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ABSTRACT

Image generation is a prevailing technique for clinical data augmentation for ad-
vancing diagnostic accuracy and reducing healthcare disparities. Diffusion Model
(DM) has become a leading method in generating synthetic medical images, but
it suffers from a critical twofold bias: (1) The quality of images generated for
Caucasian individuals is significantly higher, as measured by the Fréchet Incep-
tion Distance (FID). (2) The ability of the downstream-task learner to learn critical
features from disease images varies across different skin tones. These biases pose
significant risks, particularly in skin disease detection, where underrepresentation
of certain skin tones can lead to misdiagnosis or neglect of specific conditions.
To address these challenges, we propose FairSkin, a novel DM framework
that mitigates these biases through a three-level resampling mechanism, ensuring
fairer representation across racial and disease categories. Our approach signif-
icantly improves the diversity and quality of generated images, contributing to
more equitable skin disease detection in clinical settings.

1 INTRODUCTION

Artificial intelligence (AI) is revolutionizing healthcare, particularly in medical imaging, where it
enhances diagnostic accuracy and helps reduce healthcare disparities (Li et al., 2023; Liu et al.,
2024; Bianchi et al., 2023; Akrout et al., 2023). One critical application of AI is image genera-
tion (Bianchi et al., 2023; Chen, 2023; Zhang et al., 2023; Hung et al., 2023; Lee et al., 2024),
used for augmenting clinical data to improve disease detection, support rare condition diagnosis,
and provide clinicians with more comprehensive insights. Among the leading models for synthetic
medical image generation is the Diffusion Model (DM) (Akrout et al., 2023; Zhang et al., 2023),
which has shown significant potential across various medical imaging tasks, including skin disease
detection (Kazerouni et al., 2023; Benjdira et al., 2024; Groh et al., 2024).
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(Long Tail)

Count

DarkLight Skin
Color

FairSkin
(Our proposal)

Data Balance Train Balance

Downstream 
Balance

Acc
Race

Afr ican Asian Caucasian

before
after

Figure 1: Overview of skin disease im-
balance and the FairSkin framework:
addressing long-tail distributions in skin
disease data (Left) and improving fairness
across racial groups through three-level re-
sampling (Right).

However, despite these advancements, the use of Dif-
fusion Models for medical image generation is hin-
dered by significant bias. In this paper, we identify
a twofold bias that limits the fairness and effective-
ness of these models in clinical applications. First,
the quality of images generated for African individuals
is substantially lower, as evidenced by higher Fréchet
Inception Distance (FID) scores, compared to images
generated for other ethnicities. Second, downstream
learners extract meaningful features from disease im-
ages of different skin tones with varying effectiveness,
which in turn affects the accuracy of diagnosis.

These biases are particularly concerning in the detec-
tion of skin disease, where the appearance of con-
ditions can vary significantly across skin tones. As
demonstrated in Figure 1, certain skin tones are usu-
ally underrepresented and in the long tail of skin disease data, increasing the risk of misdiagnosis or
delayed diagnosis, exacerbating existing health disparities (Khatun et al., 2024). Addressing these
biases is crucial for ensuring that AI-driven diagnostic tools benefit all patient populations equitably.
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To tackle these challenges, we propose FairSkin, a novel framework designed to mitigate racial
biases in medical image generation using a three-level resampling mechanism. Our method em-
ploys ❶ balanced sampling and ❷ a class diversity loss during DM training, ensuring that underrep-
resented ethnic groups are fairly represented both in quantity and quality. In addition, we enhance
downstream performance by ❸ employing imbalance-aware augmentation and dynamic reweighting
techniques, promoting fairness in classification tasks.

The contributions of this work are as follows:

• Bias identification: We identify a critical twofold bias in Diffusion Models, favoring Caucasian
individuals in both representation and image quality for skin disease detection. We analyze the
underlying causes of this bias, highlighting data imbalances and the challenges in distinguishing
between certain skin tones.

• Fairness enforcement: We introduce FairSkin, a novel framework that improves the diversity
and quality of generated images for underrepresented groups, and ensures fairer classification
performance across ethnicities.

• Experiment validation: We demonstrate through experiments that our framework significantly
improves the fairness, quality, and diagnostic utility of generated medical images, promoting eq-
uitable healthcare outcomes.

2 RELATED WORK

2.1 IMAGE GENERATION FOR MEDICAL DISEASES

Image generation for medical diseases is a burgeoning field that leverages generative models, such
as Generative Adversarial Networks (GANs) (Ma et al., 2021), Variational Autoencoders (VAEs)
(Volokitin et al., 2020), and Diffusion Models (DMs) (Akrout et al., 2023), to create synthetic med-
ical images. This technology facilitates addressing critical challenges in the medical domain (Kaze-
rouni et al., 2023), such as the scarcity of labeled data, privacy concerns, and the lack of experts.
Compared to GAN-based and VAE-based methods (Frid-Adar et al., 2018; Rais et al., 2024; Cetin
et al., 2023), DM-based strategies have been widely utilized for data augmentation in the medical
domain. For instance, Chen (2023) utilized DM for data augmentation for image classification of
the Cell Cycle Phase, indicating a high potential in addressing issues related to insufficient data or
unbalanced sample sizes. Recently, conditional diffusion models (Zhang et al., 2023) have gained
significant attention in medical image generation for their flexibility and performance, achieving
state-of-the-art results in tasks such as MRI (Dorjsembe et al., 2024), X-ray (Hung et al., 2023),
and skin disease generation (Akrout et al., 2023; Borghesi & Calegari, 2024), and demonstrating
comparable classification performance even with fully synthetic data. All the works have proved the
effectiveness of DM in medical image generation. However, all the above approaches only consider
generation quality, ignoring the bias existing in the generation process, which may limit the fairness
for specific tasks.

2.2 BIAS IN IMAGE GENERATION

With the growing prevalence of generative artificial intelligence, concerns over bias in image gen-
eration have garnered significant attention due to its potential to influence social perceptions and
cognition (Yang et al., 2024; Bragazzi et al., 2023). Recent studies have identified systematic gen-
der, racial, and cultural biases in prominent image generation models such as GPT-4 (Waisberg
et al., 2023), Stable Diffusion (Rombach et al., 2022b), and DALL·E 2 (Ramesh et al., 2021; Zhou
et al., 2024). For instance, Zhou et al. (2024) reported gender disparities in occupational portray-
als, with fewer female representations compared to males, and a racial bias favoring White indi-
viduals over Black individuals. Similarly, Wang et al. (2023) observed gender associations with
personal interests, linking “science” with men and “art” with women. Moreover, cultural biases
have been found, with images predominantly reflecting over-represented cultures like the United
States over others (Basu et al., 2023). Such biases will lead to consequences, especially for skin
disease detection, where underrepresentation of certain skin tones can lead to severe misdiagno-
sis (Babool et al., 2022; Pundhir et al., 2024). Recent efforts have focused on two main strategies:
(1) weight refinement through fine-tuning or model editing (Jin et al., 2024), and (2) data reorgani-
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Figure 2: An overview of the FairSkin framework, illustrating the pipeline from an imbalanced
dataset to balanced diffusion model (DM) training and downstream balancing. The process includes
class balanced and square root random sampling methods for training data, balanced DM training
incorporating class diversity loss, and downstream balancing through imbalance-aware augmenta-
tion and dynamic reweighting based on validation accuracy.

zation via prompt-based techniques (Wan & Chang, 2024), conditional generation (He et al., 2024),
and re-sampling (Zameshina et al., 2023). Distinct from these methods, our FairSkin frame-
work employs a comprehensive re-sampling strategy tailored to the skin disease, integrating specific
considerations related to training data, objectives, and downstream tasks to achieve better fairness.

3 METHODOLOGY

3.1 PROBLEM SETUP

In this study, we address the generation and classification of skin diseases across different racial
groups, specifically focusing on three racial categories: Asian, African, and Caucasian. The classi-
fication task involves five distinct skin diseases: Allergic Contact Dermatitis, Basal Cell Carcinoma,
Lichen Planus, Psoriasis, and Squamous Cell Carcinoma. The dataset utilized in this study is de-
noted by S, comprising N samples. Each sample is represented as a triplet (xi, ri, di), where

S = {(xi, ri, di)}Ni=1,

with xi ∈ X representing the input data (e.g., skin images), ri ∈ R denoting the race class, and
di ∈ D indicating the skin disease class of the i-th sample.

A significant challenge in this classification task is the imbalance in the distribution of samples
across different race and disease classes. Let Nr,d denote the number of samples belonging to
race r and disease d, where r ∈ R and d ∈ D. The dataset exhibits imbalance in the following
ways: Firstly, there is a race-class imbalance, meaning that the number of samples across different
races is not uniform. For each race r ∈ R, the total number of samples Nr is given by Nr =∑

d∈D Nr,d. The distribution {Nr} is imbalanced, i.e., there exist races r1 and r2 such that Nr1 ̸=
Nr2 . Secondly, within each race r, there is a disease-class imbalance, where the distribution of skin
disease classes varies significantly. For each race r, the number of samples for disease d is

Nr,d = |{i | ri = r, di = d}| .

This variation leads to the underrepresentation of certain diseases within specific races, exacerbating
the overall class imbalance in the dataset. The primary objective of this study is to develop a genera-
tive model that generates the skin disease image conditioned on both the race and disease classes. To
achieve this, we propose the FairSkin framework, which integrates balanced sampling strategies
and class diversity loss within a diffusion model (DM) to mitigate the identified imbalances. The
framework also incorporates downstream balancing techniques to ensure fair classification perfor-
mance across all races.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 TRAINING DATA RESAMPLING

To address the imbalance in the dataset, we employ two resampling strategies: Class Balanced
Random Sampling (CBRS) and Square Root Random Sampling (SQRS). These methods aim to
ensure that the training data fed into the diffusion model maintains a balanced representation across
both race and disease classes.

Class Balanced Random Sampling. CBRS ensures that each class within the dataset is equally
represented during the training process. To mitigate class imbalance, we introduce a reweighting
technique where each sample is assigned a weight inversely proportional to its class frequency.
Formally, for each (r, d) pair, the weight wr,d is defined as: wr,d = 1

Nr,d
, where Nr,d is the number

of samples belonging to race r and disease d. During training, these weights are incorporated into
the loss function to ensure that minority classes contribute proportionally more to the overall loss,
thereby encouraging the model to learn equally from all classes.

Importantly, we utilize all available samples without restricting the number of samples per class
based on the minimum class size. This approach allows the model to leverage the full diversity of
the dataset while addressing imbalance through reweighting.

Square Root Random Sampling. SQRS is designed to balance the representation of classes by
assigning weights based on the square root of their class frequencies. Specifically, for each (r, d)
pair, the weight wr,d is set to: wr,d = 1√

Nr,d

, where Nr,d is the number of samples belonging to

race r and disease d. This weighting scheme reduces the dominance of majority classes more gently
compared to CBRS, allowing for a more nuanced balance between oversampling minority classes
and retaining information from majority classes.

3.3 BALANCED DM TRAINING

Training DM in a balanced manner is pivotal to prevent the propagation of existing data imbal-
ances into the generative process. This subsection outlines the original diffusion model training and
promoting class diversity loss.

Original Diffusion Model Training. The original diffusion model training adheres to the standard
methodology, wherein the model learns to reverse a predefined noise diffusion process to generate
high-fidelity images. The training objective is to minimize the discrepancy between the generated
images and the real images in the dataset. Mathematically, the loss function commonly used is the
Variational Lower Bound (VLB), defined as:

LDM = Ex,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
,

where x represents the original data sample, ϵ is Gaussian noise added to x, t denotes the timestep
in the diffusion process, xt is the noised version of x at timestep t, and ϵθ is the neural network
parameterized by θ that predicts the noise. The objective is to train ϵθ such that it accurately predicts
the noise ϵ added to x, thereby enabling the model to reconstruct the original image from the noised
version during the reverse diffusion process.

Promoting Class Diversity Loss. To counteract potential mode collapse and ensure that the dif-
fusion model generates a diverse set of images across all race and disease classes, we introduce a
Class-Balancing Diffusion Model (CBDM) (Qin et al., 2023). CBDM incorporates a class diversity
loss component Lr designed to enforce equitable representation of each (r, d) class during the image
generation process.

The regularization term Lr is formulated to promote class diversity by penalizing discrepancies in
noise predictions across different classes. Specifically, Lr penalizes the model if the noise estimated
under the true class label y significantly differs from the noise estimated under a randomly sampled
class label y′. This mechanism discourages the model from becoming biased towards majority
classes and encourages it to maintain consistency across all classes. The regularization term Lr is
defined as:

Lr(xt, y, t) =
t

|Y |
∑
y′∈Y

∥ϵθ(xt, y)− ϵθ(xt, y
′)∥2,
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where ϵθ(xt, y) is the estimated noise given the noisy image xt and class label y, ϵθ(xt, y
′) is the

estimated noise given the noisy image xt but treated as class y′, t is a scaling factor proportional to
the diffusion step, |Y | is the number of classes.

By promoting the class diversity loss through CBDM, the FairSkin framework effectively mit-
igates class imbalance in the generative process, ensuring that the diffusion model produces a bal-
anced and diverse set of images across all race and disease classes.

3.4 DOWNSTREAM BALANCING

After training the diffusion model, it is essential to ensure that the classification performance with
generated data augmentation remains balanced across all race and disease classes. The FairSkin
framework incorporates two downstream balancing techniques: Imbalance-aware Augmentation and
Dynamic Reweighting. These strategies enhance the classifier’s ability to perform equitably across
different race and disease classes.

Imbalance-aware Augmentation. Imbalance-aware Augmentation leverages the trained diffu-
sion model to generate synthetic samples for underrepresented (r, d) classes, thereby augmenting
the training dataset to achieve a more balanced distribution. This process involves generating a
specified number of synthetic images conditioned on each minority class to compensate for their
scarcity in the original dataset. Formally, for each minority (r, d) pair, the diffusion model gener-
ates mr,d synthetic images x̂i as : x̂i = DM(zi; r, d),∀i ∈ {1, . . . ,mr,d}, where zi represents the
random noise input to the diffusion model. The generated synthetic samples are then combined with
the original dataset to form an augmented dataset Saug:

Saug = S ∪ {(x̂i, r, d)}Mi=1,

where M =
∑

r,d mr,d. The number of synthetic samples mr,d for each (r, d) pair is determined
based on the desired class distribution, typically aiming to balance the number of samples across all
classes or to achieve a predefined ratio that mitigates the original imbalance.

This augmentation strategy enriches the training data with diverse examples from minority classes,
enhancing the classifier’s ability to generalize and perform uniformly across all classes. By intro-
ducing synthetic variability, the model gains exposure to a broader range of features representative
of each class, thereby improving its fairness in classification tasks.

Dynamic Reweighting. Dynamic Reweighting dynamically adjusts the class weights during the
training of the classification model based on validation performance metrics, considering we have
train, validation, and test split. This technique ensures that classes with poorer performance receive
higher emphasis, promoting balanced learning across all classes. As training progresses, after each
epoch, the disease validation accuracy Ar for each racial class is computed. The weights are then
updated based on the inverse of the validation accuracy: wr = 1

Ar
, This update rule ensures that

classes with lower validation accuracy Ar receive higher weights, thereby increasing their influ-
ence on the loss function during subsequent training iterations. Such dynamic reweighting strategy
ensures that the classifier focuses more on classes that are underperforming, promoting balanced
performance across all race and disease classes.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

In this work, we evaluate the proposed approach based on fitzpatrick17k datasets, which contain
16,577 clinical images with Fitzpatrick skin type labels. We selected the top 5 disease classes from
the Fitzpatrick17k dataset (Groh et al., 2021) and further divided them into 15 sub-classes based on
race labels with at least 12 images and a maximum of 412 images per class as shown in Table 4 in
Appendix A. We split each subcategory into training, validation, and test sets in an 8:1:1 ratio. We
evaluate FairSkin using two sets of metrics: generation quality and fairness.

Fréchet Inception Distance (FID): We use FID (Heusel et al., 2017) to evaluate the similarity
between generated images and real images in the feature space. By using a pre-trained Inception
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network to extract features from both real and generated images, a lower FID score indicates better
image generation quality.

FID Variance: In addition, we calculated the FID values for each of the 15 subcategories and
computed the variance, resulting in the FID Variance Score, which is used to indicate the fairness of
the generated image quality.

Inception Score (IS score): IS is a commonly used metric for evaluating the quality of images
generated by models such as GANs. It assesses the model’s performance by measuring both the
quality and diversity of the generated images.

Demographic Parity (DP): DP is a widely used fairness metric in classification tasks that evalu-
ates whether the proportion of positive outcomes is the same across different demographic groups.
Formally, DP is expressed as DP =

∑
z∈Z

∣∣∣p(Ŷ = 1)− p(Ŷ = 1 | Z = z)
∣∣∣, where p(Ŷ = 1) rep-

resents the overall probability of a positive classification outcome, and p(Ŷ = 1 | Z = z) denotes
the probability of a positive classification outcome for demographic group Z = z. The summation
of the absolute differences across all demographic groups Z reflects the level of demographic par-
ity, with smaller values indicating greater fairness. This approach to ensuring fairness aligns with
the framework described in (Agarwal et al., 2018), which proposes a reduction method to address
fairness in classification tasks by reducing the problem to a sequence of cost-sensitive classification
problems, allowing for efficient and fair classification across various groups.

Equity-Scaled Segmentation Performance (ESSP): ESSP is introduced in (Tian et al., 2024) as a
fairness-aware metric for segmentation tasks. It adjusts traditional segmentation metrics by incor-
porating the disparity in performance across demographic groups. It is calculated as:

ESSP =
A(ŷ, y)

1 + ∆

where A(ŷ, y) represents the segmentation accuracy, and ∆ denotes the disparity in performance
across different demographic groups. A lower ∆ indicates more equitable performance across
groups, resulting in a higher ESSP score. This metric allows for the evaluation of both overall
performance and fairness in medical image segmentation. The segmentation accuracy A(ŷ, y) in
this context is replaced with our classification validation accuracy, where ŷ is the predicted label by
the model and y is the true label. ∆ is actually the Demographic Parity among three different demo-
graphic groups (Asian, African, Caucasian) to better align with the fairness evaluation requirements
of our classification tasks.

4.2 IMPLEMENTATION DETAILS

In the generation setting, we primarily use Stable Diffusion v1-4 (Rombach et al., 2022a) as the
backbone. Each method undergoes full fine-tuning on this model with a batch size of 8, a learning
rate of 3e-7, and a maximum of 12,000 training steps. The dataset labels and the prompts used for
generation are identical, such as “Asian people basal cell carcinoma.” For each method, we generated
1,000 images per class across 15 categories and conducted subsequent evaluations on the generated
data. The seed for each image was fixed to ensure reproducibility.

For the downstream task classifier setting, we use ViT-Base-Patch16-224 (Wu et al., 2020) as the
backbone. We fully fine-tuned the classifier on the generated images from each method, using a
learning rate of 1e-4 and training for 10 epochs, as we found that 10 epochs are sufficient and result
in the best model fit. All training and testing were conducted on 8 A6000 Ada GPUs.

4.3 MAIN RESULTS

As shown in Table 1, we evaluate the proposed FairSkin compared with the previous SOTA
method Class-Balancing Diffusion Model (CBDM) (Qin et al., 2023). Besides, we also compare
Class Balanced Random Sampling (CBRS) and Square Root Random Sampling (SQRS) as addi-
tional baselines. Evaluation results are summarized in Table 1, where all models are compared un-
der the same data augmentation numbers. The following observations can be drawn: ❶ Our model
significantly outperforms other methods in terms of fairness in generated image quality. Specifi-
cally, the FID variance value decreased by 276.63 compared to the vanilla method, and by 18.63
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compared to CBDM. We achieve this by employing Training Data Resampling to provide a more
equitable data distribution for African individuals, and by using Balanced DM Training to bring the
quality of African-related images closer to those of Caucasian and Asian groups in high-dimensional
distributions. For more detailed information, please refer to Table 2. ❷ In terms of fairness in the
downstream classifier, our model also achieves SOTA performance. By using an additional dataset
with more fairly generated images for data augmentation, the downstream model can more accu-
rately focus on disease characteristics. Additionally, by automatically adjusting the racial composi-
tion of the augmented dataset based on the validation results for each racial group, we can selectively
increase the sampling rate for underperforming groups, thus improving the model’s performance on
those groups and enhancing overall fairness.

Table 1: Comparison of our FairSkin method against baselines in both image generation tasks
and downstream tasks, evaluated using the image generation metric FID, FID Variance, IS score,
and the downstream classifier metrics DP, ESSP.

Methods ↓FID ↓FID Variance ↓DP ↑ESSP ↑IS
No Data Augmentation - - 18.22 5.11 -

Vanilla 53.19 603.74 25.04 3.76 2.39 ± 0.47
CBRS 49.52 471.38 15.28 5.85 2.32 ± 0.47
SQRS 50.29 441.62 18.03 5.08 2.35 ± 0.47
CBDM 52.31 345.74 13.13 6.11 2.52 ± 0.37

FairSkin 52.28 327.11 9.95 7.78 2.52 ± 0.38

4.4 ABLATION

We use FairSkin-SS/FairSkin-SW to represent models where Training Data Resampling uses
SQRS, Balanced DM Training uses CBDM, and Downstream Balancing uses Imbalance-aware Aug-
mentation Resample/Dynamic Reweighting, respectively. We use FairSkin-CS/FairSkin-CW
to represent models where Training Data Resampling uses CBRS, Balanced DM Training uses
CBDM, and Downstream Balancing uses Imbalance-aware Augmentation Resample/Dynamic
Reweighting, respectively. Similarly, we use FairSkin-S/FairSkin-C to represent models
where Training Data Resampling uses SQRS/CBRS, Balanced DM Training uses CBDM, and
Downstream Balancing uses random sampling, respectively.

Different Models Exhibit Different Fairness on downstream tasks. We initially investigated
the impact of various approaches in augmenting the same classifier with an equivalent volume of
supplementary data during training. As illustrated in Figure 3a and Figure 4, compared to the re-
spective baselines, the classification performance of the classifier trained with our approach exhibits
a marginal improvement in accuracy (ACC) and demonstrates a substantial enhancement in fairness
relative to the other methods.

(a) Baselines vs FairSkin (b) Performance across different augmentation sizes

Figure 3: (a) The comparison of FairSkin with baselines on downstream tasks. Under the con-
dition of no data augmentation, the classifier exhibits the worst fairness. For other methods, we
generate 7,500 images for data augmentation. FairSkin consistently demonstrates superior per-
formance across various fairness metrics compared to other methods. (b) Variation in augmented
dataset size. In this experiment, we provided an equal number of augmented images for each subcat-
egory. Augmentation-Num refers to the number of augmented images per class. The results show
that ACC, ESSP, and DP each have their own optimal number of augmented images.
Different Sampling Number Leads to Different Fairness. We evaluated the impact of adding
varying amounts of additional dataset images across different methods. As shown in Figure 3b, we
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Figure 4: ACC scores under different methods. We evaluated the ACC for different racial groups as
well as the overall ACC. Our method slightly reduced the ACC for groups with higher classification
accuracy, but significantly improved the ACC for groups with lower classification accuracy, thereby
enhancing fairness.
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Figure 5: Ethnic proportion search for imbalance-aware augmentation when using FairSkin for
downstream disease classification task. We fixed the total number of images for data augmentation
at 7,500. All images were generated using the model trained with Training Data Resampling and
Balanced DM Training. During the classifier training process, we maintained a fixed racial compo-
sition for data augmentation, for example, using a ratio of African:Asian:Caucasian = 0.3:0.2:0.5,
which corresponds to 2,250:1,500:3,750 images, with an equal number of images for each disease
type within each racial group. We calculated the classifier’s ACC, DP, and ESSP.

searched for the optimal number of images within the range of 500 to 900 for each method and
found that the ideal amount varies across different approaches. The results indicate that the number
of images should neither be too large nor too small, as more sampling leads to convergent absolute
downstream performance and exacerbated unfairness.

Ethnic Proportion and Reweighting in Third-Level Resampling. We attempted to modify the
proportion of different ethnic groups in the additional dataset during the third-level resampling to
further enhance the fairness performance of the classifier. As shown in Figure 5, we searched for
the optimal proportion across different methods and observed that the performance of each method
peaked at different proportions. In our approach, the proportion remains fixed throughout the clas-
sifier’s entire training process. Furthermore, we compared the results of applying the reweighting
method in the third-level resampling on top of different first- and second-level resampling strate-
gies, as illustrated in Figure 6. The experimental results demonstrate that the reweighting method
can improve fairness compared to using a fixed proportion at some data augmentation amounts.
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Figure 6: Dynamic reweighting effect for downstream disease classification tasks. In this experi-
ment, we fixed the total number of data augmentation samples at 7,500 and applied Imbalance-aware
Augmentation and Dynamic Reweighting separately to improve the performance of the classifier.
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4.5 GENERATION PERFORMANCE

In this section, we first present the quality of the generated images. We evaluate the image quality
by calculating the FID score. However, due to the small number of images per class in the origi-
nal dataset, the FID score tend to be relatively high. Therefore, we focus only on the differences
between the same class across different methods. Table 2 presents the FID results across different
ethnic groups for various methods, as well as the overall FID score computed without subcategory
distinction. Additionally, the variance of the FID scores across the three ethnic groups is reported to
indicate the unfairness in the quality of the generated images for different ethnicities.

Table 2: Comparison of the performance of different methods on image generation quality. It is
evident that while slightly enhancing the quality of Caucasian and Asian-related images, FairSkin
significantly improves the quality of African-related images, leading to a substantial reduction in the
FID variance.

Methods ↓Caucasian FID ↓Asian FID ↓African FID ↓Variance ↓Overall FID

Vanilla 80.96 87.01 126.22 603.74 53.19
CBRS 81.60 90.51 122.86 471.38 49.52
SQRS 84.51 87.00 122.09 441.62 50.29
CBDM 80.86 88.95 116.34 345.74 52.31

FairSkin 79.67 88.63 114.50 327.11 52.28

By using a fine-tuned ViT-Base-Patch16-224 model, which achieves the best performance in dis-
ease classification in our settings, we extract image features and use them to compute the IS score.
For each subcategory, we provide 1,000 images for IS score calculation and randomly select 3,000
images to generate t-SNE visualizations based on either race labels or disease labels, as shown in Ta-
ble 3. It is evident that our method achieves higher IS scores compared to the baseline. Additionally,
in the race label visualizations, we observe that the distribution of ethnic groups is more consis-
tent, with no clear separations, suggesting our proposed FairSkin achieves a fairer generation in
terms of different races. In the disease label visualizations, we find that the points corresponding to
different diseases in our method are more densely clustered, indicating higher distinguishability.

Table 3: Visualization of t-SNE under the disease label and race label, respectively. The number
refers to the corresponding IS score of generated images using different methods.

Vanilla:
2.39 ± 0.47

CBRS:
2.32 ± 0.47

SQRS:
2.35 ± 0.47

FairSkin-C:
2.51 ± 0.37

FairSkin-S:
2.52 ± 0.38

Vanilla (Disease) CBRS (Disease) SQRS (Disease) FairSkin-C (Disease) FairSkin-S (disease)

Vanilla (Race) CBRS (Race) SQRS (Race) FairSkin-C (Race) FairSkin-S (Race)

4.6 VISUALIZATION FOR DIFFERENT SD MODELS FOR MEDICAL FAIRNESS

As shown in Table 5 in Appendix B, we generated corresponding images for different disease types,
ethnic groups, and methods, with the seed and prompt fixed for the images in each row. Even
from the perspective of non-medical experts, it can be concluded that our method produces superior
image generation results. These advantages include a more detailed depiction of body parts, closer
alignment with human anatomical features, and more pronounced disease representations.
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5 CONCLUSION

In this paper, we address the challenge of balancing fairness and performance in image generation
and downstream classifier tasks when dealing with long-tailed datasets through FairSkin. We
introduce a novel framework and propose strategies at three levels: Training Data Resampling, Bal-
anced DM Training, and Downstream Balancing. Our approach effectively enhances the overall
quality of generated images while reducing disparities in image generation quality across different
classes. Furthermore, it improves the fairness of downstream classifiers when using generated im-
ages for data augmentation. Our comprehensive experiments demonstrate significant performance
improvements across various tasks, highlighting the practicality and effectiveness of our methods in
real-world applications.

6 BROADER IMPACT AND FUTURE WORK

The FairSkin framework has the potential to significantly impact the development of AI-driven
medical diagnostic tools by addressing racial bias in medical image generation. By ensuring fair
representation and improved image quality across diverse skin tones, this work can help reduce
misdiagnoses and healthcare disparities, particularly in dermatology. The approach presented here
contributes to broader efforts in making AI technologies more inclusive and equitable, promoting
better healthcare outcomes for underrepresented groups.

In terms of future work, we aim to extend FairSkin to other domains of medical imaging beyond
dermatology, such as radiology and ophthalmology, where racial and ethnic disparities in diagnostic
performance have also been observed. Additionally, we plan to refine the resampling techniques
and class diversity loss functions to further enhance fairness and representation. Expanding the
framework to include real-world clinical validation will also be a key focus to ensure its effectiveness
in practical healthcare settings.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed descriptions of our experimental
setup, model architecture, and training procedures in the subsection 4.2. This includes all hyperpa-
rameters, and data preprocessing steps. Additionally, the source code and scripts for reproducing
our experiments will be made publicly available, along with the configurations necessary to repli-
cate our findings. The datasets utilized in this study are publicly available and properly cited in the
reference, ensuring that other researchers can easily access and validate our work.

8 ETHICS STATEMENT

Our research focuses on generating fair and diverse skin disease images to address disparities in
medical diagnostics for underrepresented populations. We ensure that various skin tones, particu-
larly those underrepresented in existing datasets, are adequately reflected, thereby mitigating diag-
nostic bias. Our synthetic images are created without using personal data, ensuring compliance with
privacy standards such as the Health Insurance Portability and Accountability Act (HIPAA) of 1996
and the General Data Protection Regulation (GDPR) (Regulation (EU) 2016/679). Furthermore, any
generated images do not correspond to real individuals and are purely synthetic, further mitigating
any potential privacy concerns. The methodology, including model architecture and data handling,
is made transparent and reproducible. No real human subjects are involved, eliminating any risk of
harm. Additionally, we recognize the potential for misuse of this technology and advocate for its
responsible and ethical application in healthcare, ensuring that it is only applied in ways that en-
hance patient care and public health. Our work is committed to promoting health equity, improving
diagnostic fairness, and advancing inclusive healthcare solutions.
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APPENDIX

Organization. The appendix is organized as follows. Section A describes the Dataset Details.
Section B presents additional experimental results.

A DATASET DETAILS

Table 4 shows the sample count per disease and per racial group. As we can see, regardless disease
types, Caucasian people have more samples than Asian and African people have the fewest sample
counts.

Table 4: From the Fitzpatrick17k dataset, we selected five disease types that are common across
three racial groups, resulting in a total of 15 subcategories.

Squamous Cell
Carcinoma lichen planus psoriasis allergic contact

dermatitis
basal cell
carcinoma

Caucasian 329 181 412 295 302
Asian 166 183 145 108 154

African 56 120 87 25 12

B ADDITIONAL EXPERIMENTAL RESULTS

Table 5 visualizes generated skin disease images across different racial groups using stable diffusion
models by different methods. As we can see, our methods (FairSkin-C and FairSkin-S)
show more details of diseases compared to other baselines.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Visualization of medical fairness across different Stable Diffusion models. We present the
generated images from the perspectives of disease types, ethnic groups, and methods.

Vanilla CBRS SQRS CBDM FairSkin-C FairSkin-S

African people psoriasis

African people allergic contact dermatitis

African people lichen planus

Asian people psoriasis

Asian people basal cell carcinoma

Asian people squamous cell carcinoma

Caucasian people allergic contact dermatitis

Caucasian people basal cell carcinoma
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