to perform the sampling.

U(s,a) =aV(s+a)+ BM(s+a)+vPy(s,a) (12)

B Technical Details

B.1 Dynamical Concepts Dataset

Chess boards dataset In order to train the SAEs, we created a base dataset® of around 20k
games from the TCEC archives. These games were then processed and transformed into 20M
individual boards to form the board dataset*. The first moves were filtered only to take position
after the "book exits" and after at least 20 plys. For this preliminary study, we sampled trajectories
from 200k random boards for the train split and 20k boards in the test split. The sampling of
trajectories is further detailed below.

Concept sampling In order to choose the best strategy, i.e. the best hyperparameters of equation
12, we run several matches between the different models and hyperparameters; the results are
reported in table 3. Using this strategy, we then constructed a trajectory dataset® for each model.
This dataset was then converted into an activation dataset® to make the SAE training easy to
configure. When sampling suboptimal trajectories, we used a normalised distribution without any
optimal action.

3Released upon publication.
4Released upon publication.
5Released upon publication.
6Released upon publication.
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Win rate vs Py(s)

Model 1893 3051 4012 4238 Average

Raw Q-values: Wy(s+a)- R —0.18 | —0.48 | —0.73 | —0.78 | —0.55 £ 0.24

U(s,a) (a=1,3=0,7=025) | —0.17 | —0.45 | —0.65 | —0.63 | —0.48 +0.19
. | U(s,a) (a=1,8=0,7y=05) | —0.10 | —0.35 | —0.67 | —0.48 | —0.40+0.21
&1 U(s,a) (a=1,8=0,v=1) 0.03 | 0.03 | —0.13 | —0.15 | —0.05 = 0.09
E|U(s,a) (a=1,8=057=0) | 018 | —0.57 | —0.73 | —0.68 | —0.54+0.22
@ | U(s,a) (a=1,8=05~v=01) | —0.20 | —0.43 | —0.72 | —0.68 | —0.51 = 0.21

U(s,a) (a=1, =05,7=025) | —0.07 | —0.37 | —0.67 | —0.65 | —0.44 +0.25

Uls,a) (a=1, 3 =05,~v=05) | —0.12 | —0.33 | —0.55 | —0.43 | —0.36 +0.16

Table 3: Hyperparameters tournament scores against the raw policy baseline. Only the combinations
selected after an initial random search are reported. Here, the policy is better for almost all models
and combinations.

B.2 SAE Training

Procedure We based our SAE training on recent work from like Rajamanoharan et al. (2024)
and take into account the monthly updates of Anthropic like Conerly et al. (2024). We will be
reporting relevant metrics for our SAEs in the figure 8. 5; = 0 stabilised the training. We also use
the modified loss, described in equation 13, in order to prevent arbitrary norm of dictionary columns
that trick the ¢; norm. Indeed, without it, the features f can get a low ¢; norm but not a low ¢
norm since even small features can reconstruct the activation x if W, is unconstrained.

Lsar =En ||Ih=hl3+ XD 1fil - [[Wasll2 (13)

We will release our trained assets”. To make the SAE analysis easy, we also will release the feature
activation dataset® which will be then used in our interactive demonstration®. Hyperparameters
are chosen to balance the trade-off between sparsity and reconstruction accuracy, as presented in
the figure 8a. We also monitor the activation of the feature, reported in figure 8b, and as already
discussed in the section 4.1.

"Released upon publication.
8Released upon publication.
9Released upon publication.
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(a) Trade-off sparsity/accuracy (b) Feature activation histogram

Figure 8: (a) Trade-off between the coefficient R? measuring the reconstruction accuracy vs the
norm £y of the features, measuring the sparsity. The plot is obtained using a sweep of the coefficient
A and shows a power law dependence. (b) The histogram of feature activation rate F. As already
pointed out by previous works on SAE, a low-frequency cluster naturally emerges.

Results When training SAEs, the first metrics to report, in addition to the losses, are the £
norm of features and the determination coefficient R? for the reconstruction. Indeed, we aim to
jointly minimise the norm /y to get a sparse decomposition and maximise R? to ensure a correct
reconstruction of the activations. We showed in the table 4 the different metrics obtained for the
model used in this article. In particular, the trained SAE has, on average, 73 active features while
trying to reconstruct activations of dimension 256, a reduction of around 71%. But with respect to
the dictionary, it represents only 3.5% of active features.

Losses ‘ MSE ‘ Sparsity ‘ Lcontrast ‘ £y ‘ R? ‘
train 21.7 26.7 10.7 73.3 | 0.81
validation | 21.8 26.8 10.7 73.4 | 0.81

Table 4: Losses and metrics obtained for the model used in this article for the sets train and
validation. MSE refers to the mean squared error, e.g. the reconstruction loss Ep, {Hh — h| |§} , and

similarly Sparsity refers to ||f||1. o and R? are metrics that were optimised using the validation
set. fo measures the feature sparsity and R? the activation reconstruction (1 is the best). As /g
is a count, it can be understood knowing that the activation dimension is 256 and the dictionary
dimension is 2048.
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Figure 9: Histogram of the cosine similarities of the dictionary vectors. (a) is reported for our CSAE
and (b) for a regular SAE. We find that we conserve the independence of the learned directions.

C Concepts in Different Models and Layers

Comparing features by pair It is important to investigate the correlation between features,
which is a simple proxy to understand basic interactions between features. This analysis can be
run for the c-features and the d-features, which is illustrated in figure 10. We first present a sanity
check on the c-features in section 4.1 and expand d-features categorisation in 4.2. This method is
especially relevant when dealing with different latent spaces, e.g. from different models or layers. In
the following paragraph, we present a small investigation of the correlation between features from
different layers and at different training stages.

00000

00000

Figure 10: In order to compare a pair of features, the first indicator is the correlation of the feature
activation (right). It is also possible to count common samples retrieved using activation maximisa-
tion (left).

Probing across different latent spaces In order to investigate universal concepts shared across
models or layers we need to probe different latent spaces. A quick analysis of these latent spaces
yields that they differ, at least in barycentre, amplitude, and principal components. We thus only
investigate the correlation between features and leave the design of universal SAEs decomposing
multiple latent spaces simultaneously for future work. Similarly to Bricken et al. (2023), to analyse
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features of different SAEs, we used the correlation of the activations to which we add the correlation
between the most activated sample, i.e. using data-based activation maximisation Chen et al. (2020).

Feature comparison The study was on a 10-layer model across 4 checkpoints named after their
ELO, i-e, their chess performance level; the results are shown in figure 11. While conclusions must be
drawn with care, Figure 11(a) seems to show a scaling law of feature density or storage across layers
and training. Later latent spaces are denser, surely due to refined and more complex information, but
the training compresses the latent spaces, possibly using sharper features. Figure 11(b) represents
the correlation between maximum activated samples between the last layer of ELO-4238 and the
layers of ELO-4012 and indicates that earlier layers wield more universal features.

102 Layer
9
70 8
7
60 6
o 5
E
=50 4
3
40 2
| 1
1 0
03 P 4 6 8 0 20 40 60 80 100
Laver Max overlap (%)
(a) ||f]lo across layers for different models named af- (b) Overlap for ELO-4012 with the last layer of ELO-
ter their ELO. 4238.

Figure 11: Feature analysis of the agents’ latent spaces, summarising scaling properties. The SAEs
trained for this figure are regular ones (without the contrastive framing). (a) represents the evolution
of ¢y on different models and at different layers. There seems to be a general trend of information
densification through layers but more condensed in better models. (b) represent the correlation
between features of different layers. While the gradual correlations is expected to correlate with
layers, the peak at 100% could indicate over-active features or universal ones.

D Feature Interpretation

Qualitative Concept Analysis We cherry-picked features and the samples that maximally ac-
tivated them to present qualitative analyses. The samples are selected by finding the maximally
activating channels and computing the feature on their full board. We first present in the figure 12
a feature that seemed to be linked to the pieces’ safety. And we then present a rook threat feature
in figure 13.
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(a) Safe place (b) Protection

Figure 12: Illustration of a feature linked with the concept of protection. These samples were among
the 16 samples that most activated the feature. On (a), the feature is activated on the king and a
traditional safe place for the king. The path for the king to join the place is also activated. In (b),
the black king is dangerously threatened, and a safe move might be to bring back the queen.

(a) Rook threat 1 (b) Rook threat 2

Figure 13: Tllustration of a feature that seems to be linked with the concept of rook threat These
samples were among the 16 samples that most activated the feature. The feature activates for both
black and white. In (a), the black rook should move to the red square to check the king, while in
(b), the white rook should take the knight.

E Unwanted Features

We show two kinds of unwanted features that are present in our trained SAE.

Square specific features Features that are specific to a given square. They act as over-generic
features.
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(a) White facet (b) Black facet

Figure 14: Tllustration of a feature that is linked to the lower left square (al). (a) was among the 16
samples that most activated the feature, and (b) was chosen arbitrarily. The feature is sometimes
dead or differently activated but mostly activates on al. It also happens to activate on a8 relatively
when the heatmap is when the heatmap is flipped according to the model’s view.

Trajectory specific features Features that are specific to a given trajectory. They act as lookup
tables.

(a) Specific trajectory state (b) Protected square

Figure 15: Illustration of a feature that is linked to a particular trajectory. (a) was among the
16 samples that most activated the feature, and (b) was chosen arbitrarily. On (a), the feature is
activated on almost every square, but on (b), it is dead.
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