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ABSTRACT

Although the human brain can adjust the amount of time and energy it uses to solve
problems of varying complexity, many standard neural networks require a fixed
computation budget regardless of the problem’s complexity. This work introduces
L2 Adaptive Computation (LAC), a new algorithm that adjusts the computation
budget, by tracking changes in the L2 norm of a neural network’s hidden state as
layers are applied to the input. Unlike previous methods, LAC does not require
additional trainable modules or auxiliary loss terms to make halting decisions. LAC
matches the results of best-performing methods on a complex synthetic task and
improves image classification accuracy while also increasing efficiency.

1 INTRODUCTION

The human brain relies on adaptivity in computation, enabling it to adjust the amount of time and
energy dedicated to a problem based on its complexity. Conversely, standard neural networks tend to
allocate the same computational budget to an input regardless of its complexity. There have been
studies aimed to train models equipped with a halting mechanism that controls the computational
steps (e.g., number of cell repeats in RNNs or number of layers in Transformers) based on the input’s
complexity and adapts the loss function to account for computational budget (Graves, 2016; Dehghani
et al., 2018; Banino et al., 2021; Schuster et al., 2022; Xue et al., 2023). Following the same goal,
in this work, we present L2 Adaptive Computation (LAC), a simple yet very effective method that
enables a dynamic number of computation steps. Unlike most prior work, LAC does not require adding
any extra module with learnable parameters to make the halting decision and requires no change
on the loss function. Instead, LAC tracks changes in the L2-norm (Euclidean norm) of the model’s
activations as a proxy for computational progress, enabling it to determine when to halt computations.
LAC is developed in Scenic (Dehghani et al., 2022) and uses JAX (Bradbury et al., 2018) and Flax
(Heek et al., 2020) and the code is available at https://github.com/manishemirani/LAC.

2 LAC: L2 ADAPTIVE COMPUTATION

LAC requires a step function to perform, a step function can be any part of the model, e.g., a layer of
the neural network. Consider S as a step function where S(x, ht) = ht+1 where h0 is initial state
and x is the input. We set a maximum number of computational steps T that the model can take if it
does not halt before reaching step T. To make the decision whether to continue to step t+1 or halt,
LAC tracks the changes in the L2 norm of the model’s activations(∥h∥2) up to step T.

L2 norm of model’s activations LAC offers two different ways for making the halting decision,
one is per-batch halting and the other is per-example (or optionally per-tokens), where depending
on the hardware and framework, either could be preferred to efficiently introduce adaptivity. With
per-batch halting, the L2-norm of the activation is calculated for all examples in the batch: ∥h∥2 =√
Σn
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Halting Mechanism In LAC, the decision to halt at each step is based on the model’s progress
during that step. Specifically, we use the change in the L2-norm of the model’s activation as a proxy
for progress, i.e., δt = ∥ht∥2 − ∥ht−1∥2. In other words, we stop at step n if δt < λt, where λt is a
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Table 1: Parity task.
Method Accuracy Steps
RNN 1.0 10
RNN + LAC per-batch 1.0 3
RNN + LAC per-example 1.0 3

Table 2: Image classification task.
Method Accuracy
ViT 0.745
UViT 0.739
ViT + LAC per-batch 0.761
ViT + LAC per-example 0.759
UViT + LAC per-batch 0.743
UViT + LAC per-example 0.753
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Figure 1: Number of steps taken by LAC on CI-
FAR10 evaluation set with LAC per-example and
LAC per-batch applied on UViT and Vit.

threshold defining the minimum activation change required for the model to be eligible to proceed
to step t + 1. We set λt = α|max(∆t) − min(∆t)|, where α ∈ (0, 1] is a hyperparameter that
determines the decisiveness of the threshold, and ∆t is the sequence of changes in activation across
all consecutive steps before step n: ∆t = {δt−1, δt−2 . . . , δ1}. The value of α provides a knob to
control the number of computational steps by adjusting the threshold. A lower value of α corresponds
to a more permissive threshold, which in turn favors a larger number of computational steps.

3 EXPERIMENTS AND RESULTS

This section provides a condensed report of the evaluation of LAC on two distinct tasks, Parity and
image classification. In these experiments, LAC was implemented to introduce adaptability to various
architectures such as RNN, Vision Transformer, and Universal Transformer. Note that the value of
α is set to 1.0 for all Parity experiments and 0.8 for image classification experiments.

Parity In this section, we present the results of applying LAC to the parity task, in which, given
a sequence of digits ∈ {1,−1, 0}, the model has to predict the evenness or oddness of the number
of 1s in the sequence (Graves, 2016). The results of the parity task on three different architectures
are presented in Table 1. RNN, RNN + LAC per-example, and RNN + LAC per-batch, where in
the last two, we use a modified GRU cell to use LAC. All architectures have the same batch size
of 128 and hidden state size of 128 and were tested on parity task with the sequence length of 16.
The maximum number of computational steps, T , was set to 10.

Image Classification We further applied LAC to Vision Transformer(ViT) Dosovitskiy et al. (2020)
as well as Universal Vision Transformer(UViT) (Dehghani et al., 2018) (which ties the parameters
of the model across layers) to evaluate LAC in the context of the image classification task. We
use the CIFAR10 dataset, and apply no data augmentations for simplicity of comparisons. We set
our ViT/UViT configuration to standard B/16 where the model has 12 layers. Table 2 shows the
evaluation accuracy of LAC on CIFAR10, compared to the baseline. LAC achieved similar accuracy
compared to UViT and ViT while increasing efficiency (Dehghani et al., 2021) via taking less number
of computational steps (i.e., fewer layers are applied on average). Figure 1 presents the number
of computational steps, in this case, encoder layers required for encoding images from the CIFAR
dataset. Our approach exhibits a lower computational budget compared to UViT/ViT on the given
inputs while maintaining the same level of performance.

4 CONCLUSION

Our paper introduces L2 Adaptive Computation (LAC), a new method that allows neural networks
to adapt their computational budget based per patch, example, or token level. LAC utilizes the
L2-norm of the model’s activations for making halting decisions, eliminating the need for extra
learnable parameters or auxiliary loss terms. Our experiments on two tasks, namely Parity and image
classification, indicate that LAC achieves comparable results to the baselines while also improving
efficiency. As an immediate future work, given the excellent cost-performance trade-off that LAC
offers, we are seeking ways to access computational powers to apply LAC on large-scale training
in the transfer learning setup.
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