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ABSTRACT

Time series forecasting, which aims to predict future values based on historical
data, has garnered significant attention due to its broad range of applications.
However, real-world time series often exhibit complex non-uniform distribution
with varying patterns across segments, such as season, operating condition, or se-
mantic meaning, making accurate forecasting challenging. Existing approaches,
which typically train a single model to capture all these diverse patterns, often
struggle with the pattern drifts between patches and may lead to poor gener-
alization. To address these challenges, we propose TFPS, a novel architecture
that leverages pattern-specific experts for more accurate and adaptable time series
forecasting. TFPS employs a dual-domain encoder to capture both time-domain
and frequency-domain features, enabling a more comprehensive understanding
of temporal dynamics. It then uses subspace clustering to dynamically identify
distinct patterns across data patches. Finally, pattern-specific experts model these
unique patterns, delivering tailored predictions for each patch. By explicitly learn-
ing and adapting to evolving patterns, TFPS achieves significantly improved fore-
casting accuracy. Extensive experiments on real-world datasets demonstrate that
TFPS outperforms state-of-the-art methods, particularly in long-term forecasting,
through its dynamic and pattern-aware learning approach. The data and codes are
available: https://anonymous.4open.science/r/TFPS-D001.

1 INTRODUCTION

Time series forecasting plays a critical role in various domains, such as finance (Huang et al., 2024),
weather (Bi et al., 2023; Wu et al., 2023b; Lam et al., 2023), traffic (Long et al., 2024; Kong et al.,
2024), and others (Wang et al., 2023; Liu et al., 2023a), by modeling the relationship between his-
torical data and future outcomes. However, the inherent complexity of time series data, including
temporal dependencies and non-stationarity, poses significant challenges in achieving reliable fore-
casting results.

Recent works have shown the effectiveness of Transformer-based models for time series forecasting,
due to their ability to capture long-range dependencies (Zhou et al., 2021; Wu et al., 2021; Liu et al.,
2024a). In particular, models like PatchTST (Nie et al., 2023) operate by splitting the continuous
time series into discrete patches and processing them with Transformer blocks. However, closely
examining these patches shows that they often exhibit distribution shifts, which can be attributed
to various factors such as concept drift (Lu et al., 2018). These shifts can manifest as sudden or
gradual changes in the underlying patterns and distributions of the time series data. For example,
patches corresponding to different regimes, seasons, or operating modes may have distinct statistical
properties. Despite the remarkable success of time series forecasting models (Nie et al., 2023; Zeng
et al., 2023; Eldele et al., 2024), they adopt the Uniform Distribution Modeling (UDM) strategy,
which fails to account for the drifts and discrepancies between patches. This problem may result in
poor generalization, hindering the performance of time series forecasting.

To quantify these distributional shifts, we split the ETTh1 dataset into patches and examined sud-
den drift and gradual drift in the time and frequency domains as shown in Figure 1. Specifically,
we compute the maximum mean discrepancy (MMD) between patches and display the results as
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(a) Sudden drift: A new concept occurs within a
short time.

(b) Gradual drift: An old concept incrementally
changes to a new concept over a period of time.

Figure 1: Distribution shifts often occur between time series patches due to the non-stationarity
and complex inherent in time series data. We present two examples of such shifts from the ETTh1
dataset, quantified by calculating the Maximum Mean Discrepancy (MMD) between patches. The
combination of time and frequency domains offers a more comprehensive perspective of these shifts.

a heatmap. Notably, sudden drift (Figure 1 (a)) leads to patches with distinctly different distribu-
tions, while gradual drift (Figure 1 (b)) results in more pronounced drift in the time domain, making
forecasting more challenging. Furthermore, the information in the frequency domain offers a com-
plementary perspective on concept shifts. These observations highlight that time series data often
exhibits a complex structure that evolves over time, with different segments having varying densities
and underlying patterns (Sanakoyeu et al., 2019).

To address the challenges posed by distribution shifts in time series data, we propose a novel Time-
Frequency Pattern-Specific (TFPS) architecture to effectively model the complex temporal patterns.
In particular, TFPS consist of the following three key components. First, TFPS employs a Dual-
Domain Encoder (DDE) to capture temporal dependencies in the data. DDE extracts features from
both time and frequency domains to provide a comprehensive representation of the time series data,
enabling the model to capture both short-term and long-term dependencies. Second, TFPS addresses
the issue of concept drift by incorporating a Pattern Identifier (PI), that utilizes a subspace clustering
approach to dynamically identify the distinct patterns present in different patches. Therefore, it can
effectively handle nonlinear cluster boundaries and accurately assign patches to their corresponding
clusters. Finally, TFPS constructs a Mixture of Pattern Experts (MoPE), a set of specialized expert
models, each tailored to a specific pattern identified by the PI. By dynamically assigning patches to
the appropriate expert based on their identified patterns, MoPE enables the model to effectively han-
dle patch sequences across varying patterns and densities. This pattern-specific modeling approach
allows our TFPS model to capture the unique characteristics and dynamics of each pattern, leading
to improved forecasting accuracy.

In summary, the key contributions of this work are:

• We introduce a novel pattern-specific modeling strategy that decomposes the complex,
evolving time series into multiple segments. Each segment is modeled by specialized ex-
perts, in contrast to the conventional UDM approach.

• We propose the TFPS framework, which explicitly addresses concept drift in time series
forecasting by leveraging both time-domain and frequency-domain features. Our approach
employs a clustering mechanism to dynamically assign patches to specific experts, allowing
the model to better handle distributional shifts.

• We evaluate our approach on eight real-world multivariate time series datasets, demon-
strating its effectiveness. Our model achieves top-1 performance in 50 out of 64 settings,
showcasing its competitive edge in improving forecasting accuracy.
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2 RELATED WORK

Time Series Forecasting Models. In recent years, deep models with elaborately designed architec-
tures have achieved great progress in time series forecasting (Liu & Wang, 2024; Qiu et al., 2024).
Approaches like TimesNet (Wu et al., 2023a) and ModernTCN (Luo & Wang, 2024) utilize con-
volutional neural networks with time-series-specific modifications, making them better suited for
forecasting tasks. Additionally, simpler architectures such as Multi-Layer Perceptron (MLP)-based
models (Zeng et al., 2023; Ekambaram et al., 2023) have demonstrated competitive performance.
However, Transformer-based models have gained particular prominence due to their ability to model
long-term dependencies in time series (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Liu et al.,
2024a). Notably, PatchTST (Nie et al., 2023) has become a widely adopted Transformer variant, in-
troducing a channel-independent patching mechanism to enhance temporal representations. This
approach has been further extended by subsequent models (Liu et al., 2024a; Eldele et al., 2024).

While previous work has primarily focused on capturing nonlinear dependencies in time series
through enhanced model structures, our approach addresses the distribution shifts caused by evolv-
ing patterns within the data, which is a key limitation of existing methods. We emphasize tackling
these shifts to improve forecasting performance in complex real-world scenarios.

The Combination of Time and Frequency Domains. Time-domain models excel at capturing
sequential trends, while frequency-domain models are essential for identifying periodic and os-
cillatory patterns. Recent research has increasingly emphasized integrating information from both
domains to better interpret underlying patterns. For instance, ATFN (Yang et al., 2020) demonstrates
the advantage of frequency domain methods for forecasting strongly periodic time series through a
time–frequency adaptive network. TFDNet (Luo et al., 2023) adopts a branching structure to capture
long-term latent patterns and temporal periodicity from both domains. Similarly, JTFT (Chen et al.,
2024b) utilizes the frequency domain representation to extract multi-scale dependencies while en-
hancing local relationships modeling through time domain representation. Yan et al. (2024) propose
TFMRN, which expands data in both domains to capture finer details that may not be evident in the
original data. Recently, TSLANet (Eldele et al., 2024) leverages Fourier analysis to enhance feature
representation and capture both long-term and short-term interactions.

Building on these approaches, our proposed method, TFPS, introduces a novel Dual-Domain En-
coder that effectively combines time and frequency domain information to capture both trend and
periodic patterns. By integrating time-frequency features, TFPS significantly advances the field in
addressing the complexities inherent in time series forecasting.

Non-stationary Time Series Forecasting. Concept drift describes unforeseeable changes in the un-
derlying distribution of data over time, posing a significant challenge for time series forecasting (Lu
et al., 2018; Fan et al., 2024). These non-stationarities complicate predictive modeling, necessitating
effective solutions to handle shifting distributions. To address varying distributions, normalization
techniques have emerged as a focal point in recent research, aiming to mitigate non-stationary ele-
ments and align data to a consistent distribution.

For instance, adaptive norm (Ogasawara et al., 2010) applies z-score normalization using global
statistics and DAIN (Passalis et al., 2019) introduces a neural layer for adaptively normalizing each
input instance. Kim et al. (2021) propose a reversible instance normalization (RevIN) to alleviate
series shift. Furthermore, Non-stationary transformer (Liu et al., 2022) points that directly station-
arizing time series will damage the model’s capability to capture specific temporal dependencies.
This work addresses the problem by introducing an innovative de-stationary attention mechanism
within self-attention frameworks. Recent advancement include (Fan et al., 2023), which identifies
both intra- and inter-space distribution shifts in time series data, and SAN (Liu et al., 2023b), which
applies normalization at the slice level, thus opening new avenues for handling non-stationary time
series data. Lastly, SIN (Han et al., 2024a) introduces a novel method to selecting the statistics and
learning normalization transformations to capture local invariance in time series data.

However, over-reliance on normalization can lead to over-stationarization, where important patterns
or variations in the data are smoothed out (Liu et al., 2023b). Additionally, different patterns follow
distinct internal dynamics, making a unified modeling approach inefficient. Our approach brings the
intrinsic non-stationarity of the original series back to latent representation, enabling better handling
of distribution shifts by tailoring the experts to the evolving patterns and densities within the data.
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Figure 2: The structure of our proposed TFPS. The input time series is divided into patches, and
positional embeddings are added. These embeddings are processed through two branches: time-
domain branch and frequency-domain branch. Each branch consists of three key components: (1) an
encoder to capture patch-wise features, (2) a clustering mechanism to identify patches with similar
patterns, and (3) a mixture of pattern experts block to model the patterns of each cluster. Finally, the
outputs from both branches are combined for the final prediction.

3 METHOD

3.1 PRELIMINARIES

Time series forecasting aims to uncover relationships between historical time series data and future
data. Let X denote the time series, and xt represent the value at timestep t. Given the historical
time series data X = [xt−L+1, · · · , xt] ∈ RL×C , where L is the length of the look-back window
and C > 1 is the number of features in each timestep, the objective is to predict the future series
Y = [xt+1, · · · , xt+H ] ∈ RH×C , where H is the forecast horizon.

3.2 OVERALL ARCHITECTURE

Our model introduces three novel components: the Dual-Domain Encoder (DDE), the Pattern Iden-
tifier (PI), and the Mixture of Pattern Experts (MoPE), as illustrated in Figure 2. The DDE goes
beyond traditional time-domain encoding by incorporating a frequency encoder that applies Fourier
analysis, transforming time series data into the frequency domain. This enables the model to capture
periodic patterns and frequency-specific features, providing a more comprehensive understanding of
the data. The PI is a clustering-based module that distinguishes patches with distinct patterns, ef-
fectively addressing the variability in the data. MoPE then utilizes multiple MLP-based experts,
each dedicated to modeling a specific pattern, thereby enhancing the model’s ability to adapt to the
temporal dynamics of time series. Collectively, these components form a cohesive framework that
effectively handles concept drift between patches, leading to more accurate time series forecasting.

3.3 EMBEDDING LAYER

Firstly, the input sequence X ∈ RL×C is divided into patches of length P , resulting in N =

⌊ (L−P )
S + 2⌋ tokens, where S denotes the stride, defining the non-overlapping region between con-

secutive patches. Each patch is denoted as Pi ∈ RC×P . These patches are then projected into a new
dimension D, via a linear transformation, such that, Pi → P ′

i ∈ RC×D.

Next, positional embeddings are added to each patch to preserve the temporal ordering disrupted dur-
ing the segmentation process. The position embedding for the i-th patch, denoted as Ei, is a vector of
the same dimension as the projected patch. The enhanced patch is computed by summing the origi-
nal patch and its positional embedding: XPEi

= P ′
i+Ei, and XPE = {XPE1

, XPE2
, · · · , XPEN

}.
Notably, the positional embeddings are learnable parameters, which enables the model to capture
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Figure 3: Illustration of the proposed Pattern Identifier and Mixture of Pattern Experts. The em-
bedded representation z from DDE combines with subspace D to construct the subspace affinity
vector, which yields the normalized subspace affinity S. Subsequently, the refined subspace affinity
S̃ is computed from S to provide self-supervised information. Then, we assign the corresponding
patch-wise experts to the embedded representation z according to S for modeling.

the temporal dependencies in the time series more effectively. As a result, the final enriched patch
representations are XPE ∈ RC×N×D.

3.4 DUAL-DOMAIN ENCODER

As shown in Figure 1, both time and frequency domains reveal distinct concept drifts that can signifi-
cantly affect the performance of forecasting models. To effectively address these drifts, we propose a
Dual-Domain Encoder (DDE) architecture that captures both temporal and frequency dependencies
inherent in time series data.

We utilize the patch-based Transformer (Nie et al., 2023) as an encoder to extract embeddings for
each patch, capturing the global trend feature. The multi-head attention is employed to obtain the
attention output Ot ∈ RN×D as follows:

Ot = Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V,

Q = XPEWQ, K = XPEWK , V = XPEWV .

(1)

The encoder block also incorporates BatchNorm layers and a feed-forward network with residual
connections, as shown in Figure 2 (b). This process generates the temporal features zt ∈ RC×N×D.

In parallel with the time encoder, we incorporate a Frequency Encoder by replacing the self-attention
sublayer of the Transformer with a Fourier sublayer (Lee-Thorp et al., 2022). This sublayer applies
a 2D Fast Fourier Transform (the number of patches, hidden dimension) to the patch representation,
expressed as:

Of = Fpatch(Fh(XPE)). (2)
We only keep the real part of the result, and hence, we do not modify the feed-forward layers in the
Transformer. The structure of the Frequency Encoder is depicted in Figure 2 (c), yielding frequency
features zf ∈ RC×N×D.

By modeling data in both the time and frequency domains, the DDE provides a more comprehensive
understanding of the underlying patterns in time series data. This dual-domain perspective enables
the model to better address complexities like concept drift and evolving temporal dynamics, ulti-
mately improving its robustness and predictive accuracy. Through this approach, we aim to create a
versatile framework capable of adapting to the intricate nature of real-world time series data.

3.5 PATTERN IDENTIFIER

To address the complex and evolving patterns in time series data, we introduce a novel Pattern
Identifier (PI) module, an essential innovation within our framework. Unlike traditional approaches
that treat the entire time series uniformly, our PI module dynamically classifies patches based on
their distributional characteristics, enabling a more precise and adaptive modeling strategy.

The core of our approach lies in leveraging subspace clustering to detect concept shifts across mul-
tiple subspaces, as illustrated in Figure 3. This enables the PI module to distinguish patches by
identifying their underlying patterns in both the time and frequency domains.
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The PI module’s uniqueness lies in its ability to directly analyze the properties of each patch, clus-
tering them into distinct groups. In the time domain, PI allows our framework, TFPS, to detect
shifts related to temporal characteristics, such as seasonality and trends, which can influence fore-
casting accuracy. In the frequency domain, the PI captures shifts associated with frequency-specific
features, like periodic behaviors and spectral changes, offering a comprehensive view of pattern
evolution across the entire time series.

This dual-domain capability represents a significant advancement in our framework, making it
highly sensitive to pattern shifts occurring across both temporal and frequency dimensions. By
focusing on both domains, our model overcomes the limitations of existing methods that rely solely
on one representation, ensuring robustness in diverse scenarios.

To provide clarity, Figure 3 showcases an application of the PI module exclusively within the time
domain. However, the insights and methodology seamlessly extend to the frequency domain, pre-
senting a unified solution to the challenge of concept shifts.

The PI module refines subspace bases iteratively, where the improved subspaces, in turn, enhance
the representation learning in deep neural networks. This iterative refinement of subspaces is a key
contribution of our work, leading to more accurate identification and modeling of evolving patterns.
The PI module operates in three key steps explained next.

Construction of subspace bases. We define a new variable D = [D(1),D(2), · · · ,D(K)] to repre-
sent the bases of K subspaces, where D consists of K blocks, each D(j) ∈ Rq×d,

∥∥∥D(j)
u

∥∥∥ = 1, u =

1, · · · d, j = 1, · · · ,K. To control the size of the columns of D, we impose the following constraint:

R1 =
1

2

∥∥DTD⊙ I− I
∥∥2
F
, (3)

where ⊙ denotes the Hadamard product, and I is an identity matrix of size Kd×Kd.

Subspaces differentiation. To ensure the dissimilarity between different subspaces, we introduce
the second constraint:

R2 =
1

2

∥∥∥D(j)TD(l)
∥∥∥2
F
, j ̸= l,

=
1

2

∥∥DTD⊙O
∥∥2
F
,

(4)

where O is a matrix with all off-diagonal d-size blocks set to 1 and diagonal blocks set to 0. Com-
bining D1 and D2 yields the regularization term for D:

R = α(R1 +R2), (5)
where α is a tuning parameters, fixed at 10−3 in this work.

Subspace affinity and refinement. We propose a novel subspace affinity measure S to assess
the relationship between the embedded representation z from DDE and the subspace bases D. The
affinity sij , representing the probability that the embedded zi belongs to the j-th subspace, is defined
as:

sij =

∥∥zTi D(j)
∥∥2
F
+ ηd∑

j(
∥∥zTi D(j)

∥∥2
F
+ ηd)

, (6)

where η is a parameter controlling the smoothness, fixed to the same value as d. To emphasize more
confident assignments, we introduce a refined subspace affinity S̃:

s̃ij =
s2ij/

∑
i sij∑

j(s
2
ij/

∑
i sij)

. (7)

This refinement sharpens the clustering by weighting high-confidence assignments more heavily.
The subspace clustering objective based on the Kullback-Leibler divergence is then:

Lsub = KL(S̃ ∥ S) =
∑
i

∑
j

s̃ij log
s̃ij
sij

. (8)

The clustering loss is defined as:
LPI = R+ βLsub, (9)

where β is a hyperparameter balancing the regularization and subspace clustering terms.
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3.6 MIXTURE OF PATTERN EXPERTS

Traditional time series forecasting methods often rely on a uniform distribution modeling (UDM)
approach, which struggles to adapt to the complexities of diverse and evolving patterns in real-world
data. To address this limitation, we introduce the Mixture of Pattern Experts module (MoPE), which
assigns specialized experts to patches based on their unique underlying patterns, enabling more
precise and adaptive forecasting.

Given the cluster assignments s obtained from the PI module, we apply the Patch-wise MoPE to the
feature tensor z ∈ RC×N×D. The MoPE module consists of the following key components:

Gating Network: The gating network G calculates the gating weights for each expert based on the
cluster assignment s and selects the top k experts. The gating weights are computed as:

G(s) = Softmax(TopK(s)). (10)

Here, the top k logits are selected and normalized using the Softmax function to produce the gating
weights.

Expert Networks: The MoPE contains K expert networks, denoted as E1, . . . , EK . Each expert
network is modeled as an MLP consisting of two linear layers and a ReLU activation. Given a
patch-wise feature z, each expert network Ek processes the input to generate its respective output.

Output Aggregation: The final output h of the MoPE module is a weighted sum of the outputs
from all the selected experts, with the weights provided by the gating network:

h =

K∑
k=1

G(s)Ek(z). (11)

After the frequency branch is processed by the inverse Fast Fourier transform, the time-frequency
outputs ht and hf , are concatenated to form h = concat(ht, hf ) ∈ RC×N×2D.

Finally, a linear transformation is applied to the concatenated output h to generate the prediction:
Ŷ = Linear(h) ∈ RH×C .

This approach ensures that the MoPE dynamically assigns and aggregates contributions from various
experts based on the evolving patterns, improving the model’s adaptability and accuracy.

3.7 LOSS FUNCTION

Following the approach outlined in Nie et al. (2023), we use the Mean Squared Error (MSE) loss to
quantify the discrepancy between predicted values Ŷ and ground truth values Y : LMSE = (Ŷ −
Y )2. In addition to the MSE loss, we incorporate the clustering regularization loss from the PI
module, yielding the final loss function:

L = LMSE + LPIt + LPIf . (12)

This combined loss ensures that the model not only minimizes forecasting errors but also accurately
identifies and maintains the integrity of pattern clusters across time. The algorithm is provided in
the Appendix G.

4 EXPERIMENTS

In this section, we present experimental results to demonstrate the effectiveness of our proposed
TFPS framework, including its forecasting performance and model analysis.

4.1 EXPERIMENTAL SETUP

Dataset and Baselines. We conducted our experiments on eight publicly available real-world mul-
tivariate time series datasets, i.e., ETT (ETTh1, ETTh2, ETTm1, ETTm2), Exchange, Weather,
Electricity, and ILI. These datasets are provided in (Wu et al., 2021) for time series forecasting.
We followed the standard protocol for data preprocessing. Specifically, we split the datasets into
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Table 1: The statistics of the datasets.

Datasets ETTh1 & ETTh2 ETTm1 & ETTm2 Exchange-Rate Weather Electricity ILI
Variates 7 7 8 21 321 7

Timesteps 17,420 69,680 7,588 52,696 26,304 966
Granularity 1 hour 15 min 1 day 10 min 1 hour 1 week

training, validation, and testing by a ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other dataset
(Zeng et al., 2023). Table 1 shows the statistics of these datasets.

In our experiments, we employed a diverse set of state-of-the-art forecasting models as baselines,
categorized based on the type of information they utilize as follows. (1) Time-domain methods:
PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), TimesNet (Wu et al., 2023a) and iTrans-
former (Liu et al., 2024a); (2) Frequency-domain methods: FEDformer (Zhou et al., 2022) and
FITS (Xu et al., 2024); (3) Time-frequency methods: TFDNet-IK (Luo et al., 2023) and TSLANet
(Eldele et al., 2024). We rerun all the experiments with codes provided by their official implemen-
tation.

Note that some recent foundation models such as Time-LLM (Jin et al., 2024) and MOIRAI (Woo
et al., 2024) have demonstrated remarkable performance in time series forecasting by leveraging
knowledge from diverse datasets through pretraining. However, our TFPS model and the baselines
above focus on specific dataset for training and testing. Therefore, we did not include these pre-
trained foundation models in comparison.

Experiments details. Following previous works (Nie et al., 2023), we used ADAM (Kingma &
Ba, 2014) as the default optimizer across all the experiments. We employed the MSE and mean
absolute error (MAE) as the evaluation metrics, and a lower MSE/MAE value indicates a better per-
formance. TFPS was implemented by PyTorch (Paszke et al., 2019) and trained on a single NVIDIA
RTX 3090 24GB GPU. We conducted grid search to optimize the following three parameters, i.e.,
learning rate = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}, the number of experts in the time do-
main Kt = {1, 2, 4, 8}, and the number of experts in the frequency domain Kf = {1, 2, 4, 8}.

4.2 OVERALL PERFORMANCE COMPARISON

Table 2 highlights the consistent superiority of TFPS across multiple datasets and prediction hori-
zons, securing the top performance in 50 out of 64 experimental configurations. In particular, TFPS
demonstrates significant improvements over time-domain methods, with an overall improvement of
8.7% in MSE and 5.9% in MAE. Compared to frequency-domain methods, TFPS shows even more
pronounced enhancements, with MSE improved by 15.8% and MAE by 11.6%.

While the time-frequency methods like TSLANet and TFDNet perform competitively on several
datasets, TFPS still outperforms them, showing improvement of 4.5% in MSE and 1.9% in MAE.
These substantial improvements can be attributed to the integration of both time- and frequency-
domain information, combined with our innovative approach to modeling distinct patterns with
specialized experts. By addressing the underlying concept shifts and capturing complex, evolving
patterns in time series data, TFPS achieves more accurate predictions than other baseline models.

4.3 ABLATION STUDY

Table 3 presents the MSE results of TFPS and its variants with different combinations of encoders,
PI, and MoPE. 1) Best Result. The full TFPS model, i.e., both the time and frequency branches,
along with their respective encoders, PI, and MoPE are included, performs the best across all the
forecast horizons for both datasets. 2) Linear vs. PI. We replace PI with a linear layer and find that it
generally results in higher MSE in most cases, indicating that accurately capturing specific patterns
is crucial. 3) Impact of Pattern-aware Modeling. Additionally, when comparing the results with
the encoder-only configuration, two variants with MoPE in each branch achieved improved MSE,
further supporting the necessity of patter-aware modeling. 4) Importance of DDE. Furthermore,
we find that both the time encoder and frequency encoder alone yield worse performance, with the
time encoder playing a more significant role. In summary, incorporating both branches with PI and
MoPE provides the best performance, while simpler configurations result in higher MSE.
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Table 2: Multivariate long-term forecasting results with prediction lengths H ∈ {24, 36, 48, 60} for
ILI and H ∈ {96, 192, 336, 720} for others. The input lengths are L = 104 for ILI and L = 96 for
others. The best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
(Our) (2024) (2024) (2024a) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 -1.1% 0.398 0.413 0.387 0.405 0.395 0.403 0.387 0.405 0.396 0.409 0.413 0.419 0.389 0.412 0.398 0.410 0.385 0.425
192 4.8% 0.423 0.423 0.448 0.436 0.445 0.432 0.441 0.436 0.451 0.441 0.460 0.445 0.441 0.442 0.434 0.427 0.441 0.461
336 1.8% 0.484 0.461 0.491 0.487 0.489 0.463 0.491 0.463 0.495 0.462 0.497 0.463 0.491 0.467 0.499 0.477 0.491 0.473
720 3.0% 0.488 0.476 0.505 0.486 0.496 0.485 0.509 0.494 0.492 0.482 0.501 0.486 0.512 0.491 0.508 0.503 0.501 0.499

E
T

T
h2

96 -2.0% 0.313 0.355 0.290 0.345 0.295 0.344 0.301 0.350 0.289 0.337 0.299 0.348 0.324 0.368 0.315 0.374 0.342 0.383
192 -2.9% 0.405 0.410 0.362 0.391 0.382 0.396 0.380 0.399 0.379 0.395 0.383 0.398 0.393 0.410 0.432 0.447 0.434 0.440
336 10.5% 0.392 0.415 0.401 0.419 0.416 0.425 0.424 0.432 0.416 0.422 0.424 0.431 0.429 0.437 0.486 0.481 0.512 0.497
720 12.6% 0.410 0.433 0.419 0.439 0.418 0.437 0.430 0.447 0.424 0.441 0.429 0.445 0.433 0.448 0.732 0.614 0.467 0.476

E
T

T
m

1 96 4.1% 0.327 0.367 0.329 0.368 0.354 0.375 0.342 0.377 0.331 0.369 0.331 0.370 0.337 0.377 0.346 0.374 0.360 0.406
192 2.6% 0.374 0.395 0.376 0.383 0.392 0.393 0.383 0.396 0.376 0.381 0.374 0.395 0.395 0.406 0.382 0.392 0.395 0.427
336 4.2% 0.401 0.408 0.403 0.414 0.425 0.415 0.418 0.418 0.405 0.410 0.402 0.412 0.433 0.432 0.414 0.414 0.448 0.458
720 -0.7% 0.479 0.456 0.445 0.438 0.486 0.449 0.487 0.457 0.471 0.437 0.466 0.446 0.484 0.458 0.478 0.455 0.491 0.479

E
T

T
m

2 96 6.9% 0.170 0.255 0.179 0.261 0.183 0.266 0.186 0.272 0.176 0.267 0.177 0.260 0.182 0.262 0.184 0.276 0.193 0.285
192 7.1% 0.235 0.296 0.243 0.303 0.247 0.305 0.254 0.314 0.245 0.302 0.248 0.306 0.252 0.307 0.282 0.357 0.256 0.324
336 4.6% 0.297 0.335 0.308 0.345 0.307 0.342 0.316 0.351 0.303 0.340 0.303 0.341 0.312 0.346 0.324 0.364 0.321 0.364
720 3.6% 0.401 0.397 0.403 0.400 0.407 0.401 0.414 0.407 0.405 0.399 0.405 0.403 0.417 0.404 0.441 0.454 0.434 0.426

E
xc

ha
ng

e 96 12.7% 0.083 0.205 0.085 0.206 0.088 0.210 0.086 0.206 0.084 0.205 0.089 0.206 0.105 0.233 0.089 0.219 0.136 0.265
192 11.2% 0.174 0.297 0.178 0.300 0.181 0.304 0.181 0.304 0.176 0.299 0.178 0.302 0.219 0.342 0.180 0.319 0.279 0.384
336 10.4% 0.310 0.398 0.329 0.415 0.324 0.413 0.338 0.422 0.321 0.409 0.326 0.411 0.353 0.433 0.313 0.423 0.465 0.504
720 -13.3% 1.011 0.756 0.850 0.693 0.846 0.696 0.853 0.696 0.835 0.689 0.840 0.690 0.912 0.724 0.837 0.690 1.169 0.826

W
ea

th
er 96 15.6% 0.154 0.202 0.176 0.216 0.167 0.214 0.176 0.216 0.165 0.209 0.177 0.219 0.168 0.218 0.197 0.257 0.236 0.325

192 10.6% 0.205 0.249 0.226 0.258 0.215 0.257 0.225 0.257 0.214 0.252 0.225 0.259 0.226 0.267 0.237 0.294 0.268 0.337
336 9.1% 0.262 0.289 0.279 0.299 0.270 0.299 0.281 0.299 0.267 0.298 0.278 0.298 0.283 0.305 0.283 0.332 0.366 0.402
720 4.1% 0.344 0.342 0.355 0.355 0.347 0.345 0.358 0.350 0.347 0.346 0.351 0.346 0.355 0.353 0.347 0.382 0.407 0.422

E
le

ct
ri

ci
ty 96 14.6% 0.149 0.236 0.155 0.249 0.200 0.278 0.151 0.241 0.171 0.254 0.166 0.252 0.168 0.272 0.195 0.277 0.189 0.304

192 12.0% 0.162 0.253 0.170 0.264 0.200 0.281 0.167 0.258 0.189 0.269 0.174 0.261 0.186 0.289 0.194 0.281 0.198 0.312
336 0.2% 0.200 0.310 0.197 0.282 0.214 0.295 0.179 0.271 0.205 0.284 0.190 0.277 0.197 0.298 0.207 0.296 0.212 0.326
720 7.2% 0.220 0.320 0.224 0.318 0.256 0.328 0.229 0.319 0.247 0.318 0.230 0.312 0.225 0.322 0.243 0.330 0.242 0.351

IL
I

24 40.9% 1.349 0.760 1.749 0.898 3.489 1.373 2.443 1.078 1.824 0.824 1.614 0.835 1.699 0.871 2.239 1.041 3.217 1.246
36 43.6% 1.239 0.752 1.754 0.912 3.530 1.370 2.455 1.086 1.699 0.813 1.475 0.859 1.733 0.913 2.238 1.049 2.688 1.074
48 40.4% 1.461 0.801 2.050 0.984 3.671 1.391 3.437 1.331 1.762 0.831 1.642 0.880 2.272 0.999 2.252 1.064 2.540 1.057
60 39.8% 1.458 0.836 2.240 1.039 4.030 1.462 2.734 1.155 1.758 0.863 1.608 0.885 1.998 0.974 2.236 1.057 2.782 1.136
1st Count 50 3 1 2 6 1 0 0 1

Table 3: Ablation study of TFPS components. The model variants in our ablation study include the
following configurations across both time and frequency branches: (a) inclusion of the encoder, PI
and MoPE; (b) PI replaced with Linear; (c) only the encoder. The best results are in bold.

Time Branch Frequency Branch ETTh1 ETTh2
Encoder PI MoPE Encoder PI MoPE 96 192 336 720 96 192 336 720

✓ ✓ ✓ ✓ ✓ ✓ 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
✓ ✓ ✓ 0.401 0.459 0.486 0.492 0.318 0.409 0.400 0.428
✓ Linear ✓ 0.401 0.451 0.494 0.509 0.325 0.411 0.400 0.434
✓ 0.414 0.460 0.501 0.500 0.339 0.411 0.426 0.431

✓ ✓ ✓ 0.455 0.507 0.539 0.576 0.324 0.407 0.417 0.436
✓ Linear ✓ 0.503 0.535 0.558 0.583 0.398 0.446 0.457 0.444
✓ 0.552 0.583 0.591 0.594 0.371 0.426 0.418 0.463

4.4 COMPARSION WITH NORMALIZATION METHODS

Table 4: Comparison between TFPS and nor-
malization approaches.

Model TFPS FEDformer
+ SIN + Dish-TS + NST

ETTh1 0.448 0.458 0.461 0.456
ETTh2 0.380 0.501 1.005 0.481
ETTm1 0.395 0.409 0.422 0.411
ETTm2 0.276 0.437 0.759 0.315
Weather 0.241 0.326 0.398 0.268

Normalization methods such as SIN (Han et al.,
2024a), Dish-TS (Fan et al., 2023), and Non-
Stationary Transformers (Liu et al., 2022) can reduce
fluctuations to enhance performance and are widely
used for non-stationary time series forecasting. We
compare our TFPS with these state-of-the-art nor-
malization methods and Table 10 presents the av-
erage MSE evaluation across all forecasting lengths
for each dataset. While normalization methods con-
tribute to data stabilization, TFPS provides a more
nuanced approach by leveraging distribution-specific modeling, leading to significant improvements
with an average MSE decrease of 24.3%. Detailed results for all cases can be found in Appendix E.2.

4.5 VISUALIZATION

We visualize the prediction curves for ETTh1 with H = 192. Given that DLinear exhibits compet-
itive performance, we compare its results with those of TFPS in Figure 4 under two scenarios: (a)
sudden drift caused by external factors or random events, and (b) gradual drift where the trend is
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(a) Sudden Drift (b) Gradual Drift

Figure 4: Visualizations of DLinear and TFPS on the ETTh1 dataset when H = 192.

(a) Expert 0 (b) Expert 4

Figure 5: Interpretable patterns via PI. Expert-
0 specializes in downward trends, while
Expert-4 focuses on parabolic trends.

(a) ETTh1 (b) ETTh2

Figure 6: Experiments on the number of ex-
perts when H = 96. Detailed results are pro-
vided in Appendix E.1.

dominant. It is evident that DLinear struggles to achieve accurate predictions in both scenarios. In
contrast, our TFPS consistently produces accurate forecasts despite these challenges, demonstrating
its robustness in dealing with various concept dynamics.

4.6 ANALYSIS OF EXPERTS

Qualitative Visualizations of Pattern Identifier. Through training, pattern experts in MoPE spon-
taneously specialize, and we present two examples in Figure 5. We visualize the expert with the
highest score as the routed expert for each instance pair. In the provided examples, we observe that
expert-0 specialize in downward-related concepts, while expert-4 focuses on parabolic trend. These
examples also demonstrate the interpretability of MoPE.

Number of Experts. In Figure 6, we set the learning rate to 0.0001 and conducted four sets of
experiments on the ETTh1 and ETTh2 datasets, Kt = 1, Kf = {1, 2, 4, 8}, to explore the effect of
the number of frequency experts on the results. For example, Kt1Kf4 means that the TFPS contains
1 time experts and 4 frequency experts. We observed that Kt1Kf2 outperformed Kt1Kf4 in both
cases, suggesting that increasing the number of experts does not always lead to better performance.

In addition, we conducted three experiments based on the optimal number of frequency experts to
verify the impact of varying the number of time experts on the results. As shown in Figure 6, the
best results for ETTh1 were obtained with Kt4Kf2, while for ETTh2, the optimal results were
achieved with Kt2Kf2. Combined with the average MMD in Table 5 (Appendix A), we attribute
this to the fact that, in cases where concept drift is more severe, such as ETTh1 in the time domain,
more experts are needed, whereas fewer experts are sufficient when the drift is less severe.

5 CONCLUSION

In this paper, we propose a novel pattern-aware time series forecasting framework, TFPS, which
incorporates a dual-domain mixture of pattern experts approach. Our TFPS framework aims to ad-
dress the distribution shift across time series patches and effectively assigns pattern-specific experts
to model them. Experimental results across eight diverse datasets demonstrate that TFPS surpasses
state-of-the-art methods in both quantitative metrics and visualizations. Future work will focus on
investigating evolving distribution shifts, particularly those introduced by the emergence of new
patterns, such as unforeseen epidemics or outbreaks.
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A DATASET

We evaluate the performance of TFPS on eight widely used datasets, including four ETT datasets
(ETTh1, ETTh2, ETTm1 and ETTm2), Exchange, Weather, Electricity, and ILI. This subsection
provides a summary of the datasets:

• ETT 1 (Zhou et al., 2021) (Electricity Transformer Temperature) dataset contains two elec-
tric transformers, ETT1 and ETT2, collected from two separate counties. Each of them
has two versions of sampling resolutions (15min & 1h). Thus, there are four ETT datasets:
ETTm1, ETTm2, ETTh1, and ETTh2.

• Exchange-Rate 2 (Lai et al., 2018) the exchange-rate dataset contains the daily exchange
rates of eight foreign countries including Australia, British, Canada, Switzerland, China,
Japan, New Zealand, and Singapore ranging from 1990 to 2016.

• Weather 3 (Wu et al., 2021) dataset contains 21 meteorological indicators in Germany,
such as humidity and air temperature.

• Electricity 4 (Wu et al., 2021) is a dataset that describes 321 customers’ hourly electricity
consumption.

• ILI 5 (Wu et al., 2021) dataset collects the number of patients and influenza-like illness
ratio in a weekly frequency.

For the data split, we follow Zeng et al. (2023) and split the data into training, validation, and testing
by a ratio of 6:2:2 for the ETT datasets and 7:1:2 for the others. Details are shown in Table 5. The
best parameters are selected based on the lowest validation loss and then applied to the test set for
performance evaluation.

Table 5: The statistics of the datasets.

Datasets Variates Prediction Length Timesteps Granularity Average MMD*

(Time Domain)
Average MMD*

(Frequency Domain)
ETTh1 7 {96, 192, 336, 720} 17,420 1 hour 0.938 0.340
ETTh2 7 {96, 192, 336, 720} 17,420 1 hour 0.582 0.635
ETTm1 7 {96, 192, 336, 720} 69,680 15 min 1.371 0.328
ETTm2 7 {96, 192, 336, 720} 69,680 15 min 1.213 0.815

Exchange-Rate 8 {96, 192, 336, 720} 7,588 1 day 0.805 0.485
Weather 21 {96, 192, 336, 720} 52,696 10 min 0.129 0.236

Electricity 321 {96, 192, 336, 720} 26,304 1 hour 0.026 0.005
ILI 7 {24, 36, 48, 60} 966 1 week 0.125 0.234

* A large MMD indicates a more severe drift.

B MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy (MMD) is a kernel-based statistical test used to determine whether
given two distribution are the same. Given an X , the feature map ϕ transforms X to an another
space H such that ϕ(X) ∈ H. H is Reproducing Kernel Hilbert Space (RKHS) and we can leverage
the kernel trick to compute inner products in H:

X,Y such that k(X,Y ) = ⟨ϕ(X), ϕ(Y )⟩H. (13)

Feature means. The mean embeddings of a probability distribution P is a feature map that trans-
forms ϕ(X) into the mean of each coordinate of ϕ(X):

µP (ϕ(X)) = [E[ϕ(X1)], · · · ,E[ϕ(Xm)]]T . (14)

1https://github.com/zhouhaoyi/ETDataset
2https://github.com/laiguokun/multivariate-time-series-data
3https://www.bgc-jena.mpg.de/wetter/
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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The inner product of the mean embeddings of X ∼ P and Y ∼ Q can be written in terms of kernel
function:

⟨µP (ϕ(X)), µQ(ϕ(Y ))⟩H = EP,Q[⟨ϕ(X), ϕ(Y )⟩H] = EP,Q[k(X,Y )]. (15)

Maximum mean discrepancy. The MMD measures the distance between the mean embeddings of
two samples, X and Y , in the RKHS:

MMD2(P,Q) = ∥µP − µQ∥2H , (16)

For convenience we omit the ϕ(·) terms. If we use the norm induced by the inner product such that
∥x∥ =

√
⟨x, x⟩, the Eq. 16 becomes:

MMD2(P,Q) = ⟨µp − µQ, µp − µQ⟩ = ⟨µp, µp⟩ − 2⟨µp, µQ⟩+ ⟨µQ, µQ⟩. (17)

Using the Eq. 15, finally above expression becomes:

MMD2(P,Q) = EP [k(X,X)]− 2EP,Q[k(X,Y )] + EQ[k(Y, Y )]. (18)

Empirical estimation of MMD. In real-world applications, the underlying distribution are usually
unknown. Thus, an empirical estimate of Eq. 18 can be used:

MMD2(X,Y ) =
1

m(m− 1)

∑
i̸=j

k (xi, xj)−
2

mn

∑
i,j

k (xi, xj) +
1

n(n− 1)

∑
i ̸=j

k (yi, yj) , (19)

where xi and xj are samples from P , yi and yj are samples from Q, and k(x, y) is the kernel
function, often the Gaussian (RBF) kernel.

C DISTRIBUTION SHIFTS IN BOTH TIME AND FREQUENCY DOMAINS

The time series X is segmented into N patches, where each patch Pn = {xn1, xn2, . . . , xnP }
consists of P consecutive timesteps for n = 1, 2, · · · , N . For the frequency domain, we apply
a Fourier transform F to each patch Pn, obtaining its frequency-domain representation as P̂n =
F(Pn).

Each patch’s probability distribution in the time domain is denoted as pt(Pn), representing the
statistical properties of Pn, while its frequency domain distribution, denoted as pf (P̂n), captures its
spectral characteristics.

The distribution shifts between two patches Pi and Pj are characterized by the comparing their
probability distributions in both time and frequency domains. These shifts are defined as:

Dt(Pi,Pj) = |d(pt(Pi), pt(Pj))| > θ, (20)

Df (P̂i, P̂j) = |d(pf (P̂i), pf (P̂j))| > θ, (21)

where d is a distance metric, such as MMD values or Kullback-Leibler divergence, and θ is a thresh-
old indicating a significant distribution shift. If Dt(Pi,Pj) or Df (P̂i, P̂j) exceeds θ, this implies a
significant distribution shift between the two patches in either domain.

D RELATED WORK

Mixture-of-Experts. Mixture-of-Experts (MoE) models have gained attention for their ability to
scale efficiently by activating only a subset of experts for each input, as first introduced by Shazeer
et al. (2017). Despite their success, challenges such as training instability, expert redundancy, and
limited expert specialization have been identified (Puigcerver et al., 2023; Dai et al., 2024). These
issues hinder the full potential of MoE models in real-world tasks.

Recent advances have integrated MoE with Transformers to improve scalability and efficiency. For
example, GLaM (Du et al., 2022) and Switch Transformer (Fedus et al., 2022) interleave MoE lay-
ers with Transformer blocks, reducing computational costs. Other models like state space models
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Figure 7: Results of expert number experiments for ETTh1 and ETTh2.

(SSMs) (Pióro et al., 2024; Anthony et al., 2024), (Alkilane et al., 2024) combines MoE with alter-
native architectures for enhanced scalability and inference speed.

In contrast, our approach introduces MoE into time series forecasting by assigning experts to specific
time-frequency patterns, enabling more effective, patch-level adaptation. This approach represents a
significant innovation in time series forecasting, offering a more targeted and effective way to handle
varying patterns across both time and frequency domains.

E MORE MODEL ANALYSIS

E.1 ANALYSIS OF EXPERTS

Detailed Results on the Number of Experts.

We provide the full results on the number of experts for the ETTh1 and ETTh2 dataset in Figure 7.

In Figure 6, we set the learning rate to 0.0001 and conducted four sets of experiments on the ETTh1
and ETTh2 datasets, Kt = 1, Kf = {1, 2, 4, 8}, to explore the effect of the number of frequency
experts on the results. For example, Kt1Kf4 means that the TFPS contains 1 time experts and 4
frequency experts. We observed that Kt1Kf2 outperformed Kt1Kf4 in both cases, suggesting that
increasing the number of experts does not always lead to better performance.

In addition, we conducted three experiments based on the optimal number of frequency experts to
verify the impact of varying the number of time experts on the results. As shown in Figure 7, the best
results for ETTh1 were obtained with Kt4Kf2, Kt8Kf4, Kt4Kf4, Kt4Kf4, while for ETTh2, the
optimal results were achieved with Kt2Kf2, Kt2Kf4, Kt4Kf2 and Kt4Kf2. Combined with the
average MMD in Table 5, we attribute this to the fact that, in cases where concept drift is more
severe, such as ETTh1 in the time domain, more experts are needed, whereas fewer experts are
sufficient when the drift is less severe.

Comparing Inter- and Intra-Cluster Differences via MMD.

We present the heatmaps of inter-cluster and intra-cluster MMD values obtained using linear layers
and PI in Figure 8. The diagonal elements represent the average MMD values of patches within
the same clusters. If these values are small, it indicates that the difference of patches within the
same cluster is relatively similar. The off-diagonal elements represent the average MMD values
between patches from different clusters, where larger values mean significant differences between
the clusters. We observe that when using PI, the intra-cluster drift is smaller, while the inter-cluster
shift is more pronounced compared to the linear layer. This indicates that our identifier effectively
classifies and distinguishes between different patterns.
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(a) Linear layer (b) Pattern Identifier

Figure 8: Heatmap showing the MMD values of inter- and intra-cluster patches on ETTh1.

Table 6: Detailed results of the comparison between TFPS and normalization methods. The best
results are highlighted in bold and the second best are underlined.

FEDformerTFPS + SIN + SAN + Dish-TS + NST + RevINModel IMP.
(Our) (2024a) (2023b) (2023) (2022) (2021)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 -1.0% 0.398 0.413 0.413 0.372 0.383 0.409 0.390 0.424 0.394 0.414 0.392 0.413

192 3.8% 0.423 0.423 0.443 0.417 0.431 0.438 0.441 0.458 0.441 0.442 0.443 0.444
336 -0.3% 0.484 0.461 0.465 0.448 0.471 0.456 0.495 0.486 0.485 0.466 0.495 0.467E

T
T

h1

720 4.5% 0.488 0.476 0.509 0.490 0.504 0.488 0.519 0.509 0.505 0.496 0.520 0.498
96 31.3% 0.313 0.355 0.412 0.357 0.300 0.355 0.806 0.589 0.381 0.403 0.380 0.402

192 26.0% 0.405 0.410 0.472 0.453 0.392 0.413 0.936 0.659 0.478 0.453 0.457 0.443
336 36.7% 0.392 0.415 0.527 0.527 0.459 0.462 1.039 0.702 0.561 0.499 0.515 0.479E

T
T

h2

720 37.9% 0.410 0.433 0.593 0.639 0.462 0.472 1.237 0.759 0.502 0.481 0.507 0.487
96 4.1% 0.327 0.367 0.373 0.320 0.311 0.355 0.348 0.397 0.336 0.382 0.340 0.385

192 2.9% 0.374 0.395 0.394 0.366 0.351 0.383 0.406 0.428 0.386 0.409 0.390 0.411
336 5.3% 0.401 0.408 0.418 0.405 0.390 0.407 0.438 0.450 0.438 0.441 0.432 0.436E

T
T

m
1

720 -0.5% 0.479 0.456 0.451 0.475 0.456 0.444 0.497 0.481 0.483 0.460 0.497 0.466
96 33.5% 0.170 0.255 0.326 0.211 0.175 0.266 0.394 0.395 0.191 0.272 0.192 0.272

192 32.3% 0.235 0.296 0.402 0.316 0.246 0.315 0.552 0.472 0.270 0.321 0.270 0.320
336 35.0% 0.297 0.335 0.465 0.399 0.315 0.362 0.808 0.601 0.353 0.371 0.348 0.367E

T
T

m
2

720 35.9% 0.401 0.397 0.555 0.547 0.412 0.422 1.282 0.771 0.445 0.422 0.430 0.415
96 28.4% 0.154 0.202 0.280 0.215 0.179 0.239 0.244 0.317 0.187 0.234 0.187 0.234

192 23.3% 0.205 0.249 0.314 0.264 0.234 0.296 0.320 0.380 0.235 0.272 0.235 0.272
336 19.8% 0.262 0.289 0.329 0.293 0.304 0.348 0.424 0.452 0.289 0.308 0.287 0.307

W
ea

th
er

720 18.4% 0.344 0.342 0.382 0.370 0.400 0.404 0.604 0.553 0.359 0.352 0.361 0.353
1st (2nd) Count 24 (8) 9 (4) 7 (24) 0 (1) 0 (1) 0 (2)

E.2 RESULTS OF THE COMPARISON BETWEEN TFPS AND NORMALIZATION METHODS

In this section, we provide the detailed experimental results of the comparison between TFPS and
five state-of-the-art normalization methods for non-stationary time series forecasting: SIN (Han
et al., 2024a), SAN (Liu et al., 2023b), Dish-TS (Fan et al., 2023), Non-Stationary Transformers
(NST) (Liu et al., 2022), and RevIN (Kim et al., 2021). The results of SIN are from Han et al.
(2024a), other results are from Liu et al. (2023b). We report the evaluation of FEDformer over all
the forecasting lengths for each dataset and the relative improvements in Table 6. It can be concluded
that TFPS achieves the best performance among existing methods in most cases. The improvement is
significant with an average MSE decrease of 18.9%. We attribute this improvement to the accurate
identification of pattern groups and the provision of specialized experts for each group, thereby
avoiding the over-stationarization problem often associated with normalization methods.
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F METRIC ILLUSTRATION

We use mean square error (MSE) and mean absolute error (MAE) as our metrics for evaluation of
all forecasting models. Then calculation of MSE and MAE can be described as:

MSE =
1

H

L+H∑
i=L+1

(Ŷi − Yi)
2, (22)

MAE =
1

H

L+H∑
i=L+1

∣∣∣Ŷi − Yi

∣∣∣ , (23)

where Ŷ is predicted vector with H future values, while Y is the ground truth.

G ALGORITHM OF TFPS

We provide the pseudo-code of TFPS in Algorithm 1.

H BROADER IMPACT

Real-world applications. TFPS addresses the crucial challenge of time series forecasting, which
is a valuable and urgent demand in extensive applications. Our method achieves consistent state-
of-the-art performance in four real-world applications: electricity, weather, exchange rate, illness.
Researchers in these fields stand to benefit significantly from the enhanced forecasting capabilities
of TFPS. We believe that improved time series forecasting holds the potential to empower decision-
making and proactively manage risks in a wide array of societal domains.

Academic research. TFPS draws inspiration from classical time series analysis and stochastic
process theory, contributing to the field by introducing a novel framework with the assistance pat-
tern recognition. This innovative architecture and its associated methodologies represent significant
advancements in the field of time series forecasting, enhancing the model’s ability to address distri-
bution shifts and complex patterns effectively.

Model Robustness. Extensive experimentation with TFPS reveals robust performance without
exceptional failure cases. Notably, TFPS exhibits impressive results and maintains robustness in
datasets with distribution shifts. The pattern identifier structure within TFPS groups the time series
into distinct patterns and adopts a mixture of pattern experts for further prediction, thereby allevi-
ating prediction difficulties. However, it is essential to note that, like any model, TFPS may face
challenges when dealing with unpredictable patterns, where predictability is inherently limited. Un-
derstanding these nuances is crucial for appropriately applying and interpreting TFPS’s outcomes.

Our work only focuses on the scientific problem, so there is no potential ethical risk.

I LIMITATIONS

Though TFPS demonstrates promising performance on the benchmark dataset, there are still some
limitations of this method. First, the patch length is primarily chosen heuristically, and the cur-
rent design struggles with handling indivisible lengths or multi-period characteristics in time series.
While this approach works well in experiments, it lacks generalizability for real-world applications.
Second, the real-world time series data undergo expansion, implying that the new patterns contin-
ually emerge over time, such as an epidemic or outbreak that had not occurred before. Therefore,
future work will focus on developing a more flexible and automatic patch length selection mecha-
nism, as well as an extensible solution to address these evolving distribution shifts.
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Algorithm 1 Time-Frequency Pattern-Specific architecture - Overall Architecture.
Input: Input lookback time series X ∈ RL×C ; input length L; predicted length H; variables number

C; patch length P ; feature dimension D; encoder layers number n; random Gaussian distribution-

initialized subspace D = [D(1),D(2), · · · ,D(K)], each D(j) ∈ Rq×d, where q = C × D and

d = q/K. Technically, we set D as 512, n as 2.

Output: The prediction result Ŷ .

1: X = X.transpose ▷ X ∈ RC×L

2: XPE = Patch (X) + Position Embedding ▷ X0
t ∈ RC×N×D

3: ▷ Time Encoder.

4: X0
t = XPE

5: for l in {1, . . . , n}:

6: forX l−1
t = LayerNorm (X l−1

t + Self-Attn (X l−1
t )). ▷ X l−1

t ∈ RC×N×D

7: forX l
t = LayerNorm (X l−1

t + Feed-Forward (X l−1
t )). ▷ X l

t ∈ RC×N×D

8: End for

9: zt = X l
t ▷ zlt ∈ RC×N×D

10: ▷ Pattern Identifier for Time Domain.

11: st = Subspace affinity (zt, D) ▷ Eq. 6 of the paper st ∈ RC×N×D

12: s̃t = Subspace refinement (st) ▷ Eq. 7 of the paper s̃t ∈ RC×N×D

13: ▷ Mixture of Temporal Pattern Experts.

14: G(s) = Softmax (TopK (st))

15: ht =
∑K

k=1 G(s)MLPk(zt) ▷ Eq. 10 and Eq. 11 of the paper ht ∈ RC×N×D

16: ▷ Frequency Encoder.

17: X0
f = XPE ▷ Eq. 2 of the paper X0

f ∈ RC×N×P

18: for l in {1, . . . , n}:

19: forX l−1
f = LayerNorm (X l−1

f + Fourier (X l−1
f )). ▷ X l−1

f ∈ RC×N×D

20: forX l
f = LayerNorm (X l−1

f + Feed-Forward (X l−1
f )). ▷ X l

f ∈ RC×N×D

21: End for

22: zf = X l
f ▷ znf ∈ RC×N×D

23: ▷ Pattern Identifier for Frequency Domain.

24: sf = Subspace affinity (zf , D) ▷ Eq. 6 of the paper sf ∈ RC×N×D

25: s̃f = Subspace refinement (sf ) ▷ Eq. 7 of the paper s̃f ∈ RC×N×D

26: ▷ Mixture of Frequency Pattern Experts.

27: G(s) = Softmax (TopK (sf ))

28: hf =
∑K

k=1 G(s)MLPk(zf ) ▷ Eq. 10 and Eq. 11 of the paper hf ∈ RC×N×D

29: h = Concat(ht, hf ) ▷ h ∈ RC×N×2∗D

30: for c in {1, . . . , C}:

31: forŶ = Linear (Flatten (h)). ▷ Project tokens back to predicted series Ŷ ∈ RC×H

32: End for

33: Ŷ = Ŷ .transpose ▷ Ŷ ∈ RH×C

34: Return Ŷ ▷ Output the final prediction Ŷ ∈ RH×C
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Table 7: Multivariate long-term forecasting results for Traffic. The input lengths is L = 96. The
best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
(Our) (2024) (2024) (2024a) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 21.1% 0.427 0.296 0.475 0.307 0.651 0.388 0.428 0.295 0.519 0.314 0.446 0.284 0.586 0.316 0.650 0.397 0.575 0.357
192 17.7% 0.445 0.298 0.478 0.306 0.603 0.364 0.448 0.302 0.513 0.314 0.453 0.285 0.618 0.323 0.600 0.372 0.613 0.381
336 17.0% 0.459 0.307 0.494 0.312 0.610 0.366 0.465 0.311 0.525 0.319 0.467 0.291 0.634 0.337 0.606 0.374 0.622 0.380
720 15.1% 0.496 0.313 0.528 0.331 0.648 0.387 0.501 0.333 0.561 0.336 0.501 0.492 0.659 0.349 0.646 0.396 0.630 0.383

1st Count 7 0 0 1 0 0 0 0 0

Table 8: Experiment results under hyperparameter searching for the long-term forecasting task. The
best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet Dlinear FEDformer
(Our) (2024) (2024) (2024a) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 1.5% 0.372 0.404 0.368 0.394 0.374 0.395 0.387 0.405 0.360 0.387 0.375 0.400 0.389 0.412 0.384 0.405 0.385 0.425
192 5.7% 0.401 0.410 0.413 0.418 0.407 0.414 0.441 0.436 0.403 0.412 0.414 0.421 0.441 0.442 0.443 0.450 0.441 0.461
336 9.8% 0.409 0.402 0.412 0.416 0.429 0.428 0.491 0.463 0.434 0.429 0.432 0.436 0.491 0.467 0.447 0.448 0.491 0.473
720 11.2% 0.423 0.433 0.473 0.477 0.425 0.446 0.509 0.494 0.437 0.452 0.450 0.466 0.512 0.491 0.504 0.515 0.501 0.499

E
T

T
h2

96 9.3% 0.268 0.325 0.283 0.344 0.274 0.337 0.301 0.350 0.271 0.329 0.278 0.336 0.324 0.368 0.290 0.353 0.342 0.383
192 10.4% 0.329 0.376 0.331 0.378 0.337 0.377 0.380 0.399 0.333 0.372 0.339 0.380 0.393 0.410 0.388 0.422 0.434 0.440
336 17.7% 0.329 0.401 0.319 0.377 0.360 0.398 0.424 0.432 0.361 0.396 0.336 0.380 0.429 0.437 0.463 0.473 0.512 0.497
720 9.0% 0.412 0.441 0.407 0.449 0.386 0.423 0.430 0.447 0.382 0.418 0.382 0.421 0.433 0.448 0.733 0.606 0.467 0.476

E
T

T
m

1 96 10.2% 0.281 0.329 0.291 0.353 0.303 0.345 0.342 0.377 0.283 0.330 0.288 0.342 0.337 0.377 0.301 0.345 0.360 0.406
192 8.5% 0.324 0.354 0.329 0.372 0.337 0.365 0.383 0.396 0.327 0.356 0.334 0.372 0.395 0.406 0.336 0.366 0.395 0.427
336 8.2% 0.359 0.404 0.357 0.392 0.372 0.385 0.418 0.418 0.361 0.375 0.367 0.393 0.433 0.432 0.372 0.389 0.448 0.458
720 8.2% 0.409 0.408 0.423 0.425 0.428 0.416 0.487 0.457 0.411 0.409 0.417 0.422 0.484 0.458 0.427 0.423 0.491 0.479

E
T

T
m

2 96 8.9% 0.158 0.243 0.167 0.256 0.165 0.255 0.186 0.272 0.158 0.244 0.164 0.253 0.182 0.262 0.172 0.267 0.193 0.285
192 5.7% 0.222 0.302 0.221 0.294 0.220 0.291 0.254 0.314 0.219 0.282 0.221 0.292 0.252 0.307 0.237 0.314 0.256 0.324
336 8.5% 0.268 0.316 0.277 0.329 0.274 0.326 0.316 0.351 0.273 0.317 0.277 0.329 0.312 0.346 0.295 0.359 0.321 0.364
720 12.0% 0.344 0.373 0.356 0.382 0.367 0.383 0.414 0.407 0.346 0.374 0.365 0.384 0.417 0.404 0.427 0.439 0.434 0.426

Tr
af

fic

96 17.8% 0.370 0.257 0.375 0.260 0.398 0.285 0.428 0.295 0.377 0.253

OOM

0.586 0.316 0.413 0.287 0.575 0.357
192 17.0% 0.391 0.269 0.395 0.272 0.408 0.288 0.448 0.302 0.391 0.260 0.618 0.323 0.424 0.290 0.613 0.381
336 17.2% 0.401 0.271 0.402 0.272 0.420 0.292 0.465 0.311 0.408 0.266 0.634 0.337 0.438 0.299 0.622 0.380
720 15.7% 0.432 0.294 0.431 0.288 0.448 0.310 0.501 0.333 0.451 0.291 0.659 0.349 0.466 0.316 0.630 0.383

E
le

ct
ri

ci
ty 96 10.3% 0.134 0.225 0.137 0.229 0.135 0.231 0.148 0.239 0.130 0.222 0.130 0.223 0.168 0.272 0.140 0.237 0.188 0.303

192 11.9% 0.145 0.238 0.153 0.242 0.149 0.244 0.167 0.258 0.146 0.237 0.149 0.240 0.186 0.289 0.154 0.250 0.197 0.311
336 6.8% 0.166 0.258 0.165 0.263 0.165 0.260 0.178 0.271 0.162 0.254 0.168 0.262 0.196 0.297 0.169 0.268 0.212 0.327
720 6.9% 0.200 0.291 0.206 0.294 0.204 0.293 0.211 0.300 0.201 0.287 0.204 0.289 0.235 0.329 0.204 0.300 0.243 0.352
1st Count 26 5 0 0 16 1 0 0 0

J TRAFFIC RESULTS

We conducted addition experiments on high-dimensional Traffic dataset to further evaluate the per-
formance and generalizability of TFPS, as shown in Table 7.

K HYPERPARAMETER-SEARCH RESULTS

To ensure a fair comparison between models, we conducted experiments using unified parameters
L = 96 and reported results in the main text.

In addition, considering that the reported results in different papers are mostly obtained through
hyperparameter search, we provide the experiment results with the full version of the parameter
search. We searched for input length among 96, 192, 336, and 512. The results are included in
Table 8. All baselines are reproduced by their official code.

We can find that the relative promotion of TFPS over TFDNet is smaller under comprehensive
hyperparameter search than the unified hyperparameter setting. It is worth noticing that TFPS runs
much faster than TFDNet according to the efficiency comparison in Table 11. Therefore, considering
performance, hyperparameter-search cost and efficiency, we believe TFPS is a practical model in
real-world applications and is valuable to deep time series forecasting community.

L VISUALIZATION OF CLUSTERING

Figure 9 presents the t-SNE visualization of the learned embedded representation on the ETTh1. In
the Figure 9 (a), where the pattern identifier is replaced with a linear layer, the representation lacks
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(a) Linear (b) Pattern Identifier

Figure 9: Visualization of the embedded representations with t-SNE on ETTh1. The left figure
shows the visualization when the Patch Identifier is replaced with a Linear Layer for comparison,
while the right figure shows the visualization of the proposed method.

Table 9: Comparison between TFPS and MoE-based methods. The best results are highlighted in
bold and the second best are underlined.

Model IMP. TFPS MoLE MoU KAN4TSF
(Our) 2024 2024 2024b

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 -4.3% 0.398 0.413 0.383 0.392 0.381 0.403 0.382 0.400
192 1.7% 0.423 0.423 0.434 0.426 0.429 0.430 0.430 0.426
336 1.6% 0.484 0.461 0.489 0.478 0.488 0.463 0.498 0.467
720 8.2% 0.488 0.476 0.602 0.545 0.499 0.484 0.494 0.479

ETTh2

96 10.4% 0.313 0.355 0.413 0.360 0.317 0.358 0.318 0.358
192 10.3% 0.405 0.410 0.525 0.416 0.409 0.414 0.419 0.414
336 7.1% 0.392 0.415 0.423 0.434 0.397 0.420 0.447 0.452
720 8.4% 0.410 0.433 0.453 0.458 0.412 0.434 0.477 0.476

ETTm1

96 13.5% 0.327 0.367 0.338 0.380 0.465 0.442 0.333 0.371
192 10.6% 0.374 0.395 0.388 0.403 0.483 0.455 0.384 0.399
336 11.8% 0.401 0.408 0.417 0.431 0.540 0.488 0.407 0.413
720 7.3% 0.479 0.456 0.486 0.472 0.583 0.509 0.483 0.469

ETTm2

96 13.9% 0.170 0.255 0.238 0.271 0.179 0.263 0.175 0.260
192 3.8% 0.235 0.296 0.247 0.305 0.243 0.303 0.244 0.305
336 3.3% 0.297 0.335 0.308 0.343 0.306 0.343 0.308 0.347
720 13.7% 0.401 0.397 0.583 0.419 0.405 0.404 0.405 0.404

1st Count 30 1 1 0

clear clustering structures, resulting in scattered and indistinct groupings. In contrast, Figure 9 (b)
shows the visualization of the representation learned by the proposed method, which effectively
captures discriminative features and reveals significantly clearer clustering patterns.

M COMPARED WITH MOE-BASED METHODS

As shown in Table 9, unlike MoE-based methods that rely on the Softmax function as a gating
mechanism, our approach constructs a pattern recognizer to assign different experts to handle distinct
patterns. This results in TFPS achieving relative improvements of 2.3%, 9.0%, 10.6%, and 9.1%
across the four datasets, respectively.

N COMPARED WITH DISTRIBUTION SHIFT METHODS

As shown in Table 10, we compare with the methods for distribution shift. This results in TFPS
achieving relative improvements of 6.7%, 6.6%, 4.8%, and 5.9% across the four datasets, respec-
tively.

O EFFICIENCY ANALYSIS

To make this clearer, we present the results of ETTh1 for a prediction length of 192 from Table 2 and
include additional results on runtime and computational complexity in Table 11. Due to the sparsity
of MoPE, TFPS achieves a balance between performance and efficiency:
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Table 10: Comparison between TFPS and methods for Distribution Shift. The best results are
highlighted in bold and the second best are underlined.

Model IMP. TFPS Koopa SOLID OneNet
(Our) 2024b 2024a 2024

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 7.9% 0.398 0.413 0.385 0.407 0.440 0.439 0.425 0.402
192 10.3% 0.423 0.423 0.445 0.434 0.492 0.466 0.452 0.443
336 4.9% 0.484 0.461 0.489 0.460 0.525 0.481 0.492 0.482
720 4.4% 0.488 0.476 0.497 0.480 0.517 0.496 0.504 0.496

ETTh2

96 10.6% 0.313 0.355 0.318 0.360 0.318 0.359 0.382 0.362
192 4.7% 0.405 0.410 0.378 0.398 0.414 0.418 0.435 0.426
336 4.8% 0.392 0.415 0.415 0.430 0.398 0.421 0.426 0.419
720 6.8% 0.410 0.433 0.445 0.456 0.424 0.441 0.456 0.437

ETTm1

96 6.8% 0.327 0.367 0.329 0.359 0.329 0.370 0.374 0.392
192 2.0% 0.374 0.395 0.380 0.393 0.379 0.400 0.385 0.435
336 8.7% 0.401 0.408 0.401 0.411 0.405 0.412 0.473 0.458
720 2.0% 0.479 0.456 0.475 0.448 0.482 0.464 0.496 0.483

ETTm2

96 5.3% 0.170 0.255 0.179 0.261 0.175 0.258 0.184 0.274
192 3.8% 0.235 0.296 0.246 0.305 0.241 0.302 0.248 0.384
336 3.4% 0.297 0.335 0.310 0.348 0.303 0.342 0.313 0.374
720 9.0% 0.401 0.397 0.405 0.402 0.456 0.436 0.425 0.438

1st Count 25 6 0 1

Table 11: The GPU memory (MB) and speed (inference time) of each model.

TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
MSE 0.423 0.448 0.445 0.441 0.458 0.460 0.441 0.434 0.441

GPU Memory (MB) 9.643 0.481 0.019 3.304 0.246 0.205 2.345 0.142 62.191
Average Inference Time (ms) 6.457 2.100 1.202 2.949 407.853 17.851 72.196 0.789 259.001

Performance Superiority: TFPS achieves an MSE of 0.423, outperforming TSLANet (0.448),
FITS (0.445), PatchTST (0.460), and FEDformer (0.441). This represents a 5.6% improvement
over TSLANet and a 8.0% improvement over PatchTST, highlighting its significant accuracy gains.
While DLinear achieves an MSE of 0.434, TFPS still demonstrates a 2.5% relative improvement,
making it the most accurate model among all baselines.

Efficiency Gains: TFPS maintains competitive runtime and memory efficiency.

• Runtime: TFPS runs in 6.457 ms, making it 2.8× faster than PatchTST (17.851 ms) and
11.2× faster than TimesNet (72.196 ms).

• Memory Usage: TFPS uses 9.643 MB of GPU memory, significantly less than FEDformer
(62.191 MB) and comparable to iTransformer (3.304 MB). This makes TFPS suitable for
resource-constrained applications while maintaining superior performance.

Balancing Trade-offs: While lightweight models like DLinear (0.434 MSE, 0.789 ms runtime)
are slightly more efficient, TFPS delivers a performance improvement of 2.5%, providing a well-
rounded solution that balances accuracy and efficiency effectively.

P HYPERPARAMETER SENSITIVITY

In this section, we analysis the impact of the hyperparameters α and β on the performance.

Specifically, we performed a grid search to optimize the hyperparameters αt =
{0.0001, 0.001, 0.01} and αf = {0.0001, 0.001, 0.01}, as shown in Figure 10 (a). After
extensive testing, we ultimately fixed at αt = αf = 10−3 in our experiments.

In addition, we conducted a grid search to optimize the balance factors βt = {0.01, 0.05, 0.1, 0.5, 1}
and βf = {0.01, 0.05, 0.1, 0.5, 1}. The performance under different parameter values is displayed
in Figure 10 (b), from which we have the following observations:
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(a) α (b) β

Figure 10: Parameter sensitivity of α and β of the proposed method on the ETTh1-96 dataset.

Table 12: In the table, w/ Imaginary indicates that we incorporate both the real and imaginary parts
into the network.

ETTh1 ETTh2
96 192 336 720 96 192 336 720

TFPS 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
w/ Imaginary 0.397 0.424 0.487 0.486 0.312 0.406 0.391 0.399

• Firstly, the performance is affected when the value of β is too low, indicating that the
proposed clustering objective plays a crucial role in distinguishing patterns.

• Second, an excessive β also has a negative on the performance. One plausible explanation
is that the excessive value influences the learning of the inherent structure of original data,
resulting in a perturbation of the embedding space.

• Overall, we recommend setting β around 0.1 for optimal performance.

Q FULL ABLATION

Q.1 IMPACTS OF REAL/IMAGINARY PARTS

To further validate the robustness of our approach, we adopted similar operations in FreTS to con-
duct experiments incorporating both the real and imaginary parts. The results in the Table 12 show
that the performance of TFPS with the real part only is very similar to that when both parts are in-
cluded, while requiring fewer parameters. This further reinforces the conclusion that TFPS remains
highly effective even when focusing solely on the real part of the Fourier transform.

Q.2 ABLATION ON PI

The PI module plays a crucial role in identifying and characterizing distinct patterns within the time
series data, while the gating network dynamically selects the most relevant experts for each segment.
This collaborative mechanism allows the model to specialize in handling different patterns and adapt
effectively to distribution shifts, thus mitigating the overfitting risks that arise from treating all data
equally.

To validate the importance of PI empirically, we have conducted the ablation experiments comparing
the model’s performance by replacing the PI module with a linear layer in the Table 3 of main text.
In addition, we supplement some ablation experiments in Table 13 to further verify the effectiveness
of PI.

Q.3 ABLATION ON R1 AND R2

We conducted ablation experiments to further verify the important roles of R1 and R2, as shown in
Table 14.
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Table 13: Ablation study of PI components. The model variants in our ablation study include the
following configurations across both time and frequency branches: (a) inclusion of the Time PI; (b)
inclusion of the Frequency PI; (c) exclusion of both. The best results are in bold.

Time PI Frequency PI ETTh1 ETTh2
96 192 336 720 96 192 336 720

✓ ✓ 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
✓ ✗ 0.404 0.454 0.490 0.503 0.322 0.413 0.410 0.425
✗ ✓ 0.405 0.456 0.493 0.509 0.324 0.415 0.412 0.430
✗ ✗ 0.407 0.458 0.497 0.513 0.328 0.418 0.419 0.435

Table 14: Ablation study of Loss Constraint. The model variants in our ablation study include
the following configurations across both time and frequency branches: (a) inclusion of the R1; (b)
inclusion of the R2; (c) exclusion of both. The best results are in bold.

R1 R2
ETTh1 ETTh2

96 192 336 720 96 192 336 720
✓ ✓ 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
✓ ✗ 0.408 0.449 0.500 0.498 0.320 0.418 0.415 0.429
✗ ✓ 0.403 0.434 0.493 0.491 0.316 0.413 0.405 0.418
✗ ✗ 0.412 0.456 0.509 0.503 0.328 0.425 0.420 0.435

Table 15: Multi-output predictor and a stacked attention layer are used to replace MoPE in ETTh1
and ETTh2 datasets.

ETTh1 ETTh2
96 192 336 720 96 192 336 720

TFPS 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
Multi-output Predictor 0.403 0.435 0.492 0.491 0.317 0.407 0.399 0.425

Attention Layers 0.399 0.452 0.492 0.508 0.334 0.407 0.409 0.451

R REPLACE MOPE WITH ALTERNATIVE DESIGNS

Here we provide the complete results of alternative designs for TFPS.

As show in Table 15, we have conducted addition experiments where we replaced the MoPE module
with weighted multi-output predictor and stacked self-attention layers, keeping all other components
and configurations identical. The results demonstrate that our proposed method significantly out-
performs them, which validates the importance of the Top-K selection and pattern-aware design in
enhancing the model’s representation capacity. In contrast, multi-output predictor and self-attention
typically treats all data points uniformly, which may limit its ability to capture subtle distribution
shifts or evolving patterns across patches.
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