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ABSTRACT

The core of face recognition task is to learn the discrimina-
tive feature representation, which has intra-class compactness
and inter-class separability. In recent years, some margin-
based softmax loss functions were designed to encourage
the intra-class compactness, but they neglect the inter-class
separability. RegularFace were proposed to increase the inter-
class separability. However, RegularFace is inefficient and
memory-consumptive on large datasets with large numbers
of identities. In this paper, we propose a novel method,
named EogFace. It can encourage both the intra-compactness
and the inter-class separability. EogFace has intuitive ge-
ometric interpretation and theoretical proof, which is easy
to implement and only adds negligible computational over-
head. Extensive experiments on popular benchmarks of face
recognition showed the effectiveness of method over exist-
ing state-of-the-art(SOTA) algorithms. Our codes will be
released soon.

Index Terms— Face Recognition, Loss, Separability,
Compactness

1. INTRODUCTION

The broad prospect of face recognition has attracted signif-
icant attention in the field of computer vision and biomet-
rics. In the past few decades, there are many studies[1, 2,
3, 4, 5] on face recognition. Traditional machine learning
techniques[6, 7] rely on artificially designed features, which
have been replaced by deep learning methods[8, 9, 10, 11, 12]
due to the significant success of deep convolutional neural
networks (DCNNSs).

Face recognition is usually trained as a classification
task, which maps the face image into the embeding space
using DCNNs[13][14]. Differing from image classification,
face recognition is usually an open-set recognition problem
that includes unseen identities. It thus expects the intra-
class compactness and inter-class separability properties.
Due to inability of the traditional softmax loss to obtain
highly discriminative embedding features, a series of novel
methods have been suggested, such as SphereFace[12][9],
CosFace[11][15] and ArcFace[8]. However, the existing
methods like SphereFace[9], CosFace[11][15] and ArcFace[8]
merely pay attention to the angle relationship between fea-

tures and class centres and neglected the angles between
different class centres and not optimize them explicitly.
RegularFace[16] considered the importance of the inter-class
separability. However, RegularFace is calculated from a big
cosine similarity matrix. For a dataset with large number
of identities, the computation is memory-consumptive and
inefficient.

To solve these problems, we propose a new loss function
called EogFace. In order to optimize the cosine similarity be-
tween different class centres, we introduce extensional logits
term. In each mini-batch learning, we separately extract the
class centre vectors corresponding to each sample, and then
calculate the logits between the extracted class centres and all
class centres. We take out the negative logits and concatenate
them with the feature logits. Lastly, we calculate softmax.
The contributions of this study are as follows:

e The proposed method can explicitly widen the angle
distance between different class centres to promote
inter-class separability.

e The proposed method can be seamlessly plugged into
existing approaches to improve the performance with-
out much GPU memory consumption and additional
hyper-parameters.

e The superiority of the proposed method is verified on
IIB[17][18], LFW[19], MegaFace Challege[20].

2. RELATED WORK

The mainstream approach to train face recognition model is to
treat it as a fine-grained classification task. As the most com-
mon loss function used in the classification task, Softmax’s
general form is as follows:
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Here, x; € RP denotes the deep feature of the i-th sample
in the D-dimensional space, which belongs to y; class. The
weight parameter w is a matrix of D x C, where w; € RP
denotes the j-th column of the w, and b; € RP is the bias
term. NN is the batch size and C' is the class number.
SphereFace[9] and NormFace[21] set the weight ||w| = 1
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and the feature ||x|| = s by Lo normalization and fix the bias
|Ib]] = 0, which makes the training process pay more atten-
tion to the optimization of angles. Thus, the learned feature is
deeply distinguishable in the hypersphere manifold space.

Based on NormFace[21] and SphereFace[9], the loss func-
tion was further improved in [11][15] by introducing an ad-
ditive cosine margin to the softmax loss. ArcFace[8] modi-
fied the approach of margin, introducing an additive angular
margin, and directly maximized decision boundary in angular
space. The above several variants of softmax can be devel-
oped in a united framework:

es]—'(ayi )

sF(aqy.: C
e*7 yl)JFZj:Lj;éyie

@)

S Cos o
J

1 N
Eu =W ;log

Where F (cy,) = cos(miay, +msa) —ms.

3. PROPOSED APPROACH

3.1. EogFace

In each mini-batch learning, we extract the class centre vec-
tors which are corresponding to the samples, and then calcu-
late the logits between the extracted centre and all centres.
Due to the positive logits are 1 and need not to be optimized,
we take out the negative logits and concatenate them with the
sample feature logits. Lastly, we calculate softmax. We call
it EogFace. EogFace, as a plug-in, can be easily inserted into
any softmax-based function. For the sake of clarity, we plug
EogFace into the above united loss function £,,. The formula
is given as follows:
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Where cos a; = ijmi and cos 3 = ijwyi.

Here, N is the number of samples in a mini-batch, the
feature x and weight vector w are normalized by L, normal-
ization, z; is the ¢-th feature belonging to the y;-th class, and
wy, 1s the class centre vector corresponding to the class of
y;. oy is the angle between w; and z;, and 3; is the angle
between w; and w,,. s and m are hyper-parameters.

3.2. Inter-class Separability

Inter-class separability and intra-class compactness are two
key indicators of distinguishing features. Existing methods[9,
11, 15, 8] only focused on intra-class compactness. Let’s give
a three-classification task example as shown in Figure 1. In
order to facilitate comparison, we make some formal trans-
formation of loss function.

Propertyl. max{cosa;,j # y;} < LSE(s,cosa;) <=
max{cos a;, j # y;} + constant.
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Fig. 1. Simple illustration of face embedding features. w,
wo, and w3 are centre vectors of Class 1, Class 2, and Class
3, respectively. x represents the embedding feature of Class
1. oy is the angle between w; and . a is the angle between
ws and x. [ is the angle between w; and ws.

Proof. Here, LSE(s,cosa;) = 1log ch:l by, €509
First, we prove the left part of the inequality:
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For the right part of the inequality:
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So we usually use the LS F function as an approximation of
the max function:

LSE(s,cos ;) ~ max{cosc;,j # yi} (6)

Here we make a transformation to the form of existing
margin-based loss function:
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Finally, according to Propertyl, we can get the transforma-
tion form as follows:
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For (8), the optimization goal is to make F (ay,) >
max{cosa;,j # y;}. For the example in Figure 1, the goal
is to make F (1) > cos ag. Thus, it focuses on narrowing
the intra-class angle between x and w; as well as widening
the inter-class angle between = and ws. Figure 1 shows that,
rather than only consider the angle between x and ws, we
should also pay attention to widening the angle between w;
and ws. The existing methods fail to address this problem.
Consider our loss function again:
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According to the transformation process of £,,, The trans-
formed form of (9) is as follows:

LEog = s* Softplus (max{cos a;,co8 05,5 # yi} — f(%ﬁ))
(10)

The aim of (10) is to make F (a,) > max{cos a;, cos 8;,j #
y; }. In Figure 1, considering the case of cos as < cos 3, the
goal of EogFace is to make F (o;) > cosf. Thus, Eog-
Face can explicitly widen the distance between w1 and w3 to
achieve the aim of inter-class separability.
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Fig. 2. GPU memory consumption of RegularFace, EogFace
and ArcFace.

3.3. GPU Memory Consumption

RegularFace[16] has to calculate all the angular distance
between different class centres to penalize the angle be-
tween an identity and its nearest neighbor. For a dataset

with large number of identities, the computation is memory-
consumptive and inefficient.

In order to quantitatively calculate the gpu memory con-
sumption of different loss function in the classified layer, we
draw the curve of the change of GPU memory consumption
as the number of identities increases. In Figure 2, we can
see that with the increase of identites, the GPU memory con-
sumption of RegularFace increases rapidly compared with
ArcFace. So this expensive GPU memory consumption limits
its widespread use. EogFace, by contrast, doesn’t add much
gpu memory consumption.

4. EXPERIMENTS

4.1. Implementation Details

Datasets.We trained the proposed models on the publicly
available CASIA-WebFace[22] dataset containing about
0.5M images of 10K identities. For fair comparisons with
other methods, we extensively test the proposed method on
various popular face datasets, such as LFW[19], IJB-B[17],
IJB-C[18] and MegaFace[20].

Training Setting.We follow ArcFace[8] to normalize the im-
ages to 112 x 112 with five landmarks. For the embedding
network, we employ ResNet18[8]. The proposed method is
implemented by Pytorch[23]. We train models with batch size
256, using SGD algorithm, with momentum 0.9 and weight
decay 5e — 4, and the learning rate starts from 0.1, it is di-
vided by 10 at 20, 28 and 32 epochs, and stops the training
process at 34 epochs.

4.2. Ablation Study

Table 1. The 1:1 verification accuracy on the LFW. Identi-
fication and verification evaluation on MegaFace Challengel
using FaceScrub as the probe set. “Id” refers to the rank-1
face identification accuracy with 1M distractors, and “Ver”
refers to the face verification TAR @FPR=1e¢-6.

Method LFW Id Ver
Softmax 97.88 | 52.86 65.93
Center Loss [12] 98.91 | 65.23 76.52
L-Softmax[24] 99.01 | 67.13 80.42
SphereFace[9] 99.26 | 69.62 83.16
RegularFace[16]+[9] 99.33 | 70.23 84.07
ArcFace(m=0.25) 99.06 | 69.55 84.29
ArcFace(m=0.30) 99.15 | 71.52 87.49
ArcFace(m=0.35) 99.13 | 72.34 87.57
ArcFace(m=0.35)+ RegularFace | 99.16 | 72.41 87.54
ArcFace(m=0.35)+ EogFace 99.23 | 72.61 88.02
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Fig. 3. Intra-class and inter-class distance curve trained on
CASIA-WebFace with 10K identities.

Results on LFW and MegaFace. ArcFace is one of the most
popular loss function. In order to prove the inter-class separa-
bility effect of EogFace, we plug it into ArcFace. we trained
ArcFace with different parameters m. The results are listed
in table 1, where we can see that EogFace can significantly
improve the performance of ArcFace.

Compactness and Separability Analysis. In order to prove
the effectiveness of EogFace more intuitively, we quantita-
tively evaluate the intra-class compactness and inter-class
separability based on the weight parameter I in the classi-
fied layer. The weight parameter W is a matrix of D x C,
where w,, € RP is the y;-th column denotes the weight
vector for the y;-th identity class. We measure the intra-class
compactness of y;-th identity class by
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Where K denotes the sample numbers of the identity class, z;
is the feature of ¢-th sample. For the intra-class compactness,
Dintra 18 expected to be as large as possible. We measure the
inter-class separability of the y;-th class centre by
— _ Wy, = Wi

Pinier = e cos(0u,8) = 08 T, I ol 12
Where w; is the i-th column of the W. For the inter-class
separability, Dy, is expected to be as small as possible.
As can be seen from Figure 3, when parameter m changes
from 0.3 to 0.35, The intra-class distance Dy, 0f ArcFace
increases obviously, but at the same time, the inter-class dis-
tance Drner also increases, which may be the reason why
the performance improvement is no longer obvious. How-
ever, when EogFace is inserted, the inter-class distance can be
significantly reduced while maintaining increasing the intra-
class distance. Therefore, the performance in Table 1 is still
significantly improved.
Training Convergence. We have drawn the accuracy On
LFW during the training in Figure 4. After an epoch, the ac-
curacy of ArcFace reaches 86.08%, the RegularFace reaches
94.66%, and the EogFace reaches 95.33%. Therefore, Eog-
Face has faster convergence.
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Fig. 4. The accuracy of LFW during training.

Table 2. 1:1 verification TAR@FAR=1e-4 on the 1JB-B and
1JB-C datasets.

Method B-B 1JB-C
Softmax 68.15 73.83
Softmax+EogFace 69.03 73.92
CosFace[11] 79.09 83.84
CosFace+EogFace 80.00 84.01
ArcFace[8] 78.45 82.67
ArcFace+EogFace 79.02 83.16
CurricularFace[25] 79.15 83.87
CurricularFace+EogFace | 80.28 84.15

Results on 1JB-B and 1JB-C. Finally, we plug EogFace into
the most several popular loss functions, and evaluate the per-
formance on the large-scale template face datasets IJB-B and
1JB-C, which are closer to real-world surveillance scenarios
and environments. The IJB-B[17] dataset contains about 1.8K
subjects, including 21.8K still images and 7K videos. Based
on IJB-B, the IJB-C[18] dataset is extended to about 3.5K
subjects, including 31.3K still images and 11,779 videos. The
verification accuracy on IJB-B and IJB-C are presented in Ta-
ble 2, where we can see that EogFace has a consistent perfor-
mance improvement on these popular loss functions.

5. CONCLUSION

In this paper, we proposed a novel loss function, which
considers both the intra-class compactness and inter-class
separability. The proposed method is easy to implement
without much GPU memory consumption and need not to
introduce additional hyper-parameters. The comparison with
some existing state-of-the-art competitors on popular open
face benchmarks showed that the proposed method achieved
consistent improvement, demonstrating the superiority of our
algorithm.
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