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Abstract
Fundamental Language Models (FLMs) pro-001
pose a novel paradigm that separates linguistic002
competence from factual knowledge to address003
critical challenges in current language models,004
including hallucinations, data privacy concerns,005
and training-induced biases. This paper inves-006
tigates whether FLMs can maintain robust lan-007
guage processing capabilities while externaliz-008
ing factual knowledge. Through comprehen-009
sive evaluation of linguistic competence across010
model sizes using specialized benchmarks, we011
assess lexical, grammatical, and semantic capa-012
bilities. We also analyze how model size affects013
both linguistic and factual knowledge encoding.014
Our findings demonstrate that linguistic com-015
petence stabilizes at relatively modest model016
sizes, while factual knowledge continues scal-017
ing with model size. These results provide em-018
pirical support for FLMs as a promising re-019
search direction, suggesting that future work020
could effectively balance language understand-021
ing with external knowledge retrieval.022

1 Introduction023

Large Language Models (LLMs) have demon-024

strated remarkable linguistic capabilities, achiev-025

ing state-of-the-art performance across various nat-026

ural language processing tasks. However, these027

models often face critical challenges (Bengio et al.,028

2025) such as hallucinations—where they gener-029

ate false or fabricated information—data privacy030

concerns, and the propagation of biases inherited031

from their training data. A key factor contribut-032

ing to these challenges is the substantial volume of033

factual information that LLMs internalize during034

training, where models simultaneously encode both035

factual data and linguistic structures. This integra-036

tion makes it difficult to update factual knowledge037

without retraining and complicates efforts to ensure038

accuracy and reduce bias.039

This paper explores an alternative approach:040

Fundamental Language Models (FLMs). Instead of041

internalizing factual knowledge, FLMs aim to pre- 042

serve the core linguistic competence of traditional 043

LLMs while delegating factual retrieval to external 044

knowledge sources. This separation could offer 045

several advantages such as reducing model size, 046

mitigating biases, and improving factual accuracy 047

by relying on dynamically retrieved information 048

rather than static, potentially outdated internalized 049

knowledge. 050

Linguistic competence in this context refers to 051

the model’s ability to generate and comprehend lan- 052

guage by understanding linguistic structures, such 053

as grammar, vocabulary, and meaning, without re- 054

liance on embedded factual data. Drawing on lin- 055

guistic theory as defined by the Council of Europe 056

in its Common European Framework of Reference 057

for Languages (CEFR)1, FLMs should prioritize 058

three key sub-competences: 059

1. Lexical Competence: Knowledge of, and 060

ability to use, the vocabulary of a language 061

consisting of word classes and fixed expres- 062

sions. 063

2. Grammatical Competence: Knowledge of, 064

and ability to understand and express meaning 065

by producing and recognising well-formed 066

phrases and sentences. 067

3. Semantic Competence: The capacity to gen- 068

erate and understand meaningful phrases, sen- 069

tences, and text, including resolving ambigu- 070

ity, paraphrasing, and interpreting nuanced 071

meanings in context. 072

Phonological and orthoepic competences— 073

related to spoken language—and orthographic com- 074

petence—related to spelling—are less relevant to 075

text-based models and thus remain outside the pri- 076

mary focus of FLMs. 077

1https://www.coe.int/en/web/
common-european-framework-reference-languages/
cefr-and-its-language-versions
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While traditional retrieval-augmented generation078

(RAG) systems enhance factual retrieval capabili-079

ties while maintaining full-scale language models,080

FLMs propose a more fundamental separation be-081

tween linguistic and factual knowledge. Our re-082

search evaluates whether linguistic competence re-083

mains robust in smaller models, supporting FLMs084

as a viable direction for future development.085

The paper is structured as follows: in Section 1,086

we introduce FLMs and their potential to disentan-087

gle linguistic competence from factual knowledge,088

addressing critical challenges in current LLM ar-089

chitectures. Section 2 examines related work, re-090

viewing transformer models, linguistic evaluation091

methods, and theoretical frameworks. Section 3092

presents the evaluation methodology, detailing the093

assessment of linguistic competencies. Section 4094

presents our experimental results, with findings095

in both linguistic competence findings and factual096

knowledge analysis. Finally, Section 5 synthesizes097

our results, demonstrating that linguistic compe-098

tence stabilizes at smaller model sizes while fac-099

tual knowledge continues to scale, supporting the100

viability of the FLM approach.101

2 Related Work102

While transformer models exhibit impressive capa-103

bilities in handling linguistic tasks, they do not104

replicate traditional linguistic analysis methods.105

The models encode semantic roles and grammat-106

ical features in specific regions of sentence em-107

beddings, rather than distributing this information108

evenly across the entire embedding (Nastase and109

Merlo, 2024). Anyhow, it seems that each layer in110

a transformer captures different levels of linguis-111

tic information, from local to global dependencies112

(Garnier-Brun et al., 2024). This was already found113

in not so large models like BERT, and several works114

have found that linguistic related information is en-115

coded in a hierarchy way and some layers seem116

to focus on different aspects (Rogers et al., 2021).117

From these findings, the next question that arises is:118

How large a language model has to be to become119

linguistically competent? Although larger models120

perform better, yet smaller models can still achieve121

significant results (Steuer et al., 2023).122

The evaluation of LLMs on linguistic compe-123

tence is present in many benchmarks (Chang et al.,124

2024). Some studies have focused on this type of125

tests to identify the proficiency of language models126

in linguistic aspects like grammar, vocabulary or127

syntax, and compared it to reasoning capabilities 128

(Atox and Clark, 2024). The work by (Dentella 129

et al., 2024) examines LLMs’ ability to understand 130

uncommon meanings of common words, finding 131

that even advanced models like GPT-4 perform 132

worse than teenagers at this task. This reveals im- 133

portant limitations in LLMs’ semantic understand- 134

ing capabilities, despite their otherwise impressive 135

language abilities. This could suggest that going to 136

larger models may not scale up linguistic capabili- 137

ties. 138

The BabyLM challenge has been engaging the 139

research community to train language models on a 140

limited set of texts, with the aim to emulate the way 141

humans learn in their infancy (Hu et al., 2024). One 142

of the most interesting findings was that, even with 143

such a constrained set of training material, the per- 144

formance of the models was not too far from mod- 145

els trained over trillions of tokens, like LLaMa2. 146

Effective approaches included preprocessing of the 147

training data, and some enhancements to the trans- 148

former architecture. 149

The Sapir-Whorf hyphothesis, also know as lin- 150

guistic relativity proposes that language influences 151

our understanding of the world and, even more, 152

our cognitive skills (Penn, 2014). This hypothe- 153

sis, which dates back to the middle of the 20th 154

century, has been partially supported by the “emer- 155

gent” abilities of large language models, though it 156

is still an open discussion (Schaeffer et al., 2023). 157

Studies with pre-linguistic infants have shown abil- 158

ities to understand physical causality and object 159

permanence (Hespos and Spelke, 2004). Early re- 160

search work on chimpanzees showed they could 161

solve complex puzzles and understand cause-effect 162

relationships without linguistic abilities (Premack, 163

1959). We could conclude that reasoning is some- 164

thing more than language, as symbolic reasoning 165

can occur without “talking” to ourselves. 166

The rising of the so-called Agentic AI paradigm 167

is driven the evolution of artificial intelligence sys- 168

tem far from monolithic approaches (Acharya et al., 169

2025). So larger is not necessary better, and the 170

cooperation of several language models, with dif- 171

ferentiated roles, is a promising path (Feng et al., 172

2025). Recent research has found that LLMs may 173

have reached the peak in reasoning capabilities de- 174

spite their size (Lin et al., 2025). 175

Linguistic relativity may not be fully right. Yet 176

language strongly influences thought (Dong, 2022). 177

Actually, large language models are still in the 178

core of the most advanced solutions in artificial 179
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intelligence. If language by itself could be such180

a powerful tool in natural thinking, the pursuit of181

linguistic competence isolated from factual knowl-182

edge is justified (Liu et al., 2024), as demonstrated183

by the rapid adoption of retrieval-augmented gener-184

ative tools (RAG) (Lewis et al., 2020). To the best185

of our knowledge, no prior study exists focusing186

on the trade-off between model size and linguistic187

competence, due to the variety of architectures and188

training objectives across available models.189

3 Evaluating Fundamental Language190

Models191

Fundamental Language Models (FLMs) aim to sep-192

arate linguistic competence from factual knowl-193

edge, ensuring that models retain strong language-194

processing abilities while externalizing factual re-195

trieval. To explore this hypothesis, we assess lin-196

guistic competence and factual knowledge perfor-197

mance across various model families, including198

Llama-3, Qwen2.5, Gemma-2, and Yi-1.5, and199

sizes ranging from 0.5 to 9 billion parameters. Our200

evaluation follows a structured approach, leverag-201

ing well-established benchmarks present in the LM202

Evaluation Harness (Gao et al., 2024)—a unified203

framework to test generative language models— to204

analyze different competencies.205

According to our definition of FLMs, these mod-206

els should excel in language-related tasks while207

struggling with factual knowledge tasks unless208

supplemented with external retrieval mechanisms.209

However, defining strict boundaries between lin-210

guistic competence and factual knowledge is chal-211

lenging, as effective communication often relies on212

shared world knowledge. Despite this complexity,213

we focus on benchmarks that best capture these214

two distinct abilities.215

3.1 Linguistic Competence216

To evaluate the linguistic competence of FLMs, we217

employ benchmarks that assess language process-218

ing abilities while minimizing reliance on factual219

knowledge. Using tasks from the LM Evaluation220

Harness, we examine three core linguistic compe-221

tencies: lexical competence, grammatical compe-222

tence, and semantic competence.223

Each sub-competence is assessed through spe-224

cific tasks designed to measure a model’s ability225

to handle vocabulary, syntax, and meaning. This226

ensures that FLMs can generate and comprehend227

language effectively without the need for internal-228

ized factual knowledge. 229

3.1.1 Lexical Competence 230

Lexical competence refers to the model’s ability to 231

understand and use vocabulary effectively in differ- 232

ent contexts. To evaluate this competence we use 233

Word-in-Context (WiC) (Pilehvar and Camacho- 234

Collados, 2019): 235

• WiC: This dataset tests word sense disam- 236

biguation by presenting sentence pairs con- 237

taining the same word. The task is to deter- 238

mine whether the word has the same meaning 239

in both contexts. This task is primarily lexical, 240

as it requires knowledge of word senses and 241

their contextual variations. It uses accuracy as 242

evaluation metric. 243

3.1.2 Grammatical Competence 244

Grammatical competence assesses the model’s abil- 245

ity to generate and comprehend syntactically well- 246

formed sentences. To this end, we find that The 247

Benchmark of Linguistic Minimap Pairs (BLiMP) 248

(Warstadt et al., 2020) evaluates this competence 249

in depth: 250

• BLiMP: This benchmark consists of minimal 251

sentence pairs, where one sentence is gram- 252

matically correct and the other contains a syn- 253

tactic violation. The model must distinguish 254

between the two, testing its grasp of linguis- 255

tic rules, such as agreement, negation, and 256

binding dependencies. It uses accuracy as 257

evaluation metric. 258

3.1.3 Semantic Competence 259

Semantic competence concerns the model’s ability 260

to generate and comprehend meaningful phrases 261

and sentences, which includes understanding 262

sentence-level meaning, resolving ambiguity, and 263

recognizing nuanced language use. Benchmarks 264

from the LM Evaluation Harness that assess this 265

competence include Recognizing Textual Entail- 266

ment (RTE) (Dagan et al., 2005), Multi-Genre Nat- 267

ural Language Inference (MNLI) (Williams et al., 268

2018), and Quora Question Pairs (QQP)2, which 269

are all evaluated using accuracy and averaged for 270

the final semantic competence score: 271

• RTE: This benchmark measures whether a 272

model can determine if one sentence logically 273

2https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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follows from another. This task requires deep274

semantic understanding, as it tests the model’s275

ability to grasp the meaning of sentences and276

their logical relationships.277

• MNLI: This dataset tests whether a model278

can classify sentence pairs as entailment, con-279

tradiction, or neutral, evaluating its ability to280

capture meaning across different domains.281

• QQP: This task involves determining whether282

two questions are semantically equivalent. It283

tests the model’s ability to understand para-284

phrases and sentence-level meaning, making285

it a key benchmark for evaluating semantic286

competence.287

3.2 Factual Knowledge288

We categorize factual knowledge into two types:289

external factual knowledge, which involves reason-290

ing over provided information, and internal factual291

knowledge, which assesses the model’s memoriza-292

tion of factual data. This distinction is important293

because FLMs should maintain the ability to reason294

and extract relevant information from documents295

while minimizing reliance on memorized facts.296

3.2.1 External Factual Knowledge297

External factual knowledge requires reasoning298

based on given context rather than recalling stored299

facts. We evaluate this using datasets that provide300

a source passage or context to retrieve the answer301

from such as LAnguage Modeling Broadened to302

Account for Discourse Aspects (LAMBADA) (Pa-303

perno et al., 2016), BoolQ (Clark et al., 2019),304

Choice of Plausible Alternatives (COPA) (Gordon305

et al., 2011), Multi-Sentence Reading Comprehen-306

sion (MultiRC) (Khashabi et al., 2018), and Read-307

ing Comprehension with Commonsense Reasoning308

Dataset (ReCoRD) (Zhang et al., 2018), which are309

all evaluated using accuracy excluding the last one,310

which is evaluated through exact matching (EM):311

• LAMBADA: LAMBADA standard is a col-312

lection of narrative passages sharing the char-313

acteristic that human subjects are able to guess314

their last word if they are exposed to the whole315

passage, but not if they only see the last sen-316

tence preceding the target word.317

• BoolQ: It is a question-answering dataset for318

yes/no questions where each example is a319

triplet of (question, passage, answer).320

• COPA: This dataset assesses causal reasoning 321

by presenting a premise and two alternative 322

completions, requiring the model to select the 323

most plausible one. 324

• MultiRC: It is a dataset of short paragraphs 325

and multi-sentence questions that can be an- 326

swered from the content of the paragraph. 327

• ReCoRD: Consists of queries automatically 328

generated from CNN/Daily Mail news articles. 329

The answer to each query is a text span from 330

a summarizing passage of the corresponding 331

news. 332

3.2.2 Internal Factual Knowledge 333

Internal factual knowledge refers to factual infor- 334

mation that a model has memorized during training. 335

This knowledge is particularly relevant for tradi- 336

tional LLMs, which internalize vast amounts of 337

data. However, for FLMs, the goal is to minimize 338

reliance on internalized facts, instead retrieving in- 339

formation dynamically from external sources. To 340

evaluate internal factual knowledge, we use bench- 341

marks that test the model’s ability to recall specific 342

facts without access to external context. These 343

include TriviaQA (Joshi et al., 2017), which is 344

evaluated using EM, and TruthfulQA (Lin et al., 345

2022), which provides several different metrics (i.e. 346

BLEU, ROUGE-1, ROUGE-2, and ROUGE-L). 347

To select one for the latter, we have considered 348

a systemic hypothesis based on Konrad Lorenz’s 349

observation that [...] the parts interacting in a sys- 350

tem can be understood only simultaneously and 351

together, or not at all (Lorenz, 1960). The metric 352

that fits best with this perspective is ROUGE-L, 353

since this metric prioritizes recall over precision, 354

acknowledging that missing crucial information 355

fragments systemic understanding more severely 356

than including supplementary details, while preci- 357

sion penalizes additional content that may actually 358

enhance systemic comprehension. In our opinion, 359

ROUGE-L better preserves the holistic nature of 360

meaning by favoring that all essential components 361

should be present in the answer, making it more 362

aligned with how humans process information in 363

complex linguistic systems: 364

• TriviaQA: It is a large-scale reading compre- 365

hension dataset that includes question-answer 366

pairs authored by trivia enthusiasts. This 367

dataset provides evidence documents auto- 368

matically gathered that no dot guarantee to 369
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contain all facts needed to answer the ques-370

tion. Consequently, the LM Evaluation Har-371

ness excludes these documents during evalua-372

tion, making TriviaQA a suitable benchmark373

for assessing internal factual knowledge.374

• TruthfulQA: This benchmark is designed to375

test a model’s ability to generate factually376

accurate responses while avoiding common377

misconceptions. It comprises three tasks: (1)378

TruthfulQA Generation, where the model gen-379

erates a 1-2 sentence response to a given ques-380

tion; (2) TruthfulQA MC1, a multiple-choice381

task requiring the selection of the single cor-382

rect answer from 4-5 options; and (3) Truth-383

fulQA MC2, which presents a question along384

with multiple true/false reference answers and385

scores the model based on the normalized386

probability assigned to the correct responses.387

4 Results and discussion388

This section presents the results of our evalua-389

tion across linguistic competence, external factual390

knowledge, and internal factual knowledge. We391

also discuss key findings and their implications for392

the feasibility of FLMs as an alternative paradigm393

to traditional LLMs. Every experiment has been394

executed on a single NVIDIA Ampere A100 GPU.395

Linguistic Competence Table 1 presents the396

results for linguistic competence. The model397

Qwen2.5-7B achieved the highest overall linguis-398

tic competence score of 0.7239, indicating strong399

performance across lexical, grammatical, and se-400

mantic tasks. Qwen2.5-3B also performed compet-401

itively, scoring 0.6909. These findings suggest that402

linguistic competence can remain stable even at403

moderate model sizes, challenging the assumption404

that larger models are always necessary for high405

language-processing performance. Semantic com-406

petence results are further described in Appendix407

A, Table 4.408

External Factual Knowledge Table 2 presents409

the results for external factual knowledge evalua-410

tion. The model gemma-2-9b achieved the highest411

score (0.7961), followed by Llama-3.1-8B (0.7712).412

These results suggest that external factual knowl-413

edge continues to improve with model size, rein-414

forcing the idea that factual retrieval is increasingly415

effective in larger models.416

Internal Factual Knowledge Table 3 reports the 417

results for internal factual knowledge. The model 418

gemma-2-9b demonstrated the highest internal fac- 419

tual knowledge score (0.4598), followed closely by 420

Yi-1.5-9B (0.4362). However, performance in this 421

category was noticeably lower than in linguistic 422

competence and external factual knowledge. This 423

supports the hypothesis that internal factual knowl- 424

edge is highly dependent on model size, as larger 425

models tend to memorize more factual data. 426

4.1 Discussion 427

Figures 1, 2, and 3 illustrate the primary compe- 428

tences examined in this study: linguistic compe- 429

tence, external factual knowledge, and internal fac- 430

tual knowledge, respectively. Each figure presents 431

the trend line that best fits the observed data based 432

on the highest R2 value among linear, exponen- 433

tial, and logarithmic models. From these figures, 434

we derive the following insights: (1) Linguistic 435

competence follows a linear trend with a near-zero 436

slope, indicating that increasing model size does 437

not significantly improve linguistic capabilities be- 438

yond a certain threshold. This supports the viabil- 439

ity of FLMs, as smaller models can retain strong 440

language-processing abilities. (2) Both external 441

and internal factual knowledge exhibit logarithmic 442

growth with model size, suggesting that while fac- 443

tual knowledge retrieval and memorization improve 444

as models scale up, they do so at diminishing re- 445

turns. 446

5 Conclusions 447

Our evaluation of language models across differ- 448

ent sizes reveals several significant findings regard- 449

ing the relationship between model scale and lan- 450

guage related capabilities. The results demonstrate 451

that linguistic competence—encompassing lexical, 452

grammatical, and semantic abilities—stabilizes at 453

relatively modest model sizes, with Qwen2.5-7B 454

achieving peak performance (0.7239) while smaller 455

variants maintained strong capabilities. This find- 456

ing challenges the assumption that increasingly 457

large models are necessary for sophisticated lan- 458

guage processing in tasks that do not require ex- 459

tensive background knowledge (like contextual 460

question-answering, as it is needed in RAG sys- 461

tems). 462

The analysis of factual knowledge presents a 463

different pattern, with external factual reasoning 464

and comprehension showing consistent improve- 465
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Model Lexical Grammatical Semantic Linguistic
Qwen2.5-0.5B 0.4937 0.8176 0.5528 0.6214
Llama-3.2-1B 0.4828 0.8246 0.4758 0.5944
Qwen2.5-1.5B 0.5313 0.8251 0.6596 0.6720
gemma-2-2b 0.4937 0.7710 0.5028 0.5892
Llama-3.2-3B 0.4969 0.8217 0.4212 0.5799
Qwen2.5-3B 0.6254 0.7270 0.7204 0.6909
Yi-1.5-6B 0.5000 0.6936 0.6252 0.6063
Qwen2.5-7B 0.5815 0.8225 0.7676 0.7239
Llama-3.1-8B 0.5110 0.8195 0.5398 0.6234
gemma-2-9b 0.5125 0.7799 0.5244 0.6056
Yi-1.5-9B 0.6129 0.7054 0.6045 0.6409

Table 1: Averaged accuracy scores for each linguistic subcompetence. Linguistic competence is computed as the
average between lexical, grammatical, and semantic scores. Best scores are highlighted in bold and second best
scores are underlined.

Figure 1: Evaluation for all linguistic subcompetencies. Linguistic competence is best approximated linearly.
Models with the same size are averaged.

ments with increased model size. The gemma-466

2-9b model demonstrated superior performance467

(0.7961) on external factual tasks, while internal468

factual knowledge scores remained notably lower469

across all models. This disparity supports the fun-470

damental premise of FLMs: that factual knowledge471

can be effectively externalized while maintaining472

robust linguistic abilities.473

These findings provide empirical support for474

the viability of Fundamental Language Models as475

an alternative paradigm to traditional LLMs. The476

demonstrated stability of linguistic competence at477

smaller scales, combined with the potential for ex-478

ternal knowledge integration, suggests a promising479

direction for developing more efficient and reliable480

language models. This approach could address key 481

challenges in current LLM architectures, includ- 482

ing factual accuracy, bias mitigation, and compu- 483

tational efficiency. Future research should focus 484

on optimizing the balance between model size and 485

linguistic capabilities while developing effective 486

mechanisms for external knowledge retrieval and 487

integration. 488
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Model LAMBADA BoolQ COPA MultiRC ReCoRD EFK
Qwen2.5-0.5B 0.4349 0.6245 0.7400 0.3962 0.7704 0.5932
Llama-3.2-1B 0.5393 0.6404 0.7700 0.5670 0.8610 0.6755
Qwen2.5-1.5B 0.5861 0.7291 0.8300 0.2857 0.8442 0.6550
gemma-2-2b 0.6402 0.7343 0.8800 0.5588 0.8930 0.7413
Llama-3.2-3B 0.6423 0.7339 0.8600 0.5720 0.9012 0.7419
Qwen2.5-3B 0.5905 0.7722 0.8500 0.3851 0.8752 0.6946
Yi-1.5-6B 0.6802 0.8034 0.8500 0.3426 0.8971 0.7147
Qwen2.5-7B 0.6511 0.8468 0.9100 0.1588 0.8936 0.6921
Llama-3.1-8B 0.6738 0.8211 0.8700 0.5720 0.9193 0.7712
gemma-2-9b 0.7231 0.8398 0.9300 0.5668 0.9207 0.7961
Yi-1.5-9B 0.6990 0.8584 0.8900 0.1914 0.9095 0.7097

Table 2: Scores for each external factual knowledge (EFK) task. Reasoning is computed as the average between all
the selected tasks. Best scores are highlighted in bold and second best scores are underlined.

Figure 2: Evaluation for all external factual knowledge tasks. Averaged score is best approximated logarithmically.
Models with the same size are averaged.

I+D+i from the Spanish Government.494

Limitations495

While our research demonstrates the potential of496

Fundamental Language Models, several important497

limitations must be acknowledged. The separation498

of linguistic competence from factual knowledge499

presents challenges in cases where language un-500

derstanding inherently requires world knowledge.501

For example, understanding metaphors, cultural502

references, or domain-specific terminology often503

depends on both linguistic and factual knowledge504

in ways that are difficult to disentangle. Our evalu-505

ation framework, though comprehensive, may not506

fully capture these interdependencies.507

The performance stability we observed at 508

smaller model sizes might not generalize across 509

all linguistic tasks or languages. Our benchmarks 510

focus primarily on English, and the relationship be- 511

tween model size and linguistic competence could 512

vary significantly for other languages, particularly 513

those with different syntactic structures or morpho- 514

logical complexity. 515

Our study also focuses on specific model archi- 516

tectures and sizes, and the findings might not ex- 517

tend to other architectural paradigms or scaling 518

approaches. Future work should address these limi- 519

tations through multilingual evaluation, real-world 520

deployment testing, and investigation of hybrid ap- 521

proaches that better handle the linguistic-factual 522

knowledge boundary. 523
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Model TriviaQA TruthfulQA_gen TruthfulQA_mc1 TruthfulQA_mc2 IFK
Qwen2.5-0.5B 0.1272 0.0379 0.2534 0.3973 0.2040
Llama-3.2-1B 0.2509 0.1848 0.2313 0.3768 0.2610
Qwen2.5-1.5B 0.2942 0.3696 0.3011 0.4661 0.3578
gemma-2-2b 0.5080 0.2521 0.2399 0.3624 0.3406
Llama-3.2-3B 0.5088 0.1934 0.2497 0.3922 0.3360
Qwen2.5-3B 0.4242 0.3696 0.3182 0.4894 0.4004
Yi-1.5-6B 0.4963 0.4614 0.2974 0.4405 0.4239
Qwen2.5-7B 0.5038 0.0575 0.3905 0.5634 0.3788
Llama-3.1-8B 0.6170 0.3464 0.2827 0.4517 0.4244
gemma-2-9b 0.6803 0.4064 0.2987 0.4539 0.4598
Yi-1.5-9B 0.5447 0.4137 0.3195 0.4667 0.4362

Table 3: Scores for each internal factual knowledge (IFK) task. Factual knowledge is computed as the average
between all the selected tasks. Best scores are highlighted in bold and second best scores are underlined.

Figure 3: Evaluation for all internal factual knowledge tasks. Averaged score is best approximated through
logarithmically. Models with the same size are averaged.

6 Ethical considerations524

The development of Fundamental Language Mod-525

els raises some ethical considerations. While FLMs526

aim to reduce hallucinations and biases through527

external knowledge retrieval, this approach intro-528

duces new ethical issues. The selection and cu-529

ration of external knowledge sources could per-530

petuate or amplify existing biases if not carefully531

managed. Additionally, the separation of linguistic532

and factual knowledge raises questions about trans-533

parency and accountability - users must understand534

which parts of the model’s responses come from535

its linguistic processing versus external sources.536

Therefore, the separation between knowledge and537

linguistic competence does not ensure the avoid-538

ance of already existing problems in LLMs, but 539

could help to identify and mitigate them. 540
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A Appendix705

Model RTE MNLI QQP
Qwen2.5-0.5B 0.5884 0.3869 0.6831
Llama-3.2-1B 0.5668 0.3585 0.5022
Qwen2.5-1.5B 0.7004 0.5254 0.7530
gemma-2-2b 0.6137 0.4338 0.4610
Llama-3.2-3B 0.5451 0.3462 0.3722
Qwen2.5-3B 0.7581 0.5505 0.8527
Yi-1.5-6B 0.7401 0.5437 0.5917
Qwen2.5-7B 0.8159 0.6265 0.8605
Llama-3.1-8B 0.6968 0.5084 0.4141
gemma-2-9b 0.6787 0.4849 0.4096
Yi-1.5-9B 0.7834 0.5077 0.5224

Table 4: Scores for each semantic competence task. Best
scores are highlighted in bold and second best scores
are underlined.
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