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Abstract

We investigate the estimation of the causal effect
of a treatment variable on an outcome in the pres-
ence of a latent confounder. We first show that the
causal effect is identifiable under certain conditions
when data is available from multiple environments,
provided that the target causal effect remains in-
variant across these environments. Secondly, we
propose a moment-based algorithm for estimating
the causal effect as long as only a single parame-
ter of the data-generating mechanism varies across
environments – whether it be the exogenous noise
distribution or the causal relationship between two
variables. Conversely, we prove that identifiabil-
ity is lost if both exogenous noise distributions of
both the latent and treatment variables vary across
environments. Finally, we propose a procedure to
identify which parameter of the data-generating
mechanism has varied across the environments and
evaluate the performance of our proposed methods
through experiments on synthetic data.

1 INTRODUCTION

Identifying the causal effect of a treatment on an outcome
is a fundamental objective in various fields, including eco-
nomics [Card, 1993, Angrist and Krueger, 1991], social
sciences [Rosenbaum and Rubin, 1983, Imbens, 2024], epi-
demiology [Robins et al., 2000], and artificial intelligence
[Pearl, 2009, 2014]. One of the primary challenges in causal
effect identification is the presence of latent confounders –
unobserved variables that influence both the treatment and
the outcome. Ignoring latent confounders and simply re-
gressing the outcome on the treatment can lead to biased
estimates of the causal effect. To address the challenge of
latent confounding, one might conduct a randomized con-
trolled trial (RCT). However, RCTs are often too expensive,

time-consuming, or even infeasible due to ethical or legal
constraints.

In many real-life applications, data collected from different
domains often exhibit heterogeneity due to variations in the
causal mechanisms that generate each variable from its di-
rect causes. There is extensive research in the literature (see
Section 4 for the related work) on causality that leverages
data from multiple environments to recover causal relation-
ships. In particular, several studies [Ghassami et al., 2017,
Huang et al., 2020, Jaber et al., 2020] have shown that data
collected from multiple environments can narrow the set of
possible causal graphs compatible with the observed data,
compared to using data from a single environment.

Research in multi-environment settings follows two main
approaches (see Section 4 for more details). The first aims
to identify an equivalence class of causal structures by lever-
aging distributional shifts across environments, assuming
these arise from unknown interventions. The second ap-
proach focuses on identifying the direct causes of a target
variable rather than the entire causal graph, often assum-
ing linear causal mechanisms and estimating causal effects
corresponding to the direct causes.

In this paper, we study the problem of identifying the causal
effect of a treatment T on an outcome Y within linear struc-
tural causal models (SCMs) in a multi-environment setting
(see Figure 1), where a latent confounder U between T and
Y is present. This problem closely relates to the second
approach discussed earlier. However, prior work either does
not account for latent confounding between treatment and
outcome or imposes restrictive assumptions on which causal
mechanisms can vary across environments (see Section 4
for more details).

The main contributions of our work are as follows:

• For the setup considered in Figure 1 with two environ-
ments, we show (Theorem 3.1) that if there is only a
single unknown change across two domains, then we
can classify whether this change occurs in the causal
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effect of the latent confounder U on treatment T or
outcome Y (i.e. only α or γ varies between the two
environments), or in the exogenous noises of variables
T or U . Furthermore, in the case that the varying pa-
rameter is either the causal effect of U on T or that
of U on Y , then the causal effect of the treatment T
on Y is identifiable uniquely, and otherwise it can be
recovered up to two possible candidates. We provide
an estimation procedure tailored to each of these cases.

• We provide a non-identifiability result (Theorem 3.6)
showing that the causal effect is not identifiable from
two environments if both the exogenous noises of T
and U vary across the environments.

• We provide extensive experimental results validating
our algorithms. These results show that our proposed
estimators consistently converge to the true value of the
treatment effect, whereas linear regression baselines
exhibit systematic bias. In addition, we analyze the
typical range of key parameters in our algorithms. Our
code is provided online for reproducibility purposes.

2 PRELIMINARIES

2.1 NOTATION

Let G = ⟨V,E⟩ be an directed acyclic graph (DAG), such
that each vertex represents a random variable and each edge
corresponds to the direct causal relationship between the
random variables it connects. A DAG G with causal rela-
tions defines a structural causal modelM (SCM) such that
any random variable X in the graph satisfies the structural
equation

X = fx(Pa(X), ϵx),

where Pa(X) denotes parents of X in DAG G, ϵx is the ex-
ogenous noise corresponding to X , and fx(·) is a function
capturing how variable X causally depends on its parents
in the causal graph. The subscript in each exogenous noise
denotes the variable to which it corresponds, e.g., ϵx is the
noise pertaining to X . All exogenous noises in a structural
equation model are assumed to be jointly independent. To
indicate that the structural causal modelM corresponds to
an environment i, (i) is added as a superscript, i.e.M(i).
Similarly, X(i), ϵ(i), f (i)x , denote a random variable, an ex-
ogenous noise, and a causal relationship in the environment
i. For ease of presentation, we may omit the superscript (i)
if the index of the environment is not important or is clear
from the context.

For any variable X ∈ V, the intervention do(X = x) is
an operation that converts SCMM to a new one where the
equation ofX inM is replaced by the constant x. Intuitively,
this operation can be seen as performing an experiment
where one forces a variable X to take a specific value x.

2.2 IDENTIFIABILITY FROM MULTI-DOMAIN
OBSERVATIONS

Let V be the set of random variables in SCMM and let
observed random variables T, Y ∈ V denote the treatment
and the outcome variable, respectively. In this paper, we
focus on linear SCMs, a widely adopted assumption in the
literature.

Assumption 1 (Linear SCM). For any random variable
X ∈ V, function fx(·) is a linear function:

X =
∑

S∈Pa(X)

αS,XS + ϵx.

Note that coefficient αS,X represents the direct causal ef-
fect of the variable S on X . The causal effect of the treat-
ment T on the outcome Y is defined as E[Y |do(T =
1)]− E[Y |do(T = 0)]. Under Assumption 1 (Linear SCM),
finding this causal effect is equivalent to learning coefficient
β := αY,T .

In this paper, we assume the observational data comes from
a collection of linear SCMsM(1),M(2) . . . ,M(n) that sat-
isfy the following assumption.

Assumption 2. The causal effect of the treatment T on
the outcome Y is invariant across domains, that is β(1) =
β(2) = · · · = β(n).

Assumption 2 states that the treatment effect remains the
same across the domains. For instance, in example proposed
by Shi et al. [2021], one may be interested in the effect of
sleeping pills on lung disease using electronic health records
collected from multiple hospitals. The causal effect of sleep-
ing pills on lung disease is assumed to remain consistent
across different hospitals.

We denote by F
(
M(i),M(j)

)
, the set of the non-

invariant coefficients and exogenous noises between
two SCMs M(i) and M(j). For example, consider
two equations X(i) = α(i)ϵ

(i)
u + γ(i)ϵ

(i)
d + ϵ

(i)
x and

X(j) = α(j)ϵ
(j)
u + γ(j)ϵ

(j)
d + ϵ

(j)
x , where α(i) = α(j),

γ(i) ̸= γ(j), ϵ(i)u ̸∼ ϵ
(j)
u , ϵ(i)x ̸∼ ϵ

(j)
x and ϵ(i)d ∼ ϵ

(j)
d (no-

tation ∼ means the random variables are drawn from the
same distribution). Then α, ϵd ̸∈ F

(
M(i),M(j)

)
while

γ, ϵu, ϵx ∈ F
(
M(i),M(j)

)
.

Additionally, we require all exogenous noises to have finite
moments and be “well-defined” given the moments.

Assumption 3 (Finite moments). Given an SCMM on the
set of variables V, for any X ∈ V and for any n ∈ N,
E [ϵnx ] <∞.

Assumption 4. Given an SCMM on the set of variables V,
for any X ∈ V, there exists some s > 0 such that the power
series

∑
k E

[
ϵkx
]
rk/k! converges for any 0 < r < s.
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The last assumption implies that the distribution of the ran-
dom variable X is uniquely determined given its moments.

Next, we formalize the definition of identifiability of the
treatment effect.

Definition 1. (Identifiability) Suppose Assumptions 1
through 4 hold. Moreover, assume that there are n envi-
ronments, each with a true underlying SCM denoted by
M(i) for environment i. The treatment effect β is said to
be identifiable from merely observational distributions of n
environments if for any collection of SCMs {M̃(i)}ni=1 such
that M̃(i) entails the same observational distribution as
M(i) for every i ∈ {1, · · · , n}, then the treatment effect in
the collection {M̃(i)}ni=1 is equal to the one in {M(i)}ni=1;
that is, β̃ = β.

In this work, we address the problem for the canonical case
of two environments (i.e., n = 2). This characterization
suffices as the identifiability results extend to larger values
of n simply by considering the environments in pairs.

3 MAIN RESULT

We consider the problem of estimating the causal effect
of treatment T on the outcome Y in DAG G given in Fig-
ure 1. It is well-known that given observational data from
a single environment, this causal effect is not identifiable
[Salehkaleybar et al., 2020]. We will show that the causal
effect can be identified given observational data from two
environments under certain mild assumptions.

T (i) Y (i)

U (i)

β

α
(i
) γ (i)

Figure 1: Causal graph of a linear SCM in the i-th domain.

More specifically, in each domain i ∈ {1, 2}, we consider
the following linear SCM (with the corresponding causal
graph in Figure 1) with a treatment variable T (i), an out-
come variable Y (i), and a latent confounder U (i) :

U (i) := ϵ
(i)
u ,

T (i) := α(i)U (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γ(i)U (i) + ϵ
(i)
y ,

(1)

where ϵ(i)u , ϵ(i)t , ϵ(i)y are exogenous noises corresponding to
U (i), T (i), and Y (i), respectively. In the sequel, we use β
and ‘the treatment effect’ interchangeably.

In this section, we will show that if F
(
M(1),M(2)

)
is known and |F

(
M(1),M(2)

)
| = 1, and additionally

ϵy ̸∈ F
(
M(1),M(2)

)
, then the treatment effect can be

uniquely identified under mild non-Gaussianity assump-
tions. We will propose a procedure to learn β for any given
F
(
M(1),M(2)

)
satisfying the aforementioned conditions.

Note that the case F
(
M(1),M(2)

)
= {ϵy} is not of inter-

est, since intuitively, the change in the distribution of ϵy does
not provide any new information on the treatment mecha-
nism. Moreover, it can be shown that the treatment effect
β is not uniquely identifiable for such a scenario. For com-
pleteness, we provide proof of this statement in Proposition
1 in Appendix A.

In practice, we might only know that |F(M(1),M(2))| =
1, without knowing which parameter has changed across
environments. The following result indicates that even in
such a scenario, β can be uniquely identified in some cases,
and identified up to a finite set in the others.

Theorem 3.1. Consider two linear SCMs M(1),M(2)

compatible with the graph of Figure 1, such that
|F

(
M(1),M(2)

)
| = 1. The treatment effect β can be

uniquely identified if F
(
M(1),M(2)

)
⊂ {α, γ} under

some additional case-specific mild assumptions; otherwise,
if F

(
M(1),M(2)

)
⊂ {ϵt, ϵu}, β can be identified only up

to two possible candidates.

The proofs of all our results are given in Appendix A.
Below, we first show that as long as we know which single
parameter or exogenous noise variable has changed across
domains, we can identify β uniquely. Specifically, the pro-
cedures for identifying β when F

(
M(1),M(2)

)
= {ϵt},

F
(
M(1),M(2)

)
= {ϵu}, F

(
M(1),M(2)

)
= {γ} and

F
(
M(1),M(2)

)
= {α} are given in Sections 3.1, 3.2, 3.3

and 3.4, respectively. Next, in Section 3.5, we outline the
procedure for identifying the varying parameter across the
two environments given that |F

(
M(1),M(2)

)
| = 1. In

particular, we can always distinguish whether the source
of change was γ or α across the domains. However, if
F
(
M(1),M(2)

)
⊂ {ϵu, ϵt}, we cannot pinpoint whether

the change was due to variation in the distribution of ϵu, or
ϵt. Therefore, we need to apply both procedures in Sections
3.1 and 3.2 to recover two candidates for the treatment effect
β.

In Section 3.6, we prove a non-identifiability result, namely,
if the distributions of both exogenous noises ϵt and ϵu vary
across the two environments, then β is not identifiable.

Note that all the results presented in this work can be
easily generalized to settings with observed confounders
X = {X1, . . . , Xm}, e.g., Figure 2. More specifically, by
regressing the treatment and outcome on the observed co-
variates and working with the residuals, the problem reduces
to the case without observed covariates – a similar procedure
was done in [Kivva et al., 2024].
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Figure 2: Causal graph with observed covariates X.

3.1 THE CASE F
(
M(1),M(2)

)
= {ϵt}

Here we consider the case where the distribution of ϵt is
changing across the two environments. The corresponding
SCMs for environments 1 and 2 can be simplified to1

U (i) := ϵu,

T (i) := αU (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γU (i) + ϵy.

(2)

Theorem 3.2. Suppose M(1),M(2) are linear SCMs
compatible with the DAG of Figure 1, such that
F
(
M(1),M(2)

)
= {ϵt}. Then under Assumptions 1-4, the

treatment effect β can be recovered uniquely.

The proof of the above result can be found in Appendix
A. Algorithm 1 follows from the proof and outlines the
procedure for estimating the treatment effect β in this case.

Algorithm 1 F
(
M(1),M(2)

)
= {ϵt}

Input: {T (i), Y (i)} and F
(
M(1),M(2)

)
={ϵt}

1: k ← 1
2: while E

[ (
T (1)

)k ]
= E

[(
T (2)

)k] do
3: k ← k + 1

4: β ← E
[
Y (1)(T (1))k−1−Y (2)(T (2))k−1

]
E[(T (1))k−(T (2))k]

5: RETURN: β

Here, at the end of while loop, we find the smallest k such
that

E
[(
ϵ
(1)
t

)k] ̸= E
[(
ϵ
(2)
t

)k]
,

which is required to estimate β with the formula given in
line 4 of Algorithm 1.

Remark 1. Note that under Assumption 4, both distribu-
tions ϵ(1)t and ϵ(2)t are uniquely defined given all the mo-
ments. Since these distributions are different, they differ at
least in one of their moments, which guarantees that such a
k exists.

1Please note that while the distributions of ϵu and ϵy remain
unchanged across the domains, the realizations of ϵu and ϵy differ
between the two domains.

3.2 THE CASE F
(
M(1),M(2)

)
= {ϵu}

In this section, we assume that only the distribution of ϵu is
changing across the two environments. The SCM equations
can be reduced similarly to Equation 2, as in the previous
case. However, the assumptions for the identifiability of the
treatment effect β are slightly stronger.

Theorem 3.3. Suppose M(1),M(2) are linear SCMs
compatible with the DAG of Figure 1, such that
F
(
M(1),M(2)

)
= {ϵu}. Suppose that ∃n ∈ N such that

E[ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
. Then under Assumptions

1-4, the treatment effect β can be recovered uniquely.

In the statement of the theorem above, we have an additional
restriction on the exogenous noise of the treatment, which
under Assumption 4, is equivalent to ϵt not being Gaussian.
Based on the proof of the theorem, we provide Algorithm 2
for estimating the treatment effect β in this case.

Algorithm 2 F
(
M(1),M(2)

)
= {ϵu}

Input: {T (i), Y (i)} and F
(
M(1),M(2)

)
= {ϵu}

1: k ← 1
2: while E

[(
T (1)

)k]
= E

[(
T (2)

)k] do
3: k ← k + 1

4: r1 ←
E[Y (1)(T (1))k−1−Y (2)(T (2))k−1]

E[(T (1))k−(T (2))k]
5: r2 ← GetRatio

(
r1T

(1) − Y (1), T (1)
)

6: β ← r1 − r2
7: RETURN: β

Similarly to the previous case, Algorithm 2 identifies
through the while loop the smallest k for which

E
[(
ϵ(1)u

)k] ̸= E
[(
ϵ(2)u

)k]
.

By knowing k then in line 4 we compute β + γ
α and denote

it by r1. The algorithm then obtains the value of γ
α , denoted

as r2, using the function GetRatio(·), which was proposed
by Kivva et al. [2024]. We recover β by subtracting r2 from
r1. Below we explain the workings of function GetRatio(·).
Suppose we observe two random variables X1 and X2 that
can be represented as

X1 = aϵ+ ϵ1,

X2 = bϵ+ ϵ2,

where ϵ1, ϵ2 and ϵ are mutually independent. Then
GetRatio(X1, X2) computes the ratio a/b under the same
assumption on the distribution of ϵ as in Theorem 3.3 im-
poses on the distribution of ϵt. Moreover, it is important to
emphasize that algorithm GetRatio(·) does not require the
knowledge of the constant n; it only requires the existence
of such n. For further details, see Kivva et al. [2024].



3.3 THE CASE F
(
M(1),M(2)

)
= {γ}

Here, we assume that the causal effect of the latent con-
founder on the treatment varies across environments. For
simplicity of notation, specifically for this setting, we rescale
the exogenous noise ϵu together with α and γ(i) in the SCMs
M(1) andM(2) so that ϵu ← αϵu, α← 1, γ(i) ← γ(i)/α.
Here we used that α and ϵu are invariant across environ-
ments, and therefore the corresponding SCM after rescaling
will take the following form:

U (i) := ϵu,

T (i) := U (i) + ϵt,

Y (i) := βT (i) + γ(i)U (i) + ϵy,

(3)

where ϵu and γ(i) are rescaled and the distributions of all
exogenous noises are the same across environments, but not
there realizations.

Theorem 3.4. Suppose M(1),M(2) are linear SCMs
compatible with the DAG of Figure 1, such that
F
(
M(1),M(2)

)
= {γ}. Suppose ∃n ∈ N such that

E [ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
. Then under Assumptions

1-4, the treatment effect β can be recovered uniquely.

The proof of this theorem can be found in Appendix A.
Below, we provide a procedure for estimating the treatment
effect β, which consists of multiple steps.

Step 1. First, we compute 2β + γ(1) + γ(2) as

2β + γ(1) + γ(2) =
E
[(
Y (2)

)2 − (
Y (1)

)2]
E
[
Y (2)T (2) − Y (1)T (1)

] . (4)

We then define new variables X(1), X(2) as follows

X(i) :=
(
2β + γ(i) + γ(i)

)
T (i) − 2Y (i). (5)

We also define a := γ(2) − γ(1), and b := γ(2) + γ(1).

Step 2. We use the following equations to compute the
values ã := aE[ϵ2u] and b̃ := bE[ϵ2t ]:

aE
[
ϵ2u
]
=

1

2

(
E
[
T (1)X(1)

]
− E

[
T (2)X(2)

])
,

bE
[
ϵ2t
]
=

1

2

(
E
[
T (1)X(1)

]
+ E

[
T (2)X(2)

])
.

Since E
[
ϵ2u
]

and E
[
ϵ2t
]

are always positive, ã and b̃ reveal
the signs of a and b.

Step 3. For every n, we define ϕ(i)n as follows. If n is odd,

ϕ(i)n = E
[(
T (i)

)n−1
X(i)

]
,

and if n is even,

ϕ(1)n =E
[
X(1)

(
T (1)

)n−1]− (n− 1)(ã+ b̃)E
[(
T (1)

)n−2]
,

ϕ(2)n =E
[
X(2)

(
T (2)

)n−1]− (n− 1)(b̃− ã)E
[(
T (2)

)n−2]
.

In this step, we find the smallest n ∈ N such that at least one
of the values {ϕ(i)n }2i=1 is non-zero. We denote this value by
n∗. Note that such n∗ exists under the assumption imposed
on ϵt in Theorem 3.4 (see the proof for the details).

Step 4. Define ψ(1)
j and ψ(2)

j for every positive integer j as
follows. If n∗ is odd,

ψ
(i)
j = E

[(
T (i)

)n∗−j(
X(i)

)j]
,

and if n∗ is even,

ψ
(1)
j = E

[(
X(1)

)n∗−j(
T (1)

)j]
− (n∗ − 1)(ã+ b̃)E

[(
X(1)

)n∗−2]
,

ψ
(2)
j = E

[(
X(2)

)n∗−j(
T (2)

)j]
− (n∗ − 1)(b̃− ã)E

[(
X(2)

)n∗−2]
.

Finally, two possibilities may occur based on the values of
ϕ
(i)
n∗ , which are dealt with in step 5.

Step 5. Case 1: ϕ(1)n∗ − ϕ(2)n∗ ̸= 0. Choose j = 3, l = 2 if
n∗ is odd, and j = 1, l = (n∗ − 1) otherwise. The absolute
value of a = γ(2) − γ(1) can be computed via

|a| =

∣∣∣∣∣ψ
(1)
j − ψ

(2)
j

ϕ
(1)
n∗ − ϕ(2)n∗

∣∣∣∣∣
1/l

,

and as mentioned earlier, a has the same sign as ã. As a
result, β + γ(1) can be computed as β + γ(1) = 1

2 (2β +

γ(1) + γ(2) − a). Finally, we recover β via

β = β+γ(1)−GetRatio
((
β + γ(1)

)
T (1) − Y (1), T (1)

)
.

Step 5. Case 2: ϕ(1)n∗ − ϕ(1)n∗ = 0. In this case, by definition
of n∗, ϕ(1)n∗ + ϕ

(1)
n∗ ̸= 0. We choose j = 2, l = 1 if n∗ is

odd, and j = 1, l = (n∗ − 1) otherwise. In this case we can
recover b via

|b| =

∣∣∣∣∣ψ
(1)
j + ψ

(2)
j

ϕ
(1)
n∗ + ϕ

(2)
n∗

∣∣∣∣∣
1/l

,

and the fact the b and b̃ have the same sign. Finally, β =
1
2 (2β + γ(1) + γ(2) − b).

3.4 THE CASE F
(
M(1),M(2)

)
= {α}

Here, we assume that only the causal effect of the latent
variable on the treatment varies across environments. The
SCMM(i) corresponding to the environment (i) is then

U (i) := ϵu,

T (i) := α(i)U (i) + ϵt,

Y (i) := βT (i) + γU (i) + ϵy.

(6)



Algorithm 3 F
(
M(1),M(2)

)
= {α}

Input: {T (i), Y (i)} and F
(
M(1),M(2)

)
= {ϵt}

1: h(β) := E
[(
Y (1) − βT (1)

)2]− E
[(
Y (2) − βT (2)

)2]
2: β1, β2 ← roots (h(·))
3: X(j)

i := Y (j) − βiT (j)

4: ϕ(j)i,m := E
[(
X

(j)
i

)m
T (j)

]
5: ψ(j)

m := E
[(
X

(j)
i

)m]
6: n1 ← 2, n2 ← 2
7: while ϕ(1)i,ni−1 − (ni − 1)ϕ

(1)
i,1ψ

(1)
ni−2 = 0 do

8: ni ← ni + 1
9: if n1 = n2 then

10: i← arg min
i

∣∣∣∣ϕ(1)
i,n−1

ϕ
(2)
i,n−1

− ϕ
(1)
i,n−1−(n−1)ϕ

(1)
i,1ψ

(1)
n−2

ϕ
(2)
i,n−1−(n−1)ϕ

(2)
i,1ψ

(2)
n−2

∣∣∣∣
11: else
12: i← arg max

i
[ni]

13: RETURN: βi

Theorem 3.5. Suppose M(1),M(2) are linear SCMs
compatible with the DAG of Figure 1, such that
F
(
M(1),M(2)

)
= {α}. Suppose ∃n ∈ N such that

E [ϵnu] ̸= (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
. Then under Assumptions

1-4 the treatment effect β can be recovered uniquely almost
surely2.

See Appendix A for a formal proof. The procedure for esti-
mating the treatment effect β is presented in Algorithm 3.
This algorithm takes advantage of the fact that Y (i) − β̂T (i)

does not depend on α(i) if and only if β̂ = β. Therefore,
solving the quadratic equation h(β) (line 1 of Algorithm 3)
for β (with coefficients that can be computed from obser-
vational data) provides us with two possible candidates.We
can then identify the true value of β among these two candi-
dates using the criterion in line 10 of Algorithm 3, which is
equal to zero only for the correct value of β. See the proof
of Theorem 3.5 for further details.

3.5 DETECTING THE SOURCE OF CHANGE

We begin by verifying whether the varying parameter is γ.
This can be done through comparing the distributions of
T and Y between the environments: if F

(
M(1),M(2)

)
=

{γ}, then the distributions of T (1) and T (2) are identical,
whereas the distributions of Y (1) and Y (2) are different. If
we conclude that F

(
M(1),M(2)

)
̸= {γ}, then we check

whether F
(
M(1),M(2)

)
= {α}. To do so we need to con-

2Here we consider the Lebesgue measure on the set of coeffi-
cients of linear SCMs M(1),M(2). Then the causal effect is not
identifiable only for a set of coefficients with measure zero.

T̃ (i) Ỹ (i)

Ũ (i)

β + γ
α

1
− γ
α

Figure 3: The causal structure corresponding to SCM M̃(i).

sider the following quantities.

E
[
T (1)Y (1) − T (2)Y (2)

]/
E
[(
T (1)

)2 − (
T (2)

)2]
,

E
[(
Y (1)

)2 − (
Y (2)

)2]/E[T (1)Y (1) − T (2)Y (2)
]
.

If these two quantities are equal or if both their denomina-
tors are equal to zero, we conclude that F

(
M(1),M(2)

)
̸=

{α}; otherwise F
(
M(1),M(2)

)
= {α}. Finally, if

F
(
M(1),M(2)

)
̸⊂ {γ, α}, then we conclude that

F
(
M(1),M(2)

)
⊂ {ϵt, ϵu}.

3.6 NON-IDENTIFIABILITY

We shall now show that β is not identifiable if
F
(
M(1),M(2)

)
= {ϵu, ϵt}. The SCMM(i) correspond-

ing to the environment i takes the following form:

M(i) =


U (i) := ϵ

(i)
u ,

T (i) := αU (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γU (i) + ϵy.

(7)

Theorem 3.6. Suppose M(1),M(2) are linear SCMs
compatible with the DAG of Figure 1, such that
F
(
M(1),M(2)

)
= {ϵu, ϵt}. The treatment effect β is not

identifiable from the observational data from both domains
and F

(
M(1),M(2)

)
.

Proof. To prove that β is not identifiable, we will construct
two new SCMs M̃(1) and M̃(2),

M̃(i) =


Ũ (i) := ϵ̃

(i)
u ,

T̃ (i) := α̃Ũ (i) + ϵ̃
(i)
t ,

Ỹ (i) := β̃T̃ (i) + γ̃Ũ (i) + ϵ̃y.

(8)

such that F
(
M̃(1),M̃(2)

)
= {ϵ̃u, ϵ̃t} and they induce the

same observational distributions as M(1) and M(2), re-
spectively, but the treatment effects differs for them from
(7), i.e β ̸= β̃. To do so, we utilize the counter- example
presented in [Salehkaleybar et al., 2020]. Specifically, the
causal structure of the new models M̃(i) corresponding to
environments i ∈ {0, 1} can be seen in Figure 3 with the
parameters defined as follows:

ϵ̃(i)u = ϵ
(i)
t , ϵ̃

(i)
t = αϵ(i)u , ϵ̃y = ϵy,

α̃ = 1, γ̃ = −γ
α
, β̃ = β +

γ

α
.



Substituting these values into the set of equations 8, we
obtain

M̃(i) =


Ũ (i) = ϵ

(i)
t ,

T̃ (i) = ϵ
(i)
t + αϵ

(i)
u ,

Ỹ (i) = (β + γ
α )(ϵ

(i)
t + αϵ

(i)
u ) +− γ

αϵ
(i)
t + ϵy,

and after regrouping and simplifications, it is easy to verify
that

T̃ (i) = αϵ(i)u + ϵ
(i)
t = T (i),

Ỹ (i) = (αβ + γ)ϵ(i)u + βϵ
(i)
t + ϵy = Y (i),

and that F
(
M̃(1),M̃(2)

)
= {ϵ̃u, ϵ̃t}, while β ̸= β̃. This

concludes the proof.

4 RELATED WORK

In the multi-environment setting, there are two main lines
of research in causality. The first aims to learn an equiva-
lent class of possible causal structures from samples col-
lected across multiple environments. In this context, it is
typically assumed that the distributional changes across en-
vironments arise due to interventions on exogenous noises
or causal mechanisms, which are unknown to the observer.
Various methods have been proposed to leverage these shifts
for causal discovery, including constraint-based approaches
[Ghassami et al., 2017, Mooij et al., 2020, Jaber et al., 2020,
Squires et al., 2020, Perry et al., 2022, Zhou et al., 2022] or
score-based methods [Brouillard et al., 2020, Hägele et al.,
2023, Mameche et al., 2024].

The second line of research focuses on identifying the direct
causes of a target variable rather than inferring the entire
causal structure. This approach is particularly relevant in
settings where determining the parents of a specific variable
is more critical than learning the whole causal graph. The
primary objective here can be framed as a causal discovery
task, which differs from causal effect identification, the
main focus of our paper. However, this research direction is
closely related to our work as it often assumes that causal
mechanisms are linear (akin to us). Moreover, as part of
the process to identify the parents of the target variable,
the causal coefficients in the linear model are also often
estimated.

As an example of the second line of research, Peters et al.
[2016] assumed that interventions could be applied to any
variable except the target variable. They proposed the In-
variant Causal Prediction (ICP) method, which leverages
the invariance of the conditional distribution of the target
variable across environments to identify a subset of its direct
causes. Additionally, they assumed no latent confounding
exists between the covariates and the target variable. Sub-
sequent research has extended this idea to more general
settings, including linear models with additive interventions,

nonlinear models [Heinze-Deml et al., 2018], and sequential
data [Pfister et al., 2019]. For a comprehensive review of
these developments, see [Bühlmann, 2020].

One of the drawbacks of the ICP and its extensions is high
computational cost, as these approaches must search over
all possible subsets of covariates to verify the invariance of
the conditional distribution of the target variable. To help ad-
dress this issue, there has been growing interest in leveraging
optimization techniques to recover direct causes in the multi-
environment setting [Rothenhäusler et al., 2019, Gimenez
and Zou, 2020, Yin et al., 2024, Wang et al., 2024]. For
instance, for linear models, Rothenhäusler et al. [2019] pro-
posed Causal Dantzig exploiting “invariant inner-products”
instead of the conditional invaraince in ICP. This method
also allows latent confounding but not between covariates
and the target variable. Gimenez and Zou [2020] proposed
KL regression to identify the direct causes of a target vari-
able in the presence of latent confounding for linear models.
In this approach, the model parameters are optimized by
minimizing the Kullback-Leibler (KL) divergence between
two multivariate Gaussian distributions, one corresponding
to the observed covariance matrix and the other to the param-
eterized model—across different environments. The method
assumes that all causal coefficients in the linear model re-
main unchanged, while only the covariance matrix of the
covariates or the target variable may vary across environ-
ments. Therefore, the distribution of the latent confounder
is required to remain invariant.

Another related area of research is causal transportability
[Bareinboim and Pearl, 2014, Lee et al., 2020], which is to
identify the distribution of a causal effect in a target domain
using experimental data from a source domain and observa-
tional data from the target, typically under the assumption
that certain mechanisms remain invariant across domains.
In contrast, our work identifies the average causal effect
of a treatment on an outcome using data collected from
multiple environments, without access to any experimen-
tal interventions. Moreover, our results are derived under
a specific causal graph structure, for which, to the best of
our knowledge, no existing transportability method offers
identifiability guarantees [Bareinboim and Pearl, 2014, Lee
et al., 2020].

In the context of robust prediction rather than for the prob-
lem of causal effect identification, Arjovsky et al. [2019]
introduced Invariant Risk Minimization (IRM), which in-
corporates an additional penalty term into the empirical risk
function to encourage invariance of the predictor across envi-
ronments. Since its introduction, IRM has been extended to
various domains, including meta-learning [Bae et al., 2021],
reinforcement learning [Zhang et al., 2020], and causal in-
ference [Shi et al., 2021, Lu et al., 2021]. For linear models,
Rothenhäusler et al. [2021] proposed anchor regression as a
robust predictor which is an interpolation between the solu-
tions of ordinary least squares and two-stage least square. It
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Figure 4: Relative estimation bias given data from two domains, when only ϵt (4a), only ϵt (4b), only γ (4c), and only α (4d)
varies across domains.

is noteworthy that the main goal in methods such as IRM
or anchor regression is to have robust prediction against
distribution shifts and they do not provide any guarantee for
recovering the direct causes.

5 EXPERIMENTAL RESULTS

We evaluated the performance of Algorithms 1 through 4, in
terms of relative estimation bias, over a variety of settings.
We define the relative bias as ( β̂β −1), where β and β̂ denote
the true and estimated values of the parameter, respectively.
Our Python code is accessible online3.

Figure 4 illustrates the relative bias of our algorithms, and
compares them to that of linear regression (ordinary least

3https://github.com/SinaAkbarii/IdentificationMultipleDomain

squares). For linear regression, we included two versions:
(i) separate, which regresses the outcomes on the treatments
separately in each domain, and takes the average of both
estimates; and (ii) combined, which concatenates the data
from both domains and performs a single linear regression
to estimate β. Note that in our setup, most methods such
as ICP reduce to linear regression. We sampled the noise
variables from an exponential distribution with parameter
λ chosen uniformly at random in the range (0.9, 1.1). In
the cases where ϵt or ϵu were changing between domains,
we picked λ ∈ (0.45, 0.55) as the alternate parameter. Pa-
rameters α, β, γ were uniformly sampled from (0.4, 0.6),
(0.6, 0.7), and (0.8, 0.9), respectively. In the case α or γ
were changing, the alternative values were sampled uni-
formly from (0.8, 0.9) and (2, 2.1), respectively. Figures
4a, 4b, 4c and 4d represent the relative biases in estimation
of β, when only one of ϵt, ϵu, γ, or α varied across the

https://github.com/SinaAkbarii/IdentificationMultipleDomain


domains. The box plots show the median and 25% quantiles
of relative estimation bias. As evident from all plots, our
algorithms converge to the true parameter as the number
of samples grows, whereas both linear regression baselines
have a systematic bias regardless of the number of samples.
However, for smaller number of samples, our algorithms
show a higher variability (in terms of sample variance) com-
pared to linear regression. This is expected due to more
complex estimation procedures in our algorithms.

In Appendix C, we present complementary simulation re-
sults for when noises are sampled according to various prob-
ability distributions. Furthermore, Figures 12 through 16 in
Appendix C depict some values of the parameters k and n
which we observed running our algorithms. Interestingly, in
Figure 16, for logistic distribution, the value of n is not re-
covered correctly when the sample size is not large enough.
Therefore, Algorithm 3 will use the incorrect estimation for-
mula to compute β. This issue is reflected in the results of
the Figure 7c. However, when the sample size increases, the
correct value of n is recovered, and in the next error boxes,
it can be seen that our estimate is more accurate, unlike the
one obtained by comparative methods. It is noteworthy that
n is often known in the literature of causal effect estimation
via high-order moments (e.g. [Schkoda et al., 2024]), and to
the best of our knowledge, our work is the first one that does
not assume it in the experiments. Additionally, the results
show that for commonly encountered data distributions, the
parameters k (or n) often are a small number.

6 CONCLUSION

We studied the problem of causal effect identification from
observational data collected from two environments. We
showed that when there is a single unknown change across
two domains, we can detect whether the causal effect of
the latent confounder on the treatment or the outcome had
changed or the distribution of the exogenous noises of the
treatment or latent confounder varied between the domains.
We established that if the change occurs in the causal effect
of latent confounder on other variables, the treatment effect
is uniquely identifiable. Otherwise, it can be recovered up
to two possible candidates. Additionally, we provided an
estimation procedure tailored to each scenario and proved a
non-identifiability result for identifying the treatment effect
if the distribution of both exogenous noises corresponding
to the treatment and latent varied across domains.

For future work, we shall explore generalizing our findings
to more than two environments. While using our current
results for each pair of environments, we can establish iden-
tifiability in multiple environments in some cases, there
may be situations where the treatment effect is not identifi-
able through pairwise comparisons but becomes identifiable
when more environments are considered.
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A PROOFS

In this section we provide the proofs for the theorems introduced in main part.

Theorem 3.2. SupposeM(1),M(2) are linear SCMs compatible with the DAG of Figure 1, such that F
(
M(1),M(2)

)
=

{ϵt}. Then under Assumptions 1-4, the treatment effect β can be recovered uniquely.

Proof. Since α is not changing across the domains, the causal effect of the latent confounder U (i) on T (i) can always be set
to one by appropriately rescaling both the latent confounder and γ. Hence, we can rewrite the structural equations in the two
domains as follows:

M(i) =


U (i) := ϵ

(i)
u ,

T (i) := U (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γU (i) + ϵ
(i)
y .

Remark: Here γ and ϵ(1)u are already rescaled, and are actually different from the one in SCM 2.

Let k be the smallest positive integer such that E
[(
ϵ
(1)
t

)k]
̸= E

[(
ϵ
(2)
t

)k]
. Note, that such k will always exists, since

otherwise ϵ(1)t and ϵ(2)t would be equal as distributions due to Assumption 4. Then,

E
[
(T (1))k − (T (2))k

]
= E

[(
ϵ(1)u + ϵ

(1)
t

)k
−
(
ϵ(2)u + ϵ

(2)
t

)k]
=

k∑
j=0

(
k

j

)(
E
[(
ϵ(1)u

)j]
E
[(
ϵ
(1)
t

)k−j]
− E

[(
ϵ(2)u

)j]
E
[(
ϵ
(2)
t

)k−j])

= E
[(
ϵ
(1)
t

)k]
− E

[(
ϵ
(2)
t

)k]
,

(9)

where the third equality is due to the fact the difference term in the sum is equal to zero for j ̸= 0 as the distribution of ϵu is

not changing across the two domains and E
[(
ϵ
(1)
t

)j]
= E

[(
ϵ
(2)
t

)j]
for j < k due to the definition of k. Now,
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E
[
Y (1)(T (1))k−1 − Y (2)(T (2))k−1

]
=

= E
[(

(β + γ)ϵ(1)u + βϵ
(1)
t + ϵ(1)y

)(
ϵ(1)u + ϵ

(1)
t

)k−1
]
− E

[(
(β + γ)ϵ(2)u + βϵ

(2)
t + ϵ(2)y

)(
ϵ(2)u + ϵ

(2)
t

)k−1
]

(a)
= (β + γ)

k−1∑
j=0

(
k − 1

j

)(
E
[(
ϵ(1)u

)j+1
]
E
[(
ϵ
(1)
t

)k−1−j
]
− E

[(
ϵ(2)u

)j+1
]
E
[(
ϵ
(2)
t

)k−1−j
])

+ β

k−1∑
j=0

(
k − 1

j

)(
E
[(
ϵ(1)u

)j]
E
[(
ϵ
(1)
t

)k−j]
− E

[(
ϵ(2)u

)j]
E
[(
ϵ
(2)
t

)k−j])
(b)
= β

(
E
[(
ϵ
(1)
t

)k]
− E

[(
ϵ
(2)
t

)k])
,

(10)

where (a) is based on the fact that E
[
ϵ
(i)
y

(
ϵ
(i)
u + ϵ

(i)
t

)k−1
]
= E

[
ϵ
(i)
y

]
E

[(
ϵ
(i)
u + ϵ

(i)
t

)k−1
]
= 0 for i ∈ {1, 2} as the

exogenous noises are independent and mean zero. Moreover, (b) is due to the fact that all difference terms in the first sum
are zero and in the second sum, only the difference for j = 0 is nonzero because of the definition of k and unchanging
distribution of ϵu across the domains. Now, by dividing (10) by (9), we have:

β =
E
[
Y (1)(T (1))k−1 − Y (2)(T (2))k−1

]
E
[
(T (1))k − (T (2))k

] , (11)

which shows the causal effect of T on Y is identifiable from the two domains in case only the distribution of ϵt is changing
across the domains.

Theorem 3.3. SupposeM(1),M(2) are linear SCMs compatible with the DAG of Figure 1, such that F
(
M(1),M(2)

)
=

{ϵu}. Suppose that ∃n ∈ N such that E[ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
. Then under Assumptions 1-4, the treatment effect β

can be recovered uniquely.

Proof. Similar to the theorem 3.2, we write E
[
(T (1))k − (T (2))k

]
and E

[
Y (1)(T (1))k−1 − Y (2)(T (2))k−1

]
based on the

moments of exogenous noises. Herein, let k be the smallest positive integer such that E
[(
ϵ
(1)
u

)k]
̸= E

[(
ϵ
(2)
u

)k]
. Then,

E
[
(T (1))k − (T (2))k

]
= E

[(
ϵ(1)u + ϵ

(1)
t

)k
−
(
ϵ(2)u + ϵ

(2)
t

)k]
=

k∑
j=0

(
k

j

)(
E
[(
ϵ(1)u

)j]
E
[(
ϵ
(1)
t

)k−j]
− E

[(
ϵ(2)u

)j]
E
[(
ϵ
(2)
t

)k−j])

= E
[(
ϵ(1)u

)k]
− E

[(
ϵ(2)u

)k]
,

(12)

where the third equality is due to the fact the difference term in the sum is equal to zero for j ̸= k as the distribution of ϵu is

not changing across the two domains and E
[(
ϵ
(1)
u

)j]
= E

[(
ϵ
(2)
u

)j]
for j < k due to the definition of k. Moreover,

E
[
Y (1)(T (1))k−1 − Y (2)(T (2))k−1

]
=

= E
[(

(β + γ)ϵ(1)u + βϵ
(1)
t + ϵ(1)y

)(
ϵ(1)u + ϵ

(1)
t

)k−1
]
− E

[(
(β + γ)ϵ(2)u + βϵ

(2)
t + ϵ(2)y

)(
ϵ(2)u + ϵ

(2)
t

)k−1
]

(a)
= (β + γ)

k−1∑
j=0

(
k − 1

j

)(
E
[(
ϵ(1)u

)j+1
]
E
[(
ϵ
(1)
t

)k−1−j
]
− E

[(
ϵ(2)u

)j+1
]
E
[(
ϵ
(2)
t

)k−1−j
])

+ β

k−1∑
j=0

(
k − 1

j

)(
E
[(
ϵ(1)u

)j]
E
[(
ϵ
(1)
t

)k−j]
− E

[(
ϵ(2)u

)j]
E
[(
ϵ
(2)
t

)k−j])
(b)
= (β + γ)

(
E
[(
ϵ(1)u

)k]
− E

[(
ϵ(2)u

)k])
,

(13)



where (a) is based on the fact that E
[
ϵ
(i)
y

(
ϵ
(i)
u + ϵ

(i)
t

)k−1
]
= E

[
ϵ
(i)
y

]
E

[(
ϵ
(i)
u + ϵ

(i)
t

)k−1
]
= 0 for i ∈ {1, 2} as the

exogenous noises are independent and mean zero. Moreover, (b) is due to the fact that all difference terms in the second
sum are zero, and in the first sum, only the difference for j = k is nonzero because of the definition of k and unchanging
distribution of ϵt across the domains. Therefore, based on (12) and (13), we can obtain the value of β + γ as follows:

β + γ =
E
[
Y (1)(D(1))k−1 − Y (2)(D(2))k−1

]
E
[
(D(1))k − (D(2))k

] . (14)

Now, in any domain i ∈ {1, 2}, consider the following two equations:{
T (i) := U (i) + ϵ

(i)
t = ϵ

(i)
u + ϵ

(i)
t ,

Y (i) − (β + γ)T (i) = −γϵ(i)t + ϵ
(i)
y .

Utilizing the cross-moment approach [Kivva et al., 2024] and more specifically Kivva et al. [2024][Theorem 1], we can
identify the value of γ from T (i) and Y (i) − (β + γ)T (i) in any domain i ∈ {1, 2} given the assumption on ϵt in theorem.
Therefore, this finishes the proof that β is uniquely identifiable.

Theorem 3.4. SupposeM(1),M(2) are linear SCMs compatible with the DAG of Figure 1, such that F
(
M(1),M(2)

)
=

{γ}. Suppose ∃n ∈ N such that E [ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
. Then under Assumptions 1-4, the treatment effect β can

be recovered uniquely.

Proof.

M(i)


U (i) := ϵ

(i)
u ,

T (i) := U (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γ(i)U (i) + ϵ
(i)
y ,

For ease of notation, we omit superscripts corresponding to the exogenous noises where this is not important, since their
distributions remain the same across the domains. Then,

E
[
Y (2)T (2) − Y (1)T (1)

]
=

(
γ(2) − γ(1)

)
E
[
ϵ2u
]
,

E
[(
Y (2)

)2

−
(
Y (1)

)2
]
=

((
β + γ(2)

)2

−
(
β + γ(1)

)2
)
E
[
ϵ2u
]
=

(
γ(2) − γ(1)

)(
2β + γ(1) + γ(2)

)
E
[
ϵ2u
]
.

Note that in the above equations all the terms corresponding to the exogenous noises of observed variables are canceled out.
From the two equations, we can compute 2β + γ(1) + γ(2) from the observational distribtuion.

Let us define the random variables X(1) and X(2) as follows:

X(1) =
(
2β + γ(1) + γ(2)

)
T (1) − 2Y (1) =

(
2β + γ(1) + γ(2)

)(
ϵ(1)u + ϵ

(1)
t

)
− 2

((
β + γ(1)

)
ϵ(1)u + βϵ

(1)
t + ϵ(1)y

)
,

X(2) =
(
2β + γ(1) + γ(2)

)
T (2) − 2Y (2) =

(
2β + γ(1) + γ(2)

)(
ϵ(2)u + ϵ

(2)
t

)
− 2

((
β + γ(2)

)
ϵ(2)u + βϵ

(2)
t + ϵ(2)y

)
.

Let us define a = γ(2) − γ(1), b = γ(2) + γ(1), ϵ(i) = −2ϵ(i)y . Then,

X(1) =
(
γ(2) − γ(1)

)
ϵ(1)u +

(
γ(1) + γ(2)

)
ϵ
(1)
t − 2ϵ(1)y = aϵ(1)u + bϵ

(1)
t + ϵ(1),

X(2) =
(
γ(1) − γ(2)

)
ϵ(2)u +

(
γ(1) + γ(2)

)
ϵ
(2)
t − 2ϵ(2)y = −aϵ(2)u + bϵ

(2)
t + ϵ(2).

Let us consider the following expectations:

E
[(
T (1)

)2
]
= E

[(
T (2)

)2
]
= E

[
ϵ2u
]
+ E

[
ϵ2t
]
,

E
[
T (1)X(1)

]
=

(
γ(2) − γ(1)

)
E
[
ϵ2u
]
+
(
γ(1) + γ(2)

)
E
[
ϵ2t
]
= aE

[
ϵ2u
]
+ bE

[
ϵ2t
]
,

E
[
T (2)X(2)

]
=

(
γ(1) − γ(2)

)
E
[
ϵ2u
]
+
(
γ(1) + γ(2)

)
E
[
ϵ2t
]
= −aE

[
ϵ2u
]
+ bE

[
ϵ2t
]
.



The difference and sum of the expectations above give us:

â :=
1

2

(
E
[
T (1)X(1) − T (2)X(2)

])
=

(
γ(2) − γ(1)

)
E
[
ϵ2u
]
= aE

[
ϵ2u
]
, (15)

b̂ :=
1

2

(
E
[
T (1)X(1) − T (2)X(2)

])
=

(
γ(1) + γ(2)

)
E
[
ϵ2t
]
= bE

[
ϵ2t
]
. (16)

Note that from (15)-(16), we can deduce the sign of a and b. Now, we show how to obtain either a or b. If we recover
b = γ(1) + γ(2), then from knowing β + γ(1) + γ(2) we compute β. If we recover a, then from knowing β + γ(1) + γ(2) we
can compute β + γ(i). From this point, we can use the same method proposed in proof of theorem 3.3 to compute β.

Consider,

E
[(
X(1)

)3
]
= a3E

[
ϵ3u
]
+ b3E

[
ϵ3t
]
+ E

[
ϵ3
]
, (17)

E
[(
X(2)

)3
]
= −a3E

[
ϵ3u
]
+ b3E

[
ϵ3t
]
+ E

[
ϵ3
]
, (18)

=⇒ E
[(
X(1)

)3

−
(
X(2)

)3
]
= a3E

[
ϵ3u
]
. (19)

On the other hand,

E
[
X(1)

(
T (1)

)2
]
= aE

[
ϵ3u
]
+ bE

[
ϵ3t
]

(20)

E
[
X(2)

(
T (2)

)2
]
= −aE

[
ϵ3u
]
+ bE

[
ϵ3t
]

(21)

E
[(
X(1)

)(
T (1)

)2

−
(
X(2)

)(
T (2)

)2
]
= aE

[
ϵ3u
]
. (22)

Case 1: E
[
ϵ3u
]
̸= 0. Then the ratio between (19) and (22) gives a2. We can identify the value of a as we know the sign of a

from (15).
Case 2: E

[
ϵ3u
]
= 0 and E

[
ϵ3t
]
̸= 0. Then:

E
[
X(1)

(
T (1)

)2
]
= aE

[
ϵ3u
]
+ bE

[
ϵ3t
]
= bE

[
ϵ3t
]
,

E
[(
X(1)

)2

T (1)

]
= a2E

[
ϵ3u
]
+ b2E

[
ϵ3t
]
= b2E

[
ϵ3t
]
.

From the two above equations, we can compute the value of b.
Case 3: E

[
ϵ3u
]
= 0, E

[
ϵ3t
]
= 0 and n ∈ N - the smallest number such that one of the following equations hold:

• E [ϵnu] ̸= (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
.

• E [ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
.

Then

E
[(
T (1)

)n−1

X(1)

]
= E

[
(aϵu + bϵt + ϵ) (ϵu + ϵt)

n−1
]

∗
= a

n−1∑
k=0

(
n− 1

k

)
E
[
ϵk+1
u

]
E
[
ϵn−k−1
t

]
+ b

n−1∑
k=0

(
n− 1

k

)
E
[
ϵk+1
t

]
E
[
ϵn−k−1
u

]
∗∗
= a

n−1∑
k=1

(
n− 1

k

)
E
[
ϵk+1
u

]
E
[
ϵn−k−1
t

]
+ b

n−1∑
k=1

(
n− 1

k

)
E
[
ϵk+1
t

]
E
[
ϵn−k−1
u

]
,



where (∗) and (∗∗) are based on the facts that exogenous noises are independent and have mean zero. On the other hand,

(n− 1)aE
[
ϵ2u
]
E
[(
T (1)

)n−2
]
= (n− 1)aE

[
ϵ2u
]
E
[
(ϵu + ϵt)

n−2
]

= (n− 1)aE
[
ϵ2u
] n−2∑
k=0

(
n− 2

k

)
E
[
ϵku
]
E
[
ϵn−k−2
t

]
= a

n−1∑
k=1

k
(n− 1)!

k!(n− 1− k)!
E
[
ϵ2u
]
E
[
ϵk−1
u

]
E
[
ϵn−k−1
t

]
= a

n−1∑
k=1

k

(
n− 1

k

)
E
[
ϵ2u
]
E
[
ϵk−1
u

]
E
[
ϵn−k−1
t

]
.

(23)

Note that T (1) is symmetric with respect to the exogenous noises ϵ(1)u and ϵ(1)t . Therefore we can obtain similar equation to
(23), where ϵ(1)u and ϵ(1)t are swapped. Hence, combining it with the knowledge that E

[
ϵku
]
= (k − 1)E

[
ϵk−2
u

]
E
[
ϵ2u
]

and
E
[
ϵkt
]
= (k − 1)E

[
ϵk−2
t

]
E
[
ϵ2t
]

for all k < n we obtain

E
[(
T (1)

)n−1

X(1)

]
− (n− 1)aE

[
ϵ2u
]
E
[(
T (1)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
T (1)

)n−2
]

= a
(
E [ϵnu]− (n− 1)E

[
ϵ2u
]
E
[
ϵn−2
u

])
+ b

(
E [ϵnt ]− (n− 1)E

[
ϵ2t
]
E
[
ϵn−2
t

])
.

(24)

Similarly we obtain,

E
[
X(2)

(
T (2)

)n−1
]
− (n− 1)(−a)E

[
ϵ2u
]
E
[(
T (2)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
T (2)

)n−2
]

= −a
(
E [ϵnu]− (n− 1)E

[
ϵ2u
]
E
[
ϵn−2
u

])
+ b

(
E [ϵnt ]− (n− 1)E

[
ϵ2t
]
E
[
ϵn−2
t

])
.

(25)

Now we will compute:

E
[(
X(1)

)n−1

T (1)

]
− (n− 1)aE

[
ϵ2u
]
E
[(
X(1)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
X(1)

)n−2
]

(26)

E
[(
X(2)

)n−1

T (2)

]
− (n− 1)(−a)E

[
ϵ2u
]
E
[(
X(2)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
X(2)

)n−2
]

(27)

For the E
[(
X(1)

)n−1
T (1)

]
, we have:

E
[(
X(1)

)n−1

T (1)

]
= E

[(
aϵ(1)u + bϵ

(1)
t + ϵ(1)

)n−1 (
ϵ(1)u + ϵ

(1)
t

)]
∗
= E

[
ϵu(aϵu + bϵt + ϵ)n−1 + ϵt(aϵu + bϵt + ϵ)n−1

]
.

Note that in (∗) we omit superscript (1) since the moments of the exogenous noises are equal across domains. Then,

E
[
ϵu(aϵu + bϵt + ϵ)n−1

]
=

n−1∑
m=0

E [ϵm]

(
n− 1

m

)
E
[
ϵu(aϵu + bϵt)

n−1−m]
=

n−1∑
m=0

E [ϵm]

(
n− 1

m

) n−m∑
k=1

ak−1bn−m−kE
[
ϵku
]
E
[
ϵn−m−k
t

](n− 1−m
k − 1

)
∗
=

n−2∑
m=0

E [ϵm]

(
n− 1

m

) n−m∑
k=2

ak−1bn−m−kE
[
ϵku
]
E
[
ϵn−m−k
t

](n− 1−m
k − 1

)
.

In the last equality (∗), the term in the second summation corresponding to k = 1 is equal to zero due to the fact that
exogenous noises have zero mean.



For the (n− 1)aE
[
ϵ2u
]
E [(X(1)

)
n−2

]
we have:

(n− 1)aE
[
ϵ2u
]
E
[(
X(1)

)n−2
]
= (n− 1)aE

[
ϵ2u
]
E
[
(aϵu + bϵt + ϵ)

n−2
]

= (n− 1)

n−2∑
m=0

E [ϵm]

(
n− 2

m

) n−m−2∑
k=0

ak+1bn−m−k−2E
[
ϵ2u
]
E
[
ϵku
]
E
[
ϵn−m−k−2
t

](n−m− 2

k

)

= (n− 1)

n−2∑
m=0

E [ϵm]

(
n− 2

m

) n−m∑
k=2

ak−1bn−m−kE
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 2

k − 2

)

= (n− 1)

n−2∑
m=0

E [ϵm]

(
n− 1

m

)
n− 1−m
n− 1

n−m∑
k=2

ak−1bn−m−kE
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 1

k − 1

)
k − 1

n− 1−m

=

n−2∑
m=0

E [ϵm]

(
n− 1

m

) n−m∑
k=2

ak−1bn−m−k(k − 1)E
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 1

k − 1

)
.

Note that ϵt(aϵu + bϵt + ϵ)n−1 can be obtained from ϵu(aϵu + bϵt + ϵ)n−1 by substitutions ϵu ↔ ϵt and a↔ b. Hence we
have:

E
[
ϵt (aϵu + bϵt + ϵ)

n−1
]
=

n−2∑
m=0

E [ϵm]

(
n− 1

m

) n−m∑
k=2

bk−1an−m−kE
[
ϵkt
]
E
[
ϵn−m−k
u

](n− 1−m
k − 1

)
.

With similar logic,

(n− 1)bE
[
ϵ2t
]
E
[(
X(1)

)n−2
]
=

n−2∑
m=0

E [ϵm]

(
n− 1

m

) n−m∑
k=2

bk−1an−m−k(k − 1)E
[
ϵ2t
]
E
[
ϵk−2
t

]
E
[
ϵn−m−k
u

](n−m− 1

k − 1

)
.

Note that E
[
ϵku
]
= (k − 1)E

[
ϵk−2
u

]
E
[
ϵ2u
]

and E
[
ϵkt
]
= (k − 1)E

[
ϵk−2
t

]
E
[
ϵ2t
]

for all k < n. Therefore (26) can be
simplified as,

E
[(
X(1)

)n−1

T (1)

]
− (n− 1)aE

[
ϵ2u
]
E
[(
X(1)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
X(1)

)n−2
]

= an−1
(
E [ϵnu]− (n− 1)E

[
ϵ2u
]
E
[
ϵn−2
u

])
+ bn−1

(
E [ϵnt ]− (n− 1)E

[
ϵ2t
]
E
[
ϵn−2
t

])
.

(28)

Since the second domain can be obtained from the first by simple substitution of a↔ −a, hence

E
[(
X(2)

)n−1

T (2)

]
− (n− 1)aE

[
ϵ2u
]
E
[(
X(2)

)n−2
]
− (n− 1)bE

[
ϵ2t
]
E
[(
X(2)

)n−2
]

= (−a)n−1
(
E [ϵnu]− (n− 1)E

[
ϵ2u
]
E
[
ϵn−2
u

])
+ bn−1

(
E [ϵnt ]− (n− 1)E

[
ϵ2t
]
E
[
ϵn−2
t

])
.

(29)

If n is even then we can recover a or b from ((28) - (29)) \((24) - (25)) or ((28) + (29)) \((24) + (25)),respectively.

If n is odd, then E[ϵku] = 0 and E[ϵkt ] = 0 for all k natural odd numbers smaller than n. Hence,

E
[(
T (1)

)n−1

X(1)

]
= aE [ϵnu] + bE [ϵnt ] ,

E
[(
T (2)

)n−1

X(2)

]
= −aE [ϵnu] + bE [ϵnt ] ,

E
[(
T (1)

)n−3 (
X(1)

)3
]
− E

[(
T (2)

)n−3 (
X(2)

)3
]
= 2a3E [ϵnu] .



The last equation is easy to verify, since all other terms of E
[(
T (1)

)n−3 (
X(1)

)3]
except a3E [ϵnu] are equal to zero or have

identical one in E
[(
T (2)

)n−3 (
X(2)

)3]
. If E [ϵnu] ̸= 0 then we can compute a. In case when E [ϵnu] = 0 we additionally

compute the following expressions,

E
[(
T (1)

)n−1

X(1)

]
= aE [ϵnu] + bE [ϵnt ] ,

E
[(
T (1)

)n−2 (
X(2)

)2
]
= a2E [ϵnu] + b2E [ϵnt ] .

Since E [ϵnu] = 0, then from the above equations we can recover b.

Theorem 3.5. SupposeM(1),M(2) are linear SCMs compatible with the DAG of Figure 1, such that F
(
M(1),M(2)

)
=

{α}. Suppose ∃n ∈ N such that E [ϵnu] ̸= (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
. Then under Assumptions 1-4 the treatment effect β can

be recovered uniquely almost surely1.

Proof.

M(i)


U (i) := ϵ

(i)
u ,

T (i) := α(i)U (i) + ϵ
(i)
t ,

Y (i) := βT (i) + γU (i) + ϵ
(i)
y .

Let us we consider the following quadratic equation with respect to parameter β̂

E
[(
Y (1) − β̂T (1)

)2
]
− E

[(
Y (2) − β̂T (2)

)2
]
= 0,

that simplifies as

E
[(
Y (1)

)2

−
(
Y (2)

)2
]
β̂2 − 2E

[
Y (1)T (1) − Y (2)T (2)

]
β̂ + E

[(
T (1)

)2

−
(
T (2)

)2
]
= 0 (30)

It easy to see that the following equations holds

Y (1) − βT (1) = Y (2) − βT (2),

so β will be one of the roots of the Eq. (30).

Let us suppose β∗ is one of the roots of Eq. (30) and X(1), X(2) are defined as follows

X(i) = Y (i) − β∗T (i) =
(
(β − β∗)α(i) + γ

)
ϵ(i)u + (β − β∗) ϵ

(i)
t + ϵ(i)y .

For simplicity of notation let us define a(i) := (β − β∗)α(i) + γ, b := β − β∗, and so

X(i) = a(i)ϵ(i)u + bϵ
(i)
t + ϵ(i)y .

Since E
[(
X(1)

)2]
= E

[(
X(2)

)2]
it implies that

(
a(1)

)2
=

(
a(2)

)2
. In case, when β∗ ̸= β it only possible that

a(1) = −a(2), so

(β − β∗)α(1) + γ = −
(
(β − β∗)α(2) + γ

)
(31)

=⇒ α(1) + α(2) = −2 γ

β − β∗ ̸= 0 (32)

1Here we consider the Lebesgue measure on the set of coefficients of linear SCMs M(1),M(2). Then the causal effect is not
identifiable only for a set of coefficients with measure zero.



Additionally, we have:

E
[(
X(i)

)n−1

T (i)

]
= E

[(
α(i)ϵu + ϵt

)(
a(i)ϵu + bϵt + ϵy

)n−1
]

= α(i)E
[
ϵu

(
a(i)ϵu + bϵt + ϵy

)n−1
]
+ E

[
ϵt

(
a(i)ϵu + bϵt + ϵy

)n−1
]
.

(33)

As it was done in the proof of theorem 3.4 we can get

E
[
ϵu(a

(i)ϵu + bϵt + ϵy)
n−1

]
=

n−1∑
m=0

E
[
ϵmy

](n− 1

m

)
E
[
ϵu(a

(i)ϵu + bϵt)
n−1−m

]
=

n−1∑
m=0

E
[
ϵmy

](n− 1

m

) n−m∑
k=1

(a(i))k−1bn−m−kE
[
ϵku
]
E
[
ϵn−m−k
t

](n− 1−m
k − 1

)
∗
=

n−2∑
m=0

E
[
ϵmy

](n− 1

m

) n−m∑
k=2

(a(i))k−1bn−m−kE
[
ϵku
]
E
[
ϵn−m−k
t

](n− 1−m
k − 1

)
,

(34)

and

(n− 1)a(i)E
[
ϵ2u
]
E
[(
X(i)

)n−2
]
= (n− 1)a(i)E

[
ϵ2u
]
E
[(
a(i)ϵu + bϵt + ϵy

)n−2
]

= (n− 1)

n−2∑
m=0

E
[
ϵmy

](n− 2

m

) n−m−2∑
k=0

(a(i))k+1bn−m−k−2E
[
ϵ2u
]
E
[
ϵku
]
E
[
ϵn−m−k−2
t

](n−m− 2

k

)

= (n− 1)

n−2∑
m=0

E
[
ϵmy

](n− 2

m

) n−m∑
k=2

(a(i))k−1bn−m−kE
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 2

k − 2

)

= (n− 1)

n−2∑
m=0

E
[
ϵmy

](n− 1

m

)
n− 1−m
n− 1

n−m∑
k=2

(a(i))k−1bn−m−kE
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 1

k − 1

)
k − 1

n− 1−m

=

n−2∑
m=0

E
[
ϵmy

](n− 1

m

) n−m∑
k=2

(a(i))k−1bn−m−k(k − 1)E
[
ϵ2u
]
E
[
ϵk−2
u

]
E
[
ϵn−m−k
t

](n−m− 1

k − 1

)
.

(35)

Note that the similar equations can be obtained for E
[
ϵt(a

(i)ϵu + bϵt + ϵy)
n−1

]
and (n−1)bE

[
ϵ2t
]
E
[(
X(i)

)n−2
]

through

the substitutions ϵu ↔ ϵt and a(i) ↔ b. Moreover,

E
[
X(i)T

]
= α(i)a(i)E

[
ϵ2u
]
+ bE

[
ϵ2t
]

(36)

Then combining the Equations (33)-(36) we obtain

Φ(i)(β∗) := E
[(
X(i)

)n−1

T (i)

]
− (n− 1)E

[
X(i)T

]
E
[(
X(i)

)n−2
]

= α(i)(a(i))n−1
(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
])

+ bn−1
(
E [ϵnt ]− (n− 1)E

[
ϵn−2
t

]
E
[
ϵ2t
]) (37)

Note that b = 0 for β∗ = β.

Suppose that n is the smallest natural number such that Φ(i)(β∗) ̸= 0 for some i. This also implies that one of the following
inequalities holds

• E [ϵnu] ̸= (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
,

• E [ϵnt ] ̸= (n− 1)E
[
ϵn−2
t

]
E
[
ϵ2t
]
.

Then there are possible the following cases.



1. E [ϵnu]− (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
= 0, then Φ(1)(β∗) = Φ(2)(β∗) ̸= 0. However the last equation for Φ(i) can not happen

if β∗ = β. Indeed, if β∗ = β then

Φ(i)(β∗) = α(i)γn−1
(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
])
.

Moreover,
Φ(1)(β∗)− Φ(2)(β∗) = 0 =

(
α(1) − α2

)
γn−1

(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
])

however, the right-hand side of the equation can not be zero. This follows from inequalities γ ̸= 0, α(1) ̸= α2 and
Φ(2)(β∗) ̸= 0. Consequently, this means that if Φ(1)(β∗) = Φ(2)(β∗) ̸= 0 then we pick wrong β∗ and we should pick
another root of the quadratic equation as β.

2. E [ϵnu]− (n− 1)E
[
ϵn−2
u

]
E
[
ϵ2u
]
̸= 0. Let us assume for a moment that β∗ = β. Then,

X(i) = γϵ(i)u + ϵ(i)y =⇒ E
[(
X(i)

)n−1

T (i)

]
(1)
= E

[
α(i)ϵu (γϵu + ϵy)

n−1
]

=⇒
E
[(
X(1)

)n−1
T (1)

]
E
[(
X(2)

)n−1
T (2)

] =
α(1)

α(2)

and

Φ(i)(β∗) = α(i)γn−1
(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
])

=⇒ Φ(1)(β∗)

Φ(2)(β∗)
=
α(1)

α(2)
=

E
[(
X(1)

)n−1
T (1)

]
E
[(
X(2)

)n−1
T (2)

] .
Moreover,

E
[
X(1)T (1)

]
E
[
X(2)T (2)

] =
α(1)

α(2)
.

Now let us consider the case when β∗ ̸= β. Then we have,

E
[
X(1)T (1)

]
E
[
X(2)T (2)

] =
a(1)α(1)ϵ2u + bϵ2t
a(2)α(2)ϵ2u + bϵ2t

Φ(1)(β∗)

Φ(2)(β∗)
=
α(1)(a(1))n−1

(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
])

+ bn−1
(
E [ϵnt ]− (n− 1)E

[
ϵn−2
t

]
E
[
ϵ2t
])

α(2)(a(2))n−1
(
E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E [ϵ2u]

)
+ bn−1

(
E [ϵnt ]− (n− 1)E

[
ϵn−2
t

]
E [ϵ2t ]

) .
Note that the equality

E
[
X(1)T (1)

]
E
[
X(2)T (2)

] =
Φ(1)(β∗)

Φ(2)(β∗)
(38)

holds for the parameters α(1), α(2), γ only for the set of Lebesgue measure zero. Indeed, an Eq 38 is equivalent to

E
[
X(1)T (1)

]
Φ(2)(β∗)− E

[
X(2)T (2)

]
Φ(1)(β∗) = 0

that can be considered as polynomial with respect to the parameter a(1). It is easy to see that the coefficient near the highest
degree of a(1) is non-zero because E [ϵnu]− (n− 1)E

[
ϵn−2
u

]
E
[
ϵ2u
]
̸= 0, a(1) = −a(2), α(1) ̸= α(2) and α(1) + α(2) ̸= 0

(Eq. (32)).

Consequently, by verifying whether the Eq. (38) holds we can conclude which one of the roots is the correct one.

Theorem 3.1. Consider two linear SCMsM(1),M(2) compatible with the graph of Figure 1, such that |F
(
M(1),M(2)

)
| =

1. The treatment effect β can be uniquely identified if F
(
M(1),M(2)

)
⊂ {α, γ} under some additional case-specific mild

assumptions; otherwise, if F
(
M(1),M(2)

)
⊂ {ϵt, ϵu}, β can be identified only up to two possible candidates.



Proof. To prove this theorem we specify a step-by-step procedure that determines which of the parameters α, γ, ϵu, ϵt varies
across domainsM(1),M(2) under the assumption of infinite data.

Step 1. First we show that, we can verify that F
(
M(1),M(2)

)
= {γ}. Indeed, in such a case, we can statistically test

whether treatment T and outcome Y are different as distributions in these two distributions. Since we assume that ϵ(1)y , ϵ
(2)
y

are equal as distributions (ϵ(1)y
d
= ϵ

(2)
y ), then under Assumption 4 the equalities T (1) d

= T (2) and Y (1)
d

̸= Y (2) hold if

and only if F
(
M(1),M(2)

)
= {γ}. In practice, to verify the equalities T (1) d

= T (2) and Y (1)
d

̸= Y (2) we may use
Kolmogorov-Smirnov test or any other statistical test appropriate for it.

Step 2. Knowing that γ(1) = γ(2) we introduce a test that determines whether F
(
M(1),M(2)

)
= {α}. Let us consider the

following quantities,

E
[(
T (i)

)2
]
= E

[(
α(i)

)2 (
ϵ(i)u

)2

+
(
ϵ
(i)
t

)2
]
, (39)

E
[
T (i)Y (i)

]
= E

[(
α(i)β + γ

)(
ϵ(i)u

)2

+ β
(
ϵ
(i)
t

)2
]
, (40)

E
[(
Y (i)

)2
]
= E

[(
α(i)β + γ

)2 (
ϵ(i)u

)2

+ β2
(
ϵ
(i)
t

)2

+ ϵ2y

]
. (41)

If F
(
M(1),M(2)

)
= {α} then,

E
[(
T (1)

)2

−
(
T (2)

)2
]
= E

[((
α(1)

)2

−
(
α(1)

)2
)
ϵ2u

]
,

E
[
T (1)Y (1) − T (2)Y (2)

]
= E

[
β

((
α(1)

)2

−
(
α(2)

)2
)
ϵ2u + γ

(
α(1) − α(2)

)
ϵ2u

]
,

E
[(
Y (1)

)2

−
(
Y (2)

)2
]
= E

[
β2

((
α(1)

)2

−
(
α(2)

)2
)
ϵ2u + 2βγ

(
α(1) − α(2)

)
ϵ2u

]
.

On the other hand, if F
(
M(1),M(2)

)
= {ϵu}

E
[(
T (1)

)2

−
(
T (2)

)2
]
= E

[
α

((
ϵ(1)u

)2

−
(
ϵ(2)u

)2
)]

,

E
[
T (1)Y (1) − T (2)Y (2)

]
= E

[
α (αβ + γ)

((
ϵ(1)u

)2

−
(
ϵ(2)u

)2
)]

,

E
[(
Y (1)

)2

−
(
Y (2)

)2
]
= E

[
(αβ + γ)

2

((
ϵ(1)u

)2

−
(
ϵ(2)u

)2
)]

,

and if F
(
M(1),M(2)

)
= {ϵt}

E
[(
T (1)

)2

−
(
T (2)

)2
]
= E

[(
ϵ
(1)
t

)2

−
(
ϵ
(2)
t

)2
]
,

E
[
T (1)Y (1) − T (2)Y (2)

]
= E

[
β

((
ϵ
(1)
t

)2

−
(
ϵ
(2)
t

)2
)]

,

E
[(
Y (1)

)2

−
(
Y (2)

)2
]
= E

[
β2

((
ϵ
(1)
t

)2

−
(
ϵ
(2)
t

)2
)]

.

Note that for the F
(
M(1),M(2)

)
= {α} it is easy to see that at least one of the quantities E

[(
T (1)

)2 − (
T (2)

)2]
or

E
[
T (1)Y (1) − T (2)Y (2)

]
is not equal to zero. Moreover,

E
[
T (1)Y (1) − T (2)Y (2)

]
E
[(
T (1)

)2 − (
T (2)

)2] ̸= E
[(
Y (1)

)2 − (
Y (2)

)2]
E
[
T (1)Y (1) − T (2)Y (2)

] .



However for the case F
(
M(1),M(2)

)
= {ϵt} or F

(
M(1),M(2)

)
= {ϵu} either the following equation holds

E
[(
T (1)

)2

−
(
T (2)

)2
]
= E

[
T (1)Y (1) − T (2)Y (2)

]
= 0,

or

E
[
T (1)Y (1) − T (2)Y (2)

]
E
[(
T (1)

)2 − (
T (2)

)2] =
E
[(
Y (1)

)2 − (
Y (2)

)2]
E
[
T (1)Y (1) − T (2)Y (2)

] .
Since both of these equations are impossible for the case F

(
M(1),M(2)

)
= {α}, then we can use them for the verification

procedure.

Now, knowing that F
(
M(1),M(2)

)
∈ {ϵu, ϵt} we will show that it is impossible to identify β uniquely. To prove it, it is

enough to consider the similar construction of modelsM(i) and M̂(i) presented in the proof of Theorem 3.6. Indeed, since
we do not know which parameter of the parameters ϵu or ϵt may vary across the environments, then both of the models are
possible SCMs that concludes the proof.

Proposition 1. SupposeM(1),M(2) are linear SCMs compatible with the DAG of Figure 1, such that F
(
M(1),M(2)

)
=

{ϵy}. Then treatment causal effect β is not identifiable.

Proof. To prove that β is not identifiable, we will construct two new SCMs M̃(1) and M̃(2),

M̃(i) =


Ũ (i) := ϵ̃u,

T̃ (i) := α̃Ũ (i) + ϵ̃t,

Ỹ (i) := β̃T̃ (i) + γ̃Ũ (i) + ϵ̃
(i)
y .

(42)

such that F
(
M̃(1),M̃(2)

)
= {ϵ̃y} and they induce the same observational distributions asM(1) andM(2), respectively,

but the treatment effects are different, i.e β ̸= β̃. To do so, we again utilize the counter- example presented in [Salehkaleybar
et al., 2020].

ϵ̃u = ϵt, ϵ̃t = αϵu, ϵ̃
(i)
y = ϵ(i)y ,

α̃ = 1, γ̃ = −γ
α
, β̃ = β +

γ

α
.

Substituting these values into the set of equations 42, we obtain

M̃(i) =


Ũ (i) = ϵt,

T̃ (i) = ϵt + αϵu,

Ỹ (i) = (β + γ
α )(ϵt + αϵu) +− γ

αϵt + ϵ
(i)
y ,

and after regrouping and simplifications, it is easy to verify that

T̃ (i) = αϵu + ϵt = T (i),

Ỹ (i) = (αβ + γ)ϵu + βϵt + ϵ(i)y = Y (i),

and F
(
M̃(1),M̃(2)

)
= {ϵ̃y}. This concludes the proof.



B OMITTED PSEUDO-CODE

We present the pseudo-code pertaining to the estimation procedure of β when γ changes across domains, which was omitted
from the main text due to space limitations.

Algorithm 4 F
(
M(1),M(2)

)
= {γ}

Input: {T (i), Y (i)} and F
(
M(1),M(2)

)
= {γ}

1: r ←
E
[(
Y (2)

)2 − (
Y (1)

)2]
E
[
Y (2)T (2) − Y (1)T (1)

] {r = 2β + γ(1) + γ(2)}

2: X(i) ← rT (i) − 2Y (i)

3: ã← 1
2

(
E
[
T (1)X(1)

]
− E

[
T (2)X(2)

])
, b̃← 1

2

(
E
[
T (1)X(1)

]
+ E

[
T (2)X(2)

])
4: n∗ ← 2
5: while ϕ(1)n = 0 and ϕ(2)n = 0 do
6: n∗ ← n∗ + 1
7: if ϕ(1)n − ϕ(2)n ̸= 0 then
8: if n∗ is odd then
9: j ← 3, l← 2

10: else
11: j ← 1, l← (n∗ − 1)

12: a← sign(b̃)

∣∣∣∣ψ(1)
j −ψ(2)

j

ϕ
(1)

n∗−ϕ
(2)

n∗

∣∣∣∣1/l {a = γ(2) − γ(1)}

13: r̃ ← 1
2 (r − a) {r̃ = β + γ(1)}

14: β ← r̃ − GetRatio
(
r̃T (1) − Y (1), T (1)

)
15: else
16: if n∗ is odd then
17: j ← 2, l← 1
18: else
19: j ← 1, l← (n∗ − 1)

20: b← sign(b̃)

∣∣∣∣ψ(1)
j +ψ

(2)
j

ϕ
(1)

n∗+ϕ
(2)

n∗

∣∣∣∣1/l {b = γ(1) + γ(2)}

21: β ← 1
2 (r − b)

22: return β



C COMPLEMENTARY EXPERIMENTAL RESULTS
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Figure 5: Relative estimation bias given data from two domains, when only ϵt (5a), only ϵt (5b), only γ (5c), and only α (5d)
varies across domains. Noise variables are sampled from a Gamma distribution.
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Figure 6: Relative estimation bias given data from two domains, when only ϵt (6a), only ϵt (6b), only γ (6c), and only α (6d)
varies across domains. Noise variables are sampled from a Gumbel distribution.
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Figure 7: Relative estimation bias given data from two domains, when only ϵt (7a), only ϵt (7b), only γ (7c), and only α (7d)
varies across domains. Noise variables are sampled from a Logistic distribution.
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Figure 8: Relative estimation bias given data from two domains, when only ϵt (8a), and only ϵt (8b) varies across domains.
All noise variables are sampled from an exponential distribution, except the alternating noise variable in the second domain
which is sampled from a logistic distribution.
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Figure 9: Relative estimation bias given data from two domains, when only ϵt (9a), and only ϵt (9b) varies across domains.
All noise variables are sampled from a Gamma distribution, except the alternating noise variable in the second domain
which is sampled from a uniform distribution.
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Figure 10: Relative estimation bias given data from two domains, when only ϵt (10a), and only ϵt (10b) varies across
domains. All noise variables are sampled from a Gumbel distribution, except the alternating noise variable in the second
domain which is sampled from an exponential distribution.
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Figure 11: Relative estimation bias given data from two domains, when only ϵt (11a), and only ϵt (11b) varies across
domains. All noise variables are sampled from a logistic distribution, except the alternating noise variable in the second
domain which is sampled from a Gamma distribution.
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Figure 12: Histogram of k in Algorithm 1.
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Figure 13: Histogram of k in Algorithm 2.
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Figure 14: Histogram of n1 in Algorithm 3.
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Figure 15: Histogram of n2 in Algorithm 3.
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Figure 16: Histogram of n in Algorithm 4.
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