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Abstract

With the growing awareness to fairness in machine learning and the realization1

of the central role that data representation has in data processing tasks, there is2

an obvious interest in notions of fair data representations. We provide a formal3

framework for examining the fairness of data representations through the lens of4

their effect on decisions (mainly classification) made based on data represented that5

way. Using that framework, we prove that several desiderata for fair representations6

cannot be achieved. While some of our conclusions are intuitive, we formulate7

(and prove) crisp statements of such impossibilities, often contrasting impressions8

conveyed by many recent works on fair representations.9

1 Introduction10

Automated decision making has become more and more successful over the last few decades and11

has therefore been used in an increasing number of domains, either as stand alone, or to support12

human decision makers. This includes many sensitive domains which significantly impact people’s13

livelihoods, such as loan applications, university admissions, recidivism predictions, or insurance rate14

settings. It has been found that many such decision tools have, often unintentionally, biases against15

minority groups, and therefore lead to discrimination. In response to these concerns, the machine16

learning research community has been devoting effort to developing clear notions of fair decision17

making, and coming up with algorithms for implementing fair machine learning.18

19

A common approach to address the important issue of fair algorithmic decision making is through fair20

data representation. The idea is that some regulator or a responsible data curator transforms collected21

data to a format (or representation), that can then be used for solving downstream classification tasks22

providing guarantees of fairness. This approach was proposed by the seminal paper of Zemel et23

al. [15]. In their words: "our intermediate representation can be used for other classification tasks24

(i.e., transfer learning is possible)"... "We further posit that such an intermediate representation is25

fundamental to progress in fairness in classification, since it is composable and not ad hoc; once26

such a representation is established, it can be used in a blackbox fashion to turn any classification27

algorithm into a fair classifier, by simply applying the classifer to the sanitized representation of28

the data". Many followup papers aim to realize this paradigm, solving technical and algorithmic29

issues [10, 6, 11, 14, 3] (to mention just a few). The main contribution of this paper is showing that,30

basically, it is impossible to achieve this goal. Namely, no data representation can guarantee that for31

every classification task a classifier trained on data under the given representation will be fair for32

that task. This impossibility applies even if one restricts the downstream tasks in question to share33

the same labeling rule, or for fairness notions like Odds Equality, to share the same marginal data34

distribution with the data on which the representation was trained. Our results answer negatively the35

main two questions posed in the discussion section of Creager et al. [3].36

While many papers in this domain propose algorithmic solutions to fairness related issues, the main37

contributions of this paper are conceptual. We believe that, to a much larger extent than many other38
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facets of machine learning, fundamental concepts of fairness in machine learning require better39

understanding. Some basic questions are still far from being satisfactorily elucidated; What should40

be considered fair decision making? (various mutually incompatible notions have been proposed, but41

how to pick between them for a given real life application is far from being clarified). What is a fair42

data representation? To what extent should accuracy or other practical utilities be compromised for43

achieving fairness goals? and so on. The answers to these questions are not generic. They vary with44

the principles and the goals guiding the agents involved (decision makers, subjects of such a decision,45

policy regulators, etc.), as well as with what can be assumed regarding the underlying learning setup.46

We view these as the primary issues facing the field, deserving explicit research attention (in addition47

to the more commonly discussed algorithmic and optimization aspects). This is a theoretical work,48

our discussion is grounded in definitions and proofs rather than heuristics and experimental results.49

1.1 What is fair representation?50

The term ‘fair data representation’ encompasses a wide range of different meanings. When word51

embeddings results in smaller distance between the vectors representing ‘woman’ and ‘nurse’ relative52

to the distance between the representations of ‘woman’ and ‘doctor’ and the other way around for53

‘man’, is it an indication of bias in the representation or is it just a faithful reflection of a bias in54

society? Rather than delving into such issues, we discuss an arguably more concrete facet of data55

representation; We examine representation fairness from the perspective of its effect on the fairness56

of classification rules that agents using data represented that way may come up with. Such a view57

takes into consideration two setup characteristics:58

The objective of the agent using the data We distinguish three types of classification prediction59

agents (formal definitions of these aspects of fairness are provided in section 3.2):60

Malicious - driven by a bias against a group of subjects. To protect against such an agent,61

a fair representation (or feature set) should be such that every classifier based on data62

represented that way is fair. This is apparently the most common approach to fair63

representations in the literature e.g., [15, 10].64

Accuracy Driven - focusing on traditional measures of learning efficiency, ignoring fair-65

ness considerations. A representation is accuracy-driven fair if every loss minimizing66

classifier based on that representation is fair.67

Fairness Driven - aiming to find a decision rule that is fair while maintaining meaningful68

accuracy. A representation is fairness-driven fair if there exists a loss minimizing (or69

an approximate minimizer) classifier based on that representation is fair.70

The notion of group fairness applied to the classification decisions The wide range of group fair-71

ness notions (for classification) can be taxonomized along several dimensions: Does the72

notion depend on the ground truth classification or only on the agents decision (like demo-73

graphic parity)? Is perfectly accurate decision (matching the ground truth classification)74

always considered fair (like in odds equality)? Does the fairness notion depend on unobserv-75

able features (like intention or causality)? In this work we focus on fairness notions that76

are ground-truth-dependent, view the ground truth classification as fair and depend only on77

observable features. The decision which notion of fairness one wishes to abide by depends78

on societal goals and may vary from one task to another and is outside the scope of this79

paper. Just the same, let us briefly explain why the requirements listed above are natural in80

many situations.81

The dependence on the ground truth classification is almost inevitable from a utilitarian82

perspective - taking into account the probability that a student succeed or fail when83

making acceptance decisions should not be considered unfair. Put more formally, when-84

ever there is any correlation between membership and the ground truth classification,85

any classifier that is fair w.r.t. a notion that ignored the ground truth (like demographic86

parity) is bound to suffer prediction error proportional to that correlation.87

Viewing perfectly accurate decisions as fair can be viewed as a distinction between no-88

tions that do or do not try to inflict affirmative action. It makes a lot of sense in tasks89

like conviction in a crime - if you convict all criminals and no one else, you should not90

be accused on unfairness.91

Relying only on observable features fosters objectivity and allows scrutiny of the decisions92

made. Our running example of such a notion is odds equality [8], however our results93
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hold as well for other common notions of fairness that meet the above conditions (like94

Calibrations Within Groups [9]).95

1.2 Our results96

We prove the following inherent limitations of notions of fair representations (under the above97

taxonomy):98

1. The impossibility to be task-independent. There is a host of literature proposing methods99

of coming up with data representation that guarantees the fairness of classifier based on100

that representation (e.g., [18, 3, 10, 12]). We elaborate on these works in our Previous101

Work section. Contrasting the impression conveyed by many such papers, we show that102

the ability to guarantee multi-task fairness is inherently limited. Much of that work ad-103

dresses Demographic parity (DP). We prove that if two tasks have different marginal data104

distributions (that is, the distribution of unlabeled instances) and different success rates105

of the protected group, then no representation can guarantee that any non-trivial classifier106

trained on it satisfies DP for both. We show that the only classifiers that are guaranteed to107

satisfy any significant level of DP fairness w.r.t. all marginal distributions are the redundant108

constant functions. From a practical point of view, since DP fairness of some decision (say,109

acceptance to some university program) requires the ratio of positive decisions between110

groups to match the ratio of applicants from those groups, a representation that guarantees111

DP fairness cannot be a priory constructed - it must have access to the distribution of groups112

among applicants for that specific program. Furthermore, we prove that for every fixed113

marginal data distribution, if two ground truth classifications differ with non-zero probability114

over it, there can be no data representation that enjoys Odds Equality fairness and accuracy115

with respect to both tasks over that shared marginal distribution (except for the redundant116

case where the success rates of both groups are equal for both tasks). These results answer117

negatively the main two open problems posed in the Discussion section of [3].118

2. The impossibility to evaluate the fairness contribution of a given feature devoid of the other119

features used (again, for each agent objective and several common group fairness notions).120

3. The inherent dependence of the effect on fairness of adding/deleting a feature on the type of121

agent using the representation (on top of the above mentioned dependence on other features),122

even when the feature in question does not correlate with membership in the protected group.123

(These come on top of the obvious dependence on the notion of fair classification sought).124

Concerning potential negative societal impact: We cannot foresee any potential negative societal125

impact of our work. The main message of this paper is a cautionary statement. We alert potential126

users that approaches based on task independent fair representations cannot guarantee the fairness of127

arbitrary predictors based on them. As such, we are only guarding against potential negative impact128

of previously published work.129

Our paper is organized as follows: Section 2 gives an overview of the related work. Section 3130

introduces our setup including our taxonomy for fair representations. Section 4 contains our main131

results on the impossibility of generic fairness of a representation. Section 5 addressed the impos-132

sibility of defining the fairness effect of a single feature without considering the other components133

of a representation. Section 6 briefly shows the impossibility of having fair representations w.r.t.134

Predictive Rate Parity. Section 7 is our concluding remarks.135

We defer proofs to the appendix.136

2 Related Work137

Since our paper goes against messages conveyed by many previous papers, we wish to address in138

detail more related works than space here allows. We therefore provide a more elaborate section on139

previous work in the supplementary material.140

Much of the recent work on fair representation for learning classifiers focuses on algorithms. (and141

demonstrating the viability of those algorithms though experimental results) [15, 10, 17, 1, 16]. As142

explained before, our focus is different. We discuss what should be considered fair representation in143
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that context, what is the scope of such notions and what are the inherent limitations of defining such144

representations.145

Almost all the work on fair representations focuses on the demographic parity (DP) notion of fairness146

[6, 10, 15, 14]. Not having to take ground truth into account makes this notion independent of the147

classification task carrying both advantages and limitations. However, any positive result in these148

papers assumes that the marginal data distribution is available to the designer of the fair representation.149

Such an assumption severely restricts the applicability of such representations. To achieve DP fairness,150

a classifier has to induce success ratio between the two groups that match the ratio between these151

groups in the input data. However, that ratio, say a set of applicants for a bank loan or to some152

university program varies from one application to another and cannot be determined a priori. Our153

results on this inherent limitation of fair representation for DP (see section 4) do not seem to have154

been stated before.155

When the data marginal distribution is fixed, and available to the designer of a representation, DP156

fairness is possible. However, in such a setup, we show that fairness with respect to notions of fairness157

that do rely on the correct ground truth, such as equalized odds (EO) [8], cannot be guaranteed for158

arbitrary tasks (see Section 4). This fact also has not been explicitly stated (and proved) before,159

although it seems that some of the previous work worried about it. Instead, previous work either160

focus only on DP fairness, or, when it comes to discuss other notions of fairness, the algorithms that161

design the representations are assumed to have access to task specific labeled data (e.g. [16, 2, 14, 5],162

which defies the goal of having a fixed representation that guarantees fairness for many tasks.163

The effect of the motivation of the decision maker using the representation on the fairness of the164

resulting decision rule has been considered by Madras et al. [10] and Zhang et al. [16]. These papers165

identify two motivations. The first is malicious, which is the intent to discriminate without regard166

for accuracy. The second is accuracy-driven, which is the intent to maximize accuracy. We address167

these effects as part of our taxonomy of notions of fair representations. Additionally, we discuss168

fairness-driven agents that aim to achieve fairness while maintaining some level of accuracy.169

A natural question that arises in this context is about the inherent trade-offs between fairness and170

accuracy. When the notion of fairness is demographic parity, such trade-offs are clearly expected -171

they surface whenever there exists correlation between membership in the protected group and the172

ground truth classification. Zhao et al. [18] and Mcnamara et al. [11] analyze such scenarios and173

demonstrate situations in which there exists a more accurate and more fair classifier based on an174

original representation than any classifier built using a learnt representation.175

The question of feature deletion has also been considered in real world examples, such as in the "ban176

the box" policy which disallowed employers using criminal history in hiring decisions [4]. The effect177

of allowing or disallowing features on fairness has been studied before, for example in Grgic-Hlaca et178

al. [7]. However in previous works, the effect of a feature on fairness, has been discussed in isolation.179

In contrast, we show that fairness of a feature should not be considered in isolation, but should also180

take into account the remaining features available.181

3 Formal Setup182

We consider a binary classification problem with label set {0, 1} over a domain X of instances we183

wish to classify, e.g. individuals applying for a loan. We assume the task to be given by some184

distribution P over X × {0, 1} from which instances are sampled i.i.d. We denote the ground-truth185

labeling rule as t : X → [0, 1]. We will think of the label 1 as denoting ‘qualified’ and the label 0 as186

‘unqualified’ and t(x) = P [y = 1|x]. For concreteness, we focus here on the case of deterministic187

labeling (that is t : X → {0, 1}). Most of our discussion can readily be extended to the probabilistic188

labeling case. In a slight abuse of notation we will sometimes use t(w) to indicate the label coordinate189

of an instance w ∈ X × {0, 1}190

A data representation is determined by a mapping F : X → Z, for some set Z, and the learner
only sees F (x) for any instance x (both in the training and the test/decision stages).We denote the
hypothesis class of all feature based decision rules asHF = {h : Z → {0, 1}}. As a loss function
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we consider a weighted sum of false positives and false negatives, i.e.

lα(h, x, y) =

{
α, if h(x) = 0, y = 1
1− α, if h(x) = 1, y = 0
0, otherwise

for some weight α ∈ (0, 1). We denote the true risk with respect to this loss as LαP and the empirical191

risk as LαS .192

3.1 Notions of group fairness193

For our fairness analysis we assume the population X to be partitioned into two subpopulation A and194

D (namely, we restrict our discussion the case of one binary protected attribute). We sometimes use a195

function notation G : X → {A,D} to indicate the group-membership of an instance. Of course in196

reality there are often many protected attributes with more than two values. However, as our goal is to197

show limitations and impossibility results for fair representation learning, it suffices to only consider198

one binary protected attribute – the same impossibilities readily follow for the more complex settings.199

We now define two widely used notions of group-fairness that we will refer to throughout the paper,200

namely, equalized odds and demographic parity. In the following we will denote with Xg,l the subset201

of X with label l and group membership g, i.e. Xg,l = X ∩ t−1(l) ∩G−1(g).202

Definition 1 (Group fairness; Equalized odds) The notion of group-fairness we will focus on in203

this paper is the ground-truth-dependent notion of odds equality as introduced by [8].204

A classifier h is considered fair w.r.t. to odds equality (LEO) and a distribution P if for x ∼ P
we have the statistical independence h(x) ⊥⊥ G(x)|t(x). For g ∈ {A,D} let the false positive
rate and the false negative rate be defined as FPRg(h, t, P ) = Px∼P [h(x) = 1|x ∈ Xg,0] and
FNRg(h, t, P ) = Px∼P [h(x) = 0|x ∈ Xg,1] respectively. The EO unfairness is given then by the
sum of differences in false positive rate and false negative rate between groups:

LEOP (h) =
1

2
|FNRA − FNRD|+

1

2
|FPRA − FPRD|.

If we say a classifier is fair, without referring to any particular group-fairness notion, we mean205

fairness w.r.t. equalized odds.206

Definition 2 (Demographic parity) A classifier h is considered fair w.r.t. to demographic parity207

(LDP ) and a distribution P if h(x) ⊥⊥ G(x). The respective unfairness is given by difference in208

positive classification rates between groups209

LDPP (h) = |Px∼P [h(x) = 1|G(x) = A]− Px∼P [h(x) = 1|G(x) = D]|.210

3.2 The role of the agent’s objective211

We will phrase our definitions of representation fairness in terms of a general group fairness notion212

Lfair with unfairness measure LfairP .213

We start by considering a malicious decision maker who tries to actively discriminate against one214

group. To protect against this kind of decision maker, we need to give a guarantee such that based on215

the feature set it is not possible to discriminate against one group. This corresponds to the notion of216

adversarial fairness.217

Definition 3 (Adversarial fairness) A representation F is considered to be adversarial fair w.r.t. the218

distribution P and group fairness objective Lfair , if every classifier h ∈ HF is group-fair. We define219

the adversarial unfairness of a representation F by Uadv(F ) = maxh∈HF
LfairP (h).220

Furthermore, we consider an accuracy-driven decision maker, who aims to label instances correctly221

and is agnostic about fairness. For this kind of decision maker, we only need to make sure that222

optimizing for correct classification results in a fair classifier. The following definition ensures that223

the Bayes optimal classifier for a representation is fair.224

Definition 4 (Accuracy-driven fairness) A representation F is considered to be accuracy-driven225

fair w.r.t. the fairness objectiveLfair and distribution P , if for every threshold α ∈ (0, 1), every classi-226
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fier h ∈ HF with LαP (h) = minh∈HF
LαP (h) is group-fair. The accuracy-driven unfairness for a par-227

ticular threshold parameter α is given by Uαacc(F) = max{LfairP (h) : h ∈ argminh∈HF
LαP (h)}.228

The general accuracy-driven unfairness is given by Uacc(F) = maxα∈[0,1] U
α
acc(F).229

We note that in cases where the decision maker does not have access to the distribution P , but230

only to a labelled sample, this requirement is might not sufficient for guaranteeing that an accuracy-231

driven decision maker arrives at a fair decision. In the Appendix we propose another fairness notion232

(λ-robustness) that formalizes the desired fairness guarantee for this scenario.233

Lastly, we also consider a fairness-driven decision maker who actively tries to find a fair and234

accurate decision rule, while maintaining some accuracy guarantees. For such a decision maker235

a representation should allow for fair and accurate decision rules. If a representation fulfills this236

requirement, we call it fairness-enabling.237

Definition 5 ((ε, η)-fairness-enabling representation) A representation F is considered to be238

(ε, η)-fairness-enabling w.r.t. a fairness objective Lfair, if there exists a classifier h ∈ HF that239

such that LαP (h) ≤ ε and LfairP (h) ≤ η.240

Our discussion focuses primarily on the case of malicious and indifferent decision makers. These241

notions of fair representation can be defined with respect to any group-fairness notion. In our paper242

we will mainly focus on the equalized odds notion of fairness [8]. We also note that all the above243

definitions can be given with respect to a fixed modelH in a continuous space.244

4 Can there be a generic fair representation?245

We address the existence of a multi-task fair representation. We prove that for the adversarial agent246

scenario (which is the setup that most fairness representation previous work is concerned with),247

it is impossible to have generic non-trivial fair representations - no useful representation can248

guarantee fairness for all "downstream" classification that are based on that representation (even if249

the ground truth classification remains unchanged and only the marginal may change between tasks).250

We start by considering scenarios in which only the marginals shift between two tasks, e.g. two251

openings for different jobs, requiring similar skills, for which different pools of people would apply.252

Such a distribution shift can likely affect one group more than another and would thus affect the253

classification rates of both groups differently. We show that we cannot guarantee fairness of a fixed254

data presentation for general shifts of this kind, even for the simplest case of demographic parity.255

Claim: 1 Pick any domain set X and any partition of X into non-empty subsets A,D. For every256

non-constant function f : X → {0, 1} there exists a probability distribution P over X such that f is257

arbitrarily DP-unfair w.r.t. P (say, LDPP (h) > 0.9).258

In particular, when a shift in marginal occurs between tasks, fairness for previous tasks does not259

imply a fairness guarantee for a new task.260

Proof: If f is constant on any of the groups A or D then, since f is not a constant over X there is261

are points in the other group on which f has the opposite value. Let P assigns probability 0.5 to the262

group on which f is constant and probability 0.5 to the set of points to which f assigns the other263

value. Clearly f fails DP w.r.t. this P . Otherwise, both values are assigned in both groups, so let P264

assign probability 0.5 to {x ∈ A : f(x) = 0} and probability 0.5 to {x ∈ D : f(x) = 1}. Clearly,265

f fails DP w.r.t. this P .266

Corollary 1 No data representation can guarantee the DP fairness of any non-trivial classifier w.r.t.267

all possible data generating distributions (over any fixed domain set with any fixed partition into268

non-empty groups). That is, any non-constant representation F, cannot be adversarially fair with269

respect to LDP and any arbitrary task P .270

Claim: 2 Pick any domain set X and any partition of X into non-empty subsets A,D. For every271

non-constant function f : X → {0, 1} and every classifier h : X → {0, 1} such that h 6= f272

there exists a probability distribution P over X such that h is arbitrarily EO-unfair w.r.t. P, f , say273

LEOP,f > 0.9.274
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Corollary 2 No data representation can guarantee EO fairness of any non-constant predictor based275

on that representation for all "downstream" classification learning tasks. That is, any non-constant276

representation F, cannot be adversarially fair with respect to LEO and any arbitrary task P . This277

holds even if one restricts the claim to tasks sharing a fixed marginal data distribution.278

We will now look at a slightly more restricted setting and analyse the case of multi-task learning,279

where instead of asking for a representation that is fair for every task, we only consider fairness with280

respect to a fixed (finite) set of tasks that we want to learn. We find that for the adversarial case, even281

this less ambitious goal is not achievable for generic tasks and the equalized odds notion of fairness.282

We say a distribution P has equal success rates if P (XA,1)
P (A) =

P (XD,1)
P (D) .283

Lemma 1 Let P1 and P2 be the distributions defining two different tasks with the same marginal284

PX = P1,X = P2,X such that at least one of the tasks does not have equal success rates. Let285

h1, h2 : X → {0, 1} be such that LP1(h1) = LP2(h2) = 0, and assume that tasks are non-negligibly286

different (namely, LP1(h2) 6= 0). Then, it cannot be the case that both h1 and h2 are EO fair w.r.t.287

both P1 and P2.288

The proof (in the appendix) has a similar flavour as the proof of incompetability of different fairness289

notions of [9].290

Theorem 1 There can be no data representation F such that for some P1, P2 as above, the following291

criteria simultaneously hold:292

1. F is adversarially fair w.r.t. P1 and EO293

2. F is adversarially fair w.r.t. P2 and EO294

3. F allows for perfect accuracy w.r.t. to P1 and P2, i.e. there are h1, h2 both expressible over295

the representation F , such that LP1
(h1) = LP2

(h2) = 0.296

This result follows directly from Lemma 1. Therefore, if the goal is to prevent discrimination from a297

possibly adversarial decision maker, while also enabling accurate prediction, each task requires its298

task-specific feature representation.299

5 Fairness of a feature set vs. fairness of a feature300

In this section we discuss feature deletion and its impact on the fairness of a representation. For301

this we assume our representation F to consist of finitely many features fi : X → Yi i.e. for302

every x ∈ X : F (x) = (f1(x), . . . , fn(x)) and Z = Y1 × . . . × Yn. We limit our discussion to303

cases where all Yi are finite. While this assumption facilitates our analysis, we do not expect our304

results to be different in the cases of continuous features. We will denote the set of features as305

F = {f1, . . . , fn} and will denote by Uadv(F) and Uαacc(F) the adversarial and accuracy-driven306

fairness of the representation induced by the feature set F respectively. We show that it is in general307

not possible to determine the effect a single feature has on the fairness of a representation without308

considering the full representation. This is the case even if our considered feature is not correlated309

with the protected attribute.310

5.1 Opposing effects of a feature for accuracy-driven fairness of a representation311

We start our discussion with accuracy-driven fairness w.r.t. equalized odds. In this case we show that312

the deletion of a feature f can lead to an increase in accuracy-driven unfairness for some set of other313

given features F and that the deletion of the same feature f can lead to a decrease in accuracy-driven314

unfairness for another set of other available features F ′. This implies that the fairness of the feature315

f cannot be evaluated without context. We show that this phenomena holds for a general class of316

features that satisfy some non-triviality properties (That on the one hand do not reveal too much317

information about group membership and labels (non-committing), and on the other hand does not318

reveal identity when label and group information is given (k-anonymity [13])). The exact definitions319

of these properties can be found in the appendix.320
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Theorem 2 (Context-relevance for fairness of features) For every 6-anonymous non-committing321

feature f , there exists a probability function P over X and feature sets F and F ′ such that:322

• The accuracy-driven fairness w.r.t LEO, P and α = 0.5 of F ∪ {f} is greater than that of323

F , i.e.324

Uαacc(F ∪ {f}) < Uαacc(F)
Thus, deleting f in this context will increase unfairness.325

• The accuracy-driven fairness w.r.t LEO, P and α = 0.5 of F ′ ∪ {f} is less than that of F ′,326

i.e.327

Uαacc(F ′ ∪ {f}) > Uαacc(F ′)
Thus, deleting f in this context will decrease unfairness.328

This phenomenon can happen even if {f} is adversarially fair w.r.t. to P and equalized odds.329

5.2 The fairness of a feature for different notions of fairness330

We will now briefly discuss the effect of a single feature on fairness for the cases of a malicious331

or a fairness-driven decision makers. In contrast to the accuracy-driven case, adding features has a332

monotone effect on the fairness of a fairness-driven and the malicious decision maker. As Theorem 3,333

adding any feature in the malicious case, will only give the decision maker more information and334

thus give the decision maker more chances of discrimination. Similarly in the fairness driven case,335

any feature will only give the decision maker another option for fair decision making (Theorem 4).336

However, the quantitative effect of adding a feature on the unfairness can still range from having no337

effect to achieving perfect fairness/unfairness for both the fairness-driven and the malicious case.338

As in the accuracy-driven case, we will show (Theorem 4 and Theorem 3) that it is impossible to339

evaluate the quantitative effect of a feature on the fairness of a representation without considering the340

context of other available features.341

Theorem 3 1. For every distribution P and feature f , there exists a feature set F , such that342

adding f will not impact the fairness of the distribution, e.g. Uadv(F) = Uadv(F ∪ {f}).343

2. There exist distributions P , features f and F ′, such that Uadv(F ′) = 0 and Uadv({f}) = 0,344

but Uadv(F ′ ∪ {f}) = 1 .345

Theorem 4 1. For any feature f and any featureset F we have Uadv(F) ≤ Uadv(F ∪ {f}).346

Similarly, if the representation F is (ε, η)-fairness-enabling, the representation F ∪ {f} is347

also (ε, η)-fairness-enabling.348

2. For every distribution P and every feature f , there exists a feature set F , such that F ∪ {f}349

is (η, ε)-fairness-enabling, if and only if F is (ε, η)-fairness-enabling. Furthermore, there350

exists a distribution P , a feature f and a feature set F ′, such that both F ′ and {f} are not351

(ε, η)-fairness-enabling for any ε, η < 1
2 , but such that F ′ ∪ {f} is (0, 0)-fairness-enabling.352

While this section focused on fairness with respect to equalized odds, we note that many of these353

results can be replicated for other notions of fairness. For a more general version of Theorem 3,354

which takes into account other fairness notions, like demographic parity, we will refer the reader to355

the Appendix.356

6 Impossibility of adversarially fair representations with respect to357

predictive rate parity358

We now show that not all acceptable notions of group fairness always allow a adversarially fair359

representation, even in a single-task setting. One such notion is predictive rate parity.360

Definition 6 (Predictive rate parity (PRP)) A classifier h is considered PRP fair w.r.t. to a marginal361

data distribution P and true classification t if the random variable t(x) is independent of the group362

membership, G(x) given the classification h(x). We denote this fairness objective with LPred.363
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Theorem 5 Adversarial fairness w.r.t. P and LPred is only possible, if P has equal success rates364

for both groups.365

This theorem results from the fact that the classifier which maps every instance to label 1 is not366

fair w.r.t. to LPred if P does not have equal success rates. The quantitative version of predictive367

rate parity as well as a more general version of Theorem 5, giving a characterization of adversarial368

fairness in the case of equal success rates can be found in the appendix.369

7 Conclusion370

In this paper we introduced a general taxonomy of notions of fair representation, taking into considera-371

tion both different objectives of decision makers using the representation, and different group fairness372

notions. Within this taxonomy we showed several impossibility results about fair representation373

learning.374

Our main result addressed the existence of generic fair representations and of fair transfer learn-375

ing. We show that even seemingly task-independent fairness notions like demographic parity are376

vulnerable to shifts in marginals between tasks. We conclude the impossibility of having generic377

data representations that guarantee (even just) DP fairness with respects to tasks whose marginal378

distributions are not considered when designing the representation. Furthermore, we show that it is379

impossible to have an adversarially fair representation with respect to several tasks and the equalized380

odds notion of fairness, if those tasks do not all fulfill statistical parity. These insights stand in contrast381

to the impression arising from recent papers [10] that claim to learned transferable fair decisions.382

We also considered the question of "fairness of a feature", which has been used in legal scenarios. We383

showed that for notions of decision-making fairness other than demographic parity, the fairness of a384

single feature is an ill defined notion. Namely, the impact of a feature on the fairness of a decision385

cannot be determined without considering the other features of the representation.386

Lastly, we show that some fairness notions, like predictive rate parity, do not always allow an387

adversarially fair representation, even if it is just for a single task.388
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