
M2M device redundant backup system based on ad
hoc network system

Yichun Yu
School of Computer Science

and Engineering
Beihang University

Beijing, China
yichunyu@buaa.edu.cn

Xiaoyi Yang*
School of Software
Beihang University

Beijing, China
xyyang001@buaa.edu.cn
*Corresponding author

Yuqing Lan*
School of Software
Beihang University

Beijing, China
Lanyuqing@buaa.edu.cn
*Corresponding author

Zhihuan Xing
School of Computer Science

and Engineering
Beihang University

Beijing, China
xingzhihuan@buaa.edu.cn

Dan Yu
China Standard Intelligent Security

Beijing, China
yu_dan@csisecurity.com.cn

Han Zheng
School of Software
Beihang University

Beijing, China
zhenghan@buaa.edu.cn

Danxing Wang
China Standard Intelligent Security

Beijing, China
wang_danxing@csisecurity.com.cn

Abstract—With the rapid proliferation of IoT (Internet of
Things) technologies, ensuring reliable and continuous
operation of M2M (machine to machine) communications has
become paramount. This paper presents the design and
implementation of a redundant backup system tailored for
M2M devices, utilizing an ad hoc network system. The
proposed architecture is systematically divided into three
layers: the physical layer, network layer, and application layer,
each meticulously crafted to address the specific constraints
and demands inherent to IoT devices. At the physical layer,
considerations are given to the hardware specifications and
energy consumption of M2M devices. The network layer
focuses on establishing robust, self-organizing ad hoc network
protocols to ensure seamless connectivity and data
transmission between devices. Meanwhile, the application layer
is designed to manage data redundancy, recovery processes,
and system monitoring, ensuring that the backup mechanism
operates efficiently under varying conditions. Through the
integration of this multi-layered device redundant backup
solution, the system guarantees continuous operation and
enhances reliability in M2M scenarios. Extensive testing and
simulation results demonstrate the effectiveness of the
proposed system in maintaining data integrity and operational
resilience, even in the face of network disruptions and
hardware failures. This study offers a comprehensive
framework for improving the robustness of M2M
communications, contributing to the advancement of IoT
technologies.

Keywords—Ad Hoc Network, M2M, Redundancy

I. INTRODUCTION

In the era of the Internet of Things, ensuring the security
and efficient management of numerous devices is a major
challenge [1]. With the rapid increase in the number of IoT
devices and the continuous expansion of application
scenarios, device fault recovery and business continuity have
become particularly important. Redundant backup solutions
provide an efficient fault recovery method for M2M devices.
By replicating and backing up device data, they can quickly
recover when a device fails and ensure business continuity.

Existing redundant backup solutions are mainly used in
resource-rich computing environments [3][4]. In the IoT

environment, devices usually have limited resources, such as
limited storage space, computing power, and power supply.
This brings new challenges to the design and implementation
of redundant backup solutions[5]. To solve these problems,
this paper deeply explores the architecture design and
implementation of self-organizing network systems. Through
self-organizing network technology, automatic discovery and
communication between devices are realized, reducing
dependence on centralized control and management, and
improving the flexibility and scalability of the system.

In this paper, we introduce the design of the system
architecture in detail, including the functions and
implementation methods of the physical layer, network layer,
and application layer. The physical layer is mainly
responsible for the hardware connection and basic
communication of the device, the network layer provides
data transmission and routing functions between devices, and
the application layer implements specific backup and
recovery operations. Each layer is designed for the unique
limitations and requirements of IoT devices to ensure that the
system can still operate efficiently in a resource-constrained
environment.

By integrating device redundancy backup solutions, our
system can automatically switch to backup devices in the
event of device failure or communication interruption,
ensuring operational continuity and reliability in M2M
scenarios. This study not only provides a new solution for
fault recovery of IoT devices, but also provides a useful
reference for other application scenarios that require high
reliability and high availability.

II. AD HOC NETWORK SYSTEM ARCHITECTURE AND DESIGN

Since most M2M devices have the characteristics of low
performance, heterogeneity, and resource shortage [2], the
system design should minimize the system resource usage
and be able to access various heterogeneous IoT devices. As
shown in Figure 1, the ad hoc network system is divided into
three layers: physical layer, network layer, and application
layer.

The physical layer is mainly used to adapt to IoT terminal

772

2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS)

979-8-3503-7431-5/24/$31.00 ©2024 IEEE July 26-28, 2024 Shenyang, China

20
24

 IE
EE

 6
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ow
er

, I
nt

el
lig

en
t C

om
pu

tin
g

an
d

Sy
st

em
s (

IC
PI

CS
) |

 9
79

-8
-3

50
3-

74
31

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PI
CS

62
05

3.
20

24
.1

07
96

45
5

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

devices of various communication methods. It can receive
messages from communication methods such as Ethernet,
Bluetooth, WiFi, etc., and pass them to the system for
processing, so as to realize dynamic interaction between
devices with different communication methods.

The main responsibilities of the network layer are
unpacking, packet assembly, protocol conversion and data
forwarding, which are used to transmit various data of the
device and transmit control signals downward. The network
layer designs and implements coroutine modules and
network modules based on coroutine modules to provide
efficient asynchronous programming methods, so that the
system can make full use of the resources of a single thread
and achieve high-performance network communication.

Fig. 1. Overall architecture diagram of self-organizing network system

The application layer includes functions such as device
discovery, authentication, device management and data
transmission. This layer supports business applications such
as data collection, analysis, transmission and device hot
backup, forming a complete IoT device management system.

III. IMPLEMENTATION DETAILS

To meet the stringent requirements on resources, the
system uses customized lightweight and efficient basic
components to provide services for upper-layer business
codes.

A. Coroutine Framework

In order to solve the problem of low support for multi-
threading in the perception layer devices of the Internet of
Things, this system implements a coroutine framework to
avoid the overhead of frequent thread switching, so as to
better support multi-threaded operations in the business. The
traditional network framework is based on the multi-threaded
model and is not applicable in the coroutine environment.
Based on the coroutine framework, this system implements a
customized network framework to support TCP and UDP
connections with other devices. The network framework is
optimized to efficiently handle network communications in a
coroutine environment.

The overall coroutine framework can be divided into 4
layers, from top to bottom: coroutine API interface, two-
layer scheduler, coroutine pool, system call layer, as shown
in Fig. 2.

1) System call layer
The context switch is performed using ucontext.h of the

GNU C library, and a Context class is encapsulated. This

class contains the context structure and the corresponding
stack space, and provides an upper-level interface to
implement context transfer. From a design perspective, the
Context class can be regarded as the smallest unit of context
transfer, which corresponds one-to-one to the coroutine.

2) Coroutine Pool
The coroutine pool manages the coroutine objects in the

system and is responsible for their lifecycle and scheduling.
The coroutine object encapsulates the operation of the
coroutine, is responsible for managing the context and state
of the coroutine, and is the basic unit of scheduling and
management. The operation of the coroutine object includes
the yield, recovery and execution of the coroutine, and its
state can be divided into ready state, running state, waiting
state and dead state. The coroutine pool initially has 500
coroutine objects, and the capacity is doubled each time it is
expanded to improve performance.

This system abstracts the coroutine object pool into a
template class, uses deque as the underlying data structure,
and manages idle objects and running objects respectively, as
shown in Fig. 3. This system designs the CorManager class,
which corresponds to each kernel thread one by one and is
responsible for scheduling, running, giving up, and waking
up the coroutine objects in the thread. The CorManager class
contains components such as event scheduler, time scheduler,
double buffer queue, and thread object.

Fig. 2. Coroutine framework diagram

When CorManager is started, a thread object is created.
This thread object is responsible for looping through the
active coroutines and the ended coroutines in the current
thread. Active coroutines are obtained in two ways: the time
scheduler is responsible for waking up the timed coroutines,
and the event scheduler uses epoll to listen to the IO events
of the managed file descriptors and wake up the
corresponding coroutines. For the executed coroutine objects,
CorManager will set them to the dead state, initialize their
context and other information, and then put them back into
the coroutine object pool so that they can be reused the next
time they are woken up.

773

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Coroutine framework class diagram

3) Two-tier scheduler
The main object of the two-layer scheduler is

CorManager, which is responsible for managing the life
cycle of each CorManager. The main scheduler Schedule
adopts the singleton mode. When it starts, it will create a
corresponding number of CorManagers according to the
number of kernel threads, and assign a unique ID to each
thread for management. The main function of the second-
layer scheduler is to schedule the coroutine to the
corresponding CorManager for execution. This system
implements the fair scheduling algorithm and the priority
scheduling algorithm based on the operating system process
scheduling strategy. For coroutine tasks that are not directly
related, the scheduler will automatically assign them to a
thread for execution to achieve parallel execution. In this
case, coroutines in different threads can be executed
simultaneously, improving the concurrent performance of the
system.

4) Coroutine API interface
The coroutine API interface is the part that encapsulates

the coroutine library. Its main purpose is to hide the details
of the coroutine and only expose the control interface to the
user. The API layer provides a series of interfaces, including
initiating a coroutine, coroutine sleep, and obtaining the
current CorManager.

B. Optimize IO efficiency based on Hook technology

IO-intensive operations in the Linux environment can
cause performance bottlenecks, especially the frequent
switching between user mode and kernel mode and the
blocking problem in the data copy stage. The paper proposes
an innovative method that uses Hook technology[6] to
transform the original synchronous blocking system calls
into asynchronous operations in the coroutine, and
implements the interception and encapsulation of system
calls through the dlsym dynamic library link function. This
solution allows data copying to be processed in user mode,
effectively eliminating the blocking in the data transmission
stage, thereby improving the efficiency of IO operations, and
is particularly suitable for optimizing system performance in
resource-scarce scenarios.

C. Optimizing concurrency efficiency based on spin locks

In a multi-threaded environment, it is a difficult problem
to effectively manage critical resources. Researchers usually
use techniques such as mutex locks and atomic variables to
control the access order of threads. However, the switching

of mutex locks will cause the switching between user state
and kernel state, and this overhead is unacceptable in a
coroutine environment. A lightweight lock that can only
protect critical resources in user state came into being. To
achieve this goal, this system uses the atomic variable sub-
implementation Spinlock and SpinlockGuard provided by
C++11 to protect critical resources.

D. Optimizing coroutine creation overhead based on
coroutine stack allocation strategy

Since the coroutine needs to record information such as
CPU registers and program counters when executing tasks,
each coroutine needs to have its own independent memory
stack. At present, there are two coroutine stack allocation
strategies: independent stack and shared stack, corresponding
to stacked coroutines and stackless coroutines respectively.

Based on this, this section proposes a coroutine stack
allocation strategy based on the memory pool that combines
the two schemes. In view of the lack of flexibility, memory
fragmentation, size definition of stackless coroutines and the
high creation overhead and difficulty in unified management
of stacked coroutines, this article uses the memory pool as
the coroutine stack for scheduling. When the program starts,
you only need to create memory blocks of different sizes and
organize them in the memory pool in the form of a linked list.
When the coroutine is created/destroyed, there is no need to
allocate/release memory, but only need to return the memory
to the memory pool for unified management by the memory
pool.

E. Network module scheduling and optimization

The network library provides functions such as
establishing and managing network connections, sending and
receiving data, and processing network events. The network
framework uses coroutines instead of thread pools at the
bottom layer to handle the reception of network connections,
and uses hook technology to replace intensive system IO
operations to fully utilize the performance advantages of
coroutines and achieve efficient network connection
management.

The entire network framework can be divided from
bottom to top: basic component layer, connection layer, and
service layer, as shown in Fig. 4.

Fig. 4. Network framework diagram

The basic component layer includes three parts: coroutine
framework, Socket class and memory pool. The coroutine
framework provides the scheduling and management
functions of coroutines. The Socket class is a component that
encapsulates and manages network file descriptors. The

774

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

memory pool is used to manage memory blocks. The second
layer is the network connection layer, which inherits Socket
and implements Tcp connector and Udp connector, and
provides related data connection, sending and receiving
interfaces.

IV. EQUIPMENT REDUNDANCY BACKUP DESIGN

This solution divides device identities into two categories:
backup devices and deployment devices. Deployment
devices will be responsible for specific services, including
processing video streams, real-time alarms, algorithm
processing, etc. Backup devices are not responsible for
specific services, but only replace the work of backup
devices when deployment devices fail.

Device redundancy backup organizes devices in a trusted
domain, closely monitors the status of each device, and
promptly detects device failures. At the same time, when the
system starts, the configuration information of the device
will be backed up to the root node, and the configuration
information of the root node will be stored in the sentinel
node. When a device fails and goes offline, the root device
will select a backup device with a matching capability set to
replace the offline device to complete its work, thereby
achieving rapid switching of the device.

Configuration information mainly includes: the camera
connected to the device, the algorithm module running on the
device, and the alarm type being uploaded by the device. The
following will introduce the device redundancy backup
solution from four perspectives: inter-process
communication, obtaining configuration information,
updating configuration information, and configuration
loading.

A. Inter-process communication

The smart station (hereinafter referred to as the station) in
this experiment has a native MiniChallenge process, while
the functions related to the ad hoc network system are in the
Adhoc process, so the first problem faced is how to
communicate efficiently and reliably between the two
processes. In order to balance communication efficiency and
security, we choose to use shared memory to exchange data
between the two processes. To solve the data consistency and
synchronization problems when multiple processes access
shared memory, we use semaphores to protect the memory
area and ensure the correct read and write order, thereby
improving communication efficiency and data security, and
ensuring the reliability and real-time performance of the
device redundant backup system.

B. Get configuration information

In the device redundancy backup business process,
devices in the trusted domain need to back up configuration
information with each other. When a new device joins a
trusted domain, it first undergoes two-step authentication and
four-way handshakes to establish a trust relationship with the
root node. Then the device identity will be determined: if it is
a backup device, it can be directly added to the trusted
domain; if it is a deployment device, its related configuration
information needs to be saved.

Specifically, the MiniChallenge process first obtains the
configuration information of the current device and writes it
into the configuration file in the form of Json. Then the file is
packaged and compressed, and then sent to the Adhoc

process in the form of shared memory. Finally, the Adhoc
process uploads the configuration file to the root node for
backup, as shown in Fig. 5.

Fig. 5. Update configuration information

Considering that the root device may fail, resulting in the
loss of all device configuration information, this article uses
the sentinel device as a backup of the root device. That is, the
configuration information of each device will be stored in
two copies, one in the sentinel device and the other in the
root device. In this way, no matter which device fails, there
is no need to collect configuration information again,
achieving the effect of rapid replacement.

C. Update configuration information

The configuration file includes all the information of the
current device operation. Therefore, once the working
content of a device changes, the configuration information
needs to be updated. The process is similar to obtaining
information, as shown in Fig. 6.

Considering the data consistency of configuration
information, this article designs two synchronization
strategies according to different scenarios: real-time
synchronization and scheduled synchronization. For
scenarios with low data consistency and real-time
requirements, a scheduled synchronization strategy can be
considered. This strategy is implemented by regularly
collecting configuration files of updated devices in the
trusted domain at predetermined time intervals to reduce
network pressure and device burden and prevent redundant
backup from affecting other business logic. For scenarios
with strong data consistency requirements, a real-time
synchronization strategy is required. In this strategy, when
the configuration information of a device is updated, the
configuration file must be synchronized to the root device
and sentinel device immediately to ensure data consistency
and avoid the risk of configuration loss.

Fig. 6. Configuration modification and update flow chart

D. Load the configuration file

In the entire system, if a device's heartbeat is lost for a
long time, the device will be judged to be offline and deleted
from the trusted domain. Similarly, in the device redundancy
backup solution, there are two ways to determine device

775

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

failure. The first is that its parent device manages the online
status (the root device is managed by the sentinel device). If
it is offline, it is considered that the device has failed; the
second is that the MiniChallenge process actively monitors
the internal status of the device, such as memory usage, CPU
load, etc. If an indicator is abnormal, it will actively mark
itself as a faulty state.

When the root device finds that a device in the trusted
domain has failed, it will actively delete the device from the
trusted domain. If the device is a backup device, only the
trusted domain topology needs to be adjusted; if the device is
a working device, in addition to adjusting the topology, the
backup device needs to be switched. That is, the root device
will select a device with a matching capability set from the
backup device and send the backup file of the failed device
to the backup device.

If there is no additional backup device in the trusted
domain, the root device will issue an early warning to the
user, but will not merge the backup information of the failed
device into a certain deployed device. This is because after
the normal deployment device merges the configuration of
the faulty device, insufficient resources may occur, causing
the device to crash continuously.

V. EXPERIMENTAL RESULTS

A. Application Verification

The following will take the intelligent safety monitoring
scenario as an example to verify the performance, reliability
and real-time performance of the equipment redundancy
backup system in the M2M environment. In this scenario, the
small station mainly serves as an edge computing node to
connect and manage the IoT perception layer devices in the
M2M scenario. The data information that the small station
needs to store and backup includes: the camera managed by
the device, the running algorithm module and the recording,
storage, alarm, control information, etc. The average data file
occupies 19KB of memory.

The system divides the small stations into two categories:
the deployment small station is responsible for specific
services, including processing video streams, real-time
alarms, algorithm processing, etc.; the backup small station
only replaces the work of the deployment small station when
the deployment small station fails. The system will closely
monitor the status of each small station, back up the data
information of the small station and detect faults in time.
When the small station fails and goes offline, the root device
selects a small station with a matching capability set to
replace the offline device to complete its work, realizing the
rapid switching of the device.

The test environment is shown in Table I. Among them,
the fault recovery time refers to the time required for the
system to detect the faulty device and restore it to normal
state. In the test, since the online status of ordinary devices is
managed by the heartbeat mechanism of the ad hoc network
system, and the heartbeat interval can be flexibly adjusted
according to the actual situation, the test results do not
include the heartbeat waiting time. As shown in Table II,
under normal working conditions, manually triggering the
failure of the main device (such as power failure or
communication interruption), the average fault recovery time
of ordinary devices is 174 milliseconds, while the average
fault recovery time of the trusted root device is 432

milliseconds. In the event of a device failure, the CPU
occupancy rate of the device redundancy backup strategy
does not exceed 1.8%, and the memory occupancy rate does
not exceed 2%.

TABLE I. SYSTEM OPERATING ENVIRONMENT CONFIGURATION

Configuration Operating Environment

CPU
12th Gen Intel(R) Core(TM)i7-
12700CPU

Memory 32.0GB
operating system 64-bit Ubuntu Linux 20.04

TABLE II. EXPERIMENTAL RESULTS

experimental
project

Testing
frequency

Mean time to
restore faulty
equipment

Data
consistency

Common
equipment

10 172 ms 100%

Root of Trust
Device

10 432 ms 100%

B. Coroutine Framework Performance Comparison

In this section, Libco and Libgo are selected from the
C++ coroutine library[7] for comparative testing with the
coroutine library. The stack size is set to 64K. The creation
time of 1, 1000, 2000, 4000, 8000, 10000, 20000, 40000, and
80000 coroutines are tested respectively. Google benchmark
is used to test the performance, and the average value is
taken after five tests. The test environment is shown in the
Appendix, and the results are shown in Fig. 7. Our coroutine
creation speed (0.75ms/1W) is about 40 times higher than
Tencent Libco (34.10ms/1W) and about 30 times higher than
Libgo (21.17ms/1W).

Framework implementation details lead to differences in
coroutine switching speeds. First, the context switching rate
is an important factor affecting the coroutine switching rate.
Libco uses assembly operations to switch contexts, which is
extremely fast, but not cross-platform; while our coroutine
uses the ucontext library to switch contexts, and the call
stack is longer than the assembly code, resulting in a slower
switching speed, but its advantage is that it can be cross-
platform. At the same time, Libco uses a large number of
handwritten linked lists, timers and other components, and
does not use frameworks such as STL commonly used in
C++; Our coroutine uses a ready-made framework, and does
not customize the development and optimization of data
structures such as linked lists, which increases redundant
functions and affects the switching speed.

Fig. 7. Number of coroutines-Coroutine creation time

776

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

The difference in coroutine creation speed is mainly
caused by different memory allocation strategies. When
creating stacked coroutines, Libco and Libgo will
temporarily allocate corresponding stack space for each
coroutine, with a default size of 2K. Our coroutine uses the
object pool and coroutine pool strategy to allocate a large
block of memory when the entire system starts. When a
coroutine is created, only the corresponding context
information needs to be saved, and the coroutine stack space
is directly allocated from a large block of memory. When the
coroutine is released, there is no need to return the memory
directly to the operating system, but to return the coroutine to
the coroutine pool. The next time a coroutine is created, it
will be obtained from the coroutine pool first, avoiding the
overhead of multiple memory allocation and release, and also
avoiding problems such as memory fragmentation.

VI. CONCLUSION

This paper introduces a design and implementation of
M2M device redundancy backup based on ad hoc network
system. The system adopts modular design, combined with
custom coroutine framework and robust network module to
ensure high performance and low coupling, which is suitable
for resource-constrained IoT devices. The integrated device

redundancy backup solution further enhances the reliability
of the system and reduces maintenance costs, which is
suitable for large-scale IoT deployment.

REFERENCES
[1] Laghari A A, Wu K, Laghari R A, et al. A review and state of art of

Internet of Things (IoT)[J]. Archives of Computational Methods in
Engineering, 2021: 1-19.

[2] Verma P K, Verma R, Prakash A, et al. Machine-to-Machine (M2M)
communications: A survey[J]. Journal of Network and Computer
Applications, 2016, 66: 83-105.

[3] Zhang Y, Zhu W, Feng D, et al. A fragmentation-aware redundancy
elimination scheme for inline backup systems[J]. Future Generation
Computer Systems, 2024, 156: 53-63.

[4] Walia G K, Kumar M, Gill S S. AI-empowered fog/edge resource
management for IoT applications: A comprehensive review, research
challenges and future perspectives[J]. IEEE Communications Surveys
& Tutorials, 2023.

[5] Kamath V, Renuka A. Deep learning based object detection for
resource constrained devices: Systematic review, future trends and
challenges ahead[J]. Neurocomputing, 2023, 531: 34-60.

[6] Zhao Zhiheng, Yu Xiushan, Huang Song, et al. GUI test operation
capture method based on Windows Hook[J]. Computer Engineering
and Design, 2016, 37(3): 660-664.

[7] Ding Liaoyuan. Design and implementation of a coroutine-based web
server prototype[D]. Dalian University of Technology, 2017.

777

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 14,2025 at 09:53:27 UTC from IEEE Xplore. Restrictions apply.

