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Abstract—With the rapid proliferation of IoT (Internet of 
Things) technologies, ensuring reliable and continuous 
operation of M2M (machine to machine) communications has 
become paramount. This paper presents the design and 
implementation of a redundant backup system tailored for 
M2M devices, utilizing an ad hoc network system. The 
proposed architecture is systematically divided into three 
layers: the physical layer, network layer, and application layer, 
each meticulously crafted to address the specific constraints 
and demands inherent to IoT devices. At the physical layer, 
considerations are given to the hardware specifications and 
energy consumption of M2M devices. The network layer 
focuses on establishing robust, self-organizing ad hoc network 
protocols to ensure seamless connectivity and data 
transmission between devices. Meanwhile, the application layer 
is designed to manage data redundancy, recovery processes, 
and system monitoring, ensuring that the backup mechanism 
operates efficiently under varying conditions. Through the 
integration of this multi-layered device redundant backup 
solution, the system guarantees continuous operation and 
enhances reliability in M2M scenarios. Extensive testing and 
simulation results demonstrate the effectiveness of the 
proposed system in maintaining data integrity and operational 
resilience, even in the face of network disruptions and 
hardware failures. This study offers a comprehensive 
framework for improving the robustness of M2M 
communications, contributing to the advancement of IoT 
technologies. 
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I. INTRODUCTION

In the era of the Internet of Things, ensuring the security 
and efficient management of numerous devices is a major 
challenge [1]. With the rapid increase in the number of IoT 
devices and the continuous expansion of application 
scenarios, device fault recovery and business continuity have 
become particularly important. Redundant backup solutions 
provide an efficient fault recovery method for M2M devices. 
By replicating and backing up device data, they can quickly 
recover when a device fails and ensure business continuity. 

Existing redundant backup solutions are mainly used in 
resource-rich computing environments [3][4]. In the IoT 

environment, devices usually have limited resources, such as 
limited storage space, computing power, and power supply. 
This brings new challenges to the design and implementation 
of redundant backup solutions[5]. To solve these problems, 
this paper deeply explores the architecture design and 
implementation of self-organizing network systems. Through 
self-organizing network technology, automatic discovery and 
communication between devices are realized, reducing 
dependence on centralized control and management, and 
improving the flexibility and scalability of the system. 

In this paper, we introduce the design of the system 
architecture in detail, including the functions and 
implementation methods of the physical layer, network layer, 
and application layer. The physical layer is mainly 
responsible for the hardware connection and basic 
communication of the device, the network layer provides 
data transmission and routing functions between devices, and 
the application layer implements specific backup and 
recovery operations. Each layer is designed for the unique 
limitations and requirements of IoT devices to ensure that the 
system can still operate efficiently in a resource-constrained 
environment. 

By integrating device redundancy backup solutions, our 
system can automatically switch to backup devices in the 
event of device failure or communication interruption, 
ensuring operational continuity and reliability in M2M 
scenarios. This study not only provides a new solution for 
fault recovery of IoT devices, but also provides a useful 
reference for other application scenarios that require high 
reliability and high availability. 

II. AD HOC NETWORK SYSTEM ARCHITECTURE AND DESIGN

Since most M2M devices have the characteristics of low
performance, heterogeneity, and resource shortage [2], the 
system design should minimize the system resource usage 
and be able to access various heterogeneous IoT devices. As 
shown in Figure 1, the ad hoc network system is divided into 
three layers: physical layer, network layer, and application 
layer. 

The physical layer is mainly used to adapt to IoT terminal 
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devices of various communication methods. It can receive 
messages from communication methods such as Ethernet, 
Bluetooth, WiFi, etc., and pass them to the system for 
processing, so as to realize dynamic interaction between 
devices with different communication methods. 

The main responsibilities of the network layer are 
unpacking, packet assembly, protocol conversion and data 
forwarding, which are used to transmit various data of the 
device and transmit control signals downward. The network 
layer designs and implements coroutine modules and 
network modules based on coroutine modules to provide 
efficient asynchronous programming methods, so that the 
system can make full use of the resources of a single thread 
and achieve high-performance network communication. 

 
Fig. 1. Overall architecture diagram of self-organizing network system 

The application layer includes functions such as device 
discovery, authentication, device management and data 
transmission. This layer supports business applications such 
as data collection, analysis, transmission and device hot 
backup, forming a complete IoT device management system. 

III. IMPLEMENTATION DETAILS 

To meet the stringent requirements on resources, the 
system uses customized lightweight and efficient basic 
components to provide services for upper-layer business 
codes. 

A. Coroutine Framework 

In order to solve the problem of low support for multi-
threading in the perception layer devices of the Internet of 
Things, this system implements a coroutine framework to 
avoid the overhead of frequent thread switching, so as to 
better support multi-threaded operations in the business. The 
traditional network framework is based on the multi-threaded 
model and is not applicable in the coroutine environment. 
Based on the coroutine framework, this system implements a 
customized network framework to support TCP and UDP 
connections with other devices. The network framework is 
optimized to efficiently handle network communications in a 
coroutine environment. 

The overall coroutine framework can be divided into 4 
layers, from top to bottom: coroutine API interface, two-
layer scheduler, coroutine pool, system call layer, as shown 
in Fig. 2. 

1) System call layer 
The context switch is performed using ucontext.h of the 

GNU C library, and a Context class is encapsulated. This 

class contains the context structure and the corresponding 
stack space, and provides an upper-level interface to 
implement context transfer. From a design perspective, the 
Context class can be regarded as the smallest unit of context 
transfer, which corresponds one-to-one to the coroutine. 

2) Coroutine Pool 
The coroutine pool manages the coroutine objects in the 

system and is responsible for their lifecycle and scheduling. 
The coroutine object encapsulates the operation of the 
coroutine, is responsible for managing the context and state 
of the coroutine, and is the basic unit of scheduling and 
management. The operation of the coroutine object includes 
the yield, recovery and execution of the coroutine, and its 
state can be divided into ready state, running state, waiting 
state and dead state. The coroutine pool initially has 500 
coroutine objects, and the capacity is doubled each time it is 
expanded to improve performance. 

This system abstracts the coroutine object pool into a 
template class, uses deque as the underlying data structure, 
and manages idle objects and running objects respectively, as 
shown in Fig. 3. This system designs the CorManager class, 
which corresponds to each kernel thread one by one and is 
responsible for scheduling, running, giving up, and waking 
up the coroutine objects in the thread. The CorManager class 
contains components such as event scheduler, time scheduler, 
double buffer queue, and thread object. 

 
Fig. 2. Coroutine framework diagram 

When CorManager is started, a thread object is created. 
This thread object is responsible for looping through the 
active coroutines and the ended coroutines in the current 
thread. Active coroutines are obtained in two ways: the time 
scheduler is responsible for waking up the timed coroutines, 
and the event scheduler uses epoll to listen to the IO events 
of the managed file descriptors and wake up the 
corresponding coroutines. For the executed coroutine objects, 
CorManager will set them to the dead state, initialize their 
context and other information, and then put them back into 
the coroutine object pool so that they can be reused the next 
time they are woken up. 
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Fig. 3. Coroutine framework class diagram 

3) Two-tier scheduler
The main object of the two-layer scheduler is

CorManager, which is responsible for managing the life 
cycle of each CorManager. The main scheduler Schedule 
adopts the singleton mode. When it starts, it will create a 
corresponding number of CorManagers according to the 
number of kernel threads, and assign a unique ID to each 
thread for management. The main function of the second-
layer scheduler is to schedule the coroutine to the 
corresponding CorManager for execution. This system 
implements the fair scheduling algorithm and the priority 
scheduling algorithm based on the operating system process 
scheduling strategy. For coroutine tasks that are not directly 
related, the scheduler will automatically assign them to a 
thread for execution to achieve parallel execution. In this 
case, coroutines in different threads can be executed 
simultaneously, improving the concurrent performance of the 
system. 

4) Coroutine API interface
The coroutine API interface is the part that encapsulates

the coroutine library. Its main purpose is to hide the details 
of the coroutine and only expose the control interface to the 
user. The API layer provides a series of interfaces, including 
initiating a coroutine, coroutine sleep, and obtaining the 
current CorManager. 

B. Optimize IO efficiency based on Hook technology

IO-intensive operations in the Linux environment can
cause performance bottlenecks, especially the frequent 
switching between user mode and kernel mode and the 
blocking problem in the data copy stage. The paper proposes 
an innovative method that uses Hook technology[6] to 
transform the original synchronous blocking system calls 
into asynchronous operations in the coroutine, and 
implements the interception and encapsulation of system 
calls through the dlsym dynamic library link function. This 
solution allows data copying to be processed in user mode, 
effectively eliminating the blocking in the data transmission 
stage, thereby improving the efficiency of IO operations, and 
is particularly suitable for optimizing system performance in 
resource-scarce scenarios. 

C. Optimizing concurrency efficiency based on spin locks

In a multi-threaded environment, it is a difficult problem
to effectively manage critical resources. Researchers usually 
use techniques such as mutex locks and atomic variables to 
control the access order of threads. However, the switching 

of mutex locks will cause the switching between user state 
and kernel state, and this overhead is unacceptable in a 
coroutine environment. A lightweight lock that can only 
protect critical resources in user state came into being. To 
achieve this goal, this system uses the atomic variable sub-
implementation Spinlock and SpinlockGuard provided by 
C++11 to protect critical resources. 

D. Optimizing coroutine creation overhead based on
coroutine stack allocation strategy

Since the coroutine needs to record information such as 
CPU registers and program counters when executing tasks, 
each coroutine needs to have its own independent memory 
stack. At present, there are two coroutine stack allocation 
strategies: independent stack and shared stack, corresponding 
to stacked coroutines and stackless coroutines respectively. 

Based on this, this section proposes a coroutine stack 
allocation strategy based on the memory pool that combines 
the two schemes. In view of the lack of flexibility, memory 
fragmentation, size definition of stackless coroutines and the 
high creation overhead and difficulty in unified management 
of stacked coroutines, this article uses the memory pool as 
the coroutine stack for scheduling. When the program starts, 
you only need to create memory blocks of different sizes and 
organize them in the memory pool in the form of a linked list. 
When the coroutine is created/destroyed, there is no need to 
allocate/release memory, but only need to return the memory 
to the memory pool for unified management by the memory 
pool.  

E. Network module scheduling and optimization

The network library provides functions such as
establishing and managing network connections, sending and 
receiving data, and processing network events. The network 
framework uses coroutines instead of thread pools at the 
bottom layer to handle the reception of network connections, 
and uses hook technology to replace intensive system IO 
operations to fully utilize the performance advantages of 
coroutines and achieve efficient network connection 
management. 

The entire network framework can be divided from 
bottom to top: basic component layer, connection layer, and 
service layer, as shown in Fig. 4. 

Fig. 4. Network framework diagram 

The basic component layer includes three parts: coroutine 
framework, Socket class and memory pool. The coroutine 
framework provides the scheduling and management 
functions of coroutines. The Socket class is a component that 
encapsulates and manages network file descriptors. The 
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memory pool is used to manage memory blocks. The second 
layer is the network connection layer, which inherits Socket 
and implements Tcp connector and Udp connector, and 
provides related data connection, sending and receiving 
interfaces. 

IV. EQUIPMENT REDUNDANCY BACKUP DESIGN 

This solution divides device identities into two categories: 
backup devices and deployment devices. Deployment 
devices will be responsible for specific services, including 
processing video streams, real-time alarms, algorithm 
processing, etc. Backup devices are not responsible for 
specific services, but only replace the work of backup 
devices when deployment devices fail. 

Device redundancy backup organizes devices in a trusted 
domain, closely monitors the status of each device, and 
promptly detects device failures. At the same time, when the 
system starts, the configuration information of the device 
will be backed up to the root node, and the configuration 
information of the root node will be stored in the sentinel 
node. When a device fails and goes offline, the root device 
will select a backup device with a matching capability set to 
replace the offline device to complete its work, thereby 
achieving rapid switching of the device. 

Configuration information mainly includes: the camera 
connected to the device, the algorithm module running on the 
device, and the alarm type being uploaded by the device. The 
following will introduce the device redundancy backup 
solution from four perspectives: inter-process 
communication, obtaining configuration information, 
updating configuration information, and configuration 
loading. 

A. Inter-process communication 

The smart station (hereinafter referred to as the station) in 
this experiment has a native MiniChallenge process, while 
the functions related to the ad hoc network system are in the 
Adhoc process, so the first problem faced is how to 
communicate efficiently and reliably between the two 
processes. In order to balance communication efficiency and 
security, we choose to use shared memory to exchange data 
between the two processes. To solve the data consistency and 
synchronization problems when multiple processes access 
shared memory, we use semaphores to protect the memory 
area and ensure the correct read and write order, thereby 
improving communication efficiency and data security, and 
ensuring the reliability and real-time performance of the 
device redundant backup system. 

B. Get configuration information 

In the device redundancy backup business process, 
devices in the trusted domain need to back up configuration 
information with each other. When a new device joins a 
trusted domain, it first undergoes two-step authentication and 
four-way handshakes to establish a trust relationship with the 
root node. Then the device identity will be determined: if it is 
a backup device, it can be directly added to the trusted 
domain; if it is a deployment device, its related configuration 
information needs to be saved. 

Specifically, the MiniChallenge process first obtains the 
configuration information of the current device and writes it 
into the configuration file in the form of Json. Then the file is 
packaged and compressed, and then sent to the Adhoc 

process in the form of shared memory. Finally, the Adhoc 
process uploads the configuration file to the root node for 
backup, as shown in Fig. 5. 

 
Fig. 5. Update configuration information 

Considering that the root device may fail, resulting in the 
loss of all device configuration information, this article uses 
the sentinel device as a backup of the root device. That is, the 
configuration information of each device will be stored in 
two copies, one in the sentinel device and the other in the 
root device. In this way, no matter which device fails, there 
is no need to collect configuration information again, 
achieving the effect of rapid replacement. 

C. Update configuration information 

The configuration file includes all the information of the 
current device operation. Therefore, once the working 
content of a device changes, the configuration information 
needs to be updated. The process is similar to obtaining 
information, as shown in Fig. 6. 

Considering the data consistency of configuration 
information, this article designs two synchronization 
strategies according to different scenarios: real-time 
synchronization and scheduled synchronization. For 
scenarios with low data consistency and real-time 
requirements, a scheduled synchronization strategy can be 
considered. This strategy is implemented by regularly 
collecting configuration files of updated devices in the 
trusted domain at predetermined time intervals to reduce 
network pressure and device burden and prevent redundant 
backup from affecting other business logic. For scenarios 
with strong data consistency requirements, a real-time 
synchronization strategy is required. In this strategy, when 
the configuration information of a device is updated, the 
configuration file must be synchronized to the root device 
and sentinel device immediately to ensure data consistency 
and avoid the risk of configuration loss. 

 
Fig. 6. Configuration modification and update flow chart 

D. Load the configuration file 

In the entire system, if a device's heartbeat is lost for a 
long time, the device will be judged to be offline and deleted 
from the trusted domain. Similarly, in the device redundancy 
backup solution, there are two ways to determine device 
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failure. The first is that its parent device manages the online 
status (the root device is managed by the sentinel device). If 
it is offline, it is considered that the device has failed; the 
second is that the MiniChallenge process actively monitors 
the internal status of the device, such as memory usage, CPU 
load, etc. If an indicator is abnormal, it will actively mark 
itself as a faulty state. 

When the root device finds that a device in the trusted 
domain has failed, it will actively delete the device from the 
trusted domain. If the device is a backup device, only the 
trusted domain topology needs to be adjusted; if the device is 
a working device, in addition to adjusting the topology, the 
backup device needs to be switched. That is, the root device 
will select a device with a matching capability set from the 
backup device and send the backup file of the failed device 
to the backup device. 

If there is no additional backup device in the trusted 
domain, the root device will issue an early warning to the 
user, but will not merge the backup information of the failed 
device into a certain deployed device. This is because after 
the normal deployment device merges the configuration of 
the faulty device, insufficient resources may occur, causing 
the device to crash continuously. 

V. EXPERIMENTAL RESULTS

A. Application Verification

The following will take the intelligent safety monitoring
scenario as an example to verify the performance, reliability 
and real-time performance of the equipment redundancy 
backup system in the M2M environment. In this scenario, the 
small station mainly serves as an edge computing node to 
connect and manage the IoT perception layer devices in the 
M2M scenario. The data information that the small station 
needs to store and backup includes: the camera managed by 
the device, the running algorithm module and the recording, 
storage, alarm, control information, etc. The average data file 
occupies 19KB of memory. 

The system divides the small stations into two categories: 
the deployment small station is responsible for specific 
services, including processing video streams, real-time 
alarms, algorithm processing, etc.; the backup small station 
only replaces the work of the deployment small station when 
the deployment small station fails. The system will closely 
monitor the status of each small station, back up the data 
information of the small station and detect faults in time. 
When the small station fails and goes offline, the root device 
selects a small station with a matching capability set to 
replace the offline device to complete its work, realizing the 
rapid switching of the device. 

The test environment is shown in Table I. Among them, 
the fault recovery time refers to the time required for the 
system to detect the faulty device and restore it to normal 
state. In the test, since the online status of ordinary devices is 
managed by the heartbeat mechanism of the ad hoc network 
system, and the heartbeat interval can be flexibly adjusted 
according to the actual situation, the test results do not 
include the heartbeat waiting time. As shown in Table II, 
under normal working conditions, manually triggering the 
failure of the main device (such as power failure or 
communication interruption), the average fault recovery time 
of ordinary devices is 174 milliseconds, while the average 
fault recovery time of the trusted root device is 432 

milliseconds. In the event of a device failure, the CPU 
occupancy rate of the device redundancy backup strategy 
does not exceed 1.8%, and the memory occupancy rate does 
not exceed 2%. 

TABLE I.  SYSTEM OPERATING ENVIRONMENT CONFIGURATION 

Configuration Operating Environment

CPU 
12th Gen Intel(R) Core(TM)i7-
12700CPU 

Memory 32.0GB
operating system 64-bit Ubuntu Linux 20.04 

TABLE II.  EXPERIMENTAL RESULTS 

experimental 
project 

Testing 
frequency 

Mean time to 
restore faulty 
equipment 

Data 
consistency 

Common 
equipment 

10 172 ms 100%

Root of Trust 
Device 

10 432 ms 100%

B. Coroutine Framework Performance Comparison

In this section, Libco and Libgo are selected from the
C++ coroutine library[7] for comparative testing with the 
coroutine library. The stack size is set to 64K. The creation 
time of 1, 1000, 2000, 4000, 8000, 10000, 20000, 40000, and 
80000 coroutines are tested respectively. Google benchmark 
is used to test the performance, and the average value is 
taken after five tests. The test environment is shown in the 
Appendix, and the results are shown in Fig. 7. Our coroutine 
creation speed (0.75ms/1W) is about 40 times higher than 
Tencent Libco (34.10ms/1W) and about 30 times higher than 
Libgo (21.17ms/1W). 

Framework implementation details lead to differences in 
coroutine switching speeds. First, the context switching rate 
is an important factor affecting the coroutine switching rate. 
Libco uses assembly operations to switch contexts, which is 
extremely fast, but not cross-platform; while our coroutine 
uses the ucontext library to switch contexts, and the call 
stack is longer than the assembly code, resulting in a slower 
switching speed, but its advantage is that it can be cross-
platform. At the same time, Libco uses a large number of 
handwritten linked lists, timers and other components, and 
does not use frameworks such as STL commonly used in 
C++; Our coroutine uses a ready-made framework, and does 
not customize the development and optimization of data 
structures such as linked lists, which increases redundant 
functions and affects the switching speed. 

Fig. 7. Number of coroutines-Coroutine creation time 
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The difference in coroutine creation speed is mainly 
caused by different memory allocation strategies. When 
creating stacked coroutines, Libco and Libgo will 
temporarily allocate corresponding stack space for each 
coroutine, with a default size of 2K. Our coroutine uses the 
object pool and coroutine pool strategy to allocate a large 
block of memory when the entire system starts. When a 
coroutine is created, only the corresponding context 
information needs to be saved, and the coroutine stack space 
is directly allocated from a large block of memory. When the 
coroutine is released, there is no need to return the memory 
directly to the operating system, but to return the coroutine to 
the coroutine pool. The next time a coroutine is created, it 
will be obtained from the coroutine pool first, avoiding the 
overhead of multiple memory allocation and release, and also 
avoiding problems such as memory fragmentation. 

VI. CONCLUSION

This paper introduces a design and implementation of 
M2M device redundancy backup based on ad hoc network 
system. The system adopts modular design, combined with 
custom coroutine framework and robust network module to 
ensure high performance and low coupling, which is suitable 
for resource-constrained IoT devices. The integrated device 

redundancy backup solution further enhances the reliability 
of the system and reduces maintenance costs, which is 
suitable for large-scale IoT deployment. 
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