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Abstract
Biological image analysis has traditionally fo-
cused on measuring specific visual properties
of interest for cells or other entities. A com-
plementary paradigm gaining increasing traction
is image-based profiling - quantifying many dis-
tinct visual features to form comprehensive pro-
files which may reveal hidden patterns in cel-
lular states, drug responses, and disease mech-
anisms. While current tools like CellProfiler can
generate these feature sets, they pose significant
barriers to automated and reproducible analyses,
hindering machine learning workflows. Here we
introduce cp_measure, a Python library that ex-
tracts CellProfiler’s core measurement capabili-
ties into a modular, API-first tool designed for
programmatic feature extraction. We demon-
strate that cp_measure features retain high fi-
delity with CellProfiler features while enabling
seamless integration with the scientific Python
ecosystem. Through applications to 3D astrocyte
imaging and spatial transcriptomics, we showcase
how cp_measure enables reproducible, automated
image-based profiling pipelines that scale effec-
tively for machine learning applications in com-
putational biology.

1. Introduction
High throughput screening of biological phenomena via
complex modalities, such as RNA sequencing, is pro-
hibitively expensive, therefore microscopy is an efficient
first step. Through microscopy, modern biologists use a
wide array of fluorescence dyes or proteins to observe the
location and distribution of cells, organelles, and other com-
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ponents. Nowadays, quantification of biological images is
standard, with software often identifying regions of interest
(such as cells) and extracting features that represent these
regions, such as intensity.

Image-based profiling–also termed morphological profiling–
is a technique of measuring an extensive suite of morpholog-
ical features for a population of biological objects, such as
cells. These features are fed into statistical or machine learn-
ing methods to identify biologically meaningful patterns.
One of its biggest applications of morphological profiling is
drug discovery, where scientists leverage microscopy’s low
acquisition cost and high throughput to accomplish many
goals, such as grouping genes by function, identifying chem-
ical compounds that target a protein, and predicting toxicity
of drug candidates (Chandrasekaran et al., 2021).
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Figure 1. cp_measure generates features from images by using
information in every region of interest ("object"). It can featurize
the pairwise combination of all the available channels (colours)
and objects. The resultant matrices represent the entire experiment
and can be studied using statistical, machine, and deep learning
methods.

1.1. The current state of bioimage analysis

The most widely used software for processing high-
throughput biological images is CellProfiler (Stirling et al.,
2021), providing experimental biologists with limited pro-
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gramming expertise an accessible yet powerful toolset. By
contrast, it may not suit the needs of computational bi-
ologists building high throughput pipelines comprised of
multiple tools. CellProfiler is ideal for creating and it-
eratively adapting manually-defined workflows; for low-
customization high-throughput analyses such as extracting
features for image-based profiles or spatial transcriptomics
data, however, certain aspects become a hindrance. For ex-
ample, complementing CellProfiler with other image analy-
sis tools is a struggle, as building plug-ins to add function-
ality is a time and effort-consuming challenge that requires
an understanding of its interfaces. Lastly, CellProfiler de-
pends on many Python and Java packages, increasing the
likelihood of dependency conflicts. Containers mitigate this
problem, but not without increased complexity and caveats.

Alternative tools can extract features for image-based pro-
files, such as scikit-image (van der Walt et al., 2014), Scale-
Fex, or SpaCR (Comolet et al., 2024; EinarOlafsson, 2025),
however, these approaches present trade-offs for different
use cases. Their independent implementation means they
generate different feature sets than CellProfiler, which can
be advantageous for novel applications but complicates di-
rect comparison with established datasets like those in the
Cell Painting Gallery (Weisbart et al., 2024). Addition-
ally, while all tools necessarily impose input requirements,
some enforce rigid organizational constraints—demanding
specific directory structures and naming conventions—that
require extensive data reorganization before analysis, be-
yond the standard data type and format specifications. Some
alternatives also target specific deployment scenarios, with
ScaleFex designed primarily for cloud environments, limit-
ing utility for researchers preferring local computation.

1.2. Engineered features in the era of deep learning

While computer vision has largely transitioned to deep
learning-based feature extraction, biological imaging
presents unique challenges that maintain the relevance of
engineered features. These images differ substantially from
natural images in their acquisition methods, visual proper-
ties, and analytical objectives, often limiting the effective-
ness of standard pre-trained models, even those trained on
biological data.

The application of deep learning to feature extraction for
biological image analysis shows mixed results. When ap-
propriately trained on domain-specific data, deep learning
networks can outperform engineered features (Lafarge et al.,
2019; Moshkov et al., 2022; Chow et al., 2022; Wolf et al.,
2018), but not universally (Tang et al., 2024; Kim et al.,
2023). Effective deep learning feature extractors for biologi-
cal applications typically require substantial domain-specific
datasets and careful model architecture choices, rather than
simple transfer from general computer vision models.

Several practical considerations favour engineered features
in biological imaging. First, interpretability remains crucial
for biological discovery—researchers need to understand
which morphological characteristics drive observed pheno-
types. While deep learning features can be powerful predic-
tors, their interpretation requires sophisticated techniques
that may not provide the mechanistic insights biologists
seek (Li et al., 2023). Engineered features have clear mathe-
matical definitions that directly translate to biological con-
cepts, such as protein co-localisation or nuclear morphology
changes (Garcia-Fossa et al., 2023).

Second, many biological imaging laboratories lack the GPU
resources, large annotated datasets, or machine learning
expertise required for custom model development. While
foundational models are emerging, visual foundational mod-
els can be challenged by the diversity of imaging modalities
and experimental conditions (Azad et al., 2023).

Third, engineered features offer consistency and repro-
ducibility advantages valuable for comparative studies and
multi-site collaborations, producing identical results across
different computing environments.

Rather than viewing these approaches as competing alterna-
tives, the field increasingly recognizes their complementary
roles. This motivates the need for robust, accessible tools
that efficiently extract interpretable features while integrat-
ing seamlessly with modern computational workflows. With
all this in mind, we developed cp_measure.

2. Extracting interpretable features
The library cp_measure branches off the CellProfiler code-
base, adapted to include calculations for all features of an
image-based profiling pipeline, while removing the user
interface and anything else non-essential to the task. Mea-
surements are defined as a collection of related features,
following CellProfiler’s nomenclature, and are categorized
based on three kinds of input: One object (producing fea-
tures such as area and eccentricity), one object + one imag-
ing channel (these can be used to extract such measurements
as intensity, texture), one object + multiple channels (e.g.,
for Manders correlations between intensity values across
channels). A visual representation of this can be found in
Figure 1.

By isolating the feature calculations from the graphical inter-
face and orchestration components, we aimed to make them
accessible to the data science community while improving
reusability, testability and extensibility. This reduces the
amount of time and human effort required to integrate featur-
ization into existing and new pipelines, while still retaining
the standard set of features available for multiple public
datasets.
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2.1. Reproducing CellProfiler measurements

We first tested whether cp_measure features match the orig-
inal CellProfiler features, for a representative set of 300
images. These correspond to 150 perturbations from the
JUMP Cell Painting dataset (Chandrasekaran et al., 2023),
selecting a representative subset of the most significant phe-
notypes for each feature. We segmented images to delin-
eate the cells and nuclei using CellProfiler, providing object
masks (regions of interest) to CellProfiler and to cp_measure
for feature extraction. Next, we applied cp_measure on these
masks and the original images. To validate cp_measure, we
compared its output directly with CellProfiler’s on identical
images and masks. For each feature, we computed the R2

value between the two tools’ measurements. Over 95% of
features showed R2 > 0.9 (Figure 2), indicating near-perfect
agreement. The few outliers with lower correlations reveal
edge cases handled differently by each tool; these will be
addressed through comprehensive unit testing. These results
indicate that cp_measure is not likely to produce massively
different profiles than those calculated by CellProfiler.

Figure 2. cp_measure features match their CellProfiler analogues.
Panels A-C. Representative examples comparing CellProfiler fea-
ture values (x-axis) to cp_measure’s (y-axis), generated using
matching pairs of masks and images. Panel D. R2 value of a
linear fit for each individual feature, comparing cp_measure to
CellProfiler.

2.2. Results

2.2.1. ASTROCYTE 3D NUCLEI DATA

We demonstrate cp_measure’s utility through a biologically
relevant task: tracking astrocyte maturation over time. From
433 3D images containing 831 astrocyte nuclei (Kalinin
et al., 2021), cp_measure extracted morphological fea-
tures that we preprocessed following standard procedures
(Caicedo et al., 2017). We then trained a Gradient Boosting
classifier to predict the day of cell differentiation with 87%
accuracy. SHAP analysis (Sundararajan & Najmi, 2020) (3)

revealed that nuclear minor axis length was the most pre-
dictive feature: nuclei became progressively wider during
maturation, a phenotype consistent with known astrocyte
biology.

Figure 3. Panels A and B. Example pair of astrocyte nuclei image
and masks. The 3D images were projected over the z-axis, taking
the maximum value across the z-stack. Panel C. SHAP values of
the most important features for classifying the day of differentia-
tion (out of three days). Each point represents a single 3D image
containing multiple nuclei, the magnitude of SHAP values indicate
how important those features are for the classifier. Features are
ranked by importance, with individual SHAP values shown for
the top features and the summed impact shown for the remaining
267 features shown as a single aggregated value. Shape features,
such as the minor axis length, refer to the nucleus, while intensity
features refer to the DNA staining. The test data accuracy is shown
in bold.

2.2.2. SPATIAL TRANSCRIPTOMICS

To demonstrate the broad applicability of cp_measure, we
developed a morphology featurizer for the popular spatial
omics analysis toolbox Squidpy (Palla et al., 2022). Many of
the recently developed spatial omics analysis technologies
generate, in addition to their target omics layer, imaging
data, usually H&E (hematoxylin and eosin) stained or fluo-
rescently labelled.

Spatial transcriptomics poses unique computational chal-
lenges: images routinely contain 500,000+ cells, far exceed-
ing CellProfiler’s memory constraints and rigid data struc-
ture requirements. cp_measure’s modular design enabled us
to build a custom workflow integrated with Squidpy (Palla
et al., 2022) that leverages the SpatialData format (Mar-
conato et al., 2024) to process cells in streaming parallel
batches. This architecture handles massive spatial datasets
efficiently while bringing morphological profiling directly
into the scverse ecosystem (Virshup et al., 2023), making
these features immediately accessible to the single-cell com-
munity.
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To illustrate the value of this workflow, we used it to identify
morphologically similar regions within two human breast
cancer sections profiled with the spatial transcriptomics
technology Xenium (10x Genomics, 2023). We generated a
pattern of tessellating hexagonal masks across both images,
of which 18469 were found to overlay the tissue. These
masks were then featurized with a cp_measure-based work-
flow: We first preprocessed the features following standard
workflows (Serrano et al., 2025), then removed batch ef-
fects between the samples using Harmony (Korsunsky et al.,
2019), and finally obtained the Leiden clusters via Scanpy
(Wolf et al., 2018; Traag et al., 2019).

For each cluster, we extracted the cells within its hexagons
and calculated the respective cell type proportions. A vi-
sual comparison of panels A and B in Figure 4 shows that
morphology-only clustering largely recapitulates the under-
lying tissue architecture. Panel C reveals that some clusters
have distinct cell-type compositions: For example, cluster 2
is dominated by fibroblasts, whereas adipocytes appear al-
most exclusively in clusters 5-7. Furthermore, comparing
clusters 0 and 1 suggest intra-tumour differences, which
could be correlated to immune-hotness (see Figure A5).

Figure 4. Morphology reveals the composition of tumour subre-
gions. Panel A. Spatial map of cell types inferred from transcrip-
tomics. Panel B. Morphological subregions obtained by Leiden
clustering the image-derived feature embeddings. Panel C. Bar
chart showing, for each morphological cluster, the fraction of cells
assigned to each cell type. Clusters 5-7 were merged due to simi-
larity, cluster 10 removed due to low cell count (see Figure A2B).

These results demonstrate how cp_measure can can be used
outside traditional microscopy. When applied on extremely
large images it produces biologically meaningful morpho-
logical clusters that validate and complement transcriptomic
phenotypes. By embedding this capability within the sc-
verse ecosystem via Squidpy, we enable researchers to seam-
lessly add morphology to their spatial omics workflows,
unlocking new insights into tissue organization.

3. Discussion
While point-and-click interfaces open the world of image
analysis to many researchers, they are not as effective for
computational workflows with no human-in-the-loop. In
this work we introduced our new library cp_measure, which
calculates a set of widely used engineered features relevant
to whole images and to regions of interest (object masks).
It enables simpler automated profiling of microscopy data
in short scripts and complex pipelines. The modularity it
provides facilitates pipelines with better scaling capabil-
ities for high-content microscopy, with or without cloud
infrastructure.

The biologically interpretable features provided by
cp_measure complement deep learning features and offer a
better mechanistic understanding of the underlying biology.
A potential workflow would be to use deep learning fea-
tures to cluster and then use cp_measure features from these
clusters. As a whole, when used in tandem with generalist
image-processing tools, such as Cellpose for segmentation
(Stringer et al., 2021), machine and deep learning workflows
can be streamlined.

While developed for biology, engineered morphological
features have proven valuable far beyond their original
domain–from analysing microplastics in environmental sam-
ples (Idehara et al., 2025) to quality control in manufacturing
(Ilhan et al., 2021) and agriculture automation (Xu et al.,
2024). cp_measure’s lightweight, API-first design makes
these powerful features accessible to any field working with
image data, removing the barriers of biological-specific in-
terfaces.

4. Future work
We propose to make cp_measure an imported dependency
for CellProfiler, offering several benefits. It would ensure
that the results from pipelines built with either tool will
always be comparable, while also providing the opportunity
to formalize the inputs and outputs of all measurements. It
would also mean that any changes made in cp_measure prop-
agate to CellProfiler, benefiting the community for which it
was originally developed.

We also plan to develop a comprehensive test suite to guaran-
tee mathematical correctness, which currently CellProfiler
itself is lacking. A comprehensive test suite would enable
more confident and expedient optimization for the most
compute-consuming features, such as granularity, by provid-
ing rapid iteration capabilities. Once tests are in place, we
could add support for just-in-time compiling and GPUs. We
envision that cp_measure could also be the place to develop
and distribute new measurements from the community.
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6. Appendix
5.1. Methods

5.1.1. DATA AND SOFTWARE

The codebase for cp_measure is available on https://github.com/afermg/cp_measure. All code to reproduce
the analyses and figures, alongside links to the original data, is available on the GitHub repository https://github.
com/afermg/2025_cpmeasure.

5.1.2. DETAILS ON THE SPATIAL USE CASE

The following figures show the processing steps for the spatial data used to generate Figure 4 in more detail. Raw data from
two Xenium Spatial Transcriptomics available from the 10x Genomics Datasets homepage (name: "FFPE Human Breast
with Custom Add-on Panel", release date: 2023-01-22) were downloaded and converted to the ‘SpatialData‘ format. The
data comprises two samples, one infiltrating ductal carcinoma ("sample 1") and one invasive lobular carcinoma ("sample 2").
H&E images from the same dataset were also downloaded, aligned to the respective reference images, and saved to the data
object. These can be seen in Figure A3A and Figure A3B. A pattern of tessellating hexagons was generated for each sample,
spanning the entire tissue section. These hexagons were subselected to only those overlaying the specimens as visible in
the H&E image, resulting in 10321 hexagons for sample 1 and 8148 for sample 2 respectively. These hexagonal masks
were used to automatically extract the underlying H&E crops which were then featurized using ‘Squidpy‘, resulting in 945
features each. These features were then pre-processed using ‘Pycytominer‘, resulting in 252 features. We then removed
batch effect using Harmony. UMAP projections of these features are shown in Figure A1.

Figure A1. UMAP projection of the processed morphology features. Panel A. Coloured by sample of origin, we see good mixing after the
Harmony integration. Panel B. Coloured by Leiden clustering.

Due to the low cell count in Leiden cluster 10 for sample 2, as shown in Figure A2B the cluster was excluded for some
analysis steps.
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Figure A2. Morphology reveals the composition of tumour subregions. Panel A. Spatial map of cell types inferred from transcriptomics.
Panel B. Morphological subregions obtained by applying Leiden clustering to image-derived feature embeddings. Panel C. Bar chart
showing, for each morphological cluster, the fraction of cells assigned to each cell type (colour legend as shown). The top left quarter of
Panel A shows that the morphological approach worked to predict regions while the expression annotations did not.

Then, the gene expression data from the Xenium experiment was used to annotate cell types for both samples. For every
Leiden cluster, as defined by the Leiden clustering of the joint morphology features from both samples, the cells covered by
the respective hexagons were extracted. Figure A3 shows the raw H&E images, the distribution of cell types across these,
and the hexagons coloured by their respective Leiden cluster. Of note is that the H&E images both seemed to be partially
corrupted, resulting in blacked-out sections. While the data contains cell segmentation masks for these sections, we filtered
out hexagons overlaying these corrupted regions for the morphology featurization.

For every morphology Leiden cluster, we counted all cells whose centroids fell into the respective hexagons and calculated
each cell type’s share of the total cells per cluster. This data is shown in Figure A4.
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Figure A3. Overview about the spatial distribution of cell types and morphology clusters. Panel A and B. H&E images of both samples.
Panel C and D. Cell segmentation masks colored by cell type. Panel E and F. Hexagons colored by their morphology Leiden cluster.

Figure A4. Barplots showing the per-cluster cell type composition for both samples. Additionally, the average per sample is shown.
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Based on (Wu et al., 2024) we define an immune-hot signature comprising B cells, dendritic cells, NK cells, and T cells. For
every Leiden cluster, we aggregated the respective cell type counts of this signature for both samples. These are shown in
Figure A5B and provide initial evidence for the difference in clusters 0 and 1, despite both being visually mixed as can be
seen in Figure A5A.

Figure A5. Potential explanation of the differences between cluster 0 and cluster 1. Panel A Hexagons in sample 2 coloured by Leiden
cluster. Panel B Cumulative counts of B cells, dendritic cells, NK cells, and T cells.
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