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Abstract

Recent approaches to word sense disambigua-001
tion (WSD) utilize encodings of the sense gloss002
(definition), in addition to the input context, to003
improve performance. In this work we demon-004
strate that this approach can be adapted for use005
in multiword expression (MWE) identification006
by training models which use gloss and con-007
text information to filter MWE candidates pro-008
duced by a rule-based extraction pipeline. Our009
approach substantially improves precision, out-010
performing the state-of-the-art in MWE iden-011
tification on the DiMSUM dataset by up to012
1.9 F1 points and achieving competitive results013
on the PARSEME 1.1 English dataset. Our014
models also retain most of their WSD perfor-015
mance, showing that a single model can be used016
for both tasks. Finally, building on similar ap-017
proaches using Bi-encoders for WSD, we intro-018
duce a novel Poly-encoder architecture which019
improves MWE identification performance.020

1 Introduction021

Word sense disambiguation (WSD), the task of pre-022

dicting the appropriate sense for a word in context,023

and multiword expression (MWE) identification,024

the task of identifying MWEs in a body of text,025

both deal with determining the meaning of words026

in context (Maru et al., 2022; Constant et al., 2017).027

They have traditionally been treated as separate028

tasks, but this is potentially disadvantageous as029

WSD performed on words which are part of unrec-030

ognized MWEs cannot produce correct meanings,031

and the meanings of polysemous MWEs are am-032

biguous even after identification. For example, the033

sentence “She inherited a fortune after her grand-034

father kicked the bucket” tells us that someone’s035

grandfather has died, but we would not expect to036

find meanings associated with death in the sense037

inventories of either kick or bucket. WSD cannot038

capture the meanings of these words in context un-039

less the relevant MWE is identified first. However,040

like many MWEs, kick the bucket can have a literal,041

non-compositional meaning as in “He kicked the 042

bucket down the hill,” so we also cannot indiscrim- 043

inately mark all combinations of words in known 044

MWEs as MWEs. MWEs can also have multiple 045

possible senses in the same way words can: break 046

up can refer both to objects physically breaking 047

apart and romantic relationships ending, so even in 048

cases where it is correctly identified as a MWE its 049

meaning is ambiguous without WSD. Identifying 050

the meanings of all words in a sentence requires 051

solving these tasks together. 052

WSD and MWE identification can be used in pre- 053

processing to improve performance of downstream 054

tasks such as machine translation or information 055

extraction (Zaninello and Birch, 2020; Song et al., 056

2021; Barba et al., 2021a). They also have more di- 057

rect applications in helping language learners – for 058

whom MWEs are particularly challenging (Chris- 059

tiansen and Arnon, 2017; Pulido, 2022) – under- 060

stand the meaning of words or MWEs in context. 061

In this paper, we propose a system that tackles 062

these tasks together, using a MWE lexicon and rule- 063

based pipeline to identify MWE candidates and a 064

trainable model to both perform WSD and filter 065

MWE candidates. Our model is a modified Poly- 066

encoder (Humeau et al., 2020), a natural exten- 067

sion of previous work using Bi-encoders for WSD 068

(Blevins and Zettlemoyer, 2020; Kohli, 2021). Uti- 069

lizing gloss information1 allows our model to con- 070

sider the meaning of MWEs and filter out candi- 071

dates where the constituents of a MWE are present 072

but the MWE meaning does not fit the context, 073

such as the aforementioned literal usage of kick 074

the bucket. Our method improves precision and 075

achieves state-of-the-art F1 for MWE identification 076

on the DiMSUM dataset (Schneider et al., 2016) 077

and competitive performance on the PARSEME 078

1.1 English data (Ramisch et al., 2018). To the 079

1For example, in “The couple broke up amicably”, the
gloss, or definition, of the sense of break up is “discontinue
an association or relation; go different ways.” (Miller, 1995)
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best of our knowledge, this work is the first to use080

glosses as a resource for MWE identification. Our081

contributions are summarized as follows:082

• We present a system which solves MWE iden-083

tification and WSD together, achieving state-084

of-the-art results for MWE identification on085

DiMSUM and only 6% less F1 for WSD than086

an equivalent single-task model087

• We propose a novel Poly-encoder architecture088

which outperforms standard Poly-encoders on089

both tasks, and Bi-encoders on PARSEME090

MWE identification091

• We explore why our system performs well092

and where it falls short through ablations and093

a detailed error analysis with examples094

We make all of our code, models and data public.095

2 Related Work096

2.1 Word Sense Disambiguation097

Until the last few years, most approaches to WSD098

treated senses only as one of many possible labels099

in a classification task. This formulation limits100

the information available to the model about each101

sense to only what is learnable from the training102

data, and can lead to poor performance on rare or103

unseen senses. To mitigate these problems, recent104

approaches have improved performance by incor-105

porating sense glosses (Blevins and Zettlemoyer,106

2020; Barba et al., 2021a; Zhang et al., 2022).107

Our work is inspired by this methodology and108

utilizes gloss information to improve MWE iden-109

tification. In particular, Blevins and Zettlemoyer110

(2020) demonstrate that a simple Bi-encoder model111

consisting of two BERT (Devlin et al., 2019) mod-112

els can achieve competitive WSD performance,113

with Kohli (2021) improving Bi-encoder training114

for WSD and Song et al. (2021) achieving further115

performance gains through improved sense repre-116

sentations. Bi-encoder models are also particularly117

efficient at inference time because gloss represen-118

tations can be computed in advance and cached.119

2.2 Poly-encoders120

The Poly-encoder architecture was proposed by121

Humeau et al. (2020) as a middle ground between122

Bi-encoders and Cross-encoders (which jointly en-123

code all possible input pairs), retaining the speed124

advantage of the Bi-encoder, but allowing infor-125

mation to flow between the two encoder outputs126

like the Cross-encoder. It can be used in place of 127

a Bi-encoder in tasks such as information retrieval 128

(Li et al., 2022) text reranking (Kim et al., 2022), 129

or in our case MWE identification and WSD. 130

2.3 Multiword Expression Identification 131

Precisely defining what constitutes a MWE has 132

proven to be difficult (Maziarz et al., 2015), but 133

they can be broadly defined as groupings of words 134

whose meaning is not entirely composed of the 135

meanings of included words (Sag et al., 2002; Bald- 136

win and Kim, 2010). This includes idioms such as 137

a taste of one’s own medicine, verb-particle con- 138

structions such as break up or run down, compound 139

nouns such as bus stop, and any other grouping of 140

words with non-compositional semantics. In fact, 141

a significant portion of noun MWEs are named 142

entities (Savary et al., 2019). 143

The task of MWE identification is locating these 144

MWEs in a given body of text. Common ap- 145

proaches to solving MWE identification include 146

rule-based systems (Foufi et al., 2017; Pasquer 147

et al., 2020), CRF-based systems (Liu et al., 2021), 148

and token tagging systems (Rohanian et al., 2019). 149

Rule-based systems remain competitive with neu- 150

ral models in this task, and many systems including 151

ours use MWE lexicons in order to identify MWEs, 152

which Savary et al. (2019) argue are critical to mak- 153

ing progress in MWE identification. Kurfalı and 154

Östling (2020) and Kanclerz and Piasecki (2022) 155

are similar to our work in that they frame the task 156

of MWE identification as a classification problem, 157

although neither use gloss information. 158

Among all the types of MWEs, verbal MWEs are 159

particularly difficult to identify due to their surface 160

variability — constituents can be conjugated or sep- 161

arated so that they become discontinuous (Pasquer 162

et al., 2020). Much work on verbal MWE identifi- 163

cation, especially in languages other than English, 164

has been done as part of recent iterations of the 165

PARSEME shared task (Ramisch et al., 2018). 166

3 Methodology 167

In this section, we explain how our models perform 168

MWE identification and WSD, and how our MWE 169

identification pipeline works. 170

3.1 Bi-encoder 171

Bi-encoders for WSD, as defined by Blevins and 172

Zettlemoyer (2020), consist of two BERT (De- 173

vlin et al., 2019) models: a context encoder Tc 174
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Figure 1: Each model scoring the MWE take advantage. “Draw advantage from” is the gloss for one possible sense. The gloss
encoder produces sense representations rs using the [CLS] embedding in all models. The MWE representation rw is an average
of constituents for the Bi-encoder and the combination of attention for each code for the Poly-encoder. The DCA Poly-encoder
learns separate codes for target and non-target tokens, allowing it to attend differently to the MWE and surrounding context.
Scores are the similarity between rs and rw computed as the dot product, and the model predicts the sense with the highest score.

and gloss encoder Tg, which embed the context175

and sense glosses into the same embedding space.176

Given an input sentence c = (w0, ...wn) containing177

the target words to disambiguate, we first tokenize178

it and use the context encoder to produce represen-179

tations for each token. Because tokenization may180

break words or MWEs up into multiple subwords,181

word or MWE representations rw are computed as182

an average of all included subwords.183

Tc(c) = t0, ...tn184

rw =
1

|w|
∑
t∈w

t185

Then, for each target word or MWE, the gloss en-186

coder produces a sense representation rs for each187

possible sense by encoding its gloss and taking the188

[CLS] token embedding.189

rs = Tg(gs)[0]190

Scores corresponding to possible senses for each191

target word are computed as the dot product sim-192

ilarity of the word and sense representations, and193

the model predicts the highest scoring sense. 194

ϕ(w, si) = rw · rsi 195

pred(w) = argmax
si

ϕ(w, si) : si ∈ Sw 196

3.2 Poly-encoder 197

Like the Bi-encoder, the Poly-encoder has a con- 198

text encoder Tc for target word contexts and a 199

gloss encoder Tg for glosses. There is also a new 200

set of parameters that Humeau et al. (2020) refer to 201

as code embeddings, Q. These codes are used as 202

queries to extract information from context repre- 203

sentations produced by the context encoder. The 204

inputs to the Poly-encoder are the same as to the 205

Bi-encoder, sense representations rs are computed 206

identically, and predictions are still the highest scor- 207

ing sense. However, senses are scored differently. 208

We take the last hidden state of the context en- 209

coder as the context representation rc = Tc(c), 210

which we use along with the code embeddings 211

Q = (q1, ..., qm) in the first dot-product attention 212

step (code context attention) of the Poly-encoder. 213

We use a different set of embeddings for single 214

words and MWEs. The number of embeddings, m, 215

is a hyperparameter and their dimensionality is the 216
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same as the encoders’ hidden sizes. The context217

representation rc is used as both keys and values in218

this dot-product attention module, yielding a code219

attended context Yctxt. The representation a code220

qi extracts is as follows:221

(wqi
0 , ..., w

qi
n ) = softmax(qi · rc1 , ...qi · rcn)222

yictxt =

n∑
j=1

wqi
j rcj223

Sense representations rs are then used as queries224

and the code-attended context representations Yctxt225

are used as keys and values in a final dot-product226

attention module, yielding a gloss attended code-227

context. For a given sense s of a word or MWE:228

(w1, ..., wm) = softmax(rs · y1ctxt, ..., rs · ymctxt)229

ysfinal =
m∑
i=1

wiy
i
ctxt230

We then take the dot product of the gloss at-231

tended code-context yfinal and each gloss embed-232

ding rs0 , ...rsk , yielding a score for each gloss:233

ϕ(w, si) = yfinal · rsi .234

3.3 Distinct Codes Attention235

Since the Poly-encoder was originally designed to236

compute sentence representations, it contains no237

mechanism for explicitly focusing on a specific set238

of target words/subwords. To address this prob-239

lem, we propose a variation of the Poly-encoder240

which we call “distinct codes attention” (DCA).241

We change the code context attention step of the242

Poly-encoder so that it can attend differently to tar-243

get words and the surrounding context, using two244

sets of code embeddings: one set for target words,245

Qt and one set for non-target words Qnt. Since we246

also maintain different code embeddings for single247

words and MWEs, this gives us a total of four sets248

of code embeddings.249

In the first attention module, code-context atten-250

tion, we construct two key matrices, one to be used251

with the target code queries Qt and one to be used252

with the nontarget code queries Qnt. First we cre-253

ate two masks which pick out target or nontarget254

subwords: the target mask Mt, which is 1 at the255

indices of target subwords and 0 otherwise, and the256

nontarget mask Mnt which is the opposite. We then257

multiply each mask by the encoded context rc to258

get target and nontarget key matrices Kt = Mtrc259

and Knt = Mntrc. Next we compute target and260

nontarget query results (QKT ) and add them. 261

QKT = QtK
T
t +QntK

T
nt 262

Finally, we softmax and multiply QKT by the en- 263

coded context rc to yield the code attended context, 264

Yctxt = softmax(QKT )(rc). The gloss attended 265

code-context and final scores are then computed 266

identically to the standard Poly-encoder. 267

3.4 MWE Identification Pipeline 268

We use a rule-based pipeline inspired by Kulka- 269

rni and Finlayson (2011) for MWE identification. 270

First, we compute initial candidates as all com- 271

binations of words in a sentence whose lemmas 272

correspond to a MWE in our lexicon. That is, any 273

group of words that when lemmatized corresponds 274

to a known MWE, regardless of order or location 275

in the sentence, is a candidate. This ensures we 276

rarely miss known MWEs, but also produces many 277

false positives, such as: in that in “That was back 278

in 1954, 55 years ago.” 279

Next, we filter the candidates by removing 280

MWEs which are out of order or too gappy (>3 281

words in between constituents), and optionally by 282

discarding MWE candidates judged to be incorrect 283

by our DCA Poly-encoder (or other) model. We 284

refer to the combination of rule-based extraction 285

and filters with no model as the rule-based pipeline. 286

Since the model is applied as a final filter after ex- 287

traction and the other filters, it can only improve 288

precision. The heuristic filters involving order and 289

gappyness exclude some valid MWEs as well, but 290

they empirically improved performance on devel- 291

opment data. In cases of overlap, we use only the 292

candidate judged to be most likely by our model 293

(or least gappy, in pipelines without models). 294

3.4.1 Model Filter 295

Because all of our MWE candidates correpond to 296

words (and consequently subwords) in the input 297

sentence, we can produce a representation rw for 298

each MWE candidate, along with scores for each 299

of their possible senses, the same way we do for 300

words. However, since no MWE has a sense cor- 301

responding to the case where that candidate is a 302

false positive, we define a special sense sn repre- 303

senting the case where the candidate is not a MWE. 304

Since sn has no gloss, we cannot use the gloss 305

encoder to compute a representation for it, and 306

instead make this representation a learnable param- 307

eter matrix rsn , with the same dimensionality as 308

the model’s hidden size. This can then be used in 309
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our model’s scoring functions to compute a score310

for the candidate not being a MWE. When using a311

model to filter, we exclude any MWE candidates312

whose highest scoring sense is the “not a MWE”313

sense sn, retaining only candidates for which the314

below is true:315

∃si ∈ Sw ϕ(w, si) > ϕ(w, sn)316

Note that since this filtering process involves com-317

puting scores for all possible senses, it also effec-318

tively performs WSD on any polysemous MWEs.319

4 Experimental Setup320

4.1 Lexicon321

We use WordNet (Miller, 1995) as our MWE lexi-322

con for all experiments, treating every entry includ-323

ing the character “_” as a MWE. All sense glosses324

are taken from WordNet 3.0.325

4.2 Training Data326

We train our models on SemCor (Miller et al.,327

1993), a WSD dataset containing a total of 226,036328

examples annotated with senses from WordNet. In329

order to make the data usable for MWE identifica-330

tion in addition to WSD, we preprocess it in the fol-331

lowing ways. First, we explicitly mark any words332

whose lemma includes the character “_” as MWEs333

such that during training the possible labels for334

these MWEs also include the “not a MWE” sense.335

Since some discontiguous MWEs in SemCor are336

labeled only on a subset of the included words,337

we add stranded constituents to their parent MWE338

by attaching nearby words whose lemmas match339

constituents missing from the labeled MWE2. Fi-340

nally, because SemCor contains no labeled nega-341

tive examples of MWEs — instances where the342

constituent words of a MWE are all present but343

their meaning in context does not match any of344

the MWE senses — we add these ourselves. We345

generate synthetic negative examples using the rule-346

based pipeline with its filters inverted to mark com-347

binations of words whose lemmas correspond to a348

known MWE but are out of order or very gappy as349

negative examples whose gold label is the “not a350

MWE” sense. We randomly add negative examples351

in this fashion until they account for just over 50%352

of the MWE examples in the training data.353

2For example, in “Are they encouraged to take full legal
advantage of these benefits?” (ID d000.s015), the verb take is
correctly labeled as the MWE take_advantage, but advantage
is not labeled as being part of any MWE, so we attach it.

To mitigate the risk of the model learning only 354

the heuristics used to generate these synthetic neg- 355

atives, we also manually annotate a small number 356

of examples. We do this by running the rule-based 357

pipeline (Section 3.4) on the SemCor data and an- 358

notating output MWEs with their appropriate sense 359

from WordNet or the “not a MWE”, sense based 360

on context. Because we exclude words already 361

marked as MWEs and many MWEs in SemCor 362

have already been annotated, >50% of the newly 363

annotated examples are negative. 364

Pos MWE Neg MWE

SemCor 12409 0
+Annotation 12907 658

+Synthetic Negatives 12907 14688

Table 2: SemCor after each addition of data

Context MWE Type

What effort do you
make to assess ...

make do Synthetic
Negative

..your in plant feeding
operation?

in operation Annotated
Negative

...works full-time on
some other assignment?

work on Annotated
Positive

Table 3: Examples of each annotation type

4.2.1 Fine-tuning Data 365

After training on SemCor, we fine-tune on the 366

MWE identification data in DiMSUM/PARSEME. 367

We use any labeled examples of MWEs which are 368

in our lexicon as positive examples, and then run 369

our full pipeline (rules+model filter) on the data and 370

take incorrect outputs as negative examples. This 371

means that all the negative training examples used 372

in fine-tuning are false positives from the model 373

itself, allowing the model to learn from its mis- 374

takes. Because PARSEME and DiMSUM are not 375

annotated with sense information (only a binary la- 376

beling of MWE or not), we use the first sense from 377

WordNet as the gold label for positive examples 378

when fine-tuning. For both datasets, we use 10% 379

of the training data as our development set. 380

4.3 Training 381

Like Blevins and Zettlemoyer (2020), we train 382

with cross-entropy loss. The difference is that for 383

MWEs, there is one additional possible label rep- 384

resenting the “not a MWE” case. Given a word or 385

MWE w, its gold sense gs, and |Sw| = j possible 386
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PARSEME 1.1 DiMSUM

MWE-based Token-based System MWEs
P R F P R F P R F
– – 36.0 – – 40.2 Taslimipoor+ (2019) Kirilin+ (2016) 73.5 48.4 58.4
– – 41.9 – – – Rohanian+ (2019) Williams (2017) 65.4 56.0 60.4

36.1 45.5 40.3 40.2 52.0 45.4 Liu+ (2021) 47.9 52.2 50.0
16.3 39.9 23.1 19.2 43.9 26.7 Rule-based Pipeline 57.7 55.5 56.6
28.2 38.5 32.5±0.4 30.7 39.0 34.3±0.4 Rules + DCA (S) 70.9 53.0 60.6±0.1

35.7 39.3 37.4±0.6 37.7 38.6 38.1±0.4 Rules + DCA (S/D) 78.2 51.8 62.3±0.1

47.1 33.8 39.4±0.3 48.3 32.1 38.6±0.2 Rules + DCA (S/P ) 75.7 49.4 59.8±0.1

45.4 33.2 38.3±0.1 46.9 31.9 38.0±0.2 Rules + DCA (S/P/D) 80.4 49.5 61.3±0.4

Table 1: Test set results on PARSEME 1.1 English and DiMSUM for MWE identification. All DCA poly-encoder
models function as a final filter after the rule-based pipeline. Training data is listed in parenthesis: S=SemCor,
P=PARSEME, D=DiMSUM. For trainable models we report the mean (± standard deviation for the F1 score) of
three runs with random seeds. Because our system uses gold POS tags/lemmas to look up sense glosses, we compare
against systems using gold information where available, such as for Liu et al. (2021) and Kirilin et al. (2016).

senses in the lexicon, this formalizes to:387

L(w, gs) = −ϕ(w, gs) + log
∑
x∈X

exp(ϕ(w, x))388

X =

{
{s0, ...sj , n} if MWE
{s0, ...sj} otherwise

389

We train for 15 epochs on SemCor and three epochs390

for fine-tuning, computing F1 on the WSD and391

MWE identification dev sets once per epoch and392

use the best performing model as our final model.393

Batch size and other hyperparameters such as learn-394

ing rate were determined by hyperparameter search.395

Further implementation and training details can be396

found in Appendix A.397

4.4 MWE Identification Evaluation398

We evaluate our system on the English section of399

the PARSEME 1.1 Shared Task (Ramisch et al.,400

2018) and the DiMSUM dataset (Schneider et al.,401

2016). We do not evaluate on STREUSLE (Schnei-402

der et al., 2018) as it requires predicting lexical403

categories and supersenses3, while our system pre-404

dicts only the presence or absence of MWEs. To405

measure WSD performance, we use the evaluation406

framework established by Raganato et al. (2017)407

and evaluate on the English all-words task.408

4.4.1 PARSEME 1.1409

The PARSEME data focuses on verbal MWEs,410

containing 3471 sentences in the training set and411

3965 in test. Because the data contains only verbal412

3The STREUSLE evaluation script rejects input without
appropriate lexical categories/supersenses

MWEs, when evaluating on PARSEME we limit 413

the output of our pipeline to verbal MWEs. 414

4.4.2 DiMSUM 415

The DiMSUM data consists of online reviews, 416

tweets and TED Talks which have been annotated 417

with MWEs and other information. There are 4799 418

sentences in the training set, and 1000 in the test 419

set. Because noun phrases are marked as MWEs 420

in DiMSUM, when evaluating on DiMSUM our 421

pipeline also marks consecutive nouns as MWEs. 422

4.5 WSD Evaluation 423

Following standard practice, we use the SemEval- 424

2007 dataset (Pradhan et al., 2007) as our dev set, 425

holding out the remaining Senseval-02, Senseval- 426

03, SemEval-2013, and SemEval-2015, as test sets 427

(Palmer et al., 2001; Snyder and Palmer, 2004; 428

Navigli et al., 2013; Moro and Navigli, 2015). 429

5 Results 430

Table 1 shows MWE identification performance for 431

the rule-based pipeline (Section 3.4), and the same 432

pipeline with the DCA Poly-encoder included as a 433

final filter for various training data. Comparisons 434

to the Bi-encoder and standard Poly-encoder can 435

be found in Section 6.1, or in detail in Appendix C. 436

Our system achieves moderate performance on 437

PARSEME and competitive performance on the 438

DiMSUM trained only on the modified SemCor 439

data. When fine-tuned on both MWE identifica- 440

tion datasets it further improves, reaching state-of- 441

the-art performance on DiMSUM. Systems fine- 442

tuned on either PARSEME or DiMSUM alone per- 443
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form even better on their corresponding test set, but444

worse on the other test set, likely due to differences445

in domain and MWE type between the datasets.446

High precision stands out as a strength of our447

approach, but it suffers from low recall — even the448

rule-based pipeline with no model filter lags behind449

other systems in recall. We attribute this mainly to450

the issue of lexicon dependence described in Sec-451

tion 8; MWEs missing from our lexicon account452

for a majority of our false negatives as we show453

in our error analysis (Section 6.2). These findings454

echo Savary et al. (2019) on the importance of lexi-455

cons for MWE identification, and suggest that there456

is room to improve performance by expanding the457

lexicon. While it is difficult to pinpoint exactly why458

we achieve state-of-the-art F1 on DiMSUM and not459

PARSEME, one significant difference is that more460

than 40% of the DiMSUM test set MWEs are noun461

phrases, most of which we can detect without rely-462

ing on a lexicon (as described in Section 4.4.2). For463

PARSEME, we must always rely on our lexicon.464

5.1 WSD Performance465

We compare performance on the English WSD all-466

words task to Blevins and Zettlemoyer (2020), a467

similar Bi-encoder system trained only for WSD.468

Recent work in WSD has achieved higher scores469

(Barba et al., 2021b), but our goal is to understand470

how the addition of the MWE identification task471

affects WSD performance.

System F1 System F1
Blevins+ 79.0 PolyEnc (S) 73.8±0.2

DCA (S) 77.2±0.1 BiEnc (S) 77.4±0.6

DCA (S/P/D) 74.4±0.6 BiEnc (S/P/D) 74.2±1.0

Table 4: English WSD all-words task F1.

472
Our system retains most but not all of its WSD473

performance: F1 is 2% lower when trained on our474

modified SemCor data and 6% lower when fine-475

tuned on PARSEME+DiMSUM. We attribute this476

drop in F1 from fine-tuning to potentially confus-477

ing labels in the fine-tuning data: the gold label of478

positive examples is always the MWE’s first sense,479

which may be incorrect for polysemous MWEs,480

and as we show in Section 6.2, many negative ex-481

ample MWEs actually have senses appropriate for482

the context they are in. Consequently, the model483

cannot rely entirely on matching sense glosses to484

input contexts for this data and may forget some485

knowledge useful for WSD.486

Comparing models, the DCA Poly-encoder out- 487

performs the standard Poly-encoder on WSD, but 488

its performance does not significantly differ from 489

the Bi-encoder. We leave Poly-encoder architec- 490

tures better suited for WSD to future work. 491

6 Analysis 492

6.1 MWE Identification Ablations 493

System PARSEME ∆ DiMSUM ∆

Rules+DCA 38.3 – 61.3 –
-SemCor Data 26.0 -12.3 56.8 -4.5
-Rule Filters 35.5 -2.8 61.8 +0.5
Rules+BiEnc 36.5 -1.8 61.3 –
Rules+PolyEnc 34.0 -4.3 60.3 -1

Rules 23.1 – 56.6 –
-Filters 14.4 -8.7 47.74 -8.9

Table 6: MWE identification F1 for ablations. Aside
from the ablation removing SemCor data, all models are
trained on SemCor+PARSEME+DiMSUM.

Pretraining using the modified SemCor data is im- 494

portant; training only on the MWE identification 495

datasets substantially reduces performance. Intu- 496

itively, this can be thought of as the model needing 497

to learn how to encode context words and sense 498

glosses before learning to apply that knowledge to 499

MWE identification. 500

We also see that while removing rule-based fil- 501

ters from the DCA pipeline lowers PARSEME F1, 502

it slightly raises DiMSUM F1, suggesting that the 503

necessity of these filters depends on the data. How- 504

ever, removing the rule-based filters only works 505

because the DCA Poly-encoder can accurately ex- 506

clude false positives: removing the same filters 507

from the purely rule-based pipeline results in a 508

very low F1. Finally, the DCA Poly-encoder sub- 509

stantially outperforms the standard Poly-encoder 510

(PolyEnc) on both datasets and surpasses the Bi- 511

encoder on PARSEME, demonstrating that our 512

DCA Poly-encoder model can improve MWE iden- 513

tification performance. 514

6.2 Error Analysis 515

We perform an error analysis on the output of our 516

SemCor trained and fine-tuned models on both test 517

sets, taking 50 false positives and 50 false negatives 518

4Output for the rule-based pipeline with no filters was
invalid according to the DiMSUM grader and had to be ap-
proximated, so it may be off by 1-2 F1 points.
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Dataset Type Sentence Note

PARSEME FP ...were propped up on a foot-warmer, ... prop up never marked as MWE in dataset
PARSEME FN Never mind, Mrs. Bray will join you later. never mind missing from lexicon
PARSEME FP ...his mind drifted off to the accounts... drift off sense “fall asleep” does not apply
PARSEME TN textit...as we sat side by side... sit by sense “be inactive” does not apply
DiMSUM FP Aww, thank you. thank you marked as MWE in 4 other sentences
DiMSUM FN All our dreams can come true,... come true missing from lexicon
DiMSUM FN ...this was a breathe of fresh air. Present in lexicon; model filter false negative
DiMSUM TN ...impact my wardrobe has on the environment. have on sense “dress in“ does not apply

Table 5: Representative errors (FP/FN) and incorrect MWEs successfully excluded by the model filter (TN)

from each combination of model and dataset (for519

a total of 400 examples). Select examples can be520

seen in Table 5, and detailed statistics about the out-521

come of our analysis can be found in Appendix B.522

We find that for >80%5 of false positives a sense523

from our lexicon was appropriate for the given524

context, but the target words were not marked525

as a MWE in the data. Many of these MWEs526

were present in our lexicon but nowhere in the test527

set, suggesting discrepancies between the scope528

of what WordNet and these datasets respectively529

define as MWEs. However, there were also a num-530

ber of false positives that are marked as MWEs in531

other places in the dataset. This could happen if532

these combinations of words were only marked as533

MWEs when they had specific meanings or partic-534

ularly non-compositional semantics, but this was535

not the case for the examples we examined. These536

results speak to the difficult and potentially subjec-537

tive nature of annotating MWEs, and we hope to538

see work exploring this area in the future.539

For false negatives, >85% were cases where540

the target MWE was missing from the lexicon, con-541

firming that the bottleneck for recall is our system’s542

lexicon. For the majority of the remaining false neg-543

atives, an appropriate sense for the given context544

was present in our lexicon, meaning that these were545

failures of our MWE identification system and not546

the lexicon. However, the fact that errors in match-547

ing meaning to context account for <20% of false548

positives and <15% of false negatives shows that549

our model has successfully learned how to judge550

whether a group of words constitutes a MWE with551

a given meaning. See Table 5 true negatives for552

examples of MWEs excluded based on meaning.553

7 Conclusion554

In this work, we present an approach to MWE555

identification using rule-based candidate extraction556

5Computed excluding false-positives from the DiMSUM
noun phrase detector, which does not use the lexicon

with a model filter, achieving strong results on the 557

PARSEME 1.1 English data and state-of-the-art 558

results for MWE identification on the DiMSUM 559

dataset. Our system performs both MWE identifica- 560

tion and WSD with the same model, demonstrating 561

that these tasks can be tackled together. We also in- 562

troduce a modified Poly-encoder architecture better 563

suited to MWE identification. 564

Our system’s strength is its high precision for 565

MWE identification. We show its low recall to be 566

a function of lexicon size, and in future work we 567

intend to expand the lexicon by mining MWEs and 568

generating glosses for them, which has the potential 569

to substantially increase recall for lexicon-based 570

systems. Improved approaches for multitask train- 571

ing of MWE identification/WSD models could also 572

be valuable; the ideal pipeline would be competi- 573

tive with state-of-the-art systems in both tasks, and 574

not just MWE identification. 575

Ideal applications of our system include MWE 576

identification when a lexicon of target MWEs is 577

available, or cases where quickly performing both 578

MWE identification and WSD is valuable, such as 579

in language learning and assisted reading tools. 580

8 Limitations 581

While our system performs well, the output of our 582

MWE pipeline is limited to MWEs that are present 583

in our lexicon or detectable with simple rules. Fur- 584

thermore, because our model uses gloss text as 585

input, we cannot effectively filter MWE candidates 586

without sense glosses. Consequently, our approach 587

to MWE identification depends on the presence of a 588

high-quality lexicon which includes MWE lemmas 589

and sense glosses, making it ill-suited for scenarios 590

where data like this may not be available yet, such 591

as in low resource languages. However, we are opti- 592

mistic that work in MWE discovery (Ramisch et al., 593

2010) and gloss/definition generation (Bevilacqua 594

et al., 2020) will help to mitigate this problem by 595

automating parts of the data creation process. 596
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A Implementation Details 886

Bi-encoder and Poly-encoder models are imple- 887

mented and trained with Pytorch Lightning (Falcon 888

and The PyTorch Lightning team, 2019), using 889

pretrained BERT models from the Transformers 890

library (Wolf et al., 2020). We define batch size by 891

the number of training examples (words or MWEs 892

to be labeled) in each batch, and keep this num- 893

ber constant by adjusting the number of sentences 894

and/or masking out examples to save them for the 895

next batch. Our effective batch size is 32. All mod- 896

els were trained on a single GeForce GTX TITAN 897

X GPU, with hyperparameters tuned using Weights 898

& Biases (Biewald, 2020) to run random sweeps 899

and track performance. Separate sweeps were run 900

for the Bi-encider and Poly-encoder, each having 901

a maximum of 20 runs and using early stopping to 902

terminate runs with poor performance. Our total 903

compute time was approximately 160 days (though 904

this would have been significantly lower using a 905

newer model of GPU), and our models have 220M 906

parameters. We used Prodigy (Montani and Honni- 907

bal) as our annotation tool. Further detail, including 908

all training hyperparameters and instructions for 909

reproduction, can be found in our published code. 910

B Error Analysis Details 911

This appendix contain details about the frequency 912

with which we found various types of false posi- 913

tives or false negatives in our error analysis. 914

B.1 PARSEME 915

In the table below, Def? represents the % of false 916

positives where a sense appropriate for the pre- 917

dicted MWE was present in our lexicon. MWE? 918

represents the % of false positives where the MWE 919

was present in other sentences in the dataset, and 920

the % of false negatives where it was present in our 921

lexicon, respectively. 922
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False Positives False Negatives
Model Def? MWE? MWE?

SemCor 90% 16% 6%
fine-tuned 90% 34% 16%

Table 7: PARSEME Error Analysis

B.2 DiMSUM923

Our results on DiMSUM are similar to those of924

PARSEME, except that for the system using the925

SemCor model 22% of the false positives were926

from the rule-based consecutive noun tagger, with927

that number increasing to 56% for the fine-tuned928

model (the false positive rate drops substantially929

after fine-tuning the filtering model as can be seen930

in Table 1, which leads to these errors account-931

ing for a higher percentage of total false positives).932

The Def? and MWE? percentages for false pos-933

itives in the below table are computed excluding934

consecutive noun tagger false positives.935

False Positives False Negatives
Model Def? MWE? MWE?

SemCor 92% 56% 4%
fine-tuned 81% 63% 12%

Table 8: DiMSUM Error Analysis

C Detailed Performance936

Table 9 below contains full scores for systems omit-937

ted from the main paper for brevity.938
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System PARSEME 1.1 DiMSUM WSD
MWE-Based Token-based MWEs

P R F1 P R F1 P R F1 F1
Rules (no filters) 8.8 38.9 14.4 12.0 49.9 19.3 40.5∗ 58.0∗ 47.7∗ –
Rules (both filters) 16.3 39.9 23.1 19.2 43.9 26.7 57.7 55.5 56.6 -
BiEnc (S) 27.5 38.8 32.2±0.8 30.0 39.43 34.1±0.3 70.7 52.57 60.0±0.4 77.4±0.6

BiEnc (S/P/D) 44.5 31.0 36.5±0.9 46.4 30.5 36.2±0.8 80.9 49.3 61.3±0.4 74.2±1.0

PolyEnc (S) 27.1 36.1 30.9±0.3 29.8 37.1 33.0±0.2 69.7 51.7 59.3±0.2 73.8±0.2

PolyEnc (S/P/D) 37.7 31.0 34.0 ±0.7 40.7 31.2 35.3±0.4 78.0 49.1 60.3±0.2 66.0±0.2

DCA (S) 28.2 38.5 32.5±0.4 30.7 39.0 34.3±0.4 70.9 53.0 60.6±0.1 77.2±0.1

DCA (S/D) 35.7 39.3 37.4±0.6 37.7 38.6 38.1±0.4 78.2 51.8 62.3±0.1 75.6±0.1

DCA (S/P ) 47.1 33.8 39.4±0.3 48.3 32.1 38.6±0.2 75.7 49.4 59.8±0.1 76.4±0.1

DCA (S/P/D) 45.4 33.2 38.3±0.1 46.9 31.9 38.0±0.2 80.4 49.5 61.3±0.4 74.4±0.6

DCA (S/P/D, no filters) 40.2 31.8 35.5±0.9 42.7 31,4 26.2±0.5 80.0 50.4 61.8±0.5 74.4±0.6

DCA (P/D) 25.4 26.8 26.0 28.5 27.9 28.2 74.7 45.7 56.8 39.5

Table 9: Test set results on PARSEME 1.1 English and DiMSUM for MWE identification, and the English all-words
WSD task. For MWE identification, all Bi-encoder (BiEnc) and and Poly-encoders (PolyEnc/DCA) function as a
final filter in the rule-based pipeline. Letters after system entries indicate training data, where S = SemCor, P =
PARSEME and D = DiMSUM. For example, (S/P/D) means trained on SemCor and finetuned on PARSEME and
DiMSUM. Scores marked with the asterisk ∗ come from pipeline configurations that did not produce valid output
according to the DiMSUM scorer and had to be approximated, so they may be off by 1–2 F1 points.
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