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Abstract

We present a generative model for synthesis of large scale 3D datasets for quantitative MRI
parameter mapping of myelin water fraction (MWF). Training robust neural networks for
estimation of quantitative MRI parameters requires large amounts of data. Conventional
approaches to tackling data scarcity use spatial augmentations, which may not capture
a broad range of possible variations when only a very small initial dataset is available.
Furthermore, conventional non linear least squares (NNLS) based methods for MWF es-
timation are highly sensitive to noise, which means that high quality ground truth MWF
parameters are not available for supervised training. Instead of using the noisy NNLS based
estimates of MWF parameters from limited real data, we propose to leverage the biophys-
ical model that describes how the MRI signals arise from the underlying tissue parameters
to synthetically generate a wide variety of high quality data of the corresponding signals
and corresponding parameters for training any CNN based architecture. Our model sam-
ples parameter values from a range of naturally occurring prior values for each tissue type.
To capture spatial variation, the generative signal decay model is combined with a gener-
ative spatial model conditioned on generic tissue segmentations. We demonstrate that our
synthetically trained neural network provides superior accuracy over conventional NNLS
based methods under the constraints of naturally occuring noise as well as on synthetic low
SNR images. Our source code is available at: https://github.com/sergeicu/synthmap

Keywords: synthetic data, generative models, quantitative mapping, myelin, unsuper-
vised training

1. Introduction

Quantitative MRI parameter mapping provides access to the underlying tissue types and
biological processes. Multi-component T2 signal decay can be used to determine the myelin
bound water content (Alonso-Ortiz et al., 2015), which is crucial to the understanding of
tissue maturation, disease and injury in many neurological disorders such as multiple sclero-
sis, Alzheimer’s and schizophrenia (Davis et al., 2003; Nasrabady et al., 2018; Popescu and
Lucchinetti, 2012). However, estimation of the parameters that govern multi-component

∗ Contributed equally
† Contributed equally

© 2022 S.D. Vasylechko, S.K.W. , S.K. & O. Afacan.



Vasylechko Afacan

T2 signal decay is a challenging ill-posed inverse problem. Conventional NNLS based opti-
mization schemes are highly sensitive to noise and typically exhibit poor repeatability and
precision (Canales-Rodŕıguez et al., 2021). This limits their use in clinical practice. From
the deep learning perspective, this also limits their potential for supervision during training,
since these conventional methods’ estimates cannot be reliably used as the ground truth.
Furthermore, conventional myelin mapping acquisition sequences are not routinely acquired
in clinical scans due to their substantial long acquisition times (Akhondi-Asl et al., 2016),
which further limits the availability of sufficient datasets that could be used for training
any 2D or 3D based neural network. As a result, training robust and generalizable deep
learning models in this kind of setting becomes increasingly difficult.

A conventional approach to limited training data may use spatial augmentations via sim-
ple image transforms, which leads to some limited improvements in performance(Chaitanya
et al., 2019). A breadth of works also exist in the transfer learning domain, whereby a model
is initialized with weights that have been obtained from a pretrained network on similar
data type (Zhuang et al., 2020). However, such approaches require a large initial dataset
to pre-train the networks in the first place. Recently, (Billot et al., 2020a) had introduced
a contrast agnostic learning strategy for MRI segmentation (Billot et al., 2020b). Their
approach did not require any real data for training, as the synthetic based contrast images,
and their corresponding segmentation maps, were generated ”on the fly” during training.
The generative process had been designed on a thorough physics driven understanding of
the underlying processes that govern image contrast, which include effects such as the bias
field and partial volume effects. Generic image segmentations maps were used as spatial
priors, into which randomly varying gaussian mixture model based noise was added based
on generic signal intensity characteristics for each segment.

In this work, we build upon the aforementioned work by considering a quantitative
MRI based regression task. Unlike segmentation based neural network training, which,
for the most part, requires pairs of single channel signal and segmentation images, the
quantitative domain can often comprise of multi-channel input signals, that are governed
by an underlying physics driven forward model. The forward model itself can rely on
multiple independent effects, that arise from different sources. For example, in MWF based
parameter mapping, the T2 signal decay is governed both by the underlying biophysical
tissue properties, as well as the B1 transmit field inhomogeneity, both of which need to
accounted for when building training data.

Furthermore, in quantitative MRI there also exists a need to synthesize signals that
vary not only in the spatial domain, but also in the parametric domain. In other words,
the underlying parameters of the forward model need to cover a wide variety of possible
combinations of values, such that any possible MRI signals can be generated from it. Such
generative models, which we will refer to as parametric models, have been previously demon-
strated for synthesis of signals to train a voxelwise 1D networks (Barbieri et al., 2020; Yu
et al., 2021). Therefore, in this work we introduce a framework for combining the contri-
butions of spatial generative models, and parametric generative 1D models, to synthesize
3D datasets. We demonstrate how such a generative model can be applied to the specific
problem of estimation of myelin water fraction maps from multi-echo T2 weighted CPMG
based acquisitions.
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2. Method

2.1. Signal Decay Model

A conventional way to quantify myelin is to derive its fraction from the probability distri-
bution of T2 decay rates, p (T2). A discrete parametric model of p (T2) is given by:

p (T2) =
n∑
i

viΨi (pi, T2) (1)

where i is a component of the distribution, vi is the volume fraction, Ψ is a density function,
pi are the parameters of this density, and T2 is the decay rate. Among a large variety of
parametric distribution models (Akhondi-Asl et al., 2014; Chatterjee et al., 2018; Raj et al.,
2014), we choose the most commonly used one, where Ψ is a Gaussian Mixture Model
(GMM), with parameters {µi, σi}, and three components i ∈ {1, 2, 3}, which represent
myelin bound water, intra-extra axonal space (IES) bound water and cerebro-spinal fluid
(CSF) free water respectively. The goal of myelin mapping is to recover the myelin bound
water volume fraction (MWF), vm, which is conventionally measured over T2 range of 10ms
to 40-60ms from p (T2) (Kolind et al., 2009; Whittall et al., 1997). Given p (T2), the observed
MRI signal is calculated as:

I (TEi) =

∫
GEC(TEi, T1, T2, α) p (T2) dT2 (2)

where TE is the echo time, α is the refocussing pulse flip angle, T1 is a relaxation constant
and GEC is the generalized echo curve model (Hennig, 1991). TE is set by the specific
acquisition sequence chosen at scan time. α will vary spatially from scan to scan due
to B1 transmit inhomogeneities (Akhondi-Asl et al., 2016). T1 is conventionally set to a
pre-estimated value from literature to relax the calculation burden (Prasloski et al., 2012).
Figure A.1 shows an example of the MRI signal and the corresponding p (T2) distribution
for a single voxel.

2.2. Signal Decay Model Sampling

The generative model for sampling the parameters of the multi-component T2 signal decay
model of p (T2) consists of 3 variables that are sampled independently from their individual
priors - the three volume fractions vi. To synthesize the volume fractions within the spatial
constraints, we sample each from a uniform distribution, Pk,vi = U(uk,vi , lk,vi), where k ∈
{1, ...,K} is a brain segmentation region, U is a uniform distribution, u is an upper limit
and l is a lower limit. To choose a proper distribution of all possible vi for each region, we
consider a separately acquired dataset with the same acquisition settings as other in-vivo
scans, from which we derive the min-max variance of vi based on NNLS based estimates.
These estimates are derived from a fine segmentation mask based on 285 unique regions of
brain parcels and tissues (Hammers et al., 2003). It is important to note here that the model
does not rely on NNLS estimates for training the neural network, but only for building a
lookup table to determine the range of min-max values in each of the 285 segments, from
which the values will be sampled. Finally, we also note that to constrain the search space
of all possible parameters that we simulate in the synthetic data, we fix the σi and µi of
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Figure 1: Synthetically generated MWF map and the corresponding generated signal. Es-
timated MWF maps for each method are shown at different SNR degradation
levels. SynthMap consistently recovers smooth non noisy estimate of MWF.

each of the three components to constant values based on their narrow variance reported
in literature (Chatterjee et al., 2018).

2.3. Spatial Model

Let S represent a segmentation with K labels, which we obtain independently from a
generic database. We pose this segmentation as a prior anatomical distribution p (S) and
formulate a sampling process for a likelihood p (I | S), to obtain a sample of an image I.
The likelihood is modelled as a spatial GMM sampled at each voxel j with parameters
{µk, σk}. By grouping these parameters into θG = {µ1, σ1, ..., µK , σK} the likelihood can
written as a product over all j:

p (I | S, θG) =
∏
j

N
(
Ij ;µSj , σ

2
Sj

)
(3)

Crucially, this model must be extended to a multi-variate case to accommodate for the signal
decay model parameters dimension vi. In this instance these parameters are described
by {µk,vi , σk,vi}. Augmentation is added to emulate anatomical variation and spatially
varying physics driven processes induced within the MRI scanner. This is achieved by a
multiplication of independently sampled spatial transforms - an affine matrix ϕ, a non rigid
deformation field τj , and a blurring kernel B to simulate partial volume effects. Finally,
we must also obtain an independent sample of the flip angle of the refocussing pulse, αj ,
which simulates spatially varying B1 transmit inhomogeneity, which is necessary for the
calculation of the MR signal in Equation 2.
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Figure 2: The proposed model consists of spatial generative model and signal decay genera-
tive model, which are combined together as shown in the flowchat. Each model’s
parameters are sampled independently over a wide range of prior values to rep-
resent variation in anatomy, scanner induced effects and the biophysical tissue
model. Intermediate outputs of the generative model outputs are shown on the
right.

2.4. Spatial Model Sampling

The matrix of ϕ consists of the independent components of three rotations, three scalings,
and three shearings, which are all sampled from their respective predefined ranges of contin-
uous uniform distributions. τj is built on the model of a smooth random stationary velocity
field (SVF), and the sampling process is implemented as shown in (Billot et al., 2020a). B
is also sampled from a continuous uniform distribution to set the correct kernel size. αj is
obtained from a smooth spatially varying 3D spatial GMM, whose parameters are sampled
independently for each of the axis from a continuous uniform distribution. It is important
to note that the goal of this model is not to precisely reproduce the appearance of real MRI
images, but to expose the neural network to a large variety of signals, which would improve
its robustness and generalization capacity (Eugenio Iglesias et al., 2020). The diagram of
the proposed model, with an example of intermediate outputs, is shown in Figure 2.

2.5. Synthetic and Volunteer Data

We synthesized 2,000 volumes of size 192x160x256 with the proposed generative model,
with 2 channels in each volume, which represented vm, vies of the parameter model. vcsf
was calculated analytically, since the volume fractions must add up to a unit value. The
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GEC parameters in Equation 2 were pre-computed as a dictionary with an increment of
0.25 degrees for each value of α, using the Extended Phase Graph algorithm (Hennig et al.,
2004), and used as a look up table during synthesis to shorten the computation time and
the load on the GPU. Additionally, complex rician noise and a smoothly varying B1 receive
inhomogeneity are added to the final images, as detailed in (Billot et al., 2020a).

2.6. Network Architecture & Training

Parameter estimation network was built with a U-net (Ronneberger et al., 2015) motivated
by its robust performance and widespread use. Network architecture included: 4 resolution
blocks, 3 convolutional (CNN) layers per block with a ReLU activation function & a dropout
of 50% after every CNN layer, 64 features maps in the first CNN layer, a 3x3 CNN kernel,
and a max pooling layer for each block. The last CNN layer output had 1 channel, which
corresponded to vm estimate. Training parameters were: Adam optimizer (Kingma and Ba,
2014) with 0.0006 learning rate, and a batch of 32. Input consisted of 192x160x32 tensors
with 32 echoes in the channel dimension and the output consisted of 192x160x1 myelin
fraction maps, supervised with the L2 mean squared error loss. Parameter estimation
network was trained on a database of 120,000 synthetically generated slices.

3. Results

Figure 3: Quantitative comparison metrics between the ground truth MWF and the esti-
mated MWF parameters on a hold out test set of the generated data, evaluated
at different levels of rician noise. SynthMap produces stable results even at low
SNR.

We evaluated our proposed approach (SynthMap), against three competing methods - 1.
a widely used conventional NNLS based voxelwise scheme that estimates p (T2) as a linear
combination of 40 impulse functions, from which vm is then derived (Doucette et al., 2020)
(NNLS); 2. a multi-compartment probability distribution model of T2 values. This model
uses a mixture of three Gamma distributions for which the mixture fraction parameters
are estimated directly based on a variable projection optimization technique, and which
correspond to myelin water, intra-/extra- axonal water and CSF water respectively (MC);
3. a 1D trained (voxelwise) supervised fully connected neural network, for which the myelin
water fractions and the corresponding signals were synthesized with a dataset of 1.4Million
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Figure 4: Two CPMG scans acquired at different resolution levels with the SNR of 113 and
96 respectively. Fitted myelin water fraction maps are shown with corresponding
signal. Genu of Corpus Callosum is segmented in red over which mean MWF was
measured for each method (see Table 1). High resolution scan 2 yields substan-
tially degraded quality of estimated MWF maps in competing methods, while
SynthMap is able to recover smooth details of the tissue.

Myelin Water Fraction
mean (std)Scan

#
Resolution

mm2 SNR
MC NNLS ANN SynthMap

1 1.04x1.04 113 38 (17) 48 (21) 38 (22) 36 (6)

2 0.62x0.62 96 35 (15) 48 (16) 39 (21) 35 (5)

Table 1: Mean and standard deviation of the estimated myelin water fraction in the genu
of corpus callosum (see reference in Figure 4) for each competing method for two
different scans with different inplane resolution. SynthMap is able to recover the
mean MWF in a similar manner as MC and ANN for both scans, while yielding a
much lower variance.

voxels in a 1D sense (Yu et al., 2021) (ANN). Performance was evaluated on synthetic data
first to measure accuracy under controlled conditions with the available ground truth myelin
fraction maps. Figure 1 shows example myelin fraction maps estimated with SynthMap
and the competing methods at three difference SNR levels. SynthMap exhibits sharp and
realistic myelin fraction maps, while achieving a significant improvement in robustness to
noise. NNLS and ANN models tend to produce noisy unstructured spatial information at
SNR 40 or lower. A test set of 117 slices selected at random from 100 synthetic volumes
was used on synthetic data to report nRMSE, SSIM and pearson correlation coefficient (R),
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Figure 5: Aggregate estimate of MWF across the entire white matter across all healthy
volunteer scans. Higher MWF for SynthMap may be attributed to denser map
of myelin, as shown in an example in Figure 4.

as shown in Figure 3. Evaluation was also performed on volunteer data, by considering two
individual scans at different inplane resolutions, which naturally reduced the SNR from 113
to 96 for each of the scans. Figure 4 shows that SynthMap is successfully able to recover
the finer structural details on real data at lower SNR, and Table 1 shows a quantitative
comparison between the methods. SynthMap is able to successfully recover parameters,
similarly to MC and ANN, while preserving structural cohesion in the image. Aggregate
measure of MWF across the entire white matter (WM) was taken from 7 healthy volunteer
subjects, to verify the distribution of parameters, as shown in Figure 5. SynthMap on
average yields higher values of MWF, when we consider the entire WM space. We refer the
reader to Figure 1, which shows that each of the competing methods tends to underfit the
true MWF values, which leads to a lower overall range of values, and higher variance (e.g.
see ANN in Figure 5).

4. Discussion and Conclusions

This work proposed to combine a MR physics signal decay model, an accurate probabilistic
multi-component parametric T2 model and a contrast agnostic spatial generative model
to improve the estimation of T2 distributions from multi-echo T2 data. Our generative
model is able to create a large synthetic dataset (e.g. 120,000 slices) that could be used to
efficiently train deep neural networks directly, without the need for real data, to output the
parameters of the underlying T2 distribution. This is beneficial for MWF estimation, as the
availability of high quality MWF maps is scarce, due to substantial scanning time that is
required to acquire volunteer data, lack of clinical scan protocols, and high sensitivity even
to small decreases in SNR (as shown in our experiments). The model is robust to noise,
which is crucial for adoption of myelin mapping techniques in clinical practice that may be
achieved with accelerated imaging (Deshmane et al., 2012) to reduce scan time.
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Appendix A. Signal Decay Model

Figure A.1: A single voxel example of the MRI signal decay (left) and the corresponding
T2 distribution (right) generated with the proposed model. MRI signal decay
(left) has a distinct peak on the second echo due to B1 transmit effects. Three
components of p(T2) (right) represent myelin, intra-/-extra axonal space and
cerebro-spinal fluid respectively.

Appendix B. In-vivo Data Acquisition

We performed an IRB approved and HIPAA compliant study to image 7 healthy volunteers.
The data were acquired on a 3D Siemens Skyra scanner with the following sequences: a)
2D multi-echo CPMG sequence with 1 mm2 in plane resolution, 4mm slice thickness, 32
equally spaced echoes covering a TE range of 9-288ms, TR of 2000ms, 24 slices, acquired
in 9 minutes with 5/8 Partial Fourier and in-plane GRAPPA with an acceleration factor
of 2. The acquisition was performed in slabs to limit magnetization transfer effects, with
4 concatenations and 5 slice gap between consecutive slices b) a reference high resolution
T1-weighted MPRAGE scan - 220x220 matrix, 176 slices, 1x1x1 mm3 resolution, 2.27ms
TE, 1100ms T1, 2000ms TR b) a reference high resolution 3D T2-weighted scan - 256x256
matrix, 160 slices, 0.99 mm thickness, 3200ms TR, 441m TE.

Appendix C. Permutation Study

The goal of this experiment was to evaluate whether the pretrained CNN based network
is learning to resolve the non-linear relationship in the time domain that is present in the
signal decay curve for each voxel, rather than learning to simply transfer the MWF values
that correspond to a specific anatomical region in the synthetic training data to the in-vivo
test data. To do this, five 5x5 patches were marked in anatomically distinct regions of
the brain which are expected to have different MWF estimates - Corpus Callosum, Frontal
White Matter, Occipital White Matter, Major Forceps, Cortical Gray Matter area. Next, 10
different permutations were designed, whereby the patches were swapped with each other.
The resulting 10 permutations of the input image, alongside with the original unperturbed
image, were fed through the synthetically pretrained CNN network. Figure C.1 shows an
example estimate of the MWF with the pretrained Synthmap when two distinctly different
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regions of the same slice were swapped together. Notably, the CNN was able to recover the
MWF values correctly, as shown by the dark region in the Corpus Callosum, and the bright
region in the Cortical Gray Matter region. Table 2 shows a measure of the coefficient of
variation (CoV) of the mean MWF from each patch, as it was placed in different regions
of the image. Results indicate that even if a specific patch was located in an area that
was distinctly different to its original location, with very different MWF values of the
tissue around it, the pretrained network had predicted the values correctly. We note that
some variation in the mean MWF from each patch is expected, as the CNN is applying
convolutional kernels that will smooth the edges of the kernel with the surrounding tissue.
The measured CoV is highest for the Genu of the Corpus Callosum patch, as its values are
typically the highest in the entire brain, and therefore its placement in other regions, with
lower MWF, would cause the patch edge smoothing effect to have the largest impact.

Figure C.1: Estimate of the MWF map by the synthetically pre-trained Synthmap on an in-
vivo volunteer data where the input signal from two distinctly different regions
of the same slice were swapped. This result indicates that the network correctly
predicts values based on the signal decay properties of each voxel.

Appendix D. Synthetic Data Pre-Processing

Synthetized 3D volumes were split into training, validation, test data. Each set was then
split into individual 2D slices. Consequently, slices from a specific volume were exclusive
either to training, validation or test set.

Upper and lower anatomy of the brain was limited to match the areas of the brain
that were covered by the in-vivo volunteer scans, which reduced the effective number of
slices taken from each synthetically generated volume. Included regions consisted of - all
of the anatomy above the midbrain, which includes the Corpus Callosum in its entirety, as
well as the Thalamus, Putamen, Caudate Nucleus, Minor Forceps, Major Forceps; as well
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Patch Location
Mean MWF

at original location
Std across

permutations
CoV across

permutations (%)

Genu of Corpus Callosum 31.5 2.1 6.7

Cortical Gray Matter 21.2 0.8 3.8

Frontal White Matter 27.8 1.3 4.7

Major Forceps 19.8 0.7 3.5

Occipital White Matter 18.4 0.9 4.9

Table 2: Mean MWF of a specific patch in its original (true) location is presented in column
one. Standard deviation of the mean over different permutations of locations (as
the patch is moved to different location in the brain) is given in column two.
Coefficient of Variation (CoV) over the permutaitons is given in column three.
Low CoV indicates that the network correctly predicts MWF in each patch, even
if it is moved to a different location. Some variation in MWF is expected due to
smoothing properties of the CNN kernels.

all of the area that is below and including the Cingulate Gyrus. Example of regions that
were excluded were: Pons, Medulla, Cerebellum, as well as very smaller slices (small brain
footprint) in the upper regions of the cortex.

We note that the synthetic training data was arranged as 2D slices, rather than 3D
volumes because the in-vivo acquired data is in the form of slabs composed of 2D slices
with a slice gap in between slabs, and therefore slabs cannot always be perfectly aligned
into a consistent 3D volume. For alternative acquisition sequences, such as the 3D GRASE,
a 3D input volume can be arranged with a 3D network architecture. The use of this 3D
consistency may yield an improved performance. However, there will be specific challenges
associated with this kind of design - 1) 4D volume inputs of size 192x160x24x32, where 32
refers to the time decaying echo signal, may require a patch based 3D architecture due to
the GPU memory input constraints 2) 3D sequences, such as the GRASE sequence, would
often yield motion artifacts that appear across the entire image, and may be an additional
challenge, particularly for those methods that consider spatial information, and not just
individual voxels.

Appendix E. ANN method

The ANN method was evaluated on the Tensorflow based implementation of the origi-
nal paper by (Yu et al., 2021), which is made available by the authors in this Github
repository - https://github.com/thomas-yu-epfl/Model Informed Machine Learning. The
training scheme was fixed to the details provided in the original code, including all of the
hyperparameters, such as the optimizer and its learning rate, the weights initializer, batch
size and the number of predicted impulse functions. Since no early stopping criteria was
provided, we implemented a patience of 10 epochs over the performance of the validation
loss as the automatic stopping criteria. Furthermore, the network was re-trained multiple
times with different random fixed seeds, to ensure the best possible performance on the
training data. The training was performed on the same hardware as the Synthmap.

15



Vasylechko Afacan

Importantly, the ANN predicts a T2 distribution of 60 impulse functions as the output,
rather than a direct estimate of MWF. Conventionally, to convert a T2 distribution to a
MWF value, a cut off value is fixed to a measure of the area under the T2 distribution curve
at 50ms. Such conversion approach was used both for NNLS and ANN methods. We note
that this inherent dissimilarity between how a MWF is derived (a measure of a fraction of
the area under the curve for a T2 distribution for ANN and NNLS; and a direct measure
of MWF for MC and Synthmap) may yield some difference in the performance. Further
detailed evaluation of this may be beneficial in the future works.

The ANN was trained based on the synthetically generated dataset of 1.4Million voxels
that was provided by authors of the original work. Each pair of training points consisted of
- 32 echoes that represented the signal decay curve as the input, and a T2 distribution of
60 impulse functions as the ground truth ’label’. The 1.4 Million dataset was equally split
into 7 distinct tissue types, as outlined in the original paper. The representation of each
region was balanced (200,000 voxels per region), which would ensure that the ANN is not
biased to any particular tissue type during training, as the inputs are fed voxelwise. We
note that while it may be possible to use our synthetically generated 3D data to train a fully
connected network in the voxelwise manner, such as the one put forth by the authors of the
ANN, the representation of specific tissue types would not be balanced in such training due
to the anatomically different coverage of each region. Therefore a decision was made to use
this 1D synthetic dataset for training the ANN for a fair comparison of performance. We
further note that this synthetic dataset of 1.4Million voxels was designed, and optimized,
specifically for evaluation of brain MWF on in-vivo data.

Appendix F. NNLS and MC methods

The NNLS method was evaluated on the Julia language based implementation of the original
paper by (Prasloski et al., 2012), which is made available under the DECAES software
- https://github.com/jondeuce/DECAES.jl. The output consisted of a prediction of 40
impulse functions that represent the T2 distribution for the given signal decay of a voxel.
MWF was derived from the T2 distribution by fixing a cut off value at 50ms, to calculate
the fraction of the area under the curve.

MC method was evaluated on the C++ based implementation of the original paper by
(Chatterjee et al., 2018), which is made available under the ANIMA software -
https://github.com/Inria-Empenn/Anima-Public. The C++ pre-compiled binaries were
wrapped into a docker container - https://github.com/sergeicu/anima-docker. The pre-
dicted output consisted of the direct measure of myelin fraction, as well as IE fraction and
CSF fraction.

Appendix G. Table 1 Supplement

In this section we present two additional regions of interest as a supplement to Table 1 in
the main manuscript - Splenium of Corpus Callosum and Putamen. Estimated MWF is
shown by the competing methods in two scans of different SNR levels. SynthMap is able to
recover the mean MWF in a similar manner as MC for both scans, while yielding a much
lower variance.
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Myelin Water Fraction
mean (std)Scan

#
Resolution

mm2 SNR
MC NNLS ANN SynthMap

1 1.04x1.04 113 21 (13) 35 (24) 16 (15) 23 (3)

2 0.62x0.62 96 25 (19) 45 (17) 29 (22) 26 (4)

Table 3: Mean and standard deviation of the estimated myelin water fraction in the Sple-
nium of Corpus Callosum for each competing method for two different scans with
different inplane resolution.

Myelin Water Fraction
mean (std)Scan

#
Resolution

mm2 SNR
MC NNLS ANN SynthMap

1 1.04x1.04 113 26 (12) 33 (15) 16 (12) 28 (3)

2 0.62x0.62 96 32 (16) 45 (18) 31 (22) 31 (4)

Table 4: Mean and standard deviation of the estimated myelin water fraction in the Puta-
men for each competing method for two different scans with different inplane
resolution.
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