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ABSTRACT

We propose the first compression framework for image-to-3D generative models
that substantially reduces model size while preserving synthesis fidelity. Recent
advances in 3D shape generative modeling, particularly Diffusion Transformer
(DiT) architectures, have achieved remarkable progress in synthesis fidelity and
controllability. However, the substantial computational cost of large DiT-based
image-to-3D models hinders their practical application in resource-constrained
settings. While existing efficiency-oriented approaches improve inference speed,
they leave the underlying model size and computational cost of synthesis largely
unchanged. To address this challenge, we propose a systematic compression frame-
work that physically reduces model size while preserving the fidelity of 3D shape
synthesis. Our approach builds on the observation that Transformer layers in 3D
DiT models exhibit non-uniform importance, with only a subset of layers contribut-
ing significantly to geometry generation. Leveraging this insight, we introduce a
vitality-guided framework that integrates structured pruning, adaptive quantization,
and targeted fine-tuning to balance efficiency and quality. Experimental results
show that our method achieves up to 66 % model-size reduction across state-of-the-
art 3D generative models with minimal loss in synthesis fidelity. This highlights
the potential of our framework as a plug-and-play solution for efficient 3D shape
generation across diverse models.

1 INTRODUCTION

The growing demand for high-quality 3D content has driven the evolution of generative models

beyond early VAE (Chen et al} 2025b), GAN (Gao et al}[2022)), and diffusion approaches (Pool¢
et al.} [2023) toward more advanced architectures such as Diffusion Transformers (DiT) (Peebles &

Xie] [Wu et al| 2024b)), with flow-based models emerging as a promising alternative (Lipman
et al.| [2023} [Xiang et al.| 2023} [Zhao et al} 2023)). Despite their impressive progress in 3D shape
fidelity, current image-to-3D generative models remain computationally demanding, as large DiT
architectures incur substantial memory and inference costs that hinder their use in cost-sensitive
or real-time applications. Although several studies (Tochilkin et all} 2024} [Lai et al] [2023]) have
explored improving the efficiency of 3D generation, they primarily focus on inference acceleration
and neglect model-size reduction, resulting in limited impact on overall computational requirements.
To overcome these constraints, we propose a novel compression framework that directly reduces
model complexity while maintaining the fidelity of shape synthesis.

Recent investigations into transformer-based diffusion models have shown critical insights about
layer-wise contribution patterns across different generation tasks. Studies in text-to-image (Avrahami
and text-to-video synthesis demonstrate that only specific layers
significantly influence the quality of final outputs, while others contribute minimally to the generation
process. These findings have been successfully leveraged for text-based editing applications, enabling
targeted modifications of existing foundation models without additional training processes. Extending
this principle to the 3D generation domain, we show that DiT layers in image-to-3D models exhibit
similar importance patterns and introduce a vitality metric that quantifies each layer’s contribution to
shape synthesis.

Importantly, we use this analysis to develop a systematic compression framework for existing foun-
dation models, specifically targeting the DiT component responsible for the denoising process in
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image-to-3D generation. While prior methods have sought to optimize or distill entire pipelines
et al.} 20240} [Cai et al| 2023), we deliberately preserve the encoder—decoder and rendering compo-
nents, focusing instead on the computationally dominant DiT stage. This design choice is motivated
by both practical and scientific considerations, as the DiT governs multi-view reasoning and geometric
consistency that are essential for high-quality shape synthesis, making it the most critical target for
compression. Unlike methods designed to improve efficiency in video or 2D generative models
[et"al} 2023} [Fang et al] [2023), where redundancy primarily arises from spatial or temporal corre-
lations, compression in 3D DiTs must additionally preserve geometric coherence across views and
depth.

Guided by our layer-wise vitality analysis, we first prune layers whose vitality scores fall below
a threshold, removing redundant computation while preserving core functionality. We then apply
adaptive quantization to the remaining layers, allocating higher precision to critical layers and more
aggressive compression to less vital ones. Finally, we perform targeted finetuning to systematically
recover performance degradation introduced by compression. Together, these steps achieve substantial
model-size reduction while maintaining the generative fidelity essential for high-quality 3D shape
synthesis.

Our experimental results demonstrate that our approach successfully achieves substantial model
compression while preserving synthesis quality across multiple state-of-the-art models, including
Step1X-3D (Li et al. [2025)) (—65.63% ), Hunyuan3D 2.0 (—66.37 %), and Hunyuan3D 2mini
etal) (—44.50%). To the best of our knowledge, we are the first to systematically reduce both
the parameter count and bit-width of the denoising transformer in an image-to-3D shape generative
model, achieving substantial model-size compression while preserving 3D geometric fidelity. We
expect to expand our framework into a generalized, plug-and-play solution that enables high-quality
3D shape synthesis across diverse existing frameworks under limited computational resources.

To summarize, we introduce the following contributions:

* We present an analysis of layer-wise contributions in Diffusion Transformers (DiTs) for
image-to-3D shape generation and introduce a vitality computation method tailored for 3D
tasks.

* Building on this analysis, we propose the first model-size reduction approach that incorpo-
rates layer vitality into a unified pruning and adaptive quantization.

* We introduce an efficient finetuning strategy that targets only low-vitality layers, effectively
restoring performance with minimal additional cost.

* We demonstrate our method on three DiT-based models, obtaining significantly smaller
networks that maintain performance comparable to their full-sized counterparts.

2 RELATED WORK

3D Generative Models. 3D generative models have evolved across various representations, includ-
ing voxels (Wu et al, 2016} [Xie et al., 2020} [Mittal et al., [2022), point clouds (Cuo & Hul, 2021}
Zhou et al| [2021; |Vahdat et al.,[2022), implicit fields (Zheng et al., 2022} [Hui et al., 2022; Shue et al.,
2023} |Chou et al.| [2023), and meshes (Nash et al., [2020; Siddiqui et al.| 2024). Early GAN-based
approaches such as EG3D [2022) and pi-GAN (Chan et al.| demonstrated promis-
ing view-consistent synthesis but were constrained by limited category diversity and training data.
Diffusion-based models later improved geometric fidelity, with Shape-E (Jun & Nicholl 2023)) intro-
ducing one of the first text-to-3D diffusion frameworks and inspiring subsequent methods that jointly
model geometry and appearance. More recently, large-scale 3D datasets such as Objaverse (Deitke
et al}[2023) have enabled powerful Large Reconstruction Models (LRMs) (Hong et al.} [2024; [Tang|
et al.|, [2024; [Zhang et al| [2024a}, [Tochilkin et al.| 2024} [Ciu et al] [2023b} [Xu et al | 2024) for single-
pass 3D synthesis, while next-generation systems including 3D Topia-XL (Chen et al.|[2025¢)) and
GaussianAnything leverage triplane-based and scalable Gaussian representations
for high-quality open-domain generation. However, these existing models often produce coarse
geometries that require memory-intensive refinement. To address these limitations, recent methods
adopt a two-stage pipeline combining compact geometry generation with multi-view diffusion for
texturing (Zhang et al.} [2024b} [L1 et all 2025} [Zhao et al [2023]), while others explore Structured
Latent (SLAT) representations (Xiang et al.} [2025)). Despite these advances, substantial memory and
computational demands remain a key obstacle to the widespread adoption of 3D generative modeling.
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Figure 1: Method Overview. (a) Method of layer vitality score calculation. In order to analyze the
contribution of individual layer ! from DiT model, we calculate the point cloud distance between
full layer model output and layer ablated model output. In our case, we use Earth Mover’s Distance
(EMD). (b) Based on the calculated vitality scores, we remove the redundant layers which show low
vitality scores. In this step, we apply different thresholds to double-block and single-block layers.

Model Compression for Transformer-based Models. While recent 3D generative models
et all 2025}, [Zhao et al., 2023}, [Xiang et al,[2025) have achieved remarkable improvements in fidelity,
they still suffer from extremely high memory consumption. Although methods like Turbo3D
2025) and FlashVDM 2025)) attempt to address efficiency, they mainly focus on
accelerating inference rather than fundamental model compression. In the broader Transformer
literature, prior work have shown various pruning approaches, including attention head, block, and
layer pruning (Fan et al 2020} [Lee et al, 2024} [Fang et al.} 2025)), can effectively reduce model
complexity while maintaining performance. Extensive research have explored quantization, spanning
from low-bit BERT models (Zafrir et al.} 2019} to recent DiT-specific schemes
et al.|[20244; [Chen et al.} [2025a; Hwang et al.,[2025). These methods consistently demonstrate that
substantial memory savings can be achieved without compromising generation quality. In addition,
knowledge distillation techniques (Sanh et all, [2019; [Tiao et all, 2019; Wang et all, 2020) have
proven effective in recovering accuracy after compression. Despite these advances, 3D generative
modeling lacks a systemic investigation into Transformer layer vitality and its application to pruning
and quantization, which forms the central motivate of our work.

3 METHOD

Our primary objective is to physically reduce the model size of 3D shape generation DiT architectures.
To achieve this, we first quantitatively analyze the contribution of each Transformer layer to the final
output (Sec.[3.I). This analysis allows us to identify and prune redundant layer whose importance is
negligible, thereby improving efficiency. Subsequently, we apply adaptive quantization guided by
analyzed vitality, constructing a lightweight model that almost preserves the performance of original
model (Sec.[3.2). To further reduce the performance degradation, we finetune the compressed model
to closely match the accuracy of the full model (Sec. [3.3).

3.1 VITALITY ANALYSIS OF 3D DIT LAYERS

We begin by measuring the contribution of each layer in the 3D DiT model to the final output. In
prior work (Avrahami et al.,[2025) on T2I generative models, the vitality of a layer is evaluated by
comparing the outputs of the full DiT framework with that of a model where a target single layer [ is
removed. The perceptual difference between the two outputs is measured using the DINO
distance, and layers that induce larger discrepancies regarded as more important.

Following a similar principle, we analyze the Image-to-3D DiT layers using layer ablation in Fig.|T]
(a). Given the same conditional input image y, we generate a point set using the full model 0y, and
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layer-ablated model 6_; by removing [-th layer. The distance between these point sets then serves
as a quantitative indicator of vitality. Since perceptual distance used in the image domain cannot
be applied directly, here we require a metric suitable for 3D point sets. We therefore adopt Earth
Mover’s Distance (EMD) to measure the vitality of 3D DiT layers, as it effectively captures overall
geometric differences between point sets.

For a conditional image y, our vitality score is defined as:

-~ Iy i :
vitality () = Eyep | min — 3730 [lag), () — a5, )| - (1)
i=1 j=1
where D is an image dataset, n denotes the number of points in each point cloud, gg,, (y) is point
cloud generated from full model, go_, (y) is point cloud generated from layer | removed model,

and permutation matrices are defined as P,, = {I‘ e {0, 1y | Y Ty =1, 300, Ty =

1, w,j}.

In contrast to the Chamfer Distance, which computes nearest neighbor correspondences and mainly
reflects local geometric accuracy, EMD computes the optimal transport cost between two point sets,
producing a one-to-one correspondence that accounts for the overall distribution of the shape. This
property enables EMD to detect global structural distortions such as shifts, asymmetry, or large-scale
misalignment that may occur when a layer responsible for maintaining geometric coherence is
removed. Consequently, EMD provides a more faithful measure of a layer’s functional contribution
to preserving overall structural integrity beyond local surface similarity. Moreover, since EMD
formulates the comparison as a mass transport problem, it is less biased toward dense or unevenly
sampled surface regions, ensuring consistent and fair vitality evaluation across shapes of varying
mesh density. To further support the robustness of the proposed evaluation metric, we present a
quantitative comparison in App. For completeness, we also report the corresponding analysis
using the Chamfer Distance in Ap% which exhibits a consistent overall trend and further validates
the reliability of our EMD-based evaluation.

Figure[2](a) shows the results of our analysis on the Step1X-3D (Li et al., 2025) model, computed
from 210 randomly generated images by DALL-E 3 (Betker et al.| 2023) using text prompts from
Objaverse (Deitke et al, [2023). Interestingly, most layers are found to have vitality scores that
converge close to zero, indicating negligible importance. This pattern is consistent across both of
single- and double-block layers. Similar trends are observed in other image-to-3D generation models,

including Hunyuan3D 2.0 and Hunyuan3D 2mini 2023) (see App.[E), through with
slightly weaker magnitudes.

The qualitative analysis in Fig. [2] (b) make this effect more tangible. Skipping vital double-block
layers produces severe geometric distortions, such as unintended rotations, while removing vital
single-block layers leads to degrade finer details and artifacts. Conversely, omitting low-vitality
layers in either cases barely effects the output.

3.2 MODEL COMPRESSION USING VITAL LAYERS

Layer Pruning. Based on the vitality scores, we determine which layers to prune using a threshold
7. Layers with vitality scores exceeding 7 are classified as vital and retained, while the rest are
pruned. However, we observe that applying a single threshold across both double- and single-block
layers cause performance degradation. To mitigate this, we introduce separate thresholds, 74 and 7,
for double- and single-block layers, respectively. To determine these thresholds, we progressively
remove layers starting from the lowest vitality score and monitor the distance to the vanilla model
output. The threshold is chosen at the point where a sharp drop in quality occurs. We provide the
detailed selection process in App. [C|

Adaptive Quantization. After pruning, we further reduce the model size through quantization.
Here, we also leverage the vitality scores to assign different bit-widths to each layer. To minimize
performance loss while maximizing compression, we define two groups: highly vital layers are
quantized to 8-bit, and less-vital layers to 4-bit. Similar to pruning, distinct thresholds are applied
to double-block and single-block layers to avoid performance drops. Since our method primarily
focuses on layer-wise analysis, we apply weight-only quantization and do not consider activations.
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Figure 2: Layer Vitality Analysis. (a) Vitality score analysis on Stepl1X-3D model. Layers with
red index are vital layers which has high contribution to synthesis, whereas most layers appear in
blue, indicating negligible contribution. (b) Qualitative analysis of layer vitality on Step1X-3D.
Removing vital layers noticeable degradation in shape outputs, while removing non-vital layers yields
only minor differences. Note that [¢ indicates the i-th double-block layer and ; denotes the j-th
single-block layer, with indexing starting from 0.

3.3 DISTILLATION FINE-TUNING

While our proposed pruning and quantization yield an efficient compression, the resulting model may
not fully replicate the behavior of the full model. To bridge this gap, we perform finetuning so that the
compressed model better follows the dynamics of the full model as shown in Fig.[3] Unlike standard
flow matching training, our approach focuses on maximizing similarity between the compressed and
full models. Specifically, we design a loss function to encourage the student to imitate the ODE path
of the full model such as:

»CDistill(GC) = % HUC(Zszy) - @f(ztfvt7y)H§ + % ”vc('ztfvtag) - Uf(ztfvt,Q)H; (2)

where v¢ is model prediction output from compressed model 6., v7 is output from full model
0 fuil, z,f is latent of timestep ¢ sampled from full model, y is input image condition, and & is null
condition. In order to obtain more accurate distillation, we calculate distances for both of conditional
and unconditional model predictions. For each individual timestep, we optimize the parameters of
weights from compressed model. After single optimization step at timestep ¢, we jump into next step
t — 1 using flow sampling with full-model prediction output.

However, finetuning all remaining vital layers is computationally inefficient and, in some cases,
causes the compressed student model to diverge further from the full teacher model, leading to
degraded performance. To mitigate this, we propose a selective finetuning strategy. Specifically, we
choose the vital layer with the lowest vital score (denoted as “Min-vital” in Fig.[3) and finetune only
its weights, thereby avoiding excessive modification of vital layers.

4 EXPERIMENT

Experimental Details. To validate our proposed method, we conduct experiments on three Image-
to-3D shape generation models. We use the state-of-the-art models Step1X-3D 2025),
Hunyuan3D 2.0 and 2mini 2025). As described in Sec. based on results of the
vitality analysis, we set the standard for eliminating redundant layers and for setting thresholds to
determine 8-bit and 4-bit layers. For example, for Step1X-3D, we apply 74 = 0.17 for double-block
layers and 74, = 0.165 for single-block layers, and set thresholds of 0.25 and 0.185 for double-block
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Figure 3: Targeted Finetuning Pipeline. To refine the compressed model, we finetune the minimally
vital (Min-vital) layer of compressed model so that the model output closely matches that the full-layer
model. Specifically, during the full-layer model flow sampling path, we optimize the compressed
student model to reproduce the full model’s output under the same condition and latent input.

and single-block layers to determine the 8-bit and 4-bit layers. During the non-vital layer finetuning
stage, we use rendered images from subset 10K of Objaverse (Deitke et all, 2023)) dataset. For
Step1X-3D, we train with a learning rate of 10~%, and for Hunyuan3D 2.0 and 2mini, we used 104,
In both cases, we conduct finetuning process for 30K iterations for Step1X-3D, and 20k iterations for
Hunyuan3D models. For sampling, we use timestep of 30 for Step1X-3D and 20 for Hunyuan3D
models. We provide more experimental details in App. [A]

Evaluation Metrics. For evaluation, we employ two embedding-based metrics that measure seman-
tic correspondence between input images and generated 3D meshes: Uni3D-I and
OpenShape-I 20234). Both models compute similarity in a joint image—3D embedding
space, providing an objective measure of alignment quality. We report results on 200 image—shape
pairs sampled from Objaverse (Deitke et al.,[2023)). For validation, we generate 200 images using
DALL-E 3 (Betker et al.} 2023)) from text prompts originally provided by Objaverse (Deitke et al.,
2023).

In addition, we measure the model size, specifically the memory footprint of its parameters, to
evaluate spatial efficiency after compression. Furthermore, we evaluate geometric consistency during
compression using the volume (V-IoU) and symmetric surface IoU (SS-IoU) scores with rigid
alignment, as shown in App.[D-2}

Baselines. We compare our method with a diverse set of 3D generation approaches, spanning
feedforward, diffusion, and transformer-based paradigms:

* Splatter Image (Szymanowicz et al., [2024): a diffusion-based model that progressively
generates 3D from images, achieving higher realism but often struggling with fine-grained
alignment.

* TripoSR (Tochilkin et all,[2024): a fast feedforward model that directly predicts 3D shapes
from images, designed for lightweight inference but with limited geometric fidelity.

* LGM (Tang et al.l 2024): a Gaussian-based feedforward approach that produces compact
3D representations, prioritizing efficiency over detailed reconstruction.

* Craftsman3D (Li et al., 2024): a transformer-based DiT model with strong mesh generation
quality, though requiring large memory and computation.

e TRELLIS (Xiang et al.,2025)): another state-of-the-art DiT-based architecture that excels
in generating structured 3D meshes, but comes with significant model size overhead.
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Table 1: Overall Quantitative Results. (a) Quantitative comparison with baselines, including original
3D generative models. Compared with the scores of the original frameworks and other 3D generative
models, our approach successfully maintains high synthesis performance under compression. (b)
User study results. Our compression strategy preserves perceptual quality, achieving performance
nearly indistinguishable from the full model.

(a) Quantitative comparison with baselines. (b) User study results.
Metrics B Geometric Fidelity
Model: .
odels Uni3D-11  OpenShape-T1  Size (GB)J P !mo Overall Quality
TripoSR
Splatter Img 0.1800 0.0681 0.661
TripoSR 0.2994 0.1313 0.622 Lom
LGM 0.2482 0.1108 0.800 CraftsMan
Craftsman3D 0.3519 0.1455 2.322 TRELLIS

TRELLIS 0.3442 0.1455 2.175
SteplX-3D
Step1X-3D 0.3586 0.1480 2452 stepix-3p :
Step1X-3D + Ours 0.3580 0.1489 0.843 * Ours
Hy3D 2.0
Hy3D 2.0 0.3582 0.1487 2.704 Hy3D 2.0 :
Hy3D 2.0 + Ours 0.3601 0.1491 0.909 + Ours
Hy3D 2mini
Hy3D 2mini 0.3614 0.1490 1042 hy3p 2mini
Hy3D 2mini + Ours  0.3608 0.1484 0.578 + Ours

4.1 QUANTITATIVE RESULTS

In Tab.[T](a), we show the quantitative comparison results between our proposed lightweight model
and other baselines. As already shown in the previous part, we use same baseline methods including
reference models of Step1X-3D , Hunyuan3D 2.0, and Hunyuan3D 2mini. For fair comparison,
we only calculate parameter size of backbone models (Unet or Transformer), without considering
subsidiary networks such as autoencoder and condition encoders. Comparing with early methods
of Splatter Image, TripoSR and LGM, the mesh quality and perceptual scores are largely degraded
comparing with our methods although they have relative small model size. With recent models of
Craftsman3D and TRELLIS, quantitative scores are higher than other baselines, however they still do
not outperform our best model (Hunyuan3D 2mini + Ours), in terms of mesh generation quality and
model size.

We also illustrate the comparison results between reference full models and our compressed versions.
For larger models of Stepl1X-3D and Hunyuan3D 2.0, our compressed model can reduce the model
size over 50% but still show minor degradation with almost same level of performance. We also
apply further compression on already-compressed model of Hunyuan3D 2mini. Surprisingly, our
method still can be applied to small model with negligible degradation. Overall results indicate that
our proposed compression method successfully reduce the model size while maintaining synthesis
quality.

To further access the perceptual quality of our proposed method, we present user study results in
Tab. [T](b). To evaluate the quality of 3D shape generation, participants were asked two questions: (1)
whether the correspondence between the image and the generated shape was reasonable (Geometric
Fidelity), and (2) whether the quality of the generated 3D mesh was satisfactory (Overall Quality).
Details of the user study setup are provided in the App.

Consistent with our quantitative results, we observe that earlier works such as Splatter Image,
LGM, and TripoSR exhibit substantially lower perceptual mesh quality compared to other models.
Recent methods, like Craftsman3D and TRELLIS, show improvements over the earlier models
but still fall short of ours. Notably, our compressed frameworks achieve high performance nearly
indistinguishable from the full model baseline. This also demonstrates that our compression method
effectively preserves the performance of the full model.

4.2 QUALITATIVE RESULTS

We qualitatively compare our method with representative baselines across different model families as
shown in Fig.[d] Compared to the diffusion-based Splatter Image, which often struggle to capture
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Figure 4: Qualitative Comparison with Baselines. For conditional image-to-3D mesh generation,
earlier works such as Splatter Image, TripoSR, and LGM often produce meshes with lost details or
struggle to match the alignment with the input image. Recent models like Craftsman3D and Trellis
achieve good quality but still fall slightly short of ours in terms of fine details. Our models deliver
superior perceptual performance while maintaining a significantly reduced model size compared to
prior approaches.

fine details or maintain strong alignment with the input image, our approach achieves superior shape
generation quality with smaller model sizes. Against feedforward models such as TripoSR and LGM,
our method produces more detailed and faithful reconstructions, whereas the baseline often fails to
capture fine image-specific features and exhibits artifacts. In addition, compared to recent DiT-based
models (Craftsman3D, TRELLIS), our framework generates meshes with sharper details and stronger
image—shape correspondence.
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Table 2: Quantitative Comparison on Ablation Study. To verify the effect of our proposed
components, we measure image-3D shape correspondence scores on various experimental settings.
We conduct ablation study on both of Stepl1X-3D and Hunyuan3D models. (Bold: best score,

Underline: second best, Colored mark : within 1% of the best score.)

Conditions ‘ Step1X-3D Hunyuan3D 2.0 Hunyuan3D 2mini
‘ Uni3D-I 1T OpenShape-I T Size (GB) | ‘ Uni3D-I 1T OpenShape-I T Size (GB) | ‘ Uni3D-I 1T OpenShape-I T Size (GB) |

Original 0.3586 0.1480 2452 0.3582 0.1487 2.704 0.3614 0.1490 1.042
=+ Pruning (random) 0.0829 0.0375 1.123 0.1171 0.0606 1.575 0.3084 0.1356 0.954
=+ Vitality Analysis 0.3584 0.1472 1.123 0.3576 0.1491 1.575 0.3437 0.1417 0.954
= Quantization (4b) 0.3489 0.1466 0.803 0.3134 0.1351 0.709 0.3356 0.1399 0.442

Quantization (8b) 0.3601 0.1479 0.910 0.3574 0.1488 1.031 0.3426 0.1420 0.622
=+ Adaptive Quant. 0.3579 0.1478 0.843 0.3528 0.1480 0.909 0.3437 0.1425 0.578

0.843 0.909 0.578

<+ Finetuning (Ours)| 0.3580 0.1489 (53, | 0-3601 0.1491 “ccorqy | 03608 01484 "4y soq

4.3 ABLATION STUDY

Quantitative Ablation Study. For detailed evaluation of our proposed components, we show
quantitative measurement in Tab. 2] To evaluate the versatility of our proposed method, we con-
duct ablation study on 3 different models of Step1X-3D, Hunyuan3D 2.0, and Hunyuan3D 2mini.
Starting from the full-parameter original model, we first show the output from random layer pruned
model (4 Pruning (random)). Since many vital layers are removed, the overall quality of model
is significantly degraded. Then we apply our vitality-aware pruning strategy, where we prune only
non-vital layers (4 Vitality Analysis). With removing the redundant layers, we can dramatically
remove the model size with minimal performance drop. This result clearly show the effectiveness of
our proposed pruning stage.

With layer pruned model, we apply quantization to remaining layers (4 Quantization). With 8bit
quantization, we can further reduce the model size, and the performance is slightly degraded or
similar to the original model. However, with 4bit quantization, we can see the model size is further
decreased but the quality of the model has been dropped, especially for the Hunyuan3D models.
With applying our proposed adaptive quantization(+ Adaptive Quant), we can further reduce the
model from 8bit quantization while minimizing the performance drop. After using our finetuning
strategy (4 Finetuning), we are able to achieve performance of the compressed model that was nearly
identical to that of the full-parameter model. In the case of Step1X-3D, the difference between the
vital and non-vital layers is clear, therefore we can obtain a good model during the pruning step and
finetuning had little effect.

Qualitative Ablation Study. To clearly demonstrate the effect of each step in our method, we
provide qualitative comparisons as shown in Fig.[5] The model with only random pruning applied
shows severe degradation. With vitality-aware pruning, performance remains similar to the original,
though artifacts appear in the Hunyuan3D models. Under uniform 4-bit quantization, performance
drops while quality is partially restored when applying our adaptive quantization. Nevertheless, the
Hunyuan3D models still exhibit artifacts. After finetuning, all models achieve results almost identical
to those of the full-parameter models.

5 CONCLUSION

In this work, we address the challenge of reducing the computational burden of large image-to-3D
generative models while maintaining high synthesis quality. We present a vitality-aware compression
framework that integrates layer pruning, adaptive quantization, and targeted fine-tuning to system-
atically reduce model complexity. Through extensive experiments on state-of-the-art architectures,
including Step1X-3D, Hunyuan3D 2.0, and Hunyuan3D 2mini, our approach achieves over 50%
reduction in model size with minimal degradation in 3D shape fidelity. These results highlight
that analyzing layer vitality effectively identifies structural redundancies within DiT architectures,
enabling substantial compression while avoiding performance degradation in 3D shape synthesis.
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Figure 5: Qualitative Comparisons on Ablation Study. With random pruning, the model suffers
from severe mesh degradation. In contrast, pruning only non-vital layers yields results nearly identical
to the original. Applying 4-bit quantization causes noticeable detail loss, especially in the Hunyuan
models. Adaptive quantization attains quality comparable to 8-bit while further reducing size. Finally,
combined with our finetuning, the compressed model achieves results almost indistinguishable from
the original.

Our framework, as the first approach for physical model compression of 3D shape generative models,
opens up new possibilities for scalable, plug-and-play 3D generation in resource-constrained and
interactive environments.
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APPENDIX

In this appendix, we provide additional experimental details (App.[A), user study settings (App. [B)),
and supplementary methodological explanations (App.|[C). We also include extended results for both
baseline comparisons (App.[D.T) and ablation studies (App.[D.2), a detailed analysis of vitality layers
(App. [E), as well as discussions on limitations and future directions (App. [F). Finally, we describe
the use of large language models (LLMs) throughout our workflow (App. @

A ADDITIONAL EXPERIMENTAL DETAILS

For Hunyuan3D 2.0, we set 74 = 0.18 and 7, = 0.17 for layer pruning in double-block and
single-block DiT, respectively, and apply thresholds of 0.21 and 0.16 for adaptive quantization of
double-block and single-block layers. Meanwhile, since we observe that every double-block layer
in Hunyuan3D 2mini plays a significant role in shape generation (Fig. [E), we do not apply layer
pruning and set all layers to 8-bit in quantization except for layer 4. For the single-block layers in the
same model, we set 7, = 0.192 to remove redundancy, and apply thresholds of 0.2 for single-block
layers, respectively, to determine whether a layer should be assigned higher (8-bit) or lower (4-bit)
bits during adaptive quantization.

For each model, the indices of the target layers (with indexing starting from 0) are as follows:
Step1X-3D has target layers at index 3 for the double-block and 2 for the single-block. Hunyuan3D
2.0 has target layers at index 11 for the double-block and 26 for the single-block. Hunyuan3D 2Mini
has target layers at index 4 for the double-block and 12 for the single-block.

Furthermore, we conduct model compression experiments under the following training settings:
Step1X-3D is trained for 22 hours on 2 A100 GPUs with a batch size of 10 per GPU; Hunyuan3D
2.0 requires 50 hours on 2 A100 GPUs with a batch size of 3 per GPU; and Hunyuan3D 2mini is
trained for 14 hours on a single A200 GPU with a batch size of 20.

B USER STUDY DETAILS

We conducted a user study involving 31 participants. For each question, six different input image
setups were presented, and the participants were asked to assign a score from 1 (low) to 5 (high).
Each question included the mesh output of the original model subject to compression, along with
the results of other baselines, as described in Tab. Ekb), which were randomly shuffled before being
attached to the survey. The evaluation questions consist of:

* Geometric fidelity: on a scale from 1 to 5, rate how reasonable the generated shape
represents the overall geometry of the object in the input image.

* Overall synthesis quality: evaluate each generated 3D shape on a 1-5 scale, where 5
indicates highest synthesis quality and 1 indicates the lowest.

C METHODOLOGICAL DETAILS

C.1 COMPARISONS ON ROBUSTNESS OF VITALITY METRICS

We validate the robustness of our vitality-aware metrics using the double-layer DiT block from the
Step1X-3D model [2025)), with 210 images used for vitality analysis. To assess stability
across sampling densities, we vary the number of points extracted from the meshes (5k, 10k, and 15k)
and report the resulting Chamfer Distance (CD) and Earth Mover’s Distance (EMD) in Tab. El We
observe that deeper layers (e.g., layers 7—11) are more sensitive to sampling density, with CD values
changing significantly as the sampling density varies. This instability arises from CD’s dependence
on nearest-neighbor correspondences, which makes it sensitive to sampling density and spatial
distribution.

In contrast, EMD remains comparatively stable, with differences no greater than 5% relative to our
main results (measured with 10k points), even when using only 5k sampled points. This indicates
that EMD provides a more stable measure of geometry correspondence under varying sampling
conditions.
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Table A: Quantitative Comparison for Robustness of Vitality Metrics on Step1X-3D. Comparison
of Chamfer Distance (CD) and Earth Mover’s Distance (EMD) across training scales (5k, 10k, 15k
samples) on the double-layer DiT block of the Step1X-3D CD diff and EMD diff denote percentage
deviations from the 10k baseline. Note that all differences are reported in absolute values.

#i | 10k Points | 15k Points | 5k Points
index
‘ CD EMD ‘ CD EMD CD diff (%) EMD diff (%) ‘ CD EMD CD diff (%) EMD diff (%)

0 0.1641 0.5116 0.1720 0.5159 4.82 0.82 0.1711 0.5078 4.28 0.75
1 0.0628 0.3152 0.0759 0.3294 20.92 4.50 0.0790 0.3253 25.87 3.21
2 0.0613 0.3270 0.0633 0.3414 3.31 4.38 0.0646 0.3281 5.46 0.31
3 0.0160 0.2136 0.0134 0.2064 16.06 3.36 0.0134 0.2055 16.22 3.81
4 0.0404 0.2970 0.0436 0.3037 7.88 2.28 0.0401 0.3015 0.74 1.53
5 0.0138 0.2170 0.0179 0.2149 29.60 0.94 0.0159 0.2127 14.99 1.97
6 0.1183 0.4822 0.1244 0.5047 5.18 4.66 0.1218 0.4833 3.01 0.23
7 0.0012 0.1591 0.0007 0.1554 40.62 2.30 0.0013 0.1566 12.16 1.57
8 0.0014 0.1597 0.0008 0.1594 40.22 0.16 0.0014 0.1530 2.67 4.17
9 0.0010 0.1588 0.0006 0.1559 43.83 1.83 0.0012 0.1547 16.44 2.59
10 0.0009 0.1591 0.0004 0.1556 51.70 2.23 0.0011 0.1568 30.77 1.46
11 0.0010 0.1595 0.0005 0.1575 50.03 1.24 0.0012 0.1551 16.17 2.73

Original
Result

Original 19 (7519 a6 16wy {1g,1¢, 14,14, 14},
Result Wi }0’{11 }0 vt }0'{11 }0 {l{a‘?lfilg?l??lgi}

Layer Pruning

Figure A: Details of Layer Pruning Process. (a) Applying identical pruning criteria to both double-
and single-block layers in Hunyuan3D 2.0 causes geometric distortion. We therefore use distinct
thresholds for the two layer types to preserve structural fidelity. (b) Layer elimination process of
Step1X-3D. Minor details change below the threshold, but beyond it, the mesh structure collapses.
Below the threshold, only fine details are altered, whereas exceeding it causes the mesh structure to
collapse.

Overall, these results demonstrate that the vitality-aware EMD metric remains robust across changes
in sampling resolution, preserving consistent behavior at different point densities, whereas CD
becomes increasingly unreliable when fewer samples are used.

C.2 IDENTIFICATION OF NON-VITAL LAYERS FOR PRUNING

Figure[Al(a) shows a failure case when the same pruning criterion is applied to both double-block and
single-block layers. Specifically, we compare our method against a pruning attempt on Hunyuan3D
2.0 using a shared threshold of 74 = 75 = 0.18. The geometry becomes severely distorted when
applying the same standard to both layers. Based on this observation, we adopt separate pruning
criteria for double- and single-block layers.

Meanwhile, as mentioned in Sec. [3.2] we sequentially eliminate layers beginning with those that
have the lowest vitality scores, tracking how the results diverge from the baseline model output. The
procedure is illustrated in Fig.[A](b). We observe that up to a certain threshold, only minor details
are affected while the overall shape remains similar. However, beyond this point, the mesh structure
becomes completely distorted.
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4-bit Option A Option B 8-bit

Input

i stricter Standard relaxed

v lower Memory Cost higher
Figure B: Results of Ablation of Adaptive Quantization Strategies on Step1X-3D. A stricter
quantization setting in adaptive quantization leads to a more degraded initial model state. When
comparing the marked regions across the results, a clear synthesis degradation can be observed as
stricter quantization criteria are applied. Consequently, achieving higher compression rates at this
stage requires more extensive finetuning under the same layer pruning configuration.

C.3 CRITERIA FOR ADAPTIVE QUANTIZATION

We compare the results before and after finetuning using different adaptive quantization thresholds,
as shown in Fig.|B} Increasing the strictness of the threshold makes it progressively more difficult
to preserve the original model performance. Although the threshold in adaptive quantization can
be freely chosen by the user, applying a stricter setting generally requires longer training or more
extensive finetuning to maintain stability.
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Figure C: Additional Qualitative Comparison with Baselines. Our lightweight model generates
meshes of higher quality than other baselines, similar to the original model.
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Table B: Additional Quantitative Comparison on Ablation Study. We evaluate geometric cor-
respondence metrics (V-IoU and SS-IoU) under various ablation settings for both Step1X-3D and
Hunyuan3D models. This demonstrates that our approach effectively mitigates performance degrada-
tion during compression across diverse DiT-based foundation frameworks.

Conditi ‘ Step1X-3D Hunyuan3D 2.0 Hunyuan3D 2mini
onditions
| V-IoU (%) t SS-IoU (%) 1 V-IoU (%) 1 SS-IoU (%) 1 V-IoU (%) 1 SS-IoU (%) 1
Original - - - - - -
= Pruning (random) 6.01 9.16 27.50 27.94 59.53 55.73
< Vitality Analysis 79.27 77.29 71.32 68.66 74.08 72.05
=+ Quantization (4b) 62.56 44.69 51.49 49.49 69.40 66.34
Quantization (8b) 69.25 67.09 69.32 66.64 73.72 71.71
=+ Adaptive Quant. 61.11 58.60 68.06 65.21 72.66 69.71
=+ Finetuning (Ours) ‘ 71.12 68.82 72.04 68.31 73.77 70.36

D ADDITIONAL RESULTS

D.1 QUALITATIVE RESULTS FOR BASELINE COMPARISON

Additional qualitative comparison results can be found in Figure [C| This demonstrates that our
approach achieves higher performance in 3D shape synthesis compared to existing baselines including

recent DiT-based generative models (Li et al.} 2024} [Xiang et al.l 2025)), as the original model does.

D.2 ABLATION STUDY

Table C: VRAM Allocation and Inference Quantitative Results To validate geometric con-

Comparison. We report VRAM usage and sistency during compression, we additionally pro-
inference time during the denoising process vide quantitative ablations using volume and sur-

on a single NVIDIA RTX 3090 GPU. face IoU metrics measured bet\yeen the original and
compressed models, as shown in Tab. [B] Although
Model | Variant | VRAM (GB) | Time(s) . our compressed models achieve slightly lower per-
Step1X.3D ‘ Vanilla 6.881 4773 formance than those using only vitality-aware layer
P Ours 3463 18.06 pruning, considering the exact model size reported in
Hunyuan3D 2.0 ‘ Vgnirlia i. (1)2; 2.;431 Tab.P]and the pverall quality 111ustrat.ed in F.lg. Bl our
u : : method effectively restores synthesis quality while

Hunyuan3D 2mini | Y2112 3.944 155 requiring minimal computational overhead.

Ours 3.333 1.45

We also evaluate inference-time savings through our
compression process as in Tab.[C} Since our approach
involves a layer pruning step that dynamically reduces the model size (as shown in Tab.[2), it also
improves inference efficiency in both time and memory usage, even though the primary objective is
physical model compression. Since Step1X-3D undergoes the most extensive pruning, it achieves
the greatest reduction in inference cost. Meanwhile, the Hunyuan models show more moderate
improvements since we apply a less aggressive strategy in pruning layers before the subsequent steps.
Additional system-level optimization for quantized layers could further improve efficiency in the
inference stage.

Qualitative Results Further qualitative ablation results for Hunyuan3D 2.0 and Hunyuan3D 2mini
are presented in Fig.[D]and Fig.[E] respectively. In Hunyuan3D models, naive pruning and quantization
lead to floaters and collapsed geometry, whereas our compression method produces models that
closely match the original in quality.

Component-Wise Ablations Before Finetuning Figure [F] visualizes the reconstruction quality
after applying possible conditions of pruning and quantization on Hunyuan3D 2.0, as well as the
model’s initial state before finetuning. By comparing the outputs of the vanilla and pruned models
across different quantization conditions, we show that our vitality-based pruning approach reduces
spatial cost with minimal degradation in synthesis quality. Furthermore, as also shown in Fig. ]
applying 4-bit quantization to all layers causes the model to struggle in forming coherent overall
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Figure D: Additional Qualitative Ablation Results of Hunyuan3D 2.0. Naive pruning and quanti-
zation introduce floaters and geometry collapse, while our method preserves quality nearly identical
to the original.

structures, whereas quantizing all layers to 8-bit yields output quality that is nearly identical to the
non-quantized model. In comparison to these models, our adaptive quantization strategy achieves a
greater reduction in model size with substantially less degradation in performance. Despite these
improvements, a residual discrepancy remains between the outputs of the vanilla model and ours,
highlighting the necessity of the finetuning stage.

Selection of Finetuning Strategies To analyze the impact of different finetuning strategies, we
conduct an ablation study on Hunyuan3D models [2023)), comparing (i) full finetuning, (ii)
selective finetuning applied only to the double- and single-block layers with the highest vitality scores
(i.e., “Max-vital” layers), and (iii) our proposed approach. Tab. [D]presents quantitative comparisons
of different finetuning strategies on the Hunyuan3D models. We also provide qualitative ablations of
the same models in Fig. |G} We observe that training becomes unstable when all layers of the DiT
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Figure E: Additional Qualitative Ablation Results of Hunyuan3D 2mini. Naive pruning and
quantization introduce floaters and geometry collapse, while our method preserves quality nearly
identical to the original.

architecture are finetuned simultaneously. Moreover, targeting only the “Max-vital” layers during
finetuning often struggles to effectively mitigate degradation under compression, as it is difficult to

recover finer details. To ensure both stability and effectiveness, our approach instead focuses on the
“Min-vital” layers.

E DETAILED ANALYSIS OF VITALITY LAYERS

E.1 ANALYSIS WITH CHAMFER DISTANCE METRICS

To support the proposed vitality score calculation method, we further show the vitality score analysis
on different distance metrics in Fig. [ We show the analysis results of Chamfer distance. The
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Figure F: Component-wise Ablations Before Finetuning on Hunyuan3D 2.0. Compared with other
configurations, our approach (highlighted in the red box) effectively reduces memory cost with less
degradation in generation quality. This remaining degradation indicates the need for an additional
finetuning stage, as used in our method.

Table D: Qualitative Comparison of Ablated Finetuning Strategies on Hunyuan3D Models
Our approach yields a more stable finetuning process than other strategies, improving overall shape
quality.

| Hunyuan3D 2.0 | Hunyuan3D 2mini
Strategy | Uni3DI1  OpenShapelt V-IoU (%) 1 SS-IoU (%)% | Uni3D-I1  OpenShape-I? V-IoU (%) 1  SS-IoU (%) 1
Full-finetuning 0.1766 0.0865 28.69 29.06 0.3210 0.1363 45.00 40.50
w/ “Max-vital” 0.3541 0.1490 61.50 56.68 0.3605 0.1479 66.93 62.28
Ours ‘ 0.3601 0.1491 72.04 68.31 ‘ 0.3608 0.1484 73.77 70.36

quantitative analysis mostly follow the analysis result using EMD. Again, the analysis of Chamfer
distance also show clear difference of layer contribution to output image. As shown in our analysis
graph of Fig.[J]| we set non-vital layers as double block 7-11 and single block 7-23. In the qualitative
analysis results, we can still observe that changes in vital layers (single 0-6 , double 0-6) produce
significant deformation or degradation of detailed structure, while changes in non-vital layers do not
make any major difference. The qualitative analysis again confirm our analysis results.

E.2 ANALYSIS ON HUNYUAN3D MODELS

We also conduct a layer analysis on Hunyuan3D 2.0 using our vitality score computation method in
Fig.|Kl Similar to Step1X-3D, we are able to distinguish between vital and non-vital layers; however,
unlike Step1X-3D, where all layers beyond a certain index are non-vital, the Hunyuan model shows a
mixed ordering of vital and non-vital layers. Moreover, the difference between vital and non-vital
layers is less pronounced compared to Step1X-3D. This observation is also reflected in our ablation
study: while Stepl1X-3D maintains performance close to the full model with layer pruning alone, the
Hunyuan model exhibits slight artifacts without training. In case of qualitative analysis in Fig.[[]
modification of vital layers show severe deformation from original generated mesh as expected. When
we remove non-vital layers which has small distance, the output meshes still show slight difference
in high-frequency details.

For the Hunyuan3D 2mini model (Fig.[M)), which is already a compressed model with significantly
fewer layers than the original, our layer analysis reveals that the number of layers with low vitality
score (which can be regarded as non-vital) is fewer compared to larger-scale models. Consequently,
the number of layers that can be pruned is more limited. Instead, we focus more on adaptive
quantization with using used more 4-bit layers. In our qualitative analysis in FigurdN] we can see that
when removing the double layers, all the mesh outputs show geometric deformation from original
meshes. In single block layers, we can also see there are some level of deformation in mesh details
when removing front layers (0-13).
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Figure G: Qualitative Ablation of Finetuning Strategies on Hunyuan3D models. The “Max-vital”
layers denote those with the highest vitality (i.e., contribute the most) per DiT block. We observe that
fine-tuning only the lowest-vital (“Min-vital”) layers leads to more stable learning.
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Figure H: Limitations. Since our approach aims for model compression while “maintaining” perfor-
mance, the compressed model still shares core geometric limitations of the original framework.

F LIMITATIONS AND FUTURE WORK

As mentioned in the main paper, our method successfully compresses 3D DiT models, achieving up
to a 66% reduction in model size while maintaining nearly identical performance to the full-parameter
model. While our quantization method supports precision down to 4 bits, we did not examine
more extreme configurations (e.g., 1-bit or 2-bit), which would require dedicated hardware-level
implementations. Nevertheless, since our approach introduces general methodology for 3D generation
model compression with layer-wise analysis, we expect it could be combined with hardware-level
quantization research to achieve even greater compression efficiency.

Furthermore, our compressed framework does not overcome the core geometric and topological
limitations inherent in the original model. As shown in Fig.[H] Hunyuan-based models often fail to
reconstruct accurate 3D structures from flat or stylized illustrations. Because our approach relies
on distillation-based fine-tuning to match the original model’s performance, these fundamental
limitations are still preserved after compression.

As future work, we intend to further accelerate inference of the compressed model by reducing
sampling steps and eliminating classifier-free guidance via knowledge distillation. In addition,
we plan to extend our method to texture generation models, with the goal of building an efficient
framework where both shape and texture generation are optimized. In parallel, since the current
thresholds are manually tuned for each architecture, we plan to automate this process using relative
vitality values across architectures. This will maintain the plug-and-play property while improving
general applicability.
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G LLM USAGE

We utilized large language models (LLMs) exclusively for two purposes: (i) writing assistance and
text refinement, including grammar checking and readability improvement, and (ii) generating input
text descriptions required for the vitality layer analysis and evaluation. Specifically, for the second
usage, we employed LLMs to sample text descriptions from Objaverse (Deitke et al.,[2023) in a way
that maximized category diversity while minimizing redundancy. Importantly, LLMs were not used
for data analysis, interpretation, or generating any core research content.
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