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Abstract

Fundamental Language Models (FLMs) pro-
pose a novel paradigm that separates linguistic
competence from factual knowledge to address
critical challenges in current language models,
including hallucinations, data privacy concerns,
and training-induced biases. This paper inves-
tigates whether FLMs can maintain robust lan-
guage processing capabilities while externaliz-
ing factual knowledge. Through comprehen-
sive evaluation of linguistic competence across
model sizes using specialized benchmarks, we
assess lexical, grammatical, and semantic capa-
bilities. We also analyze how model size affects
both linguistic and factual knowledge encoding.
Our findings demonstrate that linguistic com-
petence stabilizes at relatively modest model
sizes, while factual knowledge continues scal-
ing with model size. These results provide em-
pirical support for FLMs as a promising re-
search direction, suggesting that future work
could effectively balance language understand-
ing with external knowledge retrieval.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable linguistic capabilities, achiev-
ing state-of-the-art performance across various nat-
ural language processing tasks. However, these
models often face critical challenges (Bengio et al.,
2025) such as hallucinations—where they gener-
ate false or fabricated information—data privacy
concerns, and the propagation of biases inherited
from their training data. A key factor contribut-
ing to these challenges is the substantial volume of
factual information that LL.Ms internalize during
training, where models simultaneously encode both
factual data and linguistic structures. This integra-
tion makes it difficult to update factual knowledge
without retraining and complicates efforts to ensure
accuracy and reduce bias.

This paper explores an alternative approach:
Fundamental Language Models (FLMs). Instead of

internalizing factual knowledge, FLMs aim to pre-
serve the core linguistic competence of traditional
LLMs while delegating factual retrieval to external
knowledge sources. This separation could offer
several advantages such as reducing model size,
mitigating biases, and improving factual accuracy
by relying on dynamically retrieved information
rather than static, potentially outdated internalized
knowledge.

Linguistic competence in this context refers to
the model’s ability to generate and comprehend lan-
guage by understanding linguistic structures, such
as grammar, vocabulary, and meaning, without re-
liance on embedded factual data. Drawing on lin-
guistic theory as defined by the Council of Europe
in its Common European Framework of Reference
for Languages (CEFR)', FLMs should prioritize
three key sub-competences:

1. Lexical Competence: Knowledge of, and
ability to use, the vocabulary of a language
consisting of word classes and fixed expres-
sions.

2. Grammatical Competence: Knowledge of,
and ability to understand and express meaning
by producing and recognising well-formed
phrases and sentences.

3. Semantic Competence: The capacity to gen-
erate and understand meaningful phrases, sen-
tences, and text, including resolving ambigu-
ity, paraphrasing, and interpreting nuanced
meanings in context.

Phonological and orthoepic competences—
related to spoken language—and orthographic com-
petence—related to spelling—are less relevant to
text-based models and thus remain outside the pri-
mary focus of FLMs.
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While traditional retrieval-augmented generation
(RAG) systems enhance factual retrieval capabili-
ties while maintaining full-scale language models,
FLMs propose a more fundamental separation be-
tween linguistic and factual knowledge. Our re-
search evaluates whether linguistic competence re-
mains robust in smaller models, supporting FLMs
as a viable direction for future development.

The paper is structured as follows: in Section 1,
we introduce FLMs and their potential to disentan-
gle linguistic competence from factual knowledge,
addressing critical challenges in current LLM ar-
chitectures. Section 2 examines related work, re-
viewing transformer models, linguistic evaluation
methods, and theoretical frameworks. Section 3
presents the evaluation methodology, detailing the
assessment of linguistic competencies. Section 4
presents our experimental results, with findings
in both linguistic competence findings and factual
knowledge analysis. Finally, Section 5 synthesizes
our results, demonstrating that linguistic compe-
tence stabilizes at smaller model sizes while fac-
tual knowledge continues to scale, supporting the
viability of the FLM approach.

2 Related Work

While transformer models exhibit impressive capa-
bilities in handling linguistic tasks, they do not
replicate traditional linguistic analysis methods.
The models encode semantic roles and grammat-
ical features in specific regions of sentence em-
beddings, rather than distributing this information
evenly across the entire embedding (Nastase and
Merlo, 2024). Anyhow, it seems that each layer in
a transformer captures different levels of linguis-
tic information, from local to global dependencies
(Garnier-Brun et al., 2024). This was already found
in not so large models like BERT, and several works
have found that linguistic related information is en-
coded in a hierarchy way and some layers seem
to focus on different aspects (Rogers et al., 2021).
From these findings, the next question that arises is:
How large a language model has to be to become
linguistically competent? Although larger models
perform better, yet smaller models can still achieve
significant results (Steuer et al., 2023).

The evaluation of LLMs on linguistic compe-
tence is present in many benchmarks (Chang et al.,
2024). Some studies have focused on this type of
tests to identify the proficiency of language models
in linguistic aspects like grammar, vocabulary or

syntax, and compared it to reasoning capabilities
(Atox and Clark, 2024). The work by (Dentella
et al., 2024) examines LLMs’ ability to understand
uncommon meanings of common words, finding
that even advanced models like GPT-4 perform
worse than teenagers at this task. This reveals im-
portant limitations in LLMs’ semantic understand-
ing capabilities, despite their otherwise impressive
language abilities. This could suggest that going to
larger models may not scale up linguistic capabili-
ties.

The BabyLLM challenge has been engaging the
research community to train language models on a
limited set of texts, with the aim to emulate the way
humans learn in their infancy (Hu et al., 2024). One
of the most interesting findings was that, even with
such a constrained set of training material, the per-
formance of the models was not too far from mod-
els trained over trillions of tokens, like LLaMa?2.
Effective approaches included preprocessing of the
training data, and some enhancements to the trans-
former architecture.

The Sapir-Whorf hyphothesis, also know as [lin-
guistic relativity proposes that language influences
our understanding of the world and, even more,
our cognitive skills (Penn, 2014). This hypothe-
sis, which dates back to the middle of the 20th
century, has been partially supported by the “emer-
gent” abilities of large language models, though it
is still an open discussion (Schaeffer et al., 2023).
Studies with pre-linguistic infants have shown abil-
ities to understand physical causality and object
permanence (Hespos and Spelke, 2004). Early re-
search work on chimpanzees showed they could
solve complex puzzles and understand cause-effect
relationships without linguistic abilities (Premack,
1959). We could conclude that reasoning is some-
thing more than language, as symbolic reasoning
can occur without “talking” to ourselves.

The rising of the so-called Agentic Al paradigm
is driven the evolution of artificial intelligence sys-
tem far from monolithic approaches (Acharya et al.,
2025). So larger is not necessary better, and the
cooperation of several language models, with dif-
ferentiated roles, is a promising path (Feng et al.,
2025). Recent research has found that LLMs may
have reached the peak in reasoning capabilities de-
spite their size (Lin et al., 2025).

Linguistic relativity may not be fully right. Yet
language strongly influences thought (Dong, 2022).
Actually, large language models are still in the
core of the most advanced solutions in artificial



intelligence. If language by itself could be such
a powerful tool in natural thinking, the pursuit of
linguistic competence isolated from factual knowl-
edge is justified (Liu et al., 2024), as demonstrated
by the rapid adoption of retrieval-augmented gener-
ative tools (RAG) (Lewis et al., 2020). To the best
of our knowledge, no prior study exists focusing
on the trade-off between model size and linguistic
competence, due to the variety of architectures and
training objectives across available models.

3 Evaluating Fundamental Language
Models

Fundamental Language Models (FLMs) aim to sep-
arate linguistic competence from factual knowl-
edge, ensuring that models retain strong language-
processing abilities while externalizing factual re-
trieval. To explore this hypothesis, we assess lin-
guistic competence and factual knowledge perfor-
mance across various model families, including
Llama-3, Qwen2.5, Gemma-2, and Yi-1.5, and
sizes ranging from 0.5 to 9 billion parameters. Our
evaluation follows a structured approach, leverag-
ing well-established benchmarks present in the LM
Evaluation Harness (Gao et al., 2024)—a unified
framework to test generative language models— to
analyze different competencies.

According to our definition of FLMs, these mod-
els should excel in language-related tasks while
struggling with factual knowledge tasks unless
supplemented with external retrieval mechanisms.
However, defining strict boundaries between lin-
guistic competence and factual knowledge is chal-
lenging, as effective communication often relies on
shared world knowledge. Despite this complexity,
we focus on benchmarks that best capture these
two distinct abilities.

3.1 Linguistic Competence

To evaluate the linguistic competence of FLMs, we
employ benchmarks that assess language process-
ing abilities while minimizing reliance on factual
knowledge. Using tasks from the LM Evaluation
Harness, we examine three core linguistic compe-
tencies: lexical competence, grammatical compe-
tence, and semantic competence.

Each sub-competence is assessed through spe-
cific tasks designed to measure a model’s ability
to handle vocabulary, syntax, and meaning. This
ensures that FLMs can generate and comprehend
language effectively without the need for internal-

ized factual knowledge.

3.1.1 Lexical Competence

Lexical competence refers to the model’s ability to
understand and use vocabulary effectively in differ-
ent contexts. To evaluate this competence we use
Word-in-Context (WiC) (Pilehvar and Camacho-
Collados, 2019):

* WiC: This dataset tests word sense disam-
biguation by presenting sentence pairs con-
taining the same word. The task is to deter-
mine whether the word has the same meaning
in both contexts. This task is primarily lexical,
as it requires knowledge of word senses and
their contextual variations. It uses accuracy as
evaluation metric.

3.1.2 Grammatical Competence

Grammatical competence assesses the model’s abil-
ity to generate and comprehend syntactically well-
formed sentences. To this end, we find that The
Benchmark of Linguistic Minimap Pairs (BLiMP)
(Warstadt et al., 2020) evaluates this competence
in depth:

* BLiMP: This benchmark consists of minimal
sentence pairs, where one sentence is gram-
matically correct and the other contains a syn-
tactic violation. The model must distinguish
between the two, testing its grasp of linguis-
tic rules, such as agreement, negation, and
binding dependencies. It uses accuracy as
evaluation metric.

3.1.3 Semantic Competence

Semantic competence concerns the model’s ability
to generate and comprehend meaningful phrases
and sentences, which includes understanding
sentence-level meaning, resolving ambiguity, and
recognizing nuanced language use. Benchmarks
from the LM Evaluation Harness that assess this
competence include Recognizing Textual Entail-
ment (RTE) (Dagan et al., 2005), Multi-Genre Nat-
ural Language Inference (MNLI) (Williams et al.,
2018), and Quora Question Pairs (QQP)?, which
are all evaluated using accuracy and averaged for
the final semantic competence score:

* RTE: This benchmark measures whether a
model can determine if one sentence logically

Zhttps://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs



follows from another. This task requires deep
semantic understanding, as it tests the model’s
ability to grasp the meaning of sentences and
their logical relationships.

* MNLI: This dataset tests whether a model
can classify sentence pairs as entailment, con-
tradiction, or neutral, evaluating its ability to
capture meaning across different domains.

* QQP: This task involves determining whether
two questions are semantically equivalent. It
tests the model’s ability to understand para-
phrases and sentence-level meaning, making
it a key benchmark for evaluating semantic
competence.

3.2 Factual Knowledge

We categorize factual knowledge into two types:
external factual knowledge, which involves reason-
ing over provided information, and internal factual
knowledge, which assesses the model’s memoriza-
tion of factual data. This distinction is important
because FLMs should maintain the ability to reason
and extract relevant information from documents
while minimizing reliance on memorized facts.

3.2.1 External Factual Knowledge

External factual knowledge requires reasoning
based on given context rather than recalling stored
facts. We evaluate this using datasets that provide
a source passage or context to retrieve the answer
from such as LAnguage Modeling Broadened to
Account for Discourse Aspects (LAMBADA) (Pa-
perno et al., 2016), BoolQ (Clark et al., 2019),
Choice of Plausible Alternatives (COPA) (Gordon
et al., 2011), Multi-Sentence Reading Comprehen-
sion (MultiRC) (Khashabi et al., 2018), and Read-
ing Comprehension with Commonsense Reasoning
Dataset (ReCoRD) (Zhang et al., 2018), which are
all evaluated using accuracy excluding the last one,
which is evaluated through exact matching (EM):

* LAMBADA: LAMBADA standard is a col-
lection of narrative passages sharing the char-
acteristic that human subjects are able to guess
their last word if they are exposed to the whole
passage, but not if they only see the last sen-
tence preceding the target word.

* BoolQ: It is a question-answering dataset for
yes/no questions where each example is a
triplet of (question, passage, answer).

* COPA: This dataset assesses causal reasoning
by presenting a premise and two alternative
completions, requiring the model to select the
most plausible one.

* MultiRC: It is a dataset of short paragraphs
and multi-sentence questions that can be an-
swered from the content of the paragraph.

* ReCoRD: Consists of queries automatically
generated from CNN/Daily Mail news articles.
The answer to each query is a text span from
a summarizing passage of the corresponding
news.

3.2.2 Internal Factual Knowledge

Internal factual knowledge refers to factual infor-
mation that a model has memorized during training.
This knowledge is particularly relevant for tradi-
tional LLMs, which internalize vast amounts of
data. However, for FLMs, the goal is to minimize
reliance on internalized facts, instead retrieving in-
formation dynamically from external sources. To
evaluate internal factual knowledge, we use bench-
marks that test the model’s ability to recall specific
facts without access to external context. These
include TriviaQA (Joshi et al., 2017), which is
evaluated using EM, and Truthful QA (Lin et al.,
2022), which provides several different metrics (i.e.
BLEU, ROUGE-1, ROUGE-2, and ROUGE-L).
To select one for the latter, we have considered
a systemic hypothesis based on Konrad Lorenz’s
observation that [...] the parts interacting in a sys-
tem can be understood only simultaneously and
together, or not at all (Lorenz, 1960). The metric
that fits best with this perspective is ROUGE-L,
since this metric prioritizes recall over precision,
acknowledging that missing crucial information
fragments systemic understanding more severely
than including supplementary details, while preci-
sion penalizes additional content that may actually
enhance systemic comprehension. In our opinion,
ROUGE-L better preserves the holistic nature of
meaning by favoring that all essential components
should be present in the answer, making it more
aligned with how humans process information in
complex linguistic systems:

* TriviaQA: It is a large-scale reading compre-
hension dataset that includes question-answer
pairs authored by trivia enthusiasts. This
dataset provides evidence documents auto-
matically gathered that no dot guarantee to



contain all facts needed to answer the ques-
tion. Consequently, the LM Evaluation Har-
ness excludes these documents during evalua-
tion, making TriviaQA a suitable benchmark
for assessing internal factual knowledge.

TruthfulQA: This benchmark is designed to
test a model’s ability to generate factually
accurate responses while avoiding common
misconceptions. It comprises three tasks: (1)
Truthful QA Generation, where the model gen-
erates a 1-2 sentence response to a given ques-
tion; (2) Truthful QA MC1, a multiple-choice
task requiring the selection of the single cor-
rect answer from 4-5 options; and (3) Truth-
fulQA MC2, which presents a question along
with multiple true/false reference answers and
scores the model based on the normalized
probability assigned to the correct responses.

4 Results and discussion

This section presents the results of our evalua-
tion across linguistic competence, external factual
knowledge, and internal factual knowledge. We
also discuss key findings and their implications for
the feasibility of FLMs as an alternative paradigm
to traditional LLMs. Every experiment has been
executed on a single NVIDIA Ampere A100 GPU.

Linguistic Competence Table 1 presents the
results for linguistic competence. The model
Qwen2.5-7B achieved the highest overall linguis-
tic competence score of 0.7239, indicating strong
performance across lexical, grammatical, and se-
mantic tasks. Qwen2.5-3B also performed compet-
itively, scoring 0.6909. These findings suggest that
linguistic competence can remain stable even at
moderate model sizes, challenging the assumption
that larger models are always necessary for high
language-processing performance. Semantic com-
petence results are further described in Appendix
A, Table 4.

External Factual Knowledge Table 2 presents
the results for external factual knowledge evalua-
tion. The model gemma-2-9b achieved the highest
score (0.7961), followed by Llama-3.1-8B (0.7712).
These results suggest that external factual knowl-
edge continues to improve with model size, rein-
forcing the idea that factual retrieval is increasingly
effective in larger models.

Internal Factual Knowledge Table 3 reports the
results for internal factual knowledge. The model
gemma-2-9b demonstrated the highest internal fac-
tual knowledge score (0.4598), followed closely by
Yi-1.5-9B (0.4362). However, performance in this
category was noticeably lower than in linguistic
competence and external factual knowledge. This
supports the hypothesis that internal factual knowl-
edge is highly dependent on model size, as larger
models tend to memorize more factual data.

4.1 Discussion

Figures 1, 2, and 3 illustrate the primary compe-
tences examined in this study: linguistic compe-
tence, external factual knowledge, and internal fac-
tual knowledge, respectively. Each figure presents
the trend line that best fits the observed data based
on the highest R? value among linear, exponen-
tial, and logarithmic models. From these figures,
we derive the following insights: (1) Linguistic
competence follows a linear trend with a near-zero
slope, indicating that increasing model size does
not significantly improve linguistic capabilities be-
yond a certain threshold. This supports the viabil-
ity of FLMs, as smaller models can retain strong
language-processing abilities. (2) Both external
and internal factual knowledge exhibit logarithmic
growth with model size, suggesting that while fac-
tual knowledge retrieval and memorization improve
as models scale up, they do so at diminishing re-
turns.

5 Conclusions

Our evaluation of language models across differ-
ent sizes reveals several significant findings regard-
ing the relationship between model scale and lan-
guage related capabilities. The results demonstrate
that linguistic competence—encompassing lexical,
grammatical, and semantic abilities—stabilizes at
relatively modest model sizes, with Qwen2.5-7B
achieving peak performance (0.7239) while smaller
variants maintained strong capabilities. This find-
ing challenges the assumption that increasingly
large models are necessary for sophisticated lan-
guage processing in tasks that do not require ex-
tensive background knowledge (like contextual
question-answering, as it is needed in RAG sys-
tems).

The analysis of factual knowledge presents a
different pattern, with external factual reasoning
and comprehension showing consistent improve-



Model Lexical Grammatical Semantic | Linguistic
Qwen2.5-0.5B | 0.4937 0.8176 0.5528 0.6214
Llama-3.2-1B | 0.4828 0.8246 0.4758 0.5944
Qwen2.5-1.5B | 0.5313 0.8251 0.6596 0.6720
gemma-2-2b 0.4937 0.7710 0.5028 0.5892
Llama-3.2-3B | 0.4969 0.8217 0.4212 0.5799
Qwen2.5-3B 0.6254 0.7270 0.7204 0.6909
Yi-1.5-6B 0.5000 0.6936 0.6252 0.6063
Qwen2.5-7B 0.5815 0.8225 0.7676 0.7239
Llama-3.1-8B | 0.5110 0.8195 0.5398 0.6234
gemma-2-9b 0.5125 0.7799 0.5244 0.6056
Yi-1.5-9B 0.6129 0.7054 0.6045 0.6409

Table 1: Averaged accuracy scores for each linguistic subcompetence. Linguistic competence is computed as the
average between lexical, grammatical, and semantic scores. Best scores are highlighted in bold and second best

scores are underlined.
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Figure 1: Evaluation for all linguistic subcompetencies. Linguistic competence is best approximated linearly.

Models with the same size are averaged.

ments with increased model size. The gemma-
2-9b model demonstrated superior performance
(0.7961) on external factual tasks, while internal
factual knowledge scores remained notably lower
across all models. This disparity supports the fun-
damental premise of FLMs: that factual knowledge
can be effectively externalized while maintaining
robust linguistic abilities.

These findings provide empirical support for
the viability of Fundamental Language Models as
an alternative paradigm to traditional LLMs. The
demonstrated stability of linguistic competence at
smaller scales, combined with the potential for ex-
ternal knowledge integration, suggests a promising
direction for developing more efficient and reliable

language models. This approach could address key
challenges in current LLM architectures, includ-
ing factual accuracy, bias mitigation, and compu-
tational efficiency. Future research should focus
on optimizing the balance between model size and
linguistic capabilities while developing effective
mechanisms for external knowledge retrieval and
integration.
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Model LAMBADA BoolQ COPA MultiRC ReCoRD | EFK

Qwen2.5-0.5B 0.4349 0.6245 0.7400  0.3962 0.7704 | 0.5932
Llama-3.2-1B 0.5393 0.6404 0.7700  0.5670 0.8610 | 0.6755
Qwen2.5-1.5B 0.5861 0.7291 0.8300  0.2857 0.8442 | 0.6550
gemma-2-2b 0.6402 0.7343 0.8800  0.5588 0.8930 | 0.7413
Llama-3.2-3B 0.6423 0.7339 0.8600  0.5720 0.9012 | 0.7419
Qwen2.5-3B 0.5905 0.7722 0.8500  0.3851 0.8752 | 0.6946
Yi-1.5-6B 0.6802 0.8034 0.8500  0.3426 0.8971 | 0.7147
Qwen2.5-7B 0.6511 0.8468 0.9100  0.1588 0.8936 | 0.6921
Llama-3.1-8B 0.6738 0.8211 0.8700  0.5720 0.9193 | 0.7712
gemma-2-9b 0.7231 0.8398 0.9300 0.5668 0.9207 | 0.7961
Yi-1.5-9B 0.6990 0.8584 0.8900 0.1914 0.9095 | 0.7097

Table 2: Scores for each external factual knowledge (EFK) task. Reasoning is computed as the average between all
the selected tasks. Best scores are highlighted in bold and second best scores are underlined.
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Figure 2: Evaluation for all external factual knowledge tasks. Averaged score is best approximated logarithmically.

Models with the same size are averaged.

[4+D+i from the Spanish Government.

Limitations

While our research demonstrates the potential of
Fundamental Language Models, several important
limitations must be acknowledged. The separation
of linguistic competence from factual knowledge
presents challenges in cases where language un-
derstanding inherently requires world knowledge.
For example, understanding metaphors, cultural
references, or domain-specific terminology often
depends on both linguistic and factual knowledge
in ways that are difficult to disentangle. Our evalu-
ation framework, though comprehensive, may not
fully capture these interdependencies.

The performance stability we observed at
smaller model sizes might not generalize across
all linguistic tasks or languages. Our benchmarks
focus primarily on English, and the relationship be-
tween model size and linguistic competence could
vary significantly for other languages, particularly
those with different syntactic structures or morpho-
logical complexity.

Our study also focuses on specific model archi-
tectures and sizes, and the findings might not ex-
tend to other architectural paradigms or scaling
approaches. Future work should address these limi-
tations through multilingual evaluation, real-world
deployment testing, and investigation of hybrid ap-
proaches that better handle the linguistic-factual
knowledge boundary.



Model TriviaQA TruthfulQA_gen TruthfulQA_mcl TruthfulQA_mc2 | IFK

Qwen2.5-0.5B 0.1272 0.0379 0.2534 0.3973 0.2040
Llama-3.2-1B 0.2509 0.1848 0.2313 0.3768 0.2610
Qwen2.5-1.5B 0.2942 0.3696 0.3011 0.4661 0.3578
gemma-2-2b 0.5080 0.2521 0.2399 0.3624 0.3406
Llama-3.2-3B 0.5088 0.1934 0.2497 0.3922 0.3360
Qwen2.5-3B 0.4242 0.3696 0.3182 0.4894 0.4004
Yi-1.5-6B 0.4963 0.4614 0.2974 0.4405 0.4239
Qwen2.5-7B 0.5038 0.0575 0.3905 0.5634 0.3788
Llama-3.1-8B 0.6170 0.3464 0.2827 0.4517 0.4244
gemma-2-9b 0.6803 0.4064 0.2987 0.4539 0.4598
Yi-1.5-9B 0.5447 0.4137 0.3195 0.4667 0.4362

Table 3: Scores for each internal factual knowledge (IFK) task. Factual knowledge is computed as the average
between all the selected tasks. Best scores are highlighted in bold and second best scores are underlined.
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Figure 3: Evaluation for all internal factual knowledge tasks. Averaged score is best approximated through

logarithmically. Models with the same size are averaged.

6 Ethical considerations

The development of Fundamental Language Mod-
els raises some ethical considerations. While FLMs
aim to reduce hallucinations and biases through
external knowledge retrieval, this approach intro-
duces new ethical issues. The selection and cu-
ration of external knowledge sources could per-
petuate or amplify existing biases if not carefully
managed. Additionally, the separation of linguistic
and factual knowledge raises questions about trans-
parency and accountability - users must understand
which parts of the model’s responses come from
its linguistic processing versus external sources.
Therefore, the separation between knowledge and
linguistic competence does not ensure the avoid-

ance of already existing problems in LLMs, but
could help to identify and mitigate them.
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A Appendix

Model RTE MNLI QQP
Qwen2.5-0.5B 0.5884 0.3869 0.6831
Llama-3.2-1B  0.5668 0.3585 0.5022
Qwen2.5-1.5B  0.7004 0.5254 0.7530
gemma-2-2b  0.6137 0.4338 0.4610
Llama-3.2-3B  0.5451 0.3462 0.3722
Qwen2.5-3B 0.7581 0.5505 0.8527
Yi-1.5-6B 0.7401 0.5437 0.5917
Qwen2.5-7B 0.8159 0.6265 0.8605
Llama-3.1-8B  0.6968 0.5084 0.4141
gemma-2-9b 0.6787 0.4849 0.4096
Yi-1.5-9B 0.7834 0.5077 0.5224

Table 4: Scores for each semantic competence task. Best
scores are highlighted in bold and second best scores
are underlined.
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