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ABSTRACT

State-of-the-art brain graph analysis methods generally lack biological plausibility,
primarily because they fail to fully encode the small-world architecture of brain
graphs (accompanied by the presence of hubs and functional modules). This
limitation hinders their ability to accurately represent the brain’s structural and
functional properties, thereby restricting the effectiveness of machine learning
models in tasks such as brain disorder detection. In this work, we propose a
novel Biologically Plausible Brain Graph Transformer (BioBGT) that encodes
the small-world architecture inherent in brain graphs. Specifically, we present a
network entanglement-based node importance encoding technique that captures
the structural importance of nodes in global information propagation during brain
graph communication, highlighting the biological properties of the brain structure.
Furthermore, we introduce a functional module-aware self-attention to preserve the
functional segregation and integration characteristics of brain graphs in the learned
representations. Experimental results on three benchmark datasets demonstrate
that BioBGT outperforms state-of-the-art models, providing biologically plausible
brain graph representations for various brain graph analytical tasks1.

1 INTRODUCTION

Figure 1: Small-world architecture of brain graphs.

Brain graphs, also known as brain networks,
are a primary form to present the complex in-
teractions among regional activities, functional
correlations, and structural connections within
the brain (Seguin et al., 2023; Wu et al., 2024b;
Zhu et al., 2024). Brain graphs are constructed
based on information extracted from brain data,
such as functional magnetic resonance imaging
(fMRI), with regions of interest (ROIs) as nodes
and the correlations among ROIs as edges. One
of the most important characteristics of brain
graphs is their small-world architecture, with scientific evidence supporting the presence of hubs and
functional modules in brain graphs (Liao et al., 2017; Swanson et al., 2024). First, it is demonstrated
that nodes in brain graphs exhibit a high degree of difference in their importance, with certain nodes
having more central roles in information propagation (Lynn & Bassett, 2019; Betzel et al., 2024).
These nodes are perceived as hubs, as shown in Figure 1 (a) (the visualization is based on findings
by Seguin et al. (2023)), which are usually highly connected so as to support efficient communi-
cation within the brain. Second, human brain consists of various functional modules (e.g., visual
cortex), where ROIs within the same module exhibit high functional coherence, termed functional
integration, while ROIs from different modules show lower functional coherence, termed functional
segregation (Rubinov & Sporns, 2010; Seguin et al., 2022). Therefore, brain graphs are characterized
by community structure, reflecting functional modules. Figure 1 (b) visualizes the functional con-
nectivity of a sample brain from ADHD-2002 dataset. The functional module labels are empirically

1Our code is available at https://anonymous.4open.science/r/
Biologically-Plausible-Brain-Graph-Transformer-D330

2https://fcon_1000.projects.nitrc.org/indi/adhd200/
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provided based on Dosenbach et al. (2010). ROIs in the same module have strong connections (high
temporal correlations), while those from different modules show weaker connections.

With the significant ability of graph transformers in capturing interactions between nodes (Ma et al.,
2023a; Shehzad et al., 2024; Yi et al., 2024), Transformer-based brain graph learning methods have
gained prominence (Kan et al., 2022; Bannadabhavi et al., 2023). Despite these advancements, there
is still a lack of tailored design for brain graphs (with small-world architecture). Consequently,
the learned representations of current methods are insufficiently biologically plausible for brain
graphs. This limitation can be understood from two perspectives. First, most current studies consider
connections within the brain as pairwise correlations between nodes, and typically treat all nodes
equally. For example, Brain Network Transformer (Kan et al., 2022) assumes that all nodes in a
brain graph have the same degree and each node is connected with all the other nodes. However,
nodes can have significantly different roles in terms of propagating information within the brain
graph (Lynn & Bassett, 2019). Second, current methods often encode the correlations between
nodes simply based on node-level similarities, ignoring the existence of functional modules within
a brain graph. Unfortunately, the existing labeling of functional modules is largely empirical and
lacks precision (Kan et al., 2022). Therefore, this limitation is particularly evident in brain datasets
where functional module labels are unavailable or inaccurate. This impedes preserving the functional
segregation and integration characteristics of the brain.

To this end, this paper proposes a brain graph representation learning technique that departs from
existing methods. We aim to improve the alignment of the learned representations with biological
properties, particularly by encoding small-world features commonly observed in brain graphs. We
propose a Biologically Plausible Brain Graph Transformer (BioBGT), which aligns brain graph
representations with biological properties through two main components: node importance encoding
and functional module encoding. (1) For brain graphs as communication networks, node importance
is reflected by how crucial a node is in propagating information across the network (Seguin et al.,
2023). Thus, we propose a node importance encoding technique based on network entanglement.
Given the topology of a brain graph, the global information diffusion process is modeled through
quantum entanglement, wherein the importance of a node is measured by the changes in the density
matrix-based spectral entropy before and after perturbing the local connections surrounding the
node. The encoding of node importance is thereafter embedded into node representations, reflecting
the small-world architecture in terms of the presence of hubs. (2) We then present a functional
module-aware self-attention to preserve the functional segregation and integration characteristics
of brain graphs in the learned representations. Particularly, we design a community contrastive
strategy-based functional module extractor to refine nodes’ similarities at the functional modular
level, instead of merely calculating node correlations at the node level. Therefore, we can obtain
functional module-aware node representations for the self-attention mechanism.

Contributions. This paper highlights that brain graph representations obtained from learning models
should align closely with the biological properties of the brain. Under this perspective, i) we propose
a new Biologically Plausible Brain Graph Transformer entitled BioBGT that encodes the small-world
architecture of brain graphs to enhance the biological plausibility of the learned representations;
ii) we present a network entanglement-based node importance encoding technique, capturing node
importance in the information propagation across brain graphs; iii) we introduce a functional module-
aware self-attention, yielding functional module-aware node representations with the functional
segregation and integration characteristics of brain graphs preserved; iv) experimental results show
the effectiveness of our model design and the superiority of our model performance, especially in
brain disease detection tasks.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

A brain graph presents the connectivity between ROIs, characterized by the small-world architecture.
A brain graph with n nodes (ROIs) is denoted as G = (V,E,X), where V stands for the node set,
E is the edge set, and X ∈ Rn×d represents the feature matrix with the i-th row vector xi ∈ Rd
indicating the feature of node i. Here, d is the hidden feature dimension. Hubs and functional
modules are two crucial indicators of the small-world brain graph (Rubinov & Sporns, 2010). This
paper suggests that the biological plausibility of brain graph representations can be reflected in the
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representations of these two indicators. For a given brain graph, the goal of our model is to learn its
biologically plausible representation and achieve accurate brain graph analysis.

2.2 GRAPH TRANSFORMERS

A Transformer architecture is composed of multiple Transformer layers, each of which contains a
self-attention module followed by a feed-forward network (FFN) (Vaswani et al., 2017). In the self-
attention module, the input feature matrix X ∈ Rn×d is first projected to query matrix Q, key matrix
K, and value matrix V by the corresponding projection matricesWQ ∈ Rd×dK , WK ∈ Rd×dK , and
WV ∈ Rd×dK :

Q = XWQ, K = XWK , V = XWV . (1)

Then, the self-attention is calculated as:

A =
QKT

√
dK

, Attn(X) = softmax(A)V. (2)

Here, A indicates the attention matrix representing the similarity between queries and keys, dK is
the dimension of Q, K, and V. Extending Equation (2) to the multi-head attention is common and
straightforward. Afterwards, the output of the self-attention module is fed to a FFN module:

X̃ = X+Attn(X), X̂ = W2ReLU(W1X̃). (3)

Here, ReLU(·) stands for the activation function. W2 and W1 are the projection matrices.

Graph transformers are proposed for applying Transformers to graph data, which introduces the
structural information of graphs as structural encoding (SE) or positional encoding (PE), such as
Laplacian PE, spatial encoding, and edge encoding (Dwivedi et al., 2022; Geisler et al., 2023; Deng
et al., 2024; Xing et al., 2024). However, these methods exhibit limitations when applied to brain
graphs because they do not adapt to the specific small-world characteristic, including the presence
of hubs in information propagation and functional modules. As a consequence, their learned brain
graph representations are insufficiently biologically plausible.

3 BIOLOGICALLY PLAUSIBLE BRAIN GRAPH TRANSFORMER

In this section, we present BioBGT in detail. We describe how to obtain biologically plausible brain
graph representations from two perspectives: node importance encoding and functional module
encoding. First, we design a network entanglement-based node importance encoding method in the
input layer, denoted as Φ(·). Then, to encode functional modules, we present a functional module-
aware self-attention, denoted as FM-Attn(·). Therefore, for each node, we rewrite the left part of
Equation (3) as:

x̃i = Φ(xi) + FM-Attn(i). (4)

Figure 2 shows the overall framework of our model. We will introduce the functions of Φ(·) and
FM-Attn(·) in Section 3.1 and Section 3.2, respectively.

3.1 NETWORK ENTANGLEMENT-BASED NODE IMPORTANCE ENCODING

We measure node importance in information propagation based on network entanglement, importing
quantum entanglement into brain graphs. Quantum entanglement is a phenomenon in quantum
mechanics, describing the correlations between particles (Yu et al., 2023). Mathematically, quantum
entanglement is often represented by a density matrix of quantum entangled states, which captures
the entangled relationships between particles in the entire entangled system (Weedbrook et al., 2012).
When combined with network information theory, concepts from quantum entanglement can provide
a powerful lens for analyzing the global topology and information diffusion of graphs (Huang et al.,
2024). Inspired by this, we treat the brain graph as an entangled system, where nodes and their
connections reflect interdependent states. The density matrix is used to quantify structural information.
This approach enables us to capture the intricate entangled relations between nodes, offering insight
into both the global topological features and the information diffusion process within brain graphs.

3
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Figure 2: Overall framework of BioBGT.

Proposition 1 (Density matrix as structural information). The structural information of a brain graph
G, including the connection strength between nodes and the degree distribution of nodes, is encoded
by its density matrix, which stands as a normalized information diffusion propagator and formulated
as ρG = e−γL

Z . Here, e−γL is the information diffusion propagator, γ denotes the positive parameter,
L is the Laplacian matrix of G, and Z = Tr(e−γL) represents the partition function of G.

Appendix A.1 gives the complete proof. In quantum information theory, von Neumann entropy is
used to measure the uncertainty or randomness of quantum systems (Huang et al., 2024). It quantifies
the degree of entanglement present in quantum systems. When it comes to the complex graph
scenario, density matrix-based spectral entropy is considered as the counterpart of von Neumann
entropy, capturing the global topology and information diffusion process of graphs (De Domenico &
Biamonte, 2016). It is formulated as:

S(G) = −Tr(ρG log2 ρG), (5)

where S(G) is the density matrix-based spectral entropy of G, and Tr(·) indicates the trace operation
computing the trace of the product of the density matrix ρG and its natural logarithm. The perturbation
of a single node on the whole graph can be quantified by the change of density matrix-based spectral
entropy, defined as node entanglement (NE) (Huang et al., 2024). We define node importance degree
based on the NE value.
Definition 1 (Node importance degree). The node importance degree of node i is defined as its NE
value, formulated as NE(i) = ∥S(Gi) − S(G)∥, where Gi denotes the i-control graph obtained
after the perturbation of node i. A node with a higher NE value is considered more important and
possesses hub attributes, exhibiting a greater disparity between the density matrix-based spectral
entropy of the original graph and that of the perturbed graph.

Notably, NE measures the node importance in terms of the influence of one node on the global
topology and information diffusion throughout the graph. Compared to other methods, such as degree
centrality (DC), betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality
(EC), which emphasize the local structure or local message passing, NE is more reliable for node
importance measuring (especially in communication networks like brain graphs). Appendix B gives
a detailed discussion. The next theorem shows the quantification analysis of entanglement.
Theorem 1 (Quantification analysis of entanglement). Assume that the number of connected compo-
nents in the i-control graph is the same as the original graph, denoted as αi = α. The NE value of
node i is approximated as

NE(i) ≈
∥∥∥∥ 2mγn2

ln 2(n− α)2
∆Z

ZZi
+ log2(

Zi
Z

)

∥∥∥∥ , (6)

4
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where, n and m are the numbers of nodes and edges, respectively. Zi stands as the partition function
for Gi, and ∆Z = Zi − Z.

The complete proof is given in Appendix A.2. Then, we design our node importance encoding Φ(·)
by assigning each node the learnable embedding vector of its node importance degree in the input
layer. For node i, its node representation in input layer is updated to x′

i:

x′
i = Φ(xi) = xi + xNE(i) (7)

xNE(i) is the learnable embedding vector specified by NE(i).

3.2 FUNCTIONAL MODULE-AWARE SELF-ATTENTION

In this section, we first propose a community contrastive strategy-based functional module extractor,
which can capture the functional segregation and integration characteristics of the brain. Then, the
obtained functional module-aware node representations from the extractor are learned by an updated
self-attention mechanism, which can calculate node similarity at the functional module level.

3.2.1 COMMUNITY CONTRASTIVE STRATEGY-BASED FUNCTIONAL MODULE EXTRACTOR

Given a brain graph G, the representation of node i after node importance encoding is x′
i, we

then can obtain its updated representation after our functional module extractor ψ, indicated as
hi := ψ(i,Mi), where Mi stands for the functional module node i belongs to.

In ψ, we first utilize an unsupervised community detection method, Louvain algorithm (Blondel et al.,
2008), to highlight the functional modules. This approach particularly addresses the challenge posed
by the absence of functional module labels, which is a limitation encountered in many empirically
labeled datasets. Then, we apply graph augmentation to generate two graph views of G by modifying
its structural information and enhancing functional modules. Particularly, we apply an edge dropping
strategy (Rong et al., 2020; Chen et al., 2023) to achieve graph augmentation. The main idea of
the edge dropping strategy is dropping less important edges while preserving the functional module
structure. Details of edge dropping strategy are given in Appendix C. After graph augmentation, we
can obtain two augmented graph views G1 and G2.

Then, G1 and G2 are fed into a graph neural network-based view encoder GNN(·) to obtain the
representations of two graph views, denoted as H1 ∼ GNN(G1) and H2 ∼ GNN(G2). To enhance
inter-module differences and intra-module similarities, we design a contrastive objective strategy
by setting nodes from the same function module as positive samples, while those from different
function modules as negative samples. We adopt the InfoNCE (Oord et al., 2018) as the contrastive
loss function:

L = − 1

n

n∑
i=1

log
exp(Sim(h1

i ,h
pos
i ))∑nNeg

j=1 exp(Sim(h1
i ,h

1
j )) +

∑nNeg

j=1 exp(Sim(h1
i ,h

2
j ))

. (8)

Here, Sim(·) is the score function measuring the similarity between two nodes. For an anchor node
i in G1, its representation is h1

i , we consider the nodes within functional module Mi from both
graphs G1 and G2 as the positive samples, denoted as hposi , otherwise they are considered as negative
samples. nNeg indicates the number of negative samples in a graph view. Consequently, the updated
functional module-aware representation of node i can be obtained, denoted as hi.

3.2.2 UPDATED SELF-ATTENTION MECHANISM

After obtaining the functional module-aware node representations, we design an updated self-attention
mechanism. Inspired by Mialon et al. (2021), we design the self-attention mechanism as a kernel
smoother to capture the similarity between each pair of nodes. Particularly, we define trainable
exponential kernels on functional module-aware node representations. The updated self-attention is
formulated as:

FM-Attn(i) =
∑
j∈V

exp

(
⟨WQhi,WKhj⟩/

√
dK

)
∑
u∈V exp

(
⟨WQhi,WKhu⟩/

√
dK

)f(hj). (9)
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Here, exp
(
⟨WQha,WKhb⟩/

√
dK

)
is a non-negative kernel, where ⟨·, ·⟩ indicates the dot product.

f(·) is a linear value function.

This updated self-attention mechanism can capture node similarity from the functional module level,
without destroying the coherence of functional module-aware node representations. Representations
of nodes in the same functional module are closer, while those from different modules keep farther.
Therefore, the obtained node representations are more biologically plausible, preserving functional
segregation and integration characteristics. The next theorem guarantees that our self-attention
function can controllably preserve functional modules.

Theorem 2 (Controllability analysis of functional module-aware self-attention). Assume the func-
tional module extractor ψ is bounded by a constant Cψ. For any two nodes a and b, the distance
between their representations after the functional module-aware self-attention is bounded by:

∥FM-Attn(a)− FM-Attn(b)∥ ≤ CM∥ha − hb∥. (10)

ha := ψ(a,Ma) and hb := ψ(b,Mb) are representations of nodes a and b after the functional
module extractor, respectively. CM is a constant.

This theorem demonstrates that node representations will maintain their relative distances after
undergoing the functional module-aware self-attention mechanism. For example, after the self-
attention, two nodes within the same functional module will remain close to each other, while two
nodes from different functional modules will remain distant from each other. This is crucial for
ensuring that the self-attention mechanism preserves functional modules while capturing the similarity
between nodes. The proof of this theorem is provided in Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on fMRI data collected from three benchmark datasets. (1) Autism
Brain Imaging Data Exchange (ABIDE) 3 dataset. This dataset contains resting-state fMRI data
of 1, 009 anonymous subjects (age range: 5-64 years old) including 516 Autism spectrum disorder
patients and 493 normal controls. The ROIs of brain graphs in ABIDE are defined by Craddock 200
atlas (Craddock et al., 2012). (2) Alzheimer’s Disease Neuroimaging Initiative (ADNI) 4 dataset. The
collected dataset comprises a total of 407 subjects, including 190 normal controls, 170 mild cognitive
impairment patients, and 47 Alzheimer’s disease patients, carefully matched for both age and sex
ratio. The ROI definition in ADNI dataset is based on AAL atlas (Tzourio-Mazoyer et al., 2002). (3)
Attention Deficit Hyperactivity Disorder (ADHD-200) 5 dataset. This dataset contains 459 subjects
from 7 to 21 years old. 230 subjects are typically developing individuals and 229 subjects are ADHD
patients. The ROI definition in ADHD-200 dataset is also based on Craddock 200 atlas. The number
of ROIs in ABIDE, ADNI, and ADHD-200 datasets are 200, 90, and 190, respectively. Notably, brain
graphs are constructed by computing the Pearson correlation coefficient (PCC) (Cohen et al., 2009)
between ROIs based on the collected fMRI data. In particular, thresholds are set to keep edges with
higher PCC values (weights) and drop those with lower PCC values (see Table 4 in Appdendix D.1).

Evaluation Metrics. We evaluate our model on the graph classification task. For ABIDE and
ADHD-200 datasets, our model aims to detect whether the subject is a patient or a normal control.
Therefore, the classification tasks in these two datasets are binary classification problems. For ADNI
dataset, there are three groups, including normal controls, mild cognitive impairment patients, and
Alzheimer’s disease patients. Thus, disease detection in ADNI dataset is a multiple classification
problem. We use five metrics to evaluate the model performance: (1) Test accuracy (ACC) indicates
the ratio of brain graphs that are correctly classified out of all samples; (2) F1 score is the harmonic
mean of precision and recall; (3) Area under the receiver operating characteristic curve (AUC) shows
the trade-off between true positive rate and false positive rate; (4) Sensitivity (Sen.) refers to true
positive rate; (5) Specificity (Spe.) gives the true negative rate. For the multiclass classification task

3https://fcon_1000.projects.nitrc.org/indi/abide/
4https://adni.loni.usc.edu/
5https://fcon_1000.projects.nitrc.org/indi/adhd200/
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on the ADNI dataset, we use macro averaging for the F1 score, sensitivity, and specificity. All results
are the average values of 10 random runs on test sets with the standard deviation.

Baseline Methods. We compare our model with state-of-the-art methods: (1) typical machine learning
(ML) methods, including SVM (with a linear kernel) and Random Forest; (2) graph transformer
models, including SAN (Kreuzer et al., 2021), Graph Transformer (Graph Trans.) (Dwivedi &
Bresson, 2020), Graphormer (Ying et al., 2021), BRAINNETTF (Kan et al., 2022), SAT (Chen
et al., 2022), Polynormer (Deng et al., 2024), Gradformer (Liu et al., 2024a), and GTSP (Liu
et al., 2024b); (3) graph neural networks for brain graph analysis, including GAT (Velickovic et al.,
2018), BrainGNN (Li et al., 2021), BrainGB (Cui et al., 2022), MCST-GCN (Zhu et al., 2024), and
GroupBNA (Peng et al., 2024). For the SAT model, we consider its two variants as baselines: SAT
without positional encoding (SAT-PE) and SAT with positional encoding (SAT+PE).

Implementation Details. Our model is implemented using PyTorch Geometric v2.0.4 and PyTorch
v1.9.1. Model training is performed on an NVIDIA A6000 GPU with 48GB of memory. Our model
is trained using the AdamW optimizer (Loshchilov & Hutter, 2019), and the cross-entropy loss is
used for classification tasks. Each dataset is randomly split, with 80% used for training, 10% for
validation, and 10% for testing. Full implementation is given in Appendix D.1.

4.2 RESULTS

The experimental results (ACC and AUC) on the three datasets are summarized in Table 1. The
results for F1, Sen., and Spe. are provided in Appendix D.2. As experimental results show, the overall
performance of BioBGT is superior to that of other baselines on all three datasets. For example, in
the ADHD-200 dataset, we can see that the performance of BioBGT is distinguished, with the best
accuracy and F1 score. Notably, our F1 score is around 4.21% higher than the second-best baseline.
In the ABIDE dataset, BioBGT achieves a 5.76% improvement in accuracy over the second-best
baseline. The experimental results demonstrate that our model excels in various brain disorder
detection tasks.

Table 1: Results (mean ± margin of error) on three datasets (%).

Method ADHD-200 ABIDE ADNI

ACC AUC ACC AUC ACC AUC

ML Methods SVM 53.56±2.73 54.66±3.40 49.01±1.70 49.05±1.94 32.29±2.63 49.88±3.10
Random Forest 58.96±2.77 59.49±2.38 51.14±3.08 51.41±3.23 49.03±1.27 58.18±2.31

Graph
Transformer
Models

SAN 51.09±2.00 51.22±2.21 49.80±1.97 50.20±2.34 34.44±4.61 49.23±2.67
Graph Trans. 50.76±2.07 51.49±1.15 50.20±0.50 48.20±0.16 40.28±4.17 52.31±2.04
Graphormer 61.60±0.90 58.64 ±1.50 58.40±0.68 57.61±0.72 35.64±2.17 48.19±12.69

SAT-PE 60.00±2.73 59.68±2.60 60.60±3.11 59.14±4.56 39.96±1.51 48.17±6.57
SAT+PE 64.44±3.45 64.21±3.40 58.76±4.88 69.29±5.48 41.51±4.01 42.13±5.74

BRAINNETTF 70.80±2.70 79.36±3.43 68.24±2.24 78.38±3.43 47.39±3.11 55.72±7.13
Polynormer 64.78±2.34 63.61±2.43 57.03±0.96 56.42±1.56 41.85±2.12 54.34±4.37
Gradformer 68.94±3.18 67.83±4.66 61.56±4.13 61.75±4.29 46.54±2.72 53.88±2.37

GTSP 61.70±3.81 61.41±2.90 61.37±3.59 60.43±3.47 47.27±3.81 53.59±3.26

Graph Neural
Networks

GAT 55.38±3.18 54.97±3.28 53.51±2.54 53.41±2.48 34.99±7.43 51.73±6.66
BrainGNN 55.76±1.20 58.00±0.49 51.34±1.17 54.27±0.66 43.33±4.08 50.21±2.97
BrainGB 68.20±7.81 74.64±10.10 65.12±3.90 70.32±3.66 44.34±3.90 62.24±4.68

MCST-GCN 59.06±2.69 59.05±3.89 54.22±2.40 55.18±2.35 48.44±3.12 62.25±2.93
GroupBNA 69.87±3.02 71.16±4.53 63.14±2.65 71.30±3.81 46.72±1.33 50.85±8.10

Our Model BioBGT 71.06±0.08 71.64±1.14 74.00±2.01 73.33±2.37 52.08±2.08 62.33±5.98

4.3 ABLATION STUDIES

We conduct a series of ablation studies on three datasets to validate the effectiveness of each
component in BioBGT. To verify how the network entanglement-based node importance encoding
benefits the model performance, we conduct an ablation experiment by removing the node importance
encoding, denoted as “-NE”. In addition, to show the effectiveness of our functional module-aware
self-attention, we remove the community contrastive strategy-based functional module extractor
and replace our FM-Attn(·) with a normal self-attention Attn(·) (see Equation (2)), denoted as

7
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“-FM-Attn”. Figure 3 compares the performance of BioBGT with the altered models on three datasets.
BioBGT achieves superior performance compared to the model without node importance encoding
(-NE), indicating that our node importance encoding method is crucial for the model performance.
Furthermore, BioBGT shows better performance than the altered model -FM-Attn. This indicates
that it is essential to encode node similarities from the functional module level and preserve functional
segregation and integration characteristics of brain graphs.

(a) ADHD-200 (b) ABIDE (c) ADNI

Figure 3: Model performance of BioBGT and its altered models.

4.4 COMPARATIVE ANALYSIS OF NODE IMPORTANCE MEASUREMENT

To validate the effectiveness of NE in measuring node importance, we perform a comparative
analysis between BioBGT and its variants, which replace NE-based node importance encoding with
(1) Laplacian matrix-based positional encoding, denoted as “+PE”; (2)degree centrality encoding,
denoted as “+DC”; (3) Laplacian matrix and degree centrality encoding, denoted as “+PE+DC”;
(4) betweenness centrality encoding, denoted as “+BC”; (5) closeness centrality encoding, denoted
as “+CC”; (6) eigenvector centrality, denoted as “+EC”. The results are summarized in Table 2
and Table 8 (see Appendix D.2). The overall performance of BioBGT is significantly better than
other variants. This indicates that our node importance encoding method is crucial for the model
performance, suggesting NE is more reliable for node importance measuring.

Table 2: The results (F1, ACC, AUC) for BioBGT and its variants on three datasets (%).

ABIDE ADNI ADHD-200
F1 ACC AUC F1 ACC AUC F1 ACC AUC

+PE 54.00±2.97 60.60±2.25 60.91±2.05 30.09±3.36 49.43±2.42 52.14±2.41 69.21±7.14 67.56±3.24 67.39±2.80
+DC 59.73±4.23 61.20±1.88 61.28±1.80 27.27±1.57 50.57±1.64 55.45±3.59 74.22±1.35 69.78±2.33 70.18±2.28

+PE+DC 56.64±2.40 63.00±1.63 63.32±1.55 27.77±1.08 50.94±1.25 55.08±3.94 73.60±4.28 70.67±4.00 70.79±4.10
+BC 52.77±1.30 70.00±6.12 65.62±7.29 26.70±4.26 48.11±3.20 51.38±7.88 72.20±3.61 71.12±0.88 70.09±1,05
+CC 62.43±1.53 73.75±6.50 70.84±7.65 25.84±5.50 48.11±3.61 50.68±11.24 73.78±5.11 72.69±0.88 69.38±0.94
+EC 53.13±1.62 71.25±8.20 66.67±9.88 27.75±9.12 47.64±3.08 54.39±8.41 73.09±4.98 71.11±1.11 68.99±0.99

BioBGT 68.41±2.19 74.00±2.01 73.33±2.37 32.29±2.31 52.08±2.08 61.33±5.98 74.63±1.18 71.06±0.08 71.64±1.14

4.5 BIOLOGICAL PLAUSIBILITY ANALYSIS

Figure 4: The NE and PCC values after
adopting min-max normalization of 50
randomly selected nodes from a sample
in the ABIDE dataset.

We assess the biological plausibility of our node impor-
tance encodings and functional module-aware node rep-
resentations by proving their consistency with existing
neuroscience knowledge and providing reasonable explain-
ability.

Biological Plausibility in Node Importance Encod-
ing. Pearson correlation coefficient (PCC) value between
each node pair indicates the degree of their influence on
each other (Hou et al., 2022; Xi & Cui, 2023). PCC has
been widely used to approximate brain functional connec-
tivity strength in neuroscience (Li et al., 2021). Existing
studies have shown that PCC-based brain graph structures
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exhibit greater biological reliability than those measured
by other metrics (Liang et al., 2012). They claim that PCC
is a suitable choice for measuring the global topological
properties of functional brain graphs. A node’s average
PCC value can indicate its communication strength with other nodes, which can be interpreted as an
aspect of its importance in information propagation.

Therefore, we compare the NE value of each node to its average PCC value with all of the other nodes.
Figure 4 shows the NE and average PCC values of 50 randomly selected nodes from a randomly
selected sample in the ABIDE dataset. In addition, visualizations of NE and average PCC values
for all nodes in a randomly selected graph across three datasets are provided in Appdendix D.3. We
can see that the changing trend of the NE curve is almost consistent with that of the PCC curve,
proving that nodes with large NE values also have large PCC values, and vice versa. This consistency
suggests that NE could be a biologically plausible measure of node importance.

Biological Plausibility in Functional Module-Aware Self-Attention. Figure 5 displays the
heatmaps of the average self-attention scores from the ADHD-200 test set, output by Graphormer
(a), SAT (b), and our functional module-aware self-attention mechanism (c). Based on the empirical
labels of brain regions and functional modules (Dosenbach et al., 2007; 2010), the ROIs are classified
into 6 functional modules, including visual cortex (Vis), motion control (MC), cognition control (CC),
auditory cortex (Aud), language processing (LP), and executive control (EC). The detailed functional
module division is provided in Appendix D.4. As illustrated in Figure 5, compared to the heatmaps
produced by Graphormer and SAT, the heatmap of our model clearly shows that the learned attention
scores of our model align better with the division of functional modules. For example, nodes within
the visual cortex exhibit higher attention similarity. This observation verifies that our functional
module-aware self-attention preserves the characteristics of functional segregation and integration
within brain graph representations better.

(a) Graphormer (b) SAT (c) BioBGT

Figure 5: The heatmaps of the average self-attention scores. Compared to other methods, heatmap (c)
shows that learned attention scores of BioBGT align better with the division of functional modules.

5 RELATED WORK

5.1 BRAIN GRAPH ANALYSIS

Brain graphs, reflecting the connections in human neural system, are constructed from various brain
health data, such as functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), and electroencephalography (EEG) (Bullmore & Sporns, 2009; Bessadok et al., 2022). Re-
cently, graph learning-based brain graph analysis has attracted increased attention, dominating a
range of tasks (e.g., brain disease detection and treatment recommendation) (Sun et al., 2024; Kan
et al., 2022; Liu et al., 2023; Ding et al., 2023). NeuroGraph (Said et al., 2024) collects various
brain connectome datasets for benchmarking graph learning models in brain graph analytical tasks
(e.g., gender identification). BrainPrint (Wang et al., 2020) develops a network estimation module
and a graph analysis module to embed EEG features. BrainGNN (Li et al., 2021) contains special
ROI-aware graph convolutional layers to capture the functional information of brain networks for
fMRI analysis. BrainGB (Cui et al., 2022) summarizes the pipelines of brain graph construction.
BRAINNETTF (Kan et al., 2022) utilizes a Transformer-based model to analyze brain graphs, while
ignoring the structural encoding of ROIs and failing to preserve the small-world architecture of brain
graphs. MSE-GCN (Lei et al., 2023) applies multiple parallel graph convolutional network layers
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to encode brain structural and functional connectivities to detect early Alzheimer’s disease (AD).
GroupBNA (Peng et al., 2024) constructs group-specific brain networks via a group-adaptive brain
network augmentation strategy.

5.2 GRAPH TRANSFORMERS

Graph transformers attempting to generalize Transformer models to graph data have shown significant
performance in graph representation tasks (Kong et al., 2023; Luo et al., 2024). SAN (Kreuzer et al.,
2021) leverages the full Laplacian spectrum as the learned PE of input nodes, emphasizing the global
structural information of the graph. Graphomer (Ying et al., 2021) introduces three SE methods to
the Transformer architecture, including centrality encoding, spatial encoding and edge encoding,
for graph representation learning. SAT (Chen et al., 2022) proposes a structure-aware self-attention
mechanism to extract subgraph representations of nodes. SGFormer (Wu et al., 2024a) presents a
single-layer attention model utilizing linear complexity to capture global dependencies among nodes.
Geoformer (Wang et al., 2024) considers atomic environments as the PE of nodes in molecular graphs.
EXPHORMER (Shirzad et al., 2023) proposes a sparse attention mechanism based on virtual global
nodes and expander graphs for large graph representation learning. GRIT (Ma et al., 2023b) proposes
a learned PE based on relative random walk probabilities and a flexible self-attention mechanism
aiming to update both node and node-pair representations.

6 CONCLUSION

This paper presents the Biologically Plausible Brain Graph Transformer (BioBGT) model with a
network entanglement-based node importance encoding technique and an updated functional module-
aware self-attention mechanism. Extensive experiments on three benchmark datasets demonstrate
our BioBGT outperforms state-of-the-art baselines, as well as enhances the biological plausibility
of brain graph representations. Significantly, BioBGT offers valuable insights into enhancing the
efficacy of brain graph analytical tasks, notably in the realm of improving disease detection. Our
work could potentially advance digital health. Importantly, this work contributes to the intersection of
neuroscience and artificial intelligence by proposing a brain graph representation learning technique
that enhances biological plausibility.

While these findings are encouraging, some limitations remain. Firstly, according to current neuro-
science knowledge, the biological properties of the brain are highly complex and remain uncertain,
with many underlying mechanisms still requiring further research. Therefore, it is unlikely that a
fully biologically plausible brain graph can be constructed. Instead, we can strive to build brain
graphs that are as biologically plausible as possible, drawing on existing knowledge, such as the
brain’s small-world architecture. Then, the computation complexity of network entanglement and the
quadratic complexity of our functional module-aware self-attention module restrict the applicability
of BioBGT. Although we have managed to keep the number of parameters comparable to other
models, computational efficiency still needs future improvement. Therefore, it is worth exploring
how to trade off the biological plausibility of brain graph representations and model computation
complexity.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1 (Density matrix as structural information.) The structural information of a brain
graph G, including the connection strength between nodes and the degree distribution of nodes, is
encoded by its density matrix, which stands as a normalized information diffusion propagator and
formulated as ρG = e−γL

Z . Here, e−γL is the information diffusion propagator, γ denotes the positive
parameter, L is the Laplacian matrix of G, and Z = Tr(e−γL) represents the partition function of G.

Proof. According to the theory of diffusion processes, an information diffusion process in a graph
can be represented in exponential form as e−γL (Gasteiger et al., 2019; Li et al., 2024). Therefore,
the density matrix can be regarded as a diffusion matrix along with structural information. In
particular, the Laplacian matrix, L = D −A, indicates the difference between the degree matrix D
and the adjacency matrix A. The degree matrix D is a diagonal matrix with its diagonal element
dii representing the degree of nodes i. The elements aij of the adjacency matrix A represent the
connection strengths between nodes i and j. Therefore, the density matrix ρG captures the connection
strengths and degree distribution information among nodes in the graph G, encoding the global
structural information of the graph G.

A.2 PROOF OF THEOREM 1

Theorem 1 (Quantification analysis of entanglement.) Assume that the number of connected
components in the i-control graph is the same as the original graph, denoted as αi = α. The NE
value of node i is approximated as

NE(i) ≈
∥∥∥∥ 2mγn2

ln 2(n− α)2
∆Z

ZZi
+ log2(

Zi
Z

)

∥∥∥∥ ,
where, n and m are the numbers of nodes and edges, respectively. Zi stands as the partition function
for Gi, and ∆Z = Zi − Z.

Proof. According to Equation (5) and spectral decomposition theory, the density matrix-based
spectral entropy of graph G is

S(G) = S(ρG)
= −Tr(ρG log2 ρG)

= −
n∑
j=1

λj(ρG) log2 λj(ρG),

where λj(ρG) = e−γλj(L)

Z . Therefore, we have

S(G) = γ

ln 2

n∑
j=1

λj(L)λj(ρG) + log2 Z

=
γ

ln 2

n∑
j=1

⟨λj(L)λj(ρG)⟩+ log2 Z

≈ γ

ln 2

n∑
j=1

⟨λj(L)⟩⟨λj(ρG)⟩+ log2 Z.

The approximation comes from mean-field approximation. Assume the number of λj satisfying
λj(L) = 0 is the same as the number of connected components α. Refer to Huang et al. (2024), we
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can get

⟨λj(L)⟩ =
1

n

n∑
j=1

λj(L)

=
1

n− α

n∑
j=α+1

λj(L)

=
2m

n− α
.

Likewise,

⟨λj(ρG)⟩ =
1

n

n∑
j=1

e−γλj(L)

Z

=
1

n− α

n∑
j=α+1

e−γλj(L)

Z

=
1

n− α
(1− α

Z
).

Therefore, S(G) can be approximated as

S(G) ≈ γ

ln 2

2mn

n− α
· n

n− α
(1− α

Z
) + log2 Z

=
2mγn2

ln 2(n− α)2
(1− α

Z
) + log2 Z.

Then, we can quantify the perturbation of node i on graph G by capturing the changes of density
matrix-based spectral entropy from S(G) to S(Gi), obtaining NE(i)

NE(i) = ∥S(Gi)− S(G)∥

≈
∥∥∥∥( 2mγn2

ln 2(n− αi)2
(1− αi

Zi
) + log2 Zi

)
−
(

2mγn2

ln 2(n− α)2
(1− α

Z
) + log2 Z

)∥∥∥∥ .
Suppose αi = α, we can get

NE(i) ≈
∥∥∥∥( 2mγn2

ln 2(n− α)2
(1− α

Zi
) + log2 Zi

)
−
(

2mγn2

ln 2(n− α)2
(1− α

Z
) + log2 Z

)∥∥∥∥
=

∥∥∥∥ 2mγn2

ln 2(n− α)2
(
1

Z
− 1

Zi
) + log2(

Zi
Z

)

∥∥∥∥
=

∥∥∥∥ 2mγn2

ln 2(n− α)2
∆Z

ZZi
+ log2(

Zi
Z

)

∥∥∥∥
Here, ∆Z = Zi − Z.

A.3 PROOF OF THEOREM 2

Theorem 2 (Controllability analysis of functional module-aware self-attention.) Assume the
functional module extractor ψ is bounded by a constant Cψ . For any two nodes a and b, the distance
between their representations after the functional module-aware self-attention is bounded by:

∥FM-Attn(a)− FM-Attn(b)∥ ≤ CM∥ha − hb∥.
ha := ψ(a,Ma) and hb := ψ(b,Mb) are representations of nodes a and b after functional module
extractor, respectively. CM is a constant.

Proof. The similarity representations of nodes a and b can be denoted as

za = (⟨WQha,WKhi⟩)i∈V ∈ Rn,
zb = (⟨WQhb,WKhi⟩)i∈V ∈ Rn.
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Then, the softmax(z) with the k-th coefficient is

softmax(z)k =
exp(zk/

√
dK)∑n

j=1 exp(zj/
√
dK)

.

Afterwards, we can get

∥FM-Attn(a)− FM-Attn(b)∥ =

∥∥∥∥∥∑
i∈V

softmax(za)if(hi)−
∑
i∈V

softmax(zb)if(hi)

∥∥∥∥∥
=

∥∥∥∥∥∑
i∈V

(softmax(za)i − softmax(zb)i) f(hi)

∥∥∥∥∥
≤ ∥softmax(za)− softmax(zb)∥

√∑
i∈V

∥f(hi)∥2

≤ 1√
dK

∥za − zb∥
√
nC.

The first inequality is based on a simple matrix norm inequality, and the second inequality is based on
the fact that softmax function is 1√

dK
-Lipschitz (Gao & Pavel, 2017). C is the Lipschitz constant.

Then, we can infer that

∥za − zb∥2 =
∑
i∈V

(
⟨WQha,WKhi⟩ − ⟨WQhb,WKhi⟩

)2

=
∑
i∈V

(
⟨WQ(ha − hb),WKhi⟩

)2

≤
∑
i∈V

(
∥WQ(ha − hb)∥2∥WKhi∥2

)
≤ ∥WQ∥2∞∥ha − hb∥2C2

ψ∥WK∥2∞
= C2

ψ∥WQ∥2∞∥WK∥2∞∥ha − hb∥2.

The first inequality comes from the Cauchy-Schwarz inequality. The second inequality uses the
definition of spectral norm, and constant Cψ is the bound of the functional module extractor ψ.
Therefore, we can infer that

∥FM-Attn(a)− FM-Attn(b)∥ ≤ 1√
dK

∥za − zb∥
√
nC.

≤
√

n

dK
CCψ∥WQ∥∞∥WK∥∞∥ha − hb∥.

A constant CM can be defined as

CM =

√
n

dK
CCψ∥WQ∥∞∥WK∥∞.

Consequently, we can obtain the inequality in the Theorem 2.

∥FM-Attn(a)− FM-Attn(b)∥ ≤ CM∥ha − hb∥.

B RELIABILITY OF NE FOR NODE IMPORTANCE MEASURING

Given a node i, its importance degree in the information propagation across the graph is defined as its
NE value, which is obtained by measuring the disparity between the density matrix-based spectral
entropy of the original graph and that of the i-control graph. The density matrix-based spectral entropy
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captures both the global topology and information diffusion process of the graph (Huang et al., 2024).
Therefore, NE can fully reflect the significance of a node on the information propagation across
the graph. For example, if the density matrix-based spectral entropy of the i-control graph changes
greatly compared to the original graph, it indicates that induced perturbation of node i can lead to
significant changes in the global topology and information diffusion pattern of the graph. This means
node i plays an important role in the graph in terms of information propagation. Particularly, brain
graphs are communication networks, in which information propagation is a crucial aspect (Seguin
et al., 2023). Hence, it is essential to measure node importance based on NE reflecting on the changes
in the global topology and information diffusion of brain graphs.

Figure 6: An example of the fragility of DC in measuring node importance in brain graphs. High-
lighted edges represent paths of information diffusion.

Figure 7: Visualization of the DC (a), BC (b), CC (c), EC (d), and NE (e) values of nodes in a brain
graph from the ABIDE dataset. The colors of nodes are proportional to the normalized values of the
DC and NE.

Due to the capability of NE to reflect the global topology and information diffusion, it is more reliable
for node importance measuring in brain graphs compared to other methods, such as centralities (Das
et al., 2018). Four representative centralities, including degree centrality (DC), closeness centrality
(CC), betweenness centrality (BC), and eigenvector centrality (EC), emphasize the local structure
or local message passing, having limitations to fully capture both global topology and information
diffusion process. Therefore, they are not reliable for measuring node importance, especially for
brain graphs. For example, Figure 6 shows the fragility of DC in measuring node importance in brain
graphs. Node a plays a more important role in information propagation than node b, while its DC
value (=4) is lower than that of node b (=6). We also visualize the DC, BC, CC, EC, and NE values
of nodes in a real brain graph from the ABIDE dataset 6 (see Figure 7). As shown in Figure 7, NE
can better distinguish node importance in the entire brain graph. In contrast, other methods may
mistakenly identify marginal nodes with many direct connections but less significance in information
propagation as important nodes. For example, especially in Figure 7 (c) and (d), many nodes exhibit
disproportionately high CC and EC values, highlighting their inability to effectively differentiate
between truly important and less significant nodes in information propagation.

6https://fcon_1000.projects.nitrc.org/indi/abide/

18

https://fcon_1000.projects.nitrc.org/indi/abide/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C EDGE DROPPING STRATEGY

Following Chen et al. (2023), we apply the edge dropping strategy to achieve graph augmentation.
The main idea of our edge dropping strategy is dropping less important edges while preserving
the functional module structure. Particularly, our edge dropping strategy is based on inter-modular
edges first rationale. That is inter-modular edges are less important than intra-module edges. We
define a scoring function IM(·) to calculate the importance of each edge, it must meet the following
condition:

IM(eintra) > IM(einter). (11)
Here, eintra and einter are intra-module and inter-modular edges, respectively. If nodes i and j are
from the same functional module, the scoring function of their edge eij is:

IM(eij) = ωeij +max(ω), (12)

where ωeij is the weight of edge eij , and max(ω) indicates the highest edge weight in the graph. On
the other hand, if nodes i and j are from different functional modules, the scoring function of their
edge eij is:

IM(eij) = ωeij −max(ω). (13)
Consequently, the scoring function of inter-module edges will keep lower than that of intra-module
edges. Our edge dropping strategy will first consider dropping inter-module edges with lower
importance scores. Therefore, the functional module structure can be preserved in two augmented
graphs.

D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 IMPLEMENTATION DETAILS

The detailed hyperparameter settings for training BioBGT on three datasets are summarized in Table 3.

Table 3: Hyperparameters for training BioBGT on three different datasets.

Hyperparameter ABIDE ADNI ADHD-200
#Layers 3 3 3

#Attention heads 8 8 8
Threshold of edge weight 0.3 0 0

Hidden dimensions 128 128 128
FFN hidden dimensions 256 256 256

Dropout 0.5 0.1 0.1
Readout method mean mean mean

Learning rate 3e-4 3e-4 3e-4
Batch size 128 128 128
#Epochs 200 200 200

Weight decay 1e-4 1e-4 1e-4
Warm-up Steps 10 10 10

Table 4: The number of parameters for different models on three datasets.

Method ABIDE ADNI ADHD-200
Polynormer 9.78M 9.80M 9.83M

Random Forest 21K 18K 9K
Gradformer 455K 446K 468K

GTSP 427K 424K 430K
BioBGT 465K 455K 454K

Number of parameters and computation time. The number of parameters for BioBGT are
465K, 455K, and 454K on ABIDE, ADNI, and ADHD-200, respectively. The running time for
training BioBGT on ABIDE, ADNI, and ADHD-200 is 650 s/epoch, 265 s/epoch, and 251 s/epoch,
respectively. Table 4 presents the number of parameters for different models on three datasets.
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D.2 ADDITIONAL EXPERIMENTAL RESULTS

Table 5, Table 6, and Table 7 give the additional results (F1, Sen., Spe.) for BioBGT compared
to state-of-the-art methods on ADHD-200, ABIDE, and ADNI datasets, respectively. The overall
experimental result reveals that BioBGT outperforms other methods, suggesting its superiority in
various brain graph analysis tasks. Please note that due to the randomness of experimental results,
the reproduced results of some baselines may be a little different from those in the original papers.
Table 8 summarizes the results of sensitivity and specificity for BioBGT and its variants on three
datasets.

Table 5: Additional results on ADHD-200 (%).

Method F1 Sen. Spe.

ML Methods SVM 58.91±5.47 68.75±16.11 40.58±18.58
Random Forest 57.07±4.13 55.01±9.30 63.95±8.04

Graph
Transformer
Models

SAN 48.19±9.76 50.43±19.32 51.74±20.16
Graph Trans. 55.58±4.18 62.39±9.43 39.13±10.74
Graphormer 69.25±3.05 83.34±2.90 33.96±6.10

SAT-PE 65.37±1.61 73.91±3.73 45.45±13.20
SAT+PE 68.30±3.83 75.65±7.40 52.73±10.67

BRAINNETTF 70.42±3.06 66.69±4.93 75.75±4.63
Polynormer 58.62±12.93 51.57±17.68 69.63±11.59
Gradformer 69.01±5.39 71.66±9.37 63.99±12.97

GTSP 64.59±7.29 75.60±10.47 47.22±14.84

Graph Neural
Networks

GAT 57.85±5.87 64.54±13.97 45.10±18.34
BrainGNN 55.89±1.21 56.09±2.13 55.43±3.11
BrainGB 63.73±11.93 58.26±15.82 78.20±8.19

MCST-GCN 54.76±1.20 30.42±2.17 68.05±1.79
GroupBNA 70.61±2.35 74.05±4.60 72.93±6.49

Our Model BioBGT 74.63±1.18 89.39±5.66 84.07±2.19

Table 6: Additional results on ABIDE (%).

Method F1 Sen. Spe.

ML Methods SVM 52.02±2.16 54.41±5.44 43.69±1.90
Random Forest 51.46±3.87 51.23±7.82 51.58±5.75

Graph
Transformer
Models

SAN 47.52±3.74 44.95±6.53 54.85±7.48
Graph Trans. 57.98±0.52 67.38±0.78 32.32±0.45
Graphormer 64.17±2.89 70.64±8.74 46.49±12.51

SAT-PE 67.21±3.84 64.76±8.62 53.52±15.34
SAT+PE 68.33±2.88 69.29±5.48 43.24±18.03

BRAINNETTF 68.20±2.31 69.39±5.22 66.95±5.28
Polynormer 44.20±11.13 38.16±17.04 74.68±15.46
Gradformer 62.12±3.37 59.16±4.77 64.35±10.99

GTSP 65.36±6.22 69.86±11.57 50.99±12.59

Graph Neural
Networks

GAT 56.12±6.25 57.73±12.96 48.13±12.44
BrainGNN 50.09±1.55 54.85±4.12 47.96±2.92
BrainGB 66.95±5.08 67.01±10.00 60.07±8.53

MCST-GCN 52.63±6.33 48.80±6.88 45.85±10.19
GroupBNA 61.64±1.20 64.72±5.43 65.28±6.27

Our Model BioBGT 68.41±2.19 70.00±6.25 76.67±9.77

D.3 ADDITIONAL NE AND PCC CURVES FOR THREE DATASETS

We provide visualizations of NE and average PCC values for all nodes in brain graphs across three
datasets. The graphs from the ABIDE, ADHD-200, and ADNI datasets contain 200, 190, and 90
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Table 7: Additional results on ADNI (%).

Method F1 Sen. Spe.

ML Methods SVM 26.69±4.56 27.33±5.12 74.91±0.63
Random Forest 29.18±2.13 32.33±1.11 79.03±0.34

Graph
Transformer
Models

SAN 14.73±3.01 23.24±2.65 74.30±1.41
Graph Trans. 20.96±1.51 26.65±2.24 76.14±1.22
Graphormer 21.63±5.85 25.72±4.97 75.78±3.47

SAT-PE 24.08±4.18 30.67±4.19 76.16±0.29
SAT+PE 19.66±5.13 26.72±3.46 76.16±2.15

BRAINNETTF 35.64±3.97 35.25±3.29 80.03±4.43
Polynormer 16.75±3.05 25.72±0.92 75.47±0.60
Gradformer 23.80±2.61 29.90±1.92 78.18±1.24

GTSP 25.48±4.14 30.39±1.91 78.26±1.00

Graph Neural
Networks

GAT 25.70±3.54 30.92±4.01 77.72±1.40
BrainGNN 23.23±4.67 29.52±3.31 77.47±1.80
BrainGB 32.22±7.96 34.04±6.48 78.78±1.54

MCST-GCN 37.44±3.12 38.06±2.99 70.52±2.71
GroupBNA 35.85±1.38 34.98±9.72 78.25±6.78

Our Model BioBGT 32.29±2.31 35.65±1.43 80.39±0.82

Table 8: The results (Sen. and Spe.) for BioBGT and its variants on three datasets (%).

ABIDE ADNI ADHD-200
Sen. Spe. Sen. Spe Sen. Spe

+PE 45.49±4.36 76.33±7.05 34.50±2.36 79.44±1.15 74.78±18.66 60.00±12.80
+DC 57.26±9.11 65.31±9.32 32.68±1.05 79.69±0.73 88.42±9.08 51.94±12.25

+PE+DC 47.45±2.84 79.18±2.28 32.99±0.88 79.82±0.73 82.53±12.77 59.05±10.57
+BC 43.75±13.98 87.50±4.17 31.53±2.66 78.71±1.36 77.12±13.78 74.75±7.46
+CC 56.25±11.92 85.41±3.61 31.50±3.20 78.84±1.80 77.17±15.56 71.59±9.74
+EC 43.75±8.30 89.58±3.61 33.99±7.13 78.99±1.27 81.52±18.57 70.46±8.37

BioBGT 70.00±6.25 76.67±9.77 35.65±1.43 80.39±0.82 89.39±5.66 84.07±2.19

nodes, respectively. Figure 8 provides the curves for all 200 nodes from a randomly selected sample
in the ABIDE dataset. Figure 9 shows the curves for all 190 nodes from a randomly selected sample
in the ADHD-200 dataset. Figure 10 shows the curves for all 90 nodes from a randomly selected
sample in the ADNI dataset.

D.4 FUNCTIONAL MODULE DIVISION

Table 9 gives the empirical labels of ROIs and functional modules. The functional modules used in
this study are based on empirical labels. These labels represent the best effort to categorize regions
based on known functional associations, but they are inherently limited due to the complex biological

Figure 8: The NE and PCC values of 200 nodes from a randomly selected sample in the ABIDE
dataset.
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Figure 9: The NE and PCC values of 190 nodes from a randomly selected sample in the ADHD-200
dataset.

Figure 10: The NE and PCC values of 90 nodes from a randomly selected sample in the ADNI
dataset.

properties of the brain graph. Empirical functional modules often encompass ROIs from diverse brain
regions, resulting in heterogeneity within each module. For example, in the auditory cortex, both
temporal lobe regions (e.g., ‘temporal 103’) and thalamic regions (e.g., ‘thalamus 57’) are included
due to their involvement in auditory processing (Rauschecker & Scott, 2009; Jones, 2012). This
diversity may reduce the uniformity of high self-attention scores within the module. In addition,
because of limited label availability, there are no available labels for the atlas of the ADNI and
ABIDE datasets. Therefore, we can only provide labels for the ADHD-200 dataset.

D.5 MODEL GENERALIZABILITY ANALYSIS

We suggest that BioBGT not only performs well on brain graphs but may also generalize effectively
to other networks with similar structural characteristics, such as the presence of hubs and modules.
To prove this, we apply BioBGT to other types of networks, such as citation networks. We train
our model on the Citeseer (Giles et al., 1998) and Cora (McCallum et al., 2000) datasets for node
classification tasks. Table 10 highlights the superiority of BioBGT on both Citeseer and Cora datasets.
Therefore, our model shows generalizability in extending to other networks that contain hubs and
modules.
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Table 9: The labels of ROIs and functional modules.

Functional Module ROI

Vis

‘occipital 146’, ‘occipital 141’, ‘occipital 136’, ‘occipital 137’,
‘occipital 92’, ‘occipital 149’, ‘occipital 148’, ‘occipital 145’,

‘occipital 147’, ‘occipital 142’, ‘occipital 139’, ‘occipital 135’,
‘occipital 133’, ‘occipital 129’, ‘occipital 126’, ‘occipital 118’,

‘occipital 119’, ‘occipital 106’, ‘post occipital 160’, ‘post occipital 158’,
‘post occipital 159’, ‘post occipital 157’, ‘post occipital 156’,
‘post occipital 153’, ‘post occipital 154’, ‘post occipital 152’

MC

‘inf cerebellum 155’, ‘inf cerebellum 150’, ‘inf cerebellum 151’,
‘inf cerebellum 140’, ‘inf cerebellum 131’, ‘inf cerebellum 122’,
‘inf cerebellum 121’, ‘inf cerebellum 110’, ‘lat cerebellum 128’,
‘lat cerebellum 113’, ‘lat cerebellum 109’, ‘lat cerebellum 98’,

‘med cerebellum 143’, ‘med cerebellum 144’, ‘med cerebellum 138’,
‘med cerebellum 130’, ‘med cerebellum 127’, ‘med cerebellum 120’,
‘post parietal 99’, ‘SMA 43’, ‘basal ganglia 71’, ‘basal ganglia 38’,

‘basal ganglia 39’, ‘basal ganglia 30’

CC

‘post cingulate 115’, ‘post cingulate 111’, ‘post cingulate 108’,
‘post cingulate 93’, ‘post cingulate 90’, ‘post cingulate 73’,

‘vlPFC 15’, ‘vmPFC 13’, ‘vmPFC 11’,
‘vmPFC 7’, ‘vmPFC 6’, ‘vmPFC 1’,

‘IPL 107’, ‘IPL 104’, ‘IPL 101’,
‘IPL 96’, ‘IPL 88’, ‘IPS 116’, ‘IPS 114’

Aud

‘sup temporal 100’, ‘temporal 103’, ‘temporal 95’,
‘temporal 78’, ‘thalamus 57’, ‘thalamus 58’,

‘thalamus 47’, ‘inf temporal 91’, ‘inf temporal 72’,
‘inf temporal 63’, ‘temporal 123’

LP
‘angular gyrus 102’, ‘mid insula 61’, ‘mid insula 59’,

‘mid insula 44’, ‘aPFC 5’, ‘angular gyrus 124’,
‘angular gyrus 117’, ‘aPFC 2’, ‘aPFC 3’

EC
‘dACC 27’, ‘dFC 36’, ‘dFC 34’, ‘dFC 29’,

‘dlPFC 24’, ‘dlPFC 22’, ‘vPFC 23’, ‘vent aPFC 10’,
‘vent aPFC 9’,‘vlPFC 12’,‘dlPFC 16’,‘dFC 3’

Table 10: Model performance on Citeseer and Cora (%).

Citeseer Cora
F1 ACC AUC F1 ACC AUC

GAT 45.45±5.17 70.01±0.68 81.06±1.91 81.02±0.46 81.74±0.53 97.38±0.03
SAT+PE 64.04±1.25 68.80±0.52 87.69±1.99 81.62±0.56 82.84±0.87 94.63±0.34

BioBGT 64.80±0.34 69.02±0.70 88.04±1.51 82.03±1.33 83.14±0.80 94.58±0.24
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