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ABSTRACT

Convolutional Neural Networks (ConvNets) are the current state-of-the-art for
modelling human visual processing whilst also performing tasks on a human per-
formance level. Convolutional features can be seen as analogous to visual recep-
tive fields and thus render them biologically plausible. However, spatially-uniform
sampling and reuse of features across the entire visual field do not accurately rep-
resent structural properties of the human visual system. Here, we present empir-
ical findings of incorporating functional and structural properties of the human
retina into ConvNets on their alignment with human brain activity. We show
that predictions of human EEG data using ConvNets features improve by using
foveated stimuli and that differential spatial sampling in ConvNets explains sev-
eral qualities of EEG recordings. We also find that color and contrast filtering of
inputs in turn do not yield improved predictions. Overall, our results suggest that
incorporating biologically plausible spatial sampling is important for increasing
representational alignment between ConvNets and humans.

1 INTRODUCTION

Deep neural networks are currently state of the art predictive models of human brain activity and
behaviour (Giiclii & van Gerven, 2015; | Khaligh-Razavi & Kriegeskorte, |2014). The kernels of a
trained convolutional neural network (ConvNet) resemble parts of the computational and represen-
tational principles of both early visual cortex, i.e. simple and complex cells in V1, and higher-level
visual cortex, in terms of object representations (Lindsay}, [2021). However, the performances in
predicting human neuroimaging data using features of ConvNets are still below the theoretical max-
imum of explainable variance (Cichy et al.|[2016; |Gifford et al.,[2022;[Huang et al.|[2017;[Wen et al.,
2018)), indicating potential to improve their alignment with humans.

In this paper, we argue that certain, built-in features of ConvNets are limiting their accuracy and
plausibility as models to study the neural mechanisms underlying early human visual processing.
One limitation comes from the spatially uniform input sampling. This architectural feature led to
a tremendous success of ConvNets in solving computer vision tasks (Krizhevsky et al., 20125 He
et al.| [2016; Milletari et al., [2016; Mascarenhas & Agarwall 2021} |Kriegeskorte} [2015; [VanRullen,
2017) as reusing convolutional features across the entire visual field reduced training parameters.
While this decreased computational resources, it also introduced a gap between the physiology of
ConvNets and that of the human retina.

The human retina is structurally divided into areas with a high density of retinal ganglion cells
(RGCs) at the center of gaze called fovea, and areas with a lower density of RGCs, referred to
as periphery (Oyster et al.l [1981f Wassle et al.l [1989} [1990; Kreiman, 2021). This distinction is
relevant in the context of object recognition. To perceive small object details, humans move their
center of gaze, i.e., the fovea, in order to sample visual information about the object with high
resolution. Peripheral vision is important in situations when a lot of new visual information needs
to be processed, such as turning around to a new scene. While not having high acuity, the periphery
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Figure 1: Methodology (a) High-resolution outdoor scene examples used for human experiment and
ConvNet feature extraction. (b) Examples of cropped object images and illustration of train, test,
and validation split for alexnet training. (c) Pre-filters used to augment ConvNets including different
spatial sampling techniques and alternative color coding or contrast filtering. (d) Illustration of
dataset split for high and low-SNR sets and the RSVP target-detection paradigm while recording
EEG. (e) Schematic explanation of linearized cross-validated encoding models of recorded ERPs
using pre-trained ConvNet features.

is optimized to process the essence of vast amounts of information, i.e., the gist of a scene, at a
high temporal resolution (Biederman et al.}[1974} [Potter, [1973};[1976; [Thorpe et al.}[1996; |Greene &|
[Olival 2008}, [Sharan et al.,[2009).

While differential sampling between the fovea and the periphery is theoretically implementable in
ConvNets, the current strategy of ConvNets of uniformly sampling the input by reusing features
solves tasks like object recognition a lot more efficiently and can lead to good predictions of higher
visual cortex (Yamins et al.,[2014). However, enhanced task efficiency does not necessarily reflect
enhanced brain alignment (Konkle et all, 2022} [Kubilius et al [2019), emphasizing that the brain
solves many more tasks under strong energy and anatomy constraints that ConvNets are not sub-
jected to (Dupont et al.} [1993} [Orban et al., [1996}; [DiCarlo et al.} 2012)). The brain therefore needs
to carefully select the right amount of information in an efficient manner, e.g., through differential
spatial sampling. We hypothesize that augmenting ConvNets with differential spatial sampling will
increase their representational similarity with humans.

The retina is converting photoreceptor signals to a color-opponent signal (Koenderink et al. [1972)
that is different from the RGB (red-green-blue) coded input of ConvNets. Adding a color-opponent
transformation to the ConvNet input should therefore enhance their biological plausibility and in-
crease neural prediction performance. Furthermore, it is well-known that structures involved in
visual processing between the retina (beyond bipolar cells) and the primary visual cortex, such as
RGCs or the lateral geniculate nucleus (LGN) 2003)), process in-
formation in a non-linear fashion (Hennig et all, [2002; [Macleod et al., |1992; Benardete & Kaplan|
[1997). Thus, we add a pre-filter that applies a non-linear contrast-based edgemap-algorithm.

Concretely, we add six pre-filters to a ConvNet that have different levels of biological plausibility.
We train these augmented ConvNets on object classification on high resolution images containing a
single object. Object images are cropped from high resolution street scene images from a new dataset
using manually annotated bounding boxes. We collect human EEG data during visual presentation
of these high resolution scene images and evaluate how well the learned ConvNet features are able
to predict differences in event-related-potentials (ERPs) across images. We use cross-validated lin-
earized encoding models to map the convolutional features onto the measured EEG data and use
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the prediction performances as an indicator for the most successful pre-filter. We present empirical
findings for ConvNets augmented with a variety of pre-filter and hypothesize that the degree of bio-
logical plausibility will predict the neural prediction performance. Furthermore, leveraging the high
temporal resolution of EEG recordings, we are able to investigate differences in temporal process-
ing of visual stimuli. The approach of applying a biologically plausible pre-filter to the ConvNet
aims at changing the geometry of the learned representational space and thereby at increasing the
representational similarity between humans and ConvNets (Sucholutsky et al.l 2023)).

2 RELATED WORK

Augmented ConvNets The approach of augmenting ConvNets with static filters that are not sub-
ject to the training data has already led to positive results in increasing representational alignment
between humans and ConvNets. ConvNets trained for object recognition augmented with a V1-like
layer explain more variance in the primate V1 while simultaneously being more robust to adver-
sarial attacks and other image perturbations (Dapello et al [2020). This showcases that static, i.e.,
non-learned filters can enhance the neural prediction performance of ConvNets significantly.

Cortical Magnification and Foveation The fact that foveal input has higher information density
than peripheral input is reflected in the projections of these retinal regions to the (primary) visual
cortex. This effect of cortical magnification, where foveal regions are represented in disproportion-
ately more cortical volume than peripheral regions has been known for decades (Cowey & Rolls,
1974; [Levi et al, |1985). Wang et al.|(2021)) found that this effect simulated by spatial adaptive
gaussian blur can be used to enhance biological plausibility of the training of ConvNets while main-
taining task performance. Related work by Deza & Konkle|(2020) shows that ConvNets with spatial
adaptive foveation display increased robustness against image perturbations while maintaining task
performance even on compressed information. Together, these findings should be taken as evidence
that the highly optimized human retina performs principled computations leading to a robust visual
percept that can be adapted for use in computational models.

Moreover, |da Costa et al.| (2023) propose a method of foveation that transforms regular images into
irregularly-spaced images according to the distribution of retinal ganglion cells in the primate retina
guided by empirical findings. This method of Ganglion Cell Sampling (GCS) leads to a hierarchy
of receptive field properties measured using conventional RF mapping techniques (Dumoulin &
Wandell, |2008) that is similar to that of the human visual hierarchy measured using fMRI.

Peripheral Vision and Scene Perception The above findings motivate the use of foveation as
a method of increasing representational alignment. However, prior studies on human visual per-
ception indicate that peripheral visual processing also plays an important role, especially for scene
perception (Rosenholtz et al., [2012), gist processing (Larson & Loschky, |2009), face perception
(Park et al.,|2023)), and even for providing context (Wu et al.| 2018} |Aldegheri et al.,2023)) in object
detection, segmentation, or transformation. |Wu et al.| (2018)) show that peripheral information can
help improve object recognition performance and robustness to noise in ConvNets. Furthermore,
Groen et al.|(2013)) showed that image-computable scene statistics based on simple pre-cortical fil-
tered inputs (including COC and edgemaps, but also other filters (Scholte et al., [2009; |Groen et al.}
2012)) are predictive of human EEG data elicited by visual stimulation and allow to disambiguate
different models in terms of their predictive power.

3 METHODS

3.1 DATA COLLECTION

Subjects Human EEG data was collected from 31 participants. The institution’s Ethical Commit-
tee approved the experiment and all participants gave written informed consent before participation
and were rewarded with study credits. Four subjects were excluded from analysis because their
recordings were incomplete.

Stimuli / Image dataset A new dataset of 6130 ultra-high resolution outdoor scenes was used
for both human data collection and ConvNet training. Images contain diverse street scenes, have
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an original resolution of 5468x3672 pixels, and are stored in an uncompressed format. Each scene
was manually annotated with object bounding boxes for a set of 16 common outdoor object classes
(see Appendix Table[T). Additionally, a set of 27 indoor scene images were taken to serve as target
images in the human experiment.

Experimental Procedure Subjects were presented with outdoor scene images described above
downsampled to a resolution of 2155x1440 pixels using a rapid serial visual presentation (RSVP)
paradigm (Intraubl [1981} [Keysers et al., 2001; |Grootswagers et al., |2019). In total, the dataset
consisted of 4800 images of which every subject was presented with a subset of 702 images. 1/3
of all images were repeated 10 times throughout the entire experiment while the other 2/3 were
repeated 5 times. Resulting EEG data will be averaged across repetitions per unique images to
increase the Signal-To-Noise-Ratio (SNR). As commonly done (Gifford et al.| 2022)), averaging
across 5 repetitions yields a low-SNR train dataset to fit the encoding model while averaging across
10 repetitions yields a high-SNR test dataset. Stimuli were shown on a 24-inch monitor with a
resolution of 2560x1440 pixels and a refresh rate of 120 Hz. Subjects were seated 63.5 cm from
monitor and were using a head rest such that stimulus spanned 50x29.5 degrees of visual angle.

Each subject performed 240 trials. In every trial a series of 20 images of either only outdoor scenes
(non-target trial) or 19 outdoor scenes and exactly one indoor scene (target trial) was presented.
Participants were asked to perform a target detection task by pressing either *Y’ for a target trial or
"N’ for a non-target trial, at the end of the trial. In each trial, subjects were first presented with 3500
ms gray screen and a red fixation cross in the center of the screen. Next, 20 stimulus images were
presented for 100 ms and a 300 ms gray screen each. The fixation cross was presented continuously.
At the end of the trial, subjects had 3500 ms to respond with a button press and were instructed
to blink before the start of the next trial. The session was divided into 8 blocks each followed by
an enforced break of at least 30 seconds with self-paced continuation. Stimuli were presented and
behavioural data collected using PsychoPy (Peirce et al., 2019).

EEG Acquisition and Preprocessing EEG data was collected using a Biosemi 64-channel Ac-
tiveTwo EEG system (Biosemi Instrumentation) with an extended 10-20 layout, modified with
two additional occipital electrodes (I1 and 12, while removing electrodes F5 and F6). Eye move-
ments were monitored with electro-oculograms (EOGs) and using an EyeLink100 desktop-mounted
system. EEG recording was followed by offline referencing to external electrodes placed on the
earlobes. Resulting EEG data was pre-processed using the MNE software package (Gramfort
et al.} 2013) as follows: high-pass filter at 0.1 Hz (12 dB/octave) and a low-pass filter at 30.0 Hz
(24 dB/octave) followed by two notch filters at 50 and 60 Hz; automatic removal of deflections
> 300mV’; epoch segmentation in -100 to 400 ms from stimulus onset; occular correction using the
EOG electrodes (Gratton et al., [ 1983); baseline correction between -100 and 0 ms; and conversion
to Current Source Density responses (Perrin et al., [1989). Resulting ERP data was averaged across
repetitions per unique image, thus resulting in an sERP specific to each subject, electrode and image.

3.2 COMPUTATIONAL MODELLING

Model Training We trained five alexnet instances (Krizhevsky et al., 2012) for 30 epochs on
object classification using object crops as outlined above. Objects were resized to 400x400 pixels,
and the model was trained to assign one of 16 classes. The dataset consists of 82.236 objects which
are split into non-overlapping sets for training (80%), validation (10%), and testing (10%).

Each model instance is augmented with one pre-filter (see [3.2.1). Importantly, all pre-filters are
static, i.e., no parameters depend on the training context. We report the top-1 accuracy of each
model on the object crop test set. All models were trained and tested using PyTorch 1.11.0 on a
NVIDIA A100 using NVIDIA CUDA 11.3 with cuDNN v8.2.0 support.

3.2.1 IMAGE FILTERS

Full-Scene In the default image condition, models are trained on RGB object crops. During fea-
ture extraction full-scene images are used, i.e., images are resized to a resolution of 2155x1440
pixels without cropping. Images are encoded using RGB-encoding.
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Center-Crops In the center-crop condition, models are trained on the default RGB object crops.
During feature extraction the center-crop filter crops out the central part of the 2155x1440 full-scene
images. Here, we included crops of sizes 400x400, 224x224, 112x112, and 64x64 pixels.

Ganglion Cell Sampling We use the Ganglion Cell Sampling (GCS) technique from [da Costa
et al.|(2023) that transforms an image, such that the central part of the image is magnified and mag-
nification decreases non-linearly as a function of increasing eccentricity according to an empirically
derived distribution (Watson, |2014) of retinal ganglion cells in the primate retina. We use the default
settings reported in table 1 in|da Costa et al.|(2023) and apply the transform to object crops during
training and to full-scenes during feature extraction.

Color Opponent Channels As an alternative color coding to RGB, we use color opponent chan-
nels (COC). An RGB-coded image is converted into: intensity , Blue-Yellow-opponent , and the
Red-Green-opponent (Koenderink et al., [1972). The COC-transform is applied both during training
on object crops and during feature extraction on the full-scene images.

Edgemaps We use an edgemap-algorithm using multiscale contrast magnitude maps from |Groen
et al|(2013). These edgemaps are originally computed on COC-transformed images but can, how-
ever, also be computed directly on the RGB-images. Thus, we treat the COC-transform and the
Edgemap-transform as two orthogonal computation, that can be combined or not. The RGB or COC
input is first rectified and then normalized. Further, we compute contrast magnitude maps by con-
volving the image with a static bank of multiscale filters of different sizes (Zhu & Mumford| [1997;
Croner & Kaplan,|1995;|Ghebreab et al.,[2009; Bonin et al., [2005)). Subsequently, minimum reliable
scale selection is applied (Elder & Zucker, [1998). The edgemap-algorithm is applied both during
training on the object crops and during feature extraction on the full-scene images.

3.2.2 REGRESSION ON TRIAL-AVERAGED ERPs

Encoding Model We built linearized encoding models to map convolutional features onto the ERP
amplitude for each subject, electrode and time point. We used the same pre-filters as applied during
training to extract features for the scene stimuli also used during the human experiment. We used the
pre-trained features from all max pooling layers (features.2 referred to as ’layerl’, features.5 ref. to
as ’layer2’, features12 ref. to as ’layer3’) and from the penultimate fully-connected layer (classifier.5
ref. to as ’feature’). For every model, we included a general encoding model and four specialized
encoding model. The general model used features pooled across all four extracted ConvNet layers.
The four specialized encoding models only used features from one of the four layers, respectively.

Model Fitting Procedure The stimuli used during the EEG experiment were divided into two
sets: a low-SNR set of 5 repetitions per images and a high-SNR set with 10 repetitions. Stimuli
from the low-SNR set are used to fit the linearized encoding model (training set) while the stimuli
from the high-SNR set are used to evaluate generalizability (test set).

For every model instance, we flattened the extracted features per stimulus in the low-SNR set across
all layers and performed a principle component analysis (PCA) across these features. The projec-
tions per stimulus of the first 100 PCs then formed the design matrix. The ERP amplitudes for
every subject, electrode, and time point was then regressed onto the design matrix. On the extracted
features of the stimuli of the high-SNR test set, we applied the same PC projections and then used
the fitted encoding model to predict the ERP amplitude for every subject, electrode, and time point.
We then quantified each model’s predictive performance by calculating the cross-validated Pearson
correlation coefficient between predicted and real ERP amplitude.

Specialized Encoding Model For every ConvNet instance we built four more specialized encod-
ing models. For each specialized encoding model we flattened the extracted features from one of
the four layers per stimulus in the low-SNR set. The encoding model is then identically built and
cross-validated as described in[3.2.2]

Noise ceiling calculation We calculated the noise ceiling, i.e., theoretical maximum of explainable
variance of the ERP amplitude across stimuli, per subject, electrode and time point. We split the ERP
signal across ten repetitions for the high-SNR set into two non-overlapping splits of 5 repetitions
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Figure 2: GCS transform improves EEG prediction performance (left) Line plots show predic-
tive performance across subjects on high-SNR test set for individual electrodes (first column Iz,
second Oz). Colors indicate image-filters used for the feature extraction per model, respectively.
Vertical dashed lines show stimulus onset (gray) and time points corresponding to the topoplots on
the right. Gray-shaded area indicates the average lower and upper bound of the estimated noise
ceiling. (right) Topoplots show t-values for t-tests of the differences of prediction performances be-
tween pairs of conditions across subjects at every electrode for three time points. The top row shows
the results for the Center-Crop 400x400 condition vs. the Full-Scene condition, second row shows
Center-Crop 400x400 vs. GCS condition. Third rows show results for GCS vs. Full-Scene and the
last row shows GCS vs. GCS applied already during training. All p-values are fdr-corrected and
only significant results with alpha = 0.05 are shown in the topoplots.

each. For each subject, electrode and time point, we estimated the lower bound of the noise ceiling
as the correlation between the first split of 5 repetitions and the second split of 5 repetitions and the
upper bound as the correlation between the first split of 5 repetitions and all 10 repetitions.

4 RESULTS

4.1 SPATIAL SAMPLING

Foveal vs. Peripheral Sampling Figure [2] shows the average prediction performance across sub-
jects for two posterior visual electrodes using the general encoding model for the RGB model using
different spatial sampling. We perform t-tests on pairs of conditions and show the t-values across
the whole scalp for selected time points for significant fdr-corrected p-values with alpha = 0.05.
First, we tested for a difference between the predictions of an RGB-trained alexnet on full-scenes
vs. using 400x400 pixel center-crops. We include topoplots for three time points: 95 ms, 134 ms,
and 192 ms. We find that the full-scene model yields significantly better predictions at 95 ms than
the center-crop model thus predicting ERP data better, earlier in time.Crucially, at the time point
of peak performance (134 ms) the center-crop model (r = 0.56) outperforms the full-scene model
(r = 0.46, with t = 8.63, p < 0.0001 for « < 0.05 ) This advantage persists even when cropping
to 224x224 pixels (shown in line plots; see appendix Fig. [5]for crops at 112x112 and 64x64 pixels).
Any differences between full-scene and center-crop have disappeared at 192 ms and later. Predic-
tions of the same model using randomly centered 400x400 crops (purple line) are significantly worse
than all other models post-stimulus (max » = 0.14). However, valid predictions can still be found
around 134 ms as random crops can overlap with central parts. This comparison shows that dras-
tic differential sampling between foveal and peripheral input to a ConvNet can yield qualitatively
different predictions. Peripheral sampling leads to accurate early predictions while foveal sampling
yields later but even more accurate predictions.

Retinal Spatial Sampling Above, we showed that including visual features from either the
foveal/central part of the image or the periphery helps explain distinct properties of ERP signals
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Figure 3: Improvement color coding is layer-dependent (left) Line plots show average prediction
performances across subjects for specialized encoding model for features from layerl in the top row
and from layer2 in the bottom row on the high-SNR test set for individual electrodes (first column
Iz, second Oz). Colors indicate image-filter used for the feature extraction per model, respectively.
Vertical dashed lines show stimulus onset (gray) and time points corresponding to the topoplots.
Gray-shaded area indicates the average lower and upper bound of the estimated noise ceiling. (right)
Topoplots show t-values for t-tests of the differences of prediction performances between pairs of
conditions across subjects at every electrode for three time points. The top rows shows results for
the RGB vs. COC, second row shows RGB vs. Edgemaps, both for features from layerl. Third
row shows RGB vs. COC and fourth row RGB vs. Edgemaps, both for features from layer2. All
p-values are fdr-corrected and only significant results with alpha = 0.05 are shown in the plots.

elicited by high resolution scene images. Next, we asked whether foveal and peripheral features
can be combined more optimally by taking into account the sampling determined by the density
distribution of RGCs in the human retina that dictates a non-uniform spatial sampling.

We tested for differences between the center-crop model and the same RGB-trained model tested on
GCS-transformed images (Fig. [2] second topoplot row). The GCS model outperformed the center-
crop model both early (95 ms) and late (192 ms) in time, but not in between (134 ms). Further, the
GCS model outperforms the full-scene model at 134 ms, showing a higher maximum performance
(r = 0.57, Fig. 2] third topoplot row). Thus, the GCS model simultaneously explains ERP data at
early time points as well as yielding maximum prediction results at all later time points.

Retinal Sampling at Train or Test Time So far, we showed that applying the GCS-transform
during feature extraction improves prediction performance. This result is thus an effect of a trans-
formation of the input space but not the representational space. Hence, the resulting improvements
stems from a input-dependent weighting of visual features and not a training-dependent change of
convolutional features. We thus asked, whether applying the GCS-transform already during training
would improve predictions even more. We find that indeed, the prediction performance increases for
the GCS-trained model for both early (95 ms) and intermediate (134 ms) time points, but not later
(see Fig. [2]last topoplot row). FDR-corrected t-tests reveal a significant improvement especially at
the intermediate time point for posterior electrodes.

4.2 COLOR CODING

We show the results for the specialized encoding models for layerl and layer2 in Fig. 3] for models
using different color coding. The specialized encoding model for layerl shows that the RGB model
(max r = 0.45) outperforms the COC model (max r = 0.31) at every time point and most strongly
in at posterior electrodes (t = 10.22 and p < 0.0001 for Iz at 134 ms). Moreover, the COC-
Edges model significantly outperforms the RGB model at 134 ms at electrodes Iz (r = 0.50) and
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Figure 4: (left) Top-1 accuracy on held-out test set for ConvNets trained using different pre-filter
(indicated in colors). (right) Prediction performances for specialized encoding models averaged
across all subjects, all 19 posterior electrodes and all time points between 50 ms and 300 ms after
stimulus onset. Colors indicate the pre-filter that the ConvNet was trained and tested with (except
”GCS”: trained on RGB, tested on GCS). Prediction performance decreases for later ConvNet layers
and GCS. Advantages of RGB and COC are layer-dependent while Edgemap-trained models yield
robust prediction for every layer.

Oz (r = 0.52). In turn, the specialized encoding model for layer2 shows that the RGB model is
outperformed by all other models. Not only achieve the COC, the RGB-Edges and the COC-Edges
models a higher maximum performance but also yield better predictions at early time points.

Using the general encoding model (see appendix Fig. [6), we find the same pattern of results as for
layerl. Further, we find no differences between RGB model and RGB-Edges or COC-Edges model
at all time points. However, both the RGB-Edges model and the COC-Edges model outperform
the COC model at around 130 ms (max r = 0.45 for RGB-Edges model and » = 0.47 for COC-
Edges model for Iz at ¢ = 0.1344 s). Overall, we see a clear disadvantage of COC model features for
predicting EEG response. The RGB-Edges model performs equally well as the RGB model, showing
that the Edgemap-algorithm does not yield better model features compared to RGB. However, the
COC-Edges model shows that the Edgemap-algorithm can yield features that recover the prediction
performance when compared to the COC model.

To conclude, the RGB model is in most cases the best performing model, together with the edgemap
models. For very specific and localized cases we see robust and significant improvements of espe-
cially the COC-Edges model using the layer-wise encoding model.

4.3 OBIJECT CLASSIFICATION PERFORMANCE

Classification performance of ConvNets decreases with increasing biological plausibility of added
pre-filters (see Fig. A left). Taking the RGB model as a baseline for (blue dashed line) a drop in test
accuracy can be observed for both edges models but mainly for the GCS-trained model. Moreover,
applying GCS to an RGB-trained model results in a drastic drop of test accuracy resulting from the
distribution shift of the input image.

Furthermore, the specialized encoding models show that later layers generally lead to a decreased
ERP amplitude prediction performance than earlier layers (see Fig. @ right). These layers are com-
monly associated with a stronger tuning for abstract object classes more than low-level visual fea-
tures. We therefore see a mismatch between suitability of model features for object classification
and for predicting EEG responses.

5 DISCUSSION

In this paper, we evaluated methods to increase the representational alignment of brain activity (hu-
man EEG) and computational models (ConvNets). ConvNets trained on object recognition are often
compared to the human ventral visual stream which is thought to be highly involved in representing
objects. However, the comparison assumes that visual processing starts with the cortex, while in bi-
ological organisms, substantial processing occurs in peripheral sensory organs and pathways, in this
case the eye and the thalamus. Here, we attempted to strengthen the plausibility of using ConvNets
as models of human visual processing by augmenting ConvNets with pre-filters that are known to be
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computed in the retina and the LGN. We find that differential spatial sampling as an augmentation
to ConvNets improves their predictive power while alternative color coding and contrast filters show
no or only minimal improvements for EEG predictions.

Differential sampling The human fovea is known to have an effective resolution that is orders
of magnitudes larger than that of the periphery. ConvNets sample their input spatially uniform and
thus do not approximate the differential sampling of the human retina. The most drastic way of
modelling this differential sampling that favours information from the center is to remove peripheral
visual information. By using only the a small central part of the input to the ConvNet we show
that a large part of the variance in the ERP signal is elicited by foveal stimulation, as randomly
taken crops have much lower predictive power. This effect is strongest for very posterior electrodes
and highlights the amount of processing that is happening in the primary visual cortex on foveal
visual information (cortical magnification). However, the extent of cortical magnification could be
overestimated based on these results as a large part of the visual cortex is located in the cerebral
fissure and might therefore not contribute to the EEG signal.

Crucially, the high temporal resolution of EEG recordings enables us to distinguish between early
and late time windows of ERP responses. We find that ConvNets processing full-scenes can predict
earlier parts of the ERPs that are associated with the fast gist processing that is largely dependent on
peripheral information. These early predictions are substantially worse for the center-crop model.

Furthermore, the GCS model can account for both, early responses associated with gist processing
and for peak prediction performance later in time. Thus, the amount and weighting of information
resulting from the GCS-transform seems to be optimal for predicting ERPs elicited by natural scenes.

The spatial invariance of ConvNets might pose a crucial limitation to how similar ConvNets can be
to the human visual cortex and how much variance of EEG data they can explain. Here, we see that
altering the spatial distribution of the input to a ConvNets improves predictions. We find additional
positive effect of including the GCS-transform during training implying a change of the underlying
representational geometry across all layers that is beneficial for predicting ERP responses.

Object Classification Performance All models shown in this paper were trained on object clas-
sification. Thus, features are not optimized to predict ERP amplitudes and increased prediction
performance using the linearized encoding model is a byproduct of the used filters. We see a trend
of decreasing object classification accuracy for models using pre-filters with increasing biological
plausibility. However, any model that predicts the brain better might also be of risk of showing a
decrease in task performance for any single task but might exhibit a broader generalizability.

GCS-trained models show the strongest deficit for object classification. Object crops for training
are taken from the full scene by using the smallest rectangle that covers the whole object, often re-
sulting in tightly cropped images. Applying the GCS-transform essentially reduces the information
density in the periphery thereby removing important object-related information. Thus, a drop in per-
formance, alongside with increased reliance on local features should be expected. A more optimal
way of applying the GCS-transform would be to use it directly on the full-scene (or a larger part of
the scene) and thereby emulating the main function of foveation, i.e., to sample an object of interest
with a high spatial resolution.

Color Coding and Contrast Filter Augmenting a ConvNet with color or contrast pre-filter has so
far not led to major improvements in predicting human EEG recordings. Especially, the linear COC
filter is only beneficial after several layers of non-linear processing in the ConvNet. The non-linear
contrast filters indeed strengthen this notion as predictions are improved for both early and later
layers. However, the default RGB model is the overall best performing model, especially given the
computational overhead of the pre-filters. Nonetheless, historically ConvNets have been optimized
to process RGB coded input for object classification. It is therefore not surprising that changing
the input coding does not yield improvements when compared to an already optimized default. In
turn, contrast filtering might yield both task performance improvements as well as neural prediction
improvements when trained on task thats e.g., require robustness to noise.

Future work We found a discrepancy of optimal ConvNet features for object classification and
for predicting human EEG data. Additional tests for robustness against adversarial attacks or image
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perturbation could inform about the benefits of model features that can be used to predict human
EEG data. As human vision is highly robust, we would hypothesize that ConvNets augmented with
biologically plausible pre-filter exhibit higher degrees of robustness.

To conclude, differential spatial sampling has a strong positive effect on the predictive power of
ConvNets for predicting human EEG. While GCS-training improved predictions even further, we
also see degraded object recognition performance. Future work should explore applying GCS trans-
forms to model features instead of images. Thereby, the distribution shift of the ConvNet input can
be mitigated while keeping the benefit of the GCS transform. Overall, we see differential spatial
sampling as an input-transformation as an important asset for neural encoding models.
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A APPENDIX

Class label | Traffic light | SUV | Lamppost | Bench | Scooter | Compact car | Traffic sign | Bike |
#Objects | 3291 |1705| 17392 | 2390 | 1843 | 11369 | 11319 |5546]
Class label | Tree | Carrier bike | Truck | Van | Front door | Bollard | Balcony door | Bin | Total |
FObjects [1774] 1780 | 1527 | 10| 2641 | 8590 | 4428 | 643182236

Table 1: Object class annotation labels used for ConvNet object classification training. The total
amount of object crops used for ConvNet object classification training is 82.236.
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Figure 5: Information pf foveal image regions is sufficient to yield robust predictions Plots show
average prediction performance across subjects on the high-SNR test set for individual electrodes.
Colors indicate size of the center-crop used for feature extraction per model, respectively. All mod-
els shown are RGB-trained. Vertical dashed lines show stimulus onset (gray). Gray-shaded area
indicates the average lower and upper bound across subjects of the estimated noise ceiling per elec-
trode and time point.
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Figure 6: Advanced color coding or contrast filtering does not improve prediction performance
(left) Line plots show average prediction performances across subjects on the high-SNR test set for
individual electrodes (first column Iz, second column Oz). Colors indicate pre-filter used. Vertical
dashed lines show stimulus onset (gray) and time points corresponding to the topoplots. Gray-
shaded area indicates the average lower and upper bound across subjects of the estimated noise
ceiling per electrode and time point. (right) Topoplots show t-values for t-tests of the differences
of prediction performances between pairs of conditions across subjects at every electrode for three
time points. The top rows shows results for the RGB vs. COC, second row shows RGB vs. RGB-
Edges. Third row shows COC vs. COC-Edges and fourth row RGB vs. COC-Edges. All p-values
are fdr-corrected and only significant results with alpha = 0.05 are shown in the topoplots.
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