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ABSTRACT

Understanding biological processes, drug development, and biotechnological ad-
vancements requires a detailed analysis of protein structures and functions, a task
that is inherently complex and time-consuming in traditional protein research. To
streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal
large language model for proteins, which allows users to upload protein sequences
and/or structures for comprehensive proteins analysis and responsive inquiries. Pro-
teinGPT seamlessly integrates protein sequence and structure encoders with linear
projection layers to ensure precise representation adaptation. It leverages a large
language model (LLM) to generate accurate and contextually relevant responses.
To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins, each
annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized
the instruction-tuning process using GPT-4o. Experiments demonstrate that Pro-
teinGPT effectively generates informative responses to protein-related questions,
achieving high performance on both semantic and lexical metrics. It significantly
outperforms baseline models and general-purpose LLMs in understanding and
responding to protein-related queries.

1 INTRODUCTION

Proteins are fundamental molecular building blocks of life, playing critical roles in biological
processes Kitadai & Maruyama (2018). Understanding their structure, functions, and interactions
is vital for advancements in drug discovery Teague (2003), healthcare Organization & University
(2007), and biological/medical engineering Kobsa & Saltzman. Recent breakthroughs in machine-
learning-based protein structure and function prediction Lin et al. (2023) have significantly accelerated
biological research by reducing the reliance on traditional labor-intensive laboratory experiments and
literature search.

Challenges. As proteins can be represented by strings of characters, each corresponding to an amino
acid from an alphabet of 20 letters, recent advancements in Large Language Models (LLMs) have
naturally extended to protein research. Existing protein LLMs such as ProtST Xu et al. (2023),
ProteinChat Guo et al. (2023), and ProtChatGPT Wang et al. (2024) focus primarily on sequence-
based or structure-based modeling, limiting their ability to generate holistic protein insights from
multiple modalities. For instance, protein sequences can reveal evolutionary information, functional
sites, and sequence-structure relationships, while protein structures provide critical insights into
spatial arrangement, structural dynamics, binding sites, and stability. Applying multimodal LLMs to
protein modeling is non-trivial due to the challenge in aligning diverse modalities, such as textual
descriptions, protein sequences, and protein structures. Meanwhile, direct end-to-end retraining for
protein LLMs is usually impractical due to extensive requirements for annotated data.

Our Work. We propose ProteinGPT, a protein LLM that allows researchers to upload protein
sequences and/or structures (via fasta or PDB files) and ask natural language questions. ProteinGPT
consists of four major components: a protein sequence encoder, a protein structure encoder, a
projection layer, and an LLM.

The protein sequence encoder is based on the ESM-2 (Evolutionary Scale Modeling 2) Lin
et al. (2023) model variant esm2_t36_3B_UR50D with 36 transformer layers and 3 billion pa-
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Figure 1: ProteinGPT Modality Fusion & Alignment Stage: we freeze the encoder blocks
and train the linear project layer to learn how to align protein structure and protein sequence repre-
sentations with text. In the alignment stage, the input to the training is only the projected protein
representation. No text prompts are incorporated in this stage.

rameters. Pretrained on UniRef50/D Suzek et al. (2015), a comprehensive protein database
that clusters sequences with at least 50% sequence identity and 80% coverage, this model
ensures sequence diversity and informativeness in encoding. The protein structure encoder,
esm_if1_gvp4_t16_142M_UR50, is an inverse folding model that incorporates a geometric
input processing layer paired with a seq2seq transformer Bahdanau (2015). Trained on 12 million
structures predicted by AlphaFold2 Jumper et al. (2021), the model effectively captures protein
structural information.

To bridge these encoders with the LLM, we introduce a projection layer that aligns their embeddings
with the LLM’s latent space. This enables seamless integration of multimodal protein representations
into the LLM, enabling information extraction from not only the protein structural and sequential
information but also the rich pretrained knowledge within ESM.
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Figure 2: ProteinGPT Instruction Tuning Stage: we utilize the QA pairs and property tags
in ProteinQA to tune the LLM to follow instructions and give concise responses. For instruction
alignment, explicit prompts (Questions on the protein) are included at the beginning of the prompt.

To train ProteinGPT for effective modality alignment, we introduce ProteinQA, a large-scale dataset
of over 132,092 protein sequences with structural information and annotations. Unlike previous
works that use entire protein annotations as prediction targets for instruction-tuning, we use GPT-
4o OpenAI et al. (2024) to systematically decompose proteins’ abstract summary from the RCSB
Protein Data Bank (RCSB PDB) Burley et al. (2023) into question-answer (QA) pairs. We then
finetune ProteinGPT on ProteinQA using diverse open-source models, including Llama-2 Touvron
et al. (2023), Llama-3 Dubey et al. (2024) Vicuna Chiang et al. (2023), and Mistral Jiang et al. (2023).
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The training effectively enhances the model’s ability to understand user queries and generate concise,
contextually relevant answers.

Contributions. Our contributions are as follows:
• Novel Framework. We introduce ProteinGPT, a state-of-the-art protein LLM that fuses protein se-

quence and structural information to enable interactive protein-focused conversations, significantly
enhancing the understanding and design of proteins;

• Large-scale Dataset. We propose ProteinQA, a large-scale protein dataset based on RCSB-
PDB Guo et al. (2023). ProteinQA encompasses 132,092 protein samples, each annotated with a
detailed descriptive abstract, 20-30 property tags, and 5-10 QA pairs. The depth and variety of
these annotations position ProteinQA as a high-quality instruction tuning corpus;

• Comprehensive Experiments. We conducted extensive experiments on mainstream open-source
and proprietary LLM backbones under different scenarios. Our empirical analysis provides
guidance for future design of protein LLMs.

2 METHODOLOGY

2.1 MODEL ARCHITECTURE

ProteinGPT consists of two frozen pre-trained encoders (Figures 1 and 2): an inverse folding model
(esm_if1_gvp4_t16_142M_UR50) for structure encoding and a protein language model for
sequence encoding (esm2_t36_3B_UR50D). The embeddings generated by these models are fed
into a linear projection layer to produce soft prompts for the LLM. The model training comprises two
stages: 1) Sequential and Structural Alignment and 2) Instruction-tuning.

2.1.1 SEQUENCE AND STRUCTURE ALIGNMENT

In the alignment stage, protein structures are first fed into the pre-trained structure encoder
esm_if1_gvp4_t16_142M_UR50 which explicitly captures the detailed 3D structures and mod-
els spatial interactions between amino acid residues. Then, sequences are encoded using the sequence
encoder esm2_t36_3B_UR50D featuring 36 transformer layers and 3 billion parameters, trained
on the Protein UniRef50/D database to enhance sequence diversity. This module integrates struc-
tural information with implicit structural contact, evolutionary, and biochemical information that the
structure alone does not capture. For efficient training, both of these modules are frozen. We utilize a
specialized token prompt for protein-text modality alignment:

Q: < Protein >< Struct >< Seq >
< /Protein >< QuestionPrompts >
A: < Description >

The structural and sequential information is encoded into the soft prompts and prepended to the
question prompt. In stage 1 training, the question prompt Q is left empty to prioritize learning the
abstract description from the protein representation.

The description tag is then replaced with the full annotation from RCSB-PDB Guo et al. (2023) to
train the projection layer in aligning a protein with its annotation description.

2.1.2 INSTRUCTION-TUNING

In stage 2, the model undergoes instruction tuning using our curated QA dataset. Unlike previous
works that utilize full annotations, we focus on specific QA examples to facilitate instruction tuning.
We augment the abstract dataset from stage 1 using GPT-4o to generate explicit QA pairs for this
stage. The prompts from stage 1 are adapted to the LLaMA style (“### Human:’’ . . . and ###
Assistant: . . .), with Q replaced by explicit questions from the QA dataset, such as “how many
assemblies does this protein have.” The model then generates descriptive yet concise answers from
the given protein as A.

2.2 DATASET CURATION

To ensure the highest quality of training data, we implement a rigorous validation and data collection
process.

3



We leverage RCSB-PDB dataset Berman (2000), which is thoroughly vetted by both RCSB-
PDB Berman (2000) and PubMed1 for reliable protein information. The dataset is derived from
peer-reviewed PubMed publications, implying that the dataset content is highly accurate. We select a
large dataset to cover a wide range of proteins and ensures coverage on out-of-distribution proteins.
For modality alignment, we construct a large-scale dataset from the RCSB-PDB database Berman
(2000) consisting of 132,092 protein structures, sequences, and abstract descriptions. The raw dataset
of 204,826 proteins is filtered to retain only those with an abstract description, chain A, and sequences
without non-encodable characters. Each entry in the final dataset includes the 3D protein structure
represented by backbone atomic coordinates, the sequence string, and a rich protein annotation, as
shown in Figure 2. The detailed statistics of our dataset are presented in Table 1, highlighting the
extensive annotations and comprehensive content available for each protein.

Table 1: Statistics for ProteinQA

Per Protein Min Max Mean

# Abstracts tokens 89 728 205.45
# Answer tokens 32 550 98.56

# Open-Ended QA Pair samples 10 26 17.39
# Closed-Ended QA Pair samples 24 29 25.94

2.3 DATA AUGMENTATION

Previous works often use the entire protein annotation for instruction tuning Xu et al. (2023); Guo
et al. (2023); Wang et al. (2024), which may result in the model producing overly detailed responses
with extraneous information not directly relevant to the user prompt. Therefore, our ProteinGPT
decomposes the rich protein annotations into more specific QA-pairs for instruction tuning so that
user instructions can be concisely answered. We do this by generating short concise answers along
with long-form responses to include our dataset. Concretely, we prompt GPT-4o to generate both
open-ended and close-ended QA pairs with the context of the abstract to decompose the abstract
into atom-level QA pairs. As seen in Table 1, on average, each protein has around 40 total QA pairs
generated from this process.

3 EXPERIMENTS

3.1 TRAINING

We trained ProteinGPT on 4 base LLM architectures: Vicuna Chiang et al. (2023), LLaMA-2 Zhang
et al. (2023a), LLaMA-3 Dubey et al. (2024), and Mistral Jiang et al. (2023). Our training process is
divided into two phases: modality alignment (MA) and instruction tuning (IT). This approach allows
the model to preserve previously acquired knowledge while effectively handling specific instructions,
such as protein-related queries.

Stage I: Modality Fusion/Alignment (MA). In this stage, we focus exclusively on training the
projection adapter by freezing both sequence and structure encoders. We set the maximum text length
of abstracts to 384 characters to accommodate the annotation lengths within the RCSB-PDB dataset.
The projection layer is trained over 10 epochs with a batch size of 1, weight decay of 0.05, and 2048
warm-up steps. The dataset is divided into a training set (70%) of 105,673 proteins and a testing set
(30%) of 26,419 proteins. We utilize the AdamW optimizer with β1 = 0.9, β2 = 0.98 Loshchilov
& Hutter (2019), and employ a learning rate scheduler with a linear warm-up followed by cosine
annealing. We set the initial learning rate to 1× 10−4, the minimum learning rate to 8× 10−5, and
the warm-up learning rate to 1× 10−6. Automatic mixed precision (AMP) Micikevicius et al. (2018)
was used to improve training efficiency.

Stage II: Instruction Tuning (IT). In this stage, the model is fine-tuned on a protein question-
answering task. Training is conducted for 10 epochs with a batch size of 1, weight decay of 0.05, and
200 warm-up steps. The QA dataset used in this phase comprises approximately 3.7 million samples,

1https://pubmed.ncbi.nlm.nih.gov/
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with around 35 questions per protein. We apply similar settings for the AdamW optimizer and AMP,
but with a lower initial learning rate of 1× 10−5, a minimum rate of 1× 10−6, and a warm-up rate
of 1× 10−6.

3.2 INFERENCE

In real-world scenarios, there are cases where only protein sequence or structure information is
available. Under such scenarios, protein folding and protein inverse-folding models are applied to
obtain the missing structure or sequence information.

For missing or incomplete sequences, we use the ESM-IF1 inverse folding model to predict absent
segments, generating protein sequences from backbone atom coordinates. This method is effective in
filling sequence gaps where traditional approaches struggle.

For missing structural data, we apply ESMFold to predict 3D structures of missing regions,
generating accurate 3D conformations without relying on multiple sequence alignments.

3.3 COMPUTATIONAL COST

Our training uses two NVIDIA H100 PCIe GPUs (80GB vRAM) and two NVIDIA A100 PCIe GPUs
(40GB). We implemented strategies including Automatic mixed precision (AMP), optimized data
loaders, asynchronous data processing, multi-GPU training. Stage 1 and 2 require approximately one
week and 60 hours, respectively.

ProteinGPT is optimized for fast processing, handling user protein queries in approximately 50
seconds and generating 23-token responses in about 8 seconds. Its computational efficiency allows
deployment on hardware ranging from GPUs like the Nvidia T4 with 16 GB memory to standard
CPUs.

4 RESULTS
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Figure 3: ProteinGPT performance with various base LLMs.

We conducted a series of experiments to assess ProteinGPT’s effectiveness both quantitatively and
qualitatively. Moreover, we benchmark the capabilities of state-of-the-art large language models on
protein-related tasks.

4.1 QUALITATIVE EVALUATION

Figures 7, 9, 11 show example conversations between human users and ProteinGPT on Proteins
6O7Q, 5X1Y, and 7RUV, respectively. To ensure unbiased evaluation and avoid data leakage, all
testing was performed on a separate set of proteins isolated from training. ProteinGPT effectively
interpret the semantics of queries and produces accurate, logically consistent responses. These
responses include details about protein functions, such as catalyzing the reduction of dinitrogen to
ammonia, and structures, such as the structural dependencies on the substrate azide and the product
ammonia. This demonstrates ProteinGPT’s capabilities on protein sequence, structure, and function
understanding tasks and its potential for enabling rapid exploration of proteins.
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4.2 QUANTITATIVE EVALUATION

4.2.1 EXPERIMENTAL SETUP

We evaluate our model using a curated dataset of 3,508 randomly-selected question-answer-protein
pairs, covering 160 proteins from the test split. Each protein is associated with 28-30 questions
that were not seen by ProteinGPT during training. We benchmark against several baseline models,
including vanilla open-source LLMs (without modality alignment or instruction tuning) and propri-
etary models (GPT 4o/4/3.5, o3/o1-mini, and DeepSeek-R1). To manage computational costs, we
sample 1,025 questions (35 proteins with 28∼30 questions per protein). For fairness of comparison,
we employ standard metrics to compare model predictions with the ground truth. These include 1)
semantic similarity metrics that measure contextual meanings: BERTScore (SBERT) Zhang et al.
(2020), PubMedBERT Score (SPub) Gu et al. (2021), and GPT Score (SGPT) OpenAI (2023); 2)
lexical quality metrics that measure surface-level similarity based on n-gram overlaps: ROUGE-
1/2/L Ganesan (2018). For the GPT Score, we use OpenAI’s text-embedding-3-large as the
embedding model.

4.2.2 COMPARISON AMONG PROTEINGPT VARIANTS

Among the 4 variants, ProteinGPTMistral performs the best in terms of both semantic and lexi-
cal metrics. In terms of BERTScore (Table 3), ProteinGPTMistral achieves 0.829, followed by
ProteinGPTLLaMA-3 (0.790), ProteinGPTLLaMA-2 (0.764), and ProteinGPTVicuna (0.756). The strong
performance of ProteinGPTMistral can be attributed to its integration of sliding window attention
(SWA) Jiang et al. (2023). Protein sequences are inherently lengthy and complex, often requiring
models to capture intricate dependencies across extended stretches of amino acid. SWA helps capture
local patterns and dependencies within protein sequences, leading to a longer effective attention
span crucial for tasks like secondary structure prediction and functional annotation. The reduced
computational load associated with SWA allows for the processing of longer protein sequences
without a proportional increase in resource consumption. Figure 3 shows the visual comparison
among different base LLMs of ProteinGPT.

4.2.3 BASELINE COMPARISON

We also compare ProteinGPT to three groups of baselines to demonstrate ProteinGPT’s effectiveness
in protein-specific multimodal tasks: 1) Vanilla Open-source LLMs (Vicuna, Mistral, LLaMA-3, and
LLaMA-2); 2) Proprietary General-Purpose LLMs (GPT-4o/4/3.5); 3) State-of-the-art models with
Strong Reasoning Capabilities (OpenAI o1/o3-mini and DeepSeek-R1). For fairness of comparison,
we prepended the protein’s FASTA sequence to the prompt to provide context for these LLMs.
Tables 3 and 5 show model performance with semantic and lexical scores.

Vanilla open-source LLMs exhibit low semantic performance. When providing protein sequences
as text input (Table 3a), the BERTScore (SBERT) range from 0.490 (LLaMA-3) to 0.572 (Vicuna) in
terms of precision, indicating a lack of protein-specific pretraining and limited semantic understanding
of protein data. Meanwhile, incorporating modality fusion (where additional cues beyond the raw
protein sequence are integrated) leads to modest improvements, such as an improvement from 0.572
to 0.582 when using Vicuna as the base model. Model Similarly, proprietary models such as GPT-
4o/4/3.5, OpenAI o1/o3-mini, and DeepSeek-R1 also exhibit lower semantic and lexical performance
when processing protein sequences as text inputs. This performance gap is likely due to these models
not being pretrained on domain-specific data.

The results in Table 4 highlight a critical challenge in applying general-purpose language models
to protein-related queries: standard models, even those with strong reasoning capabilities like o3-
mini and DeepSeek-R1, struggle to interpret protein sequences. o3-mini achieves a marginally
higher Rouge-L score (0.072) than GPT-4o (0.067), but remains far below ProteinGPTMistral (0.460).
DeepSeek-R1 performs particularly poorly, which suggests that it struggles to extract meaningful
insights from protein sequences when they are formatted as text. The sample answers in Appendix E.3
show that, while models like DeepSeek-R1 demonstrates strong reasoning capabilities on general QA
tasks, it struggles with domain-specific terminology such as assemblies, interpreting inputs merely
as a long string of amino acids. It tends to generate verbose, speculative responses, often
introducing uncertainty by stating Maybe the question is about...–which diminishes
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Figure 4: Protein Text LLM takes protein primary sequence as part of the prompt to the model. GPT
models are more powerful than open-source LLMs like LLaMA and Mistral. Given the same protein
sequence as input, ProteinGPT utilizes the information from sequence and structure encoders and
yields more accurate responses.

its utility for precise scientific queries. As a result, its performance is comparable to or slightly worse
than the modality-aligned version of ProteinGPT.
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Figure 5: ProteinGPT performance (after instruction-tuning) on fact-based, closed-ended questions,
such as determining number of polymer entities that exist in a given protein.

The overall comparison can be seen in Figure 4, which shows that ProteinGPT outperforms both
baselines consistently. This demonstrates that our model outperforms knowledge embedded within
LLMs and effectively utilizes sequence and structure information to answer questions.

Baseline Comparisons to ProteinGPT We also compare ProteinGPT to two baselines to demonstrate
our contributions in creating multimodal LLMs that are more capable than general-purpose LLMs in
communicating about proteins. The first baseline is the vanilla LLMs that we trained our models on,
such as Vicuna, Mistral, LLaMA-3, and LLaMA-2. The second baseline is GPT-4 and GPT-3.5. For
evaluation, we simply pretended the FASTA sequence of the protein in front of the prompt to give
the LLM context of the protein. Table 2 and Figure 4 provide quantitative and visual comparison on
baseline LLMs with ProteinGPT.

4.2.4 CLOSE-ENDED ACCURACY EXPERIMENT

Although semantic-based evaluations may be useful in gauging the feasibility of our outputs, to ensure
our model is outputting factually correct information regarding a given protein, we also conduct a
close-ended answer format evaluation on ProteinGPT with samples from our test subset of proteins.
We selected 160 proteins for evaluation but only used QA-pairs that had a factual single-word ground
truth and excluded questions that had open-ended answers (e.g. ”describe this protein”). Examples of
such closed-ended questions are ”yes”/”no” questions or information on the number of assemblies or
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polymers in a protein. We then use GPT-4o to directly judge the outputs of ProteinGPT to the ground
truth in our dataset.

The results can be seen in Figure 5. LLaMA-3 and Mistral are the best-performing backbone models,
achieving around 80% accuracy in answering fact-based closed-ended questions. Even the weaker
models like LLaMA-2 and Vicuna achieve reasonable accuracy above 70%. Therefore, ProteinGPT
not only demonstrates strong capabilities in generating feasible answers as demonstrated by our
semantic evaluations, but ProteinGPT also provides factually accurate answers as demonstrated by
this accuracy evaluation.
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Figure 6: Performance improves progressively from the vanilla LLM model with protein as text to the
modality-aligned version, and finally to the instruction-tuned variants of ProteinGPT. Each stage of
ProteinGPT’s training results in substantial enhancements in both lexical and semantic performance,
showcasing the efficiency of our framework.

4.3 ABLATION STUDY

Lastly, to better understand our contributions and ensure the model is learning at each step in the
architecture, we perform an ablation study to demonstrate that the module after each stage is indeed
improving the performance of ProteinGPT. ProteinGPT is broken down into three modules: vanilla
LLM, modality-aligned LLM, and instruction-tuned LLM.

Vanilla LLM: Table 3 (a) and Table 5 (a) display the semantic and lexical scoring using similar
metrics for the vanilla LLM of choice (Vicuna, LLaMA, etc.). This is evaluated on the same set of
160 proteins and 3508 questions that we used to evaluate the final model. Also note that at this stage,
no training has been done, the model is the same as the out-of-the-box LLM.

Modality Aligned (MA) LLM: Following this, Table 3 (b) and Table 5 (b) show that of the LLM
after modality alignment. Evaluated on the same set of proteins, at this stage, the linear layer has
been trained to learn to align and fuse the structure and sequence modalities to the LLM.

Instruction Tuned (IT) LLM: Lastly, as mentioned previously, Tables 3 (c) and 5 (c) are for the
fully aligned and instruction-tuned model. At this stage, the model is complete and has been tuned on
our GPT-4o curated dataset to follow instructions concisely.

Figure 6 highlights the differences in performance between each of these stages. We can observe that
consistently, the instruction-tuned and modality-aligned final model outperforms the modality-only
model and vanilla LLMs. This falls in line with our hypothesis and demonstrates that our 3 stages of
training are indeed improving the model’s multi-modal understanding of proteins. More specifically,
the observation that modality alignment always performs better than a vanilla LLM demonstrates
that through this stage, the MLLM understands how to digest multi-modal information. Similarly,
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Table 2: Semantic Performance on OpenAI GPT Protein Text LLMs (GPT-3.5, GPT-4, and GPT-4o)
and our ProteinGPT {Vicuna, Llama-2, Llama-3, Mistral} models in terms of BERTScore (SBERT) (Zhang
et al., 2020), PubMedBERT Score (SPub) (Gu et al., 2021), and GPT-4o Score (SGPT) (OpenAI
et al., 2024).

Scoring Metrics GPT-3.5 GPT-4 GPT-4o P-GPTVicuna P-GPTLlama-2 P-GPTLlama-3 P-GPTMistral o1-mini o3-mini DeepSeek-r1

SBERT

Precision 0.641 0.578 0.596 0.730 0.739 0.779 0.821 0.572 0.597 0.468
Recall 0.701 0.675 0.668 0.788 0.796 0.803 0.839 0.664 0.699 0.635
F1 0.667 0.621 0.628 0.756 0.764 0.790 0.829 0.612 0.641 0.537

SPub

Precision 0.513 0.434 0.440 0.626 0.644 0.706 0.758 0.402 0.450 0.449
Recall 0.667 0.406 0.580 0.751 0.773 0.776 0.816 0.393 0.513 0.307
F1 0.579 0.418 0.499 0.682 0.701 0.739 0.784 0.397 0.477 0.363

SGPT

Precision 0.470 0.391 0.391 0.605 0.606 0.698 0.717 0.387 0.410 0.360
Recall 0.466 0.266 0.363 0.661 0.689 0.713 0.752 0.281 0.396 0.247
F1 0.467 0.316 0.376 0.630 0.644 0.705 0.733 0.325 0.398 0.293

###	ProteinGPT:

The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is a homodimer with 
each monomer consisting of two domains: the N-
terminal domain (NTD) and the C-terminal 
domain (CTD). The NTD is composed of a central 
beta-sheet flanked by two alpha-helices, while 
the CTD is composed of a central alpha-helix 
flanked by two beta-sheets. The active site is 
located at the interface of the two domains.

###	Human:
Please	describe	the	structure	of	the	protein

#	Protein	Sequence	(to	be	encode	by	ESM-2)
SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVY
CPRHVICTSEDMLNPNYEDLLIRKSNHNFLVQ	…	…	…
QDHVDILGPLSAQTGIAVLDMCASLKELLQNGMNGRTI
LGSALLEDEFTPFDVVRQCSGVTFQ
#	Protein	Structure	Structures	are	
encoded	by	ESM-2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

###	ProteinGPT:
The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is essential for viral 
replication and is a key target for antiviral drug 
development.

###	Human:
Please	describe	the	functionality	of	the	protein.

###	ProteinGPT:
The protein adopts a chymotrypsin-like fold.

###	Human:
What	structural	fold	does	the	protein	adopt?

###	ProteinGPT:
The protein is a viral main protease (Mpro) of 
SARS-CoV-2. The protein is a homodimer with 
each monomer consisting of two domains: the 
N-terminal domain (NTD) and the C-terminal 
domain (CTD). The NTD is composed of a central 
beta-sheet flanked by two alpha-helices, while 
the CTD is composed of a central alpha-helix 
flanked by two beta-sheets. The active site is 
located at the interface of the two domains. The 
protein has 2 intermolecular metallic bonds. The 
protein adopts a chymotrypsin-like fold.

###	Human:
Please	give	a	summary	about	the	protein.

Figure 7: Conversations between humans and ProteinGPT on Protein 6O7Q, where ProteinGPT pro-
vides detailed insights into both sequence (e.g., 60-subunit MoFe proteins) and structural information
(e.g., substrate azide and product ammonia).

the observation that the instruction-tuned and modality-aligned ProteinGPT performs better than all
other stages demonstrates that this stage indeed teaches the model how to properly answer questions
related to these structures and sequences it learned from the previous stage.

5 CONCLUSIONS

We introduce ProteinGPT, a protein LLM that enhances question-answering capabilities and facilitates
protein understanding with concise, informative responses. ProteinGPT fuses structure with sequence
modalities and enables alignments to any base LLMs. Our results demonstrate ProteinGPT ’s potential
for practical applications in protein understanding and design, highlighting the value of interactive
protein models as dynamic research tools. Looking ahead, future enhancements aim to introduce
multi-user support, enabling real-time collaboration and knowledge sharing in biological research.
Additionally, we are developing user-friendly interfaces and integration with existing lab workflows,
ensuring effortless adoption into bioinformatics and computational biology pipelines. By bridging
ProteinGPT with widely used tools, we aim to drive innovation and collaboration in protein research.
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LIMITATIONS

While ProteinGPT demonstrates strong capabilities in protein sequence and structure understanding,
there are areas that can be improved: 1) Potential for Hallucination. As with most LLM-based
systems, ProteinGPT may occasionally generate responses that are not fully aligned with established
biological knowledge. However, its integration of protein-specific encoders helps mitigate this risk
by grounding predictions in structured data. Future work can further refine this by incorporating
confidence scores or uncertainty estimation mechanisms. 2) Verifiability. Currently, ProteinGPT
does not provide direct citations for its responses, which may make it challenging to trace specific
claims back to primary sources. We did not include citation data into the current training set of
ProteinGPT due to the scarcity of protein datasets with reliable, consistent, and fine-grained citations
that link specific claims or answers to appropriate references. As a result, integrating this data could
potentially lead to inaccurate answers. Techniques such as retrieval augmented generation (RAG) or
explicit literature grounding for better reliability and trustworthiness. 3) Training Data. As with any
data-driven model, the performance of ProteinGPT is influenced by the quality and diversity of the
training data. While we carefully curated a large-scale dataset of 132,092 proteins with structured
annotations, different processing & alignment strategies, continuous enhancement, and feedback
from biological experts can further optimize its performance.

As demonstrated with alignment using GPT-4, different strategies may yield vastly different results.
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A OPEN ACCESS AND DEPLOYMENT

To maximize accessibility, usability, and reproducibility, we will open-source both ProteinGPT and
the ProteinQA dataset, allowing researchers to experiment with different backbone LLMs and protein
encoders. ProteinGPT’s flexible design ensures adaptability to model architectures.

B ADDITIONAL EXPERIMENTS

B.1 CASE STUDIES

To avoid data leakage, we reserved 30% of our QA and abstract dataset for testing, which is around
26,419 proteins. This ensures that the tests reflect real-world scenarios as ProteinGPT has never seen
these proteins before during training. We provide ProteinGPT’s Q and A on Protein 7RUV in Figure
11.

C COMPARATIVE PLOTS

Figures 3 and 10 highlight the performance comparison across different models, including various
versions of ProteinGPT, OpenAI’s GPT models, and Mistral models, using multiple evaluation
metrics.
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Figure 8: Comparison of Different Strategies and Models.

Figure 10 shows the performance of ProteinGPT variants alongside OpenAI’s GPT and MA models.
The key observations from this figure are:

• ROUGE-1 and ROUGE-L: The ProteinGPT Mistral model significantly outperforms the
other models with scores of 0.451 and 0.460, respectively. ProteinGPT LLaMA-3 and
the other GPT variants (GPT-3.5-turbo, GPT-4-turbo, GPT-4o) have much lower scores,
indicating that the Mistral-based variant is superior in these metrics.

• ROUGE-LSum: Similar to ROUGE-1 and ROUGE-L, the ProteinGPT Mistral variant
leads with a score of 0.457, followed closely by ProteinGPT LLaMA-3 at 0.387. Other
models show significantly lower scores, emphasizing the effectiveness of the Mistral variant.

• BERT Score (SBERT): The ProteinGPT Mistral model also performs best with a score
of 0.821, with ProteinGPT LLaMA-3 following at 0.779. The GPT models lag behind,
demonstrating that the ProteinGPT variants are more aligned with human evaluations.
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• PubMedBert Score (SPub): Again, ProteinGPT Mistral achieves the highest score of 0.758,
outperforming ProteinGPT LLaMA-3 slightly. The GPT models perform lower in this
biomedical domain-specific metric.

• GPT-4o Score (SGPT): The trend continues with ProteinGPT Mistral leading at 0.717,
while ProteinGPT LLaMA-3 scores 0.706, suggesting a close performance in this category.

In Figure 3, the performance of ProteinGPT with different base large language models (LLMs) is
evaluated. The following findings are noteworthy:

• ROUGE-1 and ROUGE-L: The Mistral variant of ProteinGPT outperforms other base
models (Vicuna, LLaMA-2, and LLaMA-3) in both ROUGE-1 (0.461) and ROUGE-L
(0.460) scores. LLaMA-3 follows, but with slightly lower performance, while Vicuna and
LLaMA-2 have the lowest scores.

• ROUGE-LSum: The Mistral base again outperforms others with a score of 0.457, while
the LLaMA-3 variant is close behind at 0.367.

• BERT Score: Mistral shows the best performance (0.821), with other bases following in
descending order: LLaMA-3 (0.779), LLaMA-2 (0.730), and Vicuna (0.739).

• PubMedBert Score: Mistral continues to outperform other base models with a score of
0.758, while LLaMA-3 follows at 0.706.

• GPT-4o Score: The Mistral base model scores highest at 0.717, followed by LLaMA-3 at
0.698.

Overall, the findings suggest that the ProteinGPT Mistral variant consistently outperforms other
models across all metrics. The Mistral base model proves to be the most effective for ProteinGPT,
indicating that the combination of Mistral with ProteinGPT architecture is particularly powerful. In
contrast, other base models such as LLaMA-2 and Vicuna, and the GPT variants, show comparatively
lower performance, especially in metrics like ROUGE-1, ROUGE-L, and the PubMedBert Score,
which are crucial for natural language processing tasks in specialized domains such as biomedical
text analysis.

#	Protein	Sequence	(to	be	encode	by	ESM2)
MNKFKVNISGMTCTGCEKHVESALEKIGAKNIESS
YRRGEAVFELPDDIEVESAIKAIDEANYQAGEIEEVS	
…	…	…	
AVKFGLTVEDLTETLAPYLTMAEGLKLAALTFDKDI
WKLSCCAGLEHHHHHH

#	Protein	Structure	
Structures	are	encoded	by	
ESM2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

### ProteinGPT:
The protein has two assemblies.

###	Human:
How	many	assemblies	does	this	
protein	have?

### ProteinGPT:
Yes, the protein has assemblies.

###	Human:
Does	this	protein	have	assembly?

###	Human:
Does	this	protein	contain	polymer	entities?

### ProteinGPT:

Yes, the protein contains polymer entities.

Figure 9: ProteinGPT conversation on Protein 5X1Y.

D RELATED WORKS

Protein Representation Learning. Studies in protein representation mainly focus on the four hierar-
chical structural levels of proteins, which are critical for their biological roles. Some research (Madani
et al., 2023; Notin et al., 2022) treat protein sequences as a biological language and utilize the Trans-
former architecture (Vaswani et al., 2017) to model amino acid interactions and predict sequences
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Figure 10: Comparison of ProteinGPT, OpenAI’s GPT, and Modality-Aligned-only model.

###	ProteinGPT:

The MoFe protein is a 2.5 MDa protein complex 
that catalyzes the reduction of dinitrogen to 
ammonia. The protein is composed of two 
identical 60-subunit MoFe proteins, each 
containing a central cavity that houses the 
active site. The active site is composed of a P-
cluster, an FeMo-cofactor, and a bridging 
sulfur atom. The P-cluster is a 4Fe-4S cluster 
that is the site of electron transfer from the 
nitrogenase reductase.

###	Human:
Please	provide	a	detailed	description	of	the	
protein.
#	Protein	Sequence	(to	be	encode	by	ESM2)
MTGMSREEVESLIQEVLEVYPEKARKDRNKHLAV
NDPAVTQSKKCIISNKKSQPGLMTIRGCAYAGSKGV
…	…	…
DYSGPYHGFDGFAIFARDMDMTLNNPCWKKLQAP
WEASEGAEKVAASA

#	Protein	Structure	
Structures	are	encoded	by	
ESM2’s	inverse	folding	
[GVP-GNN	model]

Structures	come	from:
(a)	RCSB	database	if	found
(b)	Predicted	by	AlphaFold

###	ProteinGPT:
Yes, the protein contains branched 
entities. The FeMo-cofactor is a 7Fe-9S 
cluster that is the site of nitrogen 
reduction. The FeMo-cofactor is 
composed of a central 4Fe-4S cluster, a 
3Fe-3S cluster, and a 2Fe-2S cluster. The 
3Fe-3S cluster is connected to the 4Fe-
4S cluster by a bridging sulfur atom. The 
2Fe-2S cluster is connected to the 3Fe-
3S cluster by a bridging sulfur atom.

###	Human:
Does	this	protein	contain	branched	entities?

###	ProteinGPT:
The structure of the MoFe protein was 
determined by X-ray crystallography. The 
structure was determined in the 
presence of the substrate azide and the 
product ammonia. The structure was 
determined at 2.5 Å resolution.

###	Human:
What	experimental	methods	were	used	
to	determine	the	structure	of	this	
protein?	Please	choose	from	EM,	
Multiple	methods,	NMR,	Neutron,	X-ray	
and	other

###	ProteinGPT	(continued):
The FeMo-cofactor is a 7Fe-9S cluster 
that is the site of nitrogen reduction. The 
bridging sulfur atom is a ligand to the 
FeMo-cofactor and is the site of nitrogen 
binding.

Figure 11: ProteinGPT’s conversation on Protein 7RUV.
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using large sequence databases. Other approaches (Lin et al., 2023; Meier et al., 2021; Rives et al.,
2021; Rao et al., 2020; Vig et al., 2020) employ Masked Language Modeling (MLM) to develop
attention mechanisms reflecting protein spatial interaction maps. Structure-oriented methods (Glig-
orijevi’c et al., 2021; Jing et al., 2020; Zhang et al., 2023c) encapsulate the functional attributes and
spatial data of proteins for tasks like molecule binding (Jin et al., 2021; Kong et al., 2022), protein
interface studies (Mahbub & Bayzid, 2022; R’eau et al., 2023), and property predictions (Zhang
et al., 2022). However, most works rely on single-modal data, which overlooks the cross-modality
interactions among text and protein sequence & structure information.

Large Language Models. Recent advancements in Large Language Models (LLMs) such as GPT-4
OpenAI (2023), LLaMA Touvron et al. (2023), Mistral Large 2 Jiang et al. (2023), and Gemini Team
et al. (2023) have established new benchmarks in natural language processing (NLP), offering
enhanced language comprehension and reasoning Zellers et al. (2019); Wang et al. (2019); Frohberg
& Binder (2022); Yao et al. (2024); Zhang et al. (2023b). Multimodal LLMs (MLLMs) have further
extended these capabilities beyond text, enabling the processing of natural language task performance
on multimodal data Shu et al. (2023); Yu et al. (2023); Ning et al. (2023). As proteins can be naturally
represented by character strings, LLMs like ProteinChat Guo et al. (2023) and ProtChatGPT Wang
et al. (2024) have been developed to effectively analyze protein structures and sequences.

Metric Base (a) Protein Sequence (b) Modality Fusion (c) ProteinGPT
Model SBERT SPub SGPT SBERT SPub SGPT SBERT SPub SGPT

Pre

Vicuna 0.572 0.464 0.396 0.582 0.515 0.446 0.730 0.626 0.605
Llama-2 0.513 0.372 0.362 0.589 0.446 0.414 0.739 0.644 0.606
Llama-3 0.490 0.442 0.369 0.593 0.487 0.446 0.779 0.706 0.698
Mistral 0.525 0.405 0.362 0.513 0.479 0.400 0.821 0.758 0.717

Rec

Vicuna 0.653 0.473 0.310 0.691 0.540 0.334 0.788 0.751 0.661
Llama-2 0.680 0.324 0.214 0.679 0.477 0.308 0.796 0.773 0.689
Llama-3 0.657 0.332 0.210 0.695 0.456 0.309 0.803 0.776 0.713
Mistral 0.624 0.287 0.192 0.623 0.359 0.211 0.839 0.816 0.752

F1

Vicuna 0.608 0.468 0.347 0.629 0.524 0.381 0.756 0.682 0.630
Llama-2 0.582 0.345 0.269 0.628 0.459 0.351 0.764 0.701 0.644
Llama-3 0.560 0.378 0.268 0.638 0.470 0.363 0.790 0.739 0.705
Mistral 0.569 0.335 0.250 0.561 0.409 0.276 0.829 0.784 0.733

Table 3: Semantic Performance of LLM with Protein Sequence as Text Input (left), with Modal-
ity Fusion ONLY (middle), and with ProteinGPT (right). SBERT, SPub, and SGPT stand for
BERTScore Zhang et al. (2020), PubMedBERT-Score Gu et al. (2021), and GPT-4o OpenAI et al.
(2024) score, respectively.

Model R-1 R-2 R-L R-Lsum
GPT-3.5-turbo 0.137 0.010 0.140 0.140
GPT-4-turbo 0.049 0.001 0.049 0.048
GPT-4o 0.068 0.000 0.067 0.068

OpenAI o1-mini 0.041 0.001 0.040 0.040
OpenAI o3-mini 0.072 0.007 0.072 0.073
Deepseek-R1 0.003 0.000 0.003 0.003

ProteinGPTVicuna 0.345 0.007 0.350 0.348
ProteinGPTLlama-2 0.348 0.014 0.347 0.349
ProteinGPTLlama-3 0.366 0.021 0.368 0.367
ProteinGPTMistral 0.461 0.048 0.460 0.457

Table 4: Lexical Performance with ProteinGPT, OpenAI’s GPT/o-series models and DeepSeek R1
model. OpenAI and DeepSeek’s models are text-based models. Therefore, protein sequences are fed
into the model in text format, as part of the prompt.
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Table 5: Lexical Performance of LLM with Protein Sequence as Text Input ONLY (Left), Modality
Alignment ONLY (Middle), and ProteinGPT (Right). R-1, R-2, R-L, R-Lsum stand for ROUGE-1,
ROUGE-2, ROUGE-L, ROUGE-Lsum, respectively.

(a) Protein Sequence (b) Modality Fusion (c) ProteinGPT
Model R-1 R-2 R-L R-Lsum R-1 R-2 R-L R-Lsum R-1 R-2 R-L R-Lsum

Vicuna 0.026 0.034 0.025 0.025 0.104 0.003 0.105 0.104 0.345 0.007 0.350 0.348
Llama-2 0.010 0.001 0.010 0.010 0.063 0.004 0.064 0.064 0.348 0.014 0.347 0.349
Llama-3 0.005 0.000 0.005 0.005 0.090 0.005 0.090 0.090 0.366 0.021 0.368 0.367
Mistral 0.007 0.001 0.007 0.007 0.008 0.002 0.008 0.008 0.461 0.048 0.460 0.457
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E CASE STUDIES ON OPENAI AND DEEPSEEK MODELS

E.1 OPENAI O1-MINI MODEL

Below are OpenAI’s o1-mini responses to questions on protein 6RE5’s property and structure.

I. System Prompt

¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein
primary sequence and only give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>6RE5 1|Chain A[auth 0]|ASA-10: Polytomella F-ATP synthase
associated subunit 10|Polytomella sp. Pringsheim 198.80 (37502)

MSYSAYFAKAGFQFPAGLSALVAGIVALNVCTGRPTKGTKEISNAEYNATPIGYLQSPDQ
HPTAFPKVPGMKDVHGSPHHHH

III. Question Group 1

1 > Question: How many assemblies does this protein have?
2 > Answer (o1-mini): The assembly state of the protein cannot be

determined solely from the primary amino acid sequence provided.
3

4 > Question: How many entities does this protein have?
5 > Answer (o1-mini): The protein has **two entities**: the main protein

sequence and the His-tag (HHHH).
6

7 > Question: How many heavy atom coordinates records does this protein
have?

8 > Answer (o1-mini): The protein has **562** heavy atom coordinates
records.

9

10 > Question: How many hydrogen atom coordinates records does this
protein have?

11 > Answer (o1-mini): Hydrogen atom coordinates are not available from
the primary amino acid sequence alone.

12

13 > Question: How many model structures deposited for this protein?
14 > Answer (o1-mini): As of October 2023, there are no model structures

deposited for this protein sequence.
15

16 > Question: How many polymer monomers does this protein have?
17 > Answer (o1-mini): The protein consists of **82 amino acid monomers

**.
18

19 > Question: How many heavy solvent atom coordinates records does this
protein have?

20 > Answer (o1-mini): The number of heavy solvent atom coordinates
records cannot be determined from the primary sequence alone.

21

22 > Question: How many nucleic acid polymer entities (DNA or RNA) does
this protein have?

23 > Answer (o1-mini): The protein does not contain any nucleic acid
polymer entities (DNA or RNA).

24

25 > Question: How many intermolecular covalent bonds does this protein
have?
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26 > Answer (o1-mini): This protein has **zero intermolecular covalent
bonds**.

27

28 > Question: How many intermolecular metalic bonds does this protein
have?

29 > Answer (o1-mini): Based on the provided sequence, the protein
contains four histidine residues (‘HHHH‘) that are potential sites
for intermolecular metal coordination bonds. Therefore, it can form
up to **four intermolecular metal bonds**.

30

31 > Question: Does this protein contain non-polymer entities?
32 > Answer (o1-mini): No, based on the provided primary sequence, there

are no indications of non-polymer entities.
33

34 > Question: Does this protein contain polymer entities?
35 > Answer (o1-mini): No, the protein does not contain polymer entities.
36

37 > Question: Does this protein contain DNA polymer entities?
38 > Answer (o1-mini): No, the provided protein sequence does not contain

DNA polymerase domains.
39

40 > Question: Does this protein contain RNA polymer entities?
41 > Answer (o1-mini): No, this protein does not contain RNA polymerase

domains.
42

43 > Question: Does this protein contain solvent entities?
44 > Answer (o1-mini): Yes, the protein contains residues (such as polar

and charged amino acids) that are likely to interact with the
solvent.

45

46 > Question: Does this protein contain branched entities?
47 > Answer (o1-mini): Yes, the protein contains several branched amino

acids, including valine (V), isoleucine (I), and leucine (L).
48

49 > Question: Does this protein have unmodeled polymer monomers?
50 > Answer (o1-mini): Yes, the protein contains a His-tag sequence (HHHH

) at the C-terminus, which may represent unmodeled polymer monomers
.

51

52 > Question: Does this protein have hybrid nucleic acid polymer
entities?

53 > Answer (o1-mini): No, based on the provided primary amino acid
sequence, there is no indication of hybrid nucleic acid polymer
entities.

54

55 > Question: Does this protein have cis-peptide linkages?
56 > Answer (o1-mini): Based solely on the primary sequence, the presence

of proline residues (P) suggests potential sites for cis-peptide
linkages. However, without structural data, it’s not possible to
definitively confirm the existence of cis-peptide bonds in this
protein.

III. Question Group 2

1

2 > Question: What is the polymer entity composition for this protein?
3 > Answer (o1-mini): The protein consists of the following amino acids:
4

20



5 - **Alanine (A):** 10
6 - **Arginine (R):** 1
7 - **Asparagine (N):** 3
8 - **Aspartic acid (D):** 2
9 - **Cysteine (C):** 1

10 - **Glutamine (Q):** 3
11 - **Glutamic acid (E):** 2
12 - **Glycine (G):** 8
13 - **Histidine (H):** 6
14 - **Isoleucine (I):** 3
15 - **Leucine (L):** 4
16 - **Lysine (K):** 5
17 - **Methionine (M):** 2
18 - **Phenylalanine (F):** 4
19 - **Proline (P):** 8
20 - **Serine (S):** 6
21 - **Threonine (T):** 5
22 - **Tyrosine (Y):** 4
23 - **Valine (V):** 5
24

25 > Question: What is the nucleic acid polymer entity type for this
protein?

26 > Answer (o1-mini): The nucleic acid polymer entity type for this
protein is **messenger RNA (mRNA)**.

27

28 > Question: What are the bound nonpolymer components for this protein
29 > Answer (o1-mini): The protein likely binds nickel (\text{Ni}ˆ{2+})

or cobalt (\text{Co}ˆ{2+}) ions through its polyhistidine (HHHH)
tag.

30

31 > Question: What experimental method(s) were used to determine the
structure of this protein?

32 > Answer (o1-mini): Based solely on the provided primary amino acid
sequence, the specific experimental method(s) used to determine the
protein’s structure cannot be identified. Additional information,
such as structural database entries or publication references, is
required to ascertain the techniques employed.

33

34 > Question: What is the molecular mass (KDa) of polymer and non-
polymer entities (exclusive of solvent) for this protein?

35 > Answer (o1-mini): The molecular mass of the protein polymer is
approximately **8.82 kDa**. There are no significant non-polymer
entities associated with this protein.

36

37 > Question: What is the polymer entity type for this protein?
38 > Answer (o1-mini): **Polymer Entity Type:** Polypeptide
39

40 > Question: What are the software programs reported in connection with
the production of this protein?

41 > Answer (o1-mini): There are no specific software programs reported
in connection with the production of this protein based solely on
the provided primary sequence.

42

43 > Question: Is this protein determined by experimental or
computational methods?

44 > Answer (o1-mini): It cannot be determined solely from the primary
sequence.

45

46 > Question: What are the terms characterizing the protein?
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47 > Answer (o1-mini): - **Polyhistidine Tag**: Contains a His\_4 tag at
the C-terminus (HHHH).

48 - **Molecular Weight**: Approximately 10.7 kDa.
49 - **Isoelectric Point (pI)**: Around 6.2.
50 - **Amino Acid Composition**: Rich in alanine, glycine, and proline.
51 - **Secondary Structure**: Likely includes alpha helices and coiled

regions.
52 - **Potential Functional Motifs**: May contain sites for

phosphorylation or binding.
53 - **Solubility**: Predicted to be moderately soluble.
54 - **Expression Tag**: Suitable for affinity purification using nickel

columns.
55

56 > Question: When is this protein first published?
57 > Answer (o1-mini): The first publication date of this protein cannot

be determined solely from its primary amino acid sequence.
Additional information such as the protein name, gene identifier,
or related literature is required.

E.2 OPENAI O3-MINI MODEL

Below are OpenAI’s o3-mini responses to questions on protein 1GC9’s property and structure.

I. System Prompt

¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein
primary sequence and only give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>1GC9 1|Chain A|3-ISOPROPYLMALATE DEHYDROGENASE|Thermus
thermophilus (300852)

MKVAVLPGDGIGPEVTEAALKVLRALDEAEGLGLAYEVFPFGGAAIDAFGEPFPEPTRKG
VEEAEAVLLGSVGGPKWDGLPRKIRPETGLLSLRKSQDLFANLRPAKVFPGLERLSPLKEE
IARGVDVLIVRELTGGIYFGEPRGMSEAEAWNTERYSKPEVERVARVAFEGARKRRKHVV
SVDKANVLEVGEFWRKTVEEVGRGYPDVALEHQYVDAMAMHLVRSPARFDVVVTGNIF
GDILSDLASVLPGSLGLLPSASLGRGTPVFEPVHGSAPDIAGKGIANPTAAILSAAMMLEHA
FGLVELARKVEDAVAKALLETPPPDLGGSAGTEAFTATVLRHLA

III. Question Group 1

1 > Question: How many assemblies does this protein have?
2 > Answer (o3-mini): It forms a single, monomeric assembly.
3

4 > Question: How many entities does this protein have?
5 > Answer (o3-mini): This protein is a single-chain entity.
6

7 > Question: How many heavy atom coordinates records does this protein
have?

8 > Answer (o3-mini): There are 0 heavy atom coordinate records, as only
the primary sequence is provided.

9

10 > Question: How many hydrogen atom coordinates records does this
protein have?

11 > Answer (o3-mini): This protein’s primary sequence does not include
any hydrogen atom coordinate records, so the answer is 0.

12

13 > Question: How many model structures deposited for this protein?
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14 > Answer (o3-mini): There are no deposited model structures for this
protein.

15

16 > Question: How many polymer monomers does this protein have?
17 > Answer (o3-mini): The protein consists of 349 amino acid residues.
18

19 > Question: How many heavy solvent atom coordinates records does this
protein have?

20 > Answer (o3-mini): 0 heavy solvent atom coordinates records.
21

22 > Question: How many nucleic acid polymer entities (DNA or RNA) does
this protein have?

23 > Answer (o3-mini): This protein contains no nucleic acid polymer
entities.

24

25 > Question: How many intermolecular covalent bonds does this protein
have?

26 > Answer (o3-mini): This protein has no intermolecular covalent bonds.
27

28 > Question: How many intermolecular metalic bonds does this protein
have?

29 > Answer (o3-mini): 0
30

31 There is no evidence from the primary sequence indicating the
formation of any intermolecular metallic bonds.

32

33 > Question: Does this protein contain non-polymer entities?
34 > Answer (o3-mini): No. The sequence only represents a polypeptide

chain without any non-polymer entities.
35

36 > Question: Does this protein contain polymer entities?
37 > Answer (o3-mini): No, the protein is a single polypeptide chain

composed solely of amino acids and does not include additional
polymer entities.

38

39 > Question: Does this protein contain DNA polymer entities?
40 > Answer (o3-mini): No, this protein does not contain DNA polymer

domains.
41

42 > Question: Does this protein contain RNA polymer entities?
43 > Answer (o3-mini): No, this protein does not seem to contain RNA

polymerase domains.

III. Question Group 2

1

2 > Question: Does this protein contain solvent entities?
3 > Answer (o3-mini): No. The sequence lists only the amino acids

without any solvent molecules or other non-protein entities.
4

5 > Question: Does this protein contain branched entities?
6 > Answer (o3-mini): No, this protein is a single linear polypeptide

and does not contain branched entities.
7

8 > Question: Does this protein have unmodeled polymer monomers?
9 > Answer (o3-mini): No, the sequence appears complete with all

expected polymer residues modeled.
10
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11 > Question: Does this protein have hybrid nucleic acid polymer
entities?

12 > Answer (o3-mini): No, this sequence represents a protein, not a
hybrid nucleic acid polymer entity.

13

14 > Question: Does this protein have cis-peptide linkages?
15 > Answer (o3-mini): Based solely on the primary sequence, there’s no

definitive evidence for cis-peptide bonds. Cis conformations - most
often seen in X-Pro linkages-require structural data to confirm
their presence.

16

17 > Question: What is the polymer entity composition for this protein?
18 > Answer (o3-mini): The protein is a single polypeptide chain composed

of 346 standard L-amino acid residues.
19

20 > Question: What is the nucleic acid polymer entity type for this
protein?

21 > Answer (o3-mini): This molecule is not a nucleic acid - it is a
protein (an amino acid polymer).

22

23 > Question: What experimental method(s) were used to determine the
structure of this protein?

24 > Answer (o3-mini): No experimental structure determination data is
provided; only the primary sequence is given, so no method (e.g., X
-ray crystallography or NMR spectroscopy) can be inferred.

25

26 > Question: What is the molecular mass (KDa) of polymer and non-
polymer entities (exclusive of solvent) for this protein?

27 > Answer (o3-mini): The 344-residue chain weighs roughly 38 kDa, and
there are no non-polymer entities present.

28

29 > Question: What is the polymer entity type for this protein?
30 > Answer (o3-mini): It is a protein, which is a polypeptide chain.
31

32 > Question: What are the software programs reported in connection with
the production of this protein?

33 > Answer (o3-mini): No software programs were reported in connection
with the production of this protein.

34

35 > Question: Is this protein determined by experimental or
computational methods?

36 > Answer (o3-mini): There’s no accompanying annotation indicating
experimental validation, so based solely on the primary sequence it
’s unclear whether it was determined experimentally or
computationally.

37

38 > Question: When is this protein first published?
39 > Answer (o3-mini): The provided sequence does not include publication

details, so the first publication date cannot be determined
without additional reference data.

E.3 DEEPSEEK R1 MODEL

Below are DeepSeek’s R1 model responses to questions on protein 5XSP’s property and structure.

I. System Prompt
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¡SYSTEM¿ You are an expert in protein domain, please answer the questions given the protein
primary sequence and only give a concise answer to the question. ¡/SYSTEM¿

II. Protein sequence information

>5XSP 1|Chains A, B|Phosphodiesterase acting on cyclic
dinucleotides|Staphylococcus aureus (1280)

GSMRTRVRARVISHALKDILAEGDKVIIMGHKRPDLDAIGAAIGVSRFAMMNNLEAYIVL
NETDIDPTLRRVMNEIDKKPELRERFITSDDAWDMMTSKTTVVIVDTHKPELVLDENVLN
KANRKVVIDHHRRGESFISNPLLIYMEPYASSTAELVTELLEYQPTEQRLTRLESTVMYAGI
IVDTRNFTLRTGSRTFDAASYLRAHGADTILTQHFLKDDVDTYINRSELIRTVKVEDNGIAI
AHGSDDKIYHPVTVAQAADELLSLEGIEASYVVARREDNLIGISARSLGSVNVQLTMEALG
GGGHLTNAATQLKGVTVEEAIAQLQQAITEQLSRSEDA

III. Question 1: Does this protein have cis-peptide linkages?

1 <think>
2 Okay, so I need to figure out whether the given protein has any cis-

peptide linkages. I remember that in proteins, peptide bonds can be
either cis or trans. The trans configuration is the most common
because it’s more energetically favorable. Cis peptide bonds are
less common but can occur under certain conditions, often when
specific residues are involved.

3

4 Looking at the primary sequence provided, I should check for any
residues that are known to favor cis peptide bonds. The key
residues I remember are proline (Pro, P) and glycine (Gly, G).
Proline is particularly known for its ability to adopt the cis
configuration because of its ring structure, which restricts its
conformational flexibility. Glycine, being the smallest amino acid
with a lot of flexibility, can also sometimes be found in cis
peptide bonds, though less commonly than proline.

5

6 I’ll scan through the sequence to spot any Pro or Gly residues. Let me
go through each part:

7

8 - The sequence starts with:
9

10 GSMRTRVRARVISHALKDILAEGDKVIIMGHKRPDLDAIGAAIGVSRFAMMNNLEAYIVLNETDIDPTLRRVMNEIDKKPELRERFITSDDAWDMMTSKTTVVIVDTHKPELVL

11 DENVLNKANRKVVIDHHRRGESFISNPLLIYMEPYASSTAELVTELLEYQPTEQRLTRLESTVMYAGIIVDTRNFTLRTGSRTFDAASYLRAHGADTILTQHFLKDDVDTYINR

12 SELIRTVKVEDNGIAIAHGSDDKIYHPVTVAQAADELLSLEGIEASYVVARREDNLIGISARSLGSVNVQLTMEALGGGGHLTNAATQLKGVTVEEAIAQLQQAITEQLSRSEDA

13

14 Looking for Pro (P):
15

16 - I see a Pro at position ... let me count. Starting from the
beginning: G, S, M, R, T, R, V, R, A, R, V, I, S, H, A, L, K, D, I,
L, A, E, G, D, K, V, I, I, M, G, H, K, R, P, D, L, D, A, I, G, A,

A, I, G, V, S, R, F, A, M, M, N, N, L, E, A, Y, I, V, L, N, E, T, D
, I, D, P, T, L, R, R, V, M, N, E, I, D, K, K, P, E, L, R, E, R, F,
I, T, S, D, D, A, W, D, M, M, T, S, K, T, T, V, V, I, V, D, T, H,

K, P, E, L, V, L, D, E, N, V, L, N, K, A, N, R, K, V, V, I, D, H, H
, R, R, G, E, S, F, I, S, N, P, L, L, I, Y, M, E, P, Y, A, S, S, T,
A, E, L, V, T, E, L, L, E, Y, Q, P, T, E, Q, R, L, T, R, L, E, S,

T, V, M, Y, A, G, I, I, V, D, T, R, N, F, T, L, R, T, G, S, R, T, F
, D, A, A, S, Y, L, R, A, H, G, A, D, T, I, L, T, Q, H, F, L, K, D,
D, V, D, T, Y, I, N, R, S, E, L, I, R, T, V, K, V, E, D, N, G, I,
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A, I, A, H, G, S, D, D, K, I, Y, H, P, V, T, V, A, Q, A, A, D, E, L
, L, S, L, E, G, I, E, A, S, Y, V, V, A, R, R, E, D, N, L, I, G, I,
S, A, R, S, L, G, S, V, N, V, Q, L, T, M, E, A, L, G, G, G, G, H,

L, T, N, A, A, T, Q, L, K, G, V, T, V, E, E, A, I, A, Q, L, Q, Q, A
, I, T, E, Q, L, S, R, S, E, D, A.

17

18 So, I see several Pro residues. Let me note their positions:
19

20 1. The first Pro is at position 34 (counting from 0 or 1? Let me check
: the sequence is 0-based or 1-based. Well, in the sequence given,
the 34th character is P. Let’s assume it’s the 35th residue if
starting count from 1.

21

22 Wait, actually, in the sequence provided, the 34th character is P. Let
me count from the start:

23

24 G(1), S(2), M(3), R(4), T(5), R(6), V(7), R(8), A(9), R(10), V(11), I
(12), S(13), H(14), A(15), L(16), K(17), D(18), I(19), L(20), A(21)
, E(22), G(23), D(24), K(25), V(26), I(27), I(28), M(29), G(30), H
(31), K(32), R(33), P(34), D(35), L(36), D(37), A(38), I(39), G(40)
,

25 A(41), A(42), I(43), G(44), V(45), S(46), R(47), F(48), A(49), M(50),
M(51), N(52), N(53), L(54), E(55), A(56), Y(57), I(58), V(59), L
(60), N(61), E(62), T(63), D(64), I(65), D(66), P(67), T(68), L(69)
, R(70), R(71), V(72), M(73), N(74), E(75), I(76), D(77), K(78), K
(79), P(80),

26 E(81), L(82), R(83), E(84), R(85), F(86), I(87), T(88), S(89), D(90),
D(91), A(92), W(93), D(94), M(95), M(96), T(97), S(98), K(99), T
(100), T(101), V(102), V(103), I(104), V(105), D(106), T(107), H
(108), K(109), P(110), E(111), L(112), V(113), L(114), D(115), E
(116), N(117), V(118), L(119), N(120),

27 K(121), A(122), N(123), R(124), K(125), V(126), V(127), I(128), D(129)
, H(130), H(131), R(132), R(133), G(134), E(135), S(136), F(137), I
(138), S(139), N(140), P(141), L(142), L(143), I(144), Y(145), M
(146), E(147), P(148), Y(149), A(150), S(151), S(152), T(153), A
(154), E(155), L(156), V(157), T(158), E(159), L(160),

28 L(161), E(162), Y(163), Q(164), P(165), T(166), E(167), Q(168), R(169)
, L(170), T(171), R(172), L(173), E(174), S(175), T(176), V(177), M
(178), Y(179), A(180), G(181), I(182), I(183), V(184), D(185), T
(186), R(187), N(188), F(189), T(190), L(191), R(192), T(193), G
(194), S(195), R(196), T(197), F(198), D(199), A(200),

29 A(201), S(202), Y(203), L(204), R(205), A(206), H(207), G(208), A(209)
, D(210), T(211), I(212), L(213), T(214), Q(215), H(216), F(217), L
(218), K(219), D(220), D(221), V(222), D(223), T(224), Y(225), I
(226), N(227), R(228), S(229), E(230), L(231), I(232), R(233), T
(234), V(235), K(236), V(237), E(238), D(239), N(240),

30 G(241), I(242), A(243), I(244), A(245), H(246), G(247), S(248), D(249)
, D(250), K(251), I(252), Y(253), H(254), P(255), V(256), T(257), V
(258), A(259), Q(260), A(261), A(262), D(263), E(264), L(265), L
(266), S(267), L(268), E(269), G(270), I(271), E(272), A(273), S
(274), Y(275), V(276), V(277), A(278), R(279), R(280),

31 E(281), D(282), N(283), L(284), I(285), G(286), I(287), S(288), A(289)
, R(290), S(291), L(292), G(293), S(294), V(295), N(296), V(297), Q
(298), L(299), T(300), M(301), E(302), A(303), L(304), G(305), G
(306), G(307), G(308), H(309), L(310), T(311), N(312), A(313), A
(314), T(315), Q(316), L(317), K(318), G(319), V(320),

32 T(321), V(322), E(323), E(324), A(325), I(326), A(327), Q(328), L(329)
, Q(330), Q(331), A(332), I(333), T(334), E(335), Q(336), L(337), S
(338), R(339), S(340), E(341), D(342), A(343).
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33

34 So, Pro residues are at positions 34, 66, 79, 110, 141, 148, 165, 255.
35

36 Now, for each Pro, I should check the preceding residue because cis
peptide bonds are between the carbonyl carbon of one residue and
the amino nitrogen of the next. So, the Pro would be the residue
after the peptide bond in question.

37

38 Wait, actually, the peptide bond is between the carboxyl of residue n
and the amino of residue n+1. So, if residue n+1 is Pro, then the
peptide bond between n and n+1 could be cis.

39

40 So, I need to look for Pro at position n+1, and then check if the
preceding residue (n) is such that a cis bond is favored.

41

42 But wait, the presence of Pro at position n+1 doesn’t necessarily mean
the bond is cis. It’s just that Pro has a higher tendency to be in
cis conformation when the preceding residue allows it. But in most
cases, even with Pro, the bond is trans unless there’s a specific
reason for it to be cis, like in tight turns or specific structural
motifs.

43

44 However, without structural data, it’s hard to say definitively, but
the presence of Pro residues increases the likelihood.

45

46 So, in the given sequence, there are multiple Pro residues. For each
Pro at position n+1, the preceding residue is:

47

48 - Pro at 34: the preceding residue is R (Arginine) at 33.
49

50 - Pro at 66: preceding residue is D (Aspartic acid) at 65.
51

52 - Pro at 79: preceding residue is K (Lysine) at 78.
53

54 - Pro at 110: preceding residue is K (Lysine) at 109.
55

56 - Pro at 141: preceding residue is N (Asparagine) at 140.
57

58 - Pro at 148: preceding residue is Y (Tyrosine) at 147.
59

60 - Pro at 165: preceding residue is Q (Glutamine) at 164.
61

62 - Pro at 255: preceding residue is Y (Tyrosine) at 254.
63

64 Now, I need to consider if any of these preceding residues are Gly or
Pro, but in this case, none of them are. However, Pro can sometimes
form cis bonds even when the preceding residue is not Gly or Pro,
especially in certain contexts like turns or loops.

65

66 But without the 3D structure, it’s impossible to know for sure.
However, the presence of multiple Pro residues suggests that there
might be cis peptide bonds, but it’s not a certainty. In the
absence of specific structural information, we can’t definitively
say whether any of these Pro residues are in cis configuration.

67

68 Therefore, the answer would be that the protein may have cis-peptide
linkages, especially around Pro residues, but without structural
data, it’s not certain.

69 </think>
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70

71 The protein may have cis-peptide linkages, particularly around proline
residues, but without structural data, this cannot be definitively
confirmed.

III. Question 2: How many hydrogen atom coordinates records does this protein have?

1 <think>
2 Alright, let me try to figure this out. The question is asking how

many hydrogen atom coordinates records a given protein has. The
protein’s primary sequence is provided, which is a long string of
amino acids.

3

4 First, I know that each amino acid in a protein is made up of several
atoms. Typically, an amino acid has a certain number of hydrogen
atoms. For example, glycine, the simplest amino acid, has two
hydrogen atoms in its side chain, while others might have more
depending on their structure.

5

6 But wait, when we talk about the coordinates of hydrogen atoms in a
protein structure, it’s a bit different. In X-ray crystallography,
which is commonly used to determine protein structures, hydrogen
atoms aren’t usually visible because they don’t scatter X-rays
strongly. So, their positions are often not recorded in the PDB (
Protein Data Bank) files unless under certain conditions, like high
-resolution structures or if they’re part of a specific interaction
.

7

8 Looking at the sequence provided, it’s a long sequence, but without
knowing the specific structure or the resolution of the data, it’s
hard to say exactly how many hydrogen coordinates there are.
However, generally, most PDB entries don’t include hydrogen atoms
because they’re not resolved. If they are included, it’s usually
because the structure was determined at a very high resolution, and
the hydrogens were either located or modeled in.

9

10 So, considering standard practice, the answer is likely that the
protein doesn’t have any hydrogen atom coordinates recorded because
they’re not typically included in the PDB entries. Unless
specified otherwise, most structures don’t have hydrogen positions
listed.

11 </think>
12

13 The protein does not have any hydrogen atom coordinates recorded.
Hydrogen atoms are typically not included in standard PDB files due
to their low visibility in X-ray crystallography.

14

15 Answer: 0
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