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Abstract
Off-the-shelf models are widely used by com-001
putational social science researchers to mea-002
sure properties of text, such as sentiment.003
However, without access to source data it is004
difficult to account for domain shift, which005
presents a threat to validity. Here, we treat006
domain adaptation as a modular process that007
involves separate model producers and model008
consumers, and show how they can indepen-009
dently cooperate to facilitate more accurate010
measurements of text. We introduce two011
lightweight techniques for this scenario, and012
demonstrate that they reliably increase out-of-013
domain accuracy on four multi-domain text014
classification datasets when used with linear015
and contextual embedding models. We con-016
clude with recommendations for model pro-017
ducers and consumers, and release models and018
replication code to accompany this paper.019

1 Introduction020

Machine learning models for tasks like sentiment021

analysis and hate speech detection are becoming in-022

creasingly ubiquitous as off-the-shelf tools, includ-023

ing as commercial packages or cloud-based APIs.024

Among other applications, these models are widely025

used by computational social scientists to obtain026

standardized measurements of various document027

properties at scale. However, the problem of do-028

main shift represents a threat to validity, one which029

is difficult for practitioners to overcome, especially030

without access to source data—which may be un-031

available for reasons of privacy, copyright, or com-032

mercial interests. In this paper, we propose to treat033

domain adaptation as a modular process involving034

both model producers and model consumers, and035

show how both parties can independently cooperate036

to produce more reliable measurements.037

Although this framework applies to any applica-038

tion involving independent model producers and039

consumers, we focus here on text-based instru-040

ments, including both lexicons and supervised text041

Figure 1: Modular domain adaptation involves both
model producers and model consumers, cooperating
via a standardized model.

classification models. Using multiple datasets and 042

baselines, we show that model consumers can ob- 043

tain more accurate results by using models de- 044

signed to be lightly adapted, and that model pro- 045

ducers can facilitate such adaptation, even without 046

providing access to source data, using what we call 047

anticipatory domain adaptation (see Figure 1). 048

We introduce two techniques under this new 049

paradigm: domain-specific bias (DSBIAS) and 050

domain-specific normalization (DSNORM). These 051

methods enable model consumers to incorporate 052

information from their domain of interest—without 053

additional training or hyperparameter tuning—and 054

provide reliably better out-of-domain accuracy for 055

both linear and contextual embedding classifiers. 056

In summary, this paper makes the following con- 057

tributions: 058

• We present modular domain adaptation as a 059

process that involves both model producers 060

and model consumers (§3.1). 061

• We introduce two simple techniques for antic- 062

ipatory domain adaptation – that is, ways in 063

which model producers can facilitate adapta- 064

tion by model consumers (§3.4). 065

• We quantify the relative out-of-domain per- 066

formance of linear and contextual embedding 067

models in combination with various adapta- 068

tion techniques on multiple datasets (§4). 069
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• We release linear and contextual models for070

measuring framing in text based on the Media071

Frames Corpus (Card et al., 2015).1072

2 Background and Related Work073

There is an extensive literature on using text as data074

in computational social science (CSS) to study po-075

litical communication, mental health, and many076

other social phenomena (Grimmer and Stewart,077

2013; Fulgoni et al., 2016; Eichstaedt et al., 2018;078

Saha et al., 2019; Li et al., 2020b; Jaidka et al.,079

2020; Nguyen et al., 2020). The overarching re-080

quirement in much of this work is to convert raw081

text (from speeches, articles, tweets, etc.) into a082

quantitative representation capturing some property083

of interest, such as sentiment or affect (Hatzivas-084

siloglou and McKeown, 1997; Huettner and Suba-085

sic, 2000; Hutto and Gilbert, 2014). Although some086

researchers develop bespoke models for specialized087

applications, those studying similar phenomena of-088

ten make use of a shared set of tools, in principle089

allowing for comparison across studies.090

Among the most commonly used instruments are091

lexicons such as LIWC (Tausczik and Pennebaker,092

2010), EmoLex (Mohammad and Turney, 2013),093

and the moral foundations dictionary (Frimer et al.,094

2019), which offer simple, reproducible, and inter-095

pretable measurements, despite being insensitive096

to context.2 Although lexicons are often developed097

without the use of machine learning, we can treat098

them interchangeably with linear models, as they099

are typically utilized by summing the presence of100

the listed features (i.e., words). The output of such101

models is thus a score for each document, allow-102

ing for comparisons between groups of documents,103

such as across time, sources, or treatment groups.104

Importantly, these scores should be thought of as105

proxies for theoretical constructs of interest, such106

as sentiment or ideology, to which they provide a107

noisy approximation (Jacobs and Wallach, 2021;108

Pryzant et al., 2021).3109

Although open source models have numerous110

advantages for research, model creators may be111

unable or unwilling to share the data that their mod-112

els are based on, especially for commercial lexi-113

1To be released after review period for anonymity.
2In this paper, we use “lexicon” to refer to weighted or un-

weighted list of words corresponding to categories of interest.
3Although lexicons are often used to obtain real-valued

scores, rather than as classifiers, we assume for the sake of sim-
plicity that any available in-domain annotations are collected
as categorical labels, and evaluate all models as classifiers,
using an appropriate threshold where necessary.

cons, like LIWC, and cloud-based products like 114

Perspective API. Despite their limitations, these 115

systems provide convenient, comparable, and easy- 116

to-use tools for CSS researchers in various fields. 117

However, those who use such models face the dual 118

problems of adapting them to a new domain and 119

assessing validity in that domain, and will often 120

want to do so with relatively constrained resources. 121

Domain adaptation is an important area of re- 122

search within machine learning, but most work 123

tends to assume either access to source data (e.g., 124

for re-weighting; Huang et al., 2007; Jiang and 125

Zhai, 2007; Azizzadenesheli et al., 2019), or exten- 126

sive labeled data in the new domain. For contex- 127

tual embedding models in NLP, continued training 128

on a small amount of labeled data offers benefits 129

(Radford et al., 2017; Howard and Ruder, 2018), 130

though this requires sufficient data for fine-tuning, 131

validation, and evaluation (to assess performance 132

in the target domain), as well access to sufficient 133

computational resources (typically GPUs). 134

Self-training (augmenting source data using pre- 135

dicted labels in the new domain) provides an al- 136

ternative strategy, and has shown to work both 137

theoretically and practically (Kumar et al., 2020), 138

but typically assumes access to the original source 139

data, and requires making choices about multiple 140

hyperparameters, which is difficult in the absence 141

of extensive validation data. A few papers have 142

considered the problem of domain adaptation with- 143

out source data (Chidlovskii et al., 2016; Liang 144

et al., 2020), but most tend to emphasize resource- 145

intensive solutions (e.g., using GANs; Li et al., 146

2020a). 147

A different but related paradigm is “de- 148

confounded lexicon induction” (Pryzant et al., 149

2018a,b), where the goal is to learn a model that 150

accounts for the influence of non-textual attributes 151

(such as domain). Because this approach tries to 152

eliminate the influence of confounders, we might 153

expect it to produce a more domain-agnostic model, 154

and we therefore include experiments with the pro- 155

posed techniques for the purpose of comparison. 156

3 Methods 157

3.1 Problem Formulation 158

In this work, we make the distinction between 159

model producers and model consumers. Model pro- 160

ducers wish to train a model on a labeled dataset 161

of documents coming from one or more domains 162

(e.g., political issues, or paper categories), where 163
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each document, xi, has an associated categori-164

cal class label, yi ∈ Y , as well as a domain,165

di ∈ D. Model consumers, by contrast, will apply166

the trained model to a new domain, d′ /∈ D, with-167

out access to either the source data or extensive168

labeled data from their domain of interest.4169

Note that in our setup, the producer and con-170

sumer have different goals and face different con-171

straints. The model producer’s goal is to create a172

self-contained model, without sharing any source173

data associated with training, due to reasons such174

as privacy, copyright, or commercial interests. The175

model consumer’s goal, by contrast, is to achieve176

high accuracy in a new domain, d′, without need-177

ing extensive resources for either labeling data or178

training a new model. Especially for applications179

in CSS, we also assume that model consumers will180

need to estimate accuracy in their domain, as part of181

demonstrating validity (Jacobs and Wallach, 2021).182

In this paper, we compare the performance un-183

der these constraints of two especially common184

approaches to creating text classification models185

(logistic regression with bag-of-words features and186

contextual embedding models), and propose two187

methods (DSBIASand DSNORM; §3.4) by which188

model producers can facilitate domain adaptation189

by model consumers.190

3.2 Underlying Models191

As foundations from which to experiment with tech-192

niques for modular domain adaptation, we make193

use of two standard baseline approaches in text194

classification: regularized logistic regression and195

fine-tuned contextual embedding models. In both196

cases, the model is trained using an appropriate loss197

function (e.g., logistic or cross entropy), computed198

with respect to predicted probabilities:199

p̂i = softmax(b + f(xi)
>W) (1)200

where b ∈ Rk is a bias vector, W is an h × k201

weight matrix, f(·) encodes a document as an h-202

dimensional vector, and p̂i ∈ ∆k is the predicted203

distribution over k classes.5204

For logistic regression, f(·) encodes xi as a205

sparse bag-of-words vector, with h equal to the206

size of the vocabulary. For contextual embedding207

4We assume that typical model consumers in CSS are
capable of generating some labeled data in their domain (e.g.,
by manually annotating data), but have insufficient resources
available to create a large labeled dataset.

5Or equivalently for binary labels: a logistic function in-
stead of a softmax, pi ∈ [0, 1], b ∈ R, and w ∈ Rh.

Figure 2: Model diagrams of base predictors in
conjunction with proposed techniques, showing how
pieces fit together. All deconfounding and adaptation
techniques are marked in green and are optional. Base
predictor is marked in yellow.

models, f(xi) ∈ Rh is the penultimate dense rep- 208

resentation produced by feeding document i into a 209

contextual embedding model, plus additional layers 210

in the case of a multi-layer decoder. 211

3.3 Deconfounding Techniques 212

To augment the underlying models, we begin with 213

previously proposed techniques for removing the 214

influence of domain. Although mainly designed to 215

account for explicitly modeled features of the data, 216

and not specifically focused on domain adaptation, 217

Pryzant et al. (2018b) proposed two methods for de- 218

confounded lexicon induction—that is, attenuating 219

the influence of non-textual document properties, 220

including domain, when learning an interpretable 221

model. Since these are carried out solely by model 222

producers, we use utilize them as baselines. 223

Deep Residualization (DR): As one way of 224

deconfounding labels from potential confounds, 225

Pryzant et al. (2018b) proposed learning a mapping 226

from observable confounds to labels, and integrat- 227

ing that into the prediction. Specifically, we replace 228

the bias term b in Eq. (1) with an instance specific 229

vector, i.e., 230

p̂i = softmax(g(ci) + f(xi)
>W), (2) 231

where ci is a vector of confounds for document i, 232

and g(·) is a feed-forward network mapping from 233

confounds to a dense vector representation ∈ Rk. 234

In our case, ci is a one-hot vector representing 235

domain (i.e., di). Since the ultimate application 236

domain is not available at training time, the model 237

consumer would use the domain agnostic predictor, 238

setting g(ci) = 0 for the unseen domain. 239

Gradient Reversal (GR): Pryzant et al. (2018b) 240

also proposed using gradient reversal for decon- 241
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founding. That is, we train the model to success-242

fully predict an instance’s label, while being unable243

to predict the domain. To implement this, we fac-244

torize the weight matrix W into two matrices, W1245

and W2 , and apply gradient reversal to the inter-246

mediate representation, i.e.247

p̂i = softmax(b + (f(xi)
>W1)

>W2) (3)248

d̂i = softmax(h(GRL(f(xi)
>W1))), (4)249

where d̂i ∈ ∆|D| is the predicted distribution over250

domains, h(·) is a feed-forward network, and GRL251

reverses the gradients with respect to W1 during252

training (Ganin et al., 2016).253

3.4 Anticipatory Adaptation Techniques254

As mentioned, the above techniques were designed255

for deconfounding by the model producer, and256

not for domain adaptation by the model consumer.257

Here we introduce two new methods by which a258

model producer might facilitate adaptation, without259

having to share training data or requiring knowl-260

edge of the model consumer’s domain.261

Domain-Specific Bias (DSBIAS): A key limita-262

tion of deep residualization (DR) is that it has no263

way to incorporate information about a previously264

unseen domain. As an alternative, we modify the265

idea of DR by expressing the instance-specific bias266

in terms of the distribution of labels in the corre-267

sponding domain. This allows model consumers268

to inject information about a new domain into the269

model at prediction time, given knowledge about270

the relevant label distribution. Specifically, for each271

domain d we set the bias term in Eq. (1) to be the272

element-wise log of a vector of label frequencies273

in that domain, i.e.,274

p̂i = softmax(log(ȳdi) + f(xi)
>W) (5)275

where ȳdi ∈ ∆k is a vector of estimated label276

frequencies in the domain of instance i. Using277

the log of the estimated label frequencies means278

that the learned weights (W) represent additive279

deviations (in log space) from baseline frequencies,280

much like in SAGE (Eisenstein et al., 2011).281

At training time, ȳdi can be estimated by the282

model producer from labeled data in each domain.283

At prediction time, model consumers can provide284

an approximate label distribution for a new domain285

by either estimating it from a small amount of la-286

beled data, or by leveraging prior knowledge of the287

domain itself. Thus, DSBIAS benefits from having288

some labeled data in the new domain, but does not 289

require additional training by model consumers. 290

Domain-Specific Normalization (DSNORM): 291

As an additional option for linear models, and 292

inspired by normalization techniques used in deep 293

learning, we also consider normalizing each ele- 294

ment in the bag-of-words feature vector according 295

to its expected frequency of the individual domain: 296

f ′(xi) = f(xi)− Σ
Ndi
j=1f(xj)/Ndi , (6) 297

where f(xi) is a vector of feature values, and Ndi 298

is the number of instances in the domain of in- 299

stance i. This allows for a commonly occurring 300

word (e.g., the word “climate” in climate change 301

news) to become less important if it occurs in the 302

current domain, and relatively more important in 303

others.6 Because this does not require labeled data, 304

it can be applied directly to a new domain by model 305

consumers. 306

3.5 Domain Fine-Tuning (DFT) 307

Past work on pretrained contextual embedding 308

models has demonstrated that continued training 309

on labeled samples from a new domain can effec- 310

tively adapt the model to that domain, improving 311

performance (Radford et al., 2017; Howard and 312

Ruder, 2018; Gururangan et al., 2020). Although 313

powerful, there are several reasons why this may 314

not be an option for model consumers. First, many 315

APIs and commercial systems will not provide this 316

functionality or expose the necessary parts of the 317

model. Second, the computational resources re- 318

quired for fine-tuning (i.e., GPUs) may be pro- 319

hibitive for some users. Third, fine tuning means 320

that individual model consumers will no longer be 321

applying the same standardized model, thus reduc- 322

ing the comparability of results. Nevertheless, we 323

include experiments with DFT in order to quantify 324

how much better a model consumer could do with 325

sufficient labeled data for training and evaluation 326

in their domain (§4), and compare fine tuning an 327

off-the-shelf model to one that has been fine-tuned 328

for the same task on out-of-domain data (§4.5). 329

4 Experiments 330

In this section we systematically evaluate the per- 331

formance of both underlying models in conjunction 332

6Like TF-IDF, DSN scales feature values based on fre-
quency, but keeps all (binarized) feature values between 0 and
1, even for rare words.
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Dataset |Y| Domains Min Nd Max Nd

MFC 15 6 4220 8898
ARXIV 4 6 5338 59612

AMAZON 3 5 4199 22573
SENTI 2 5 3088 10003

Table 1: Dataset statistics, showing the number of cate-
gories (labels), domains, and minimum and maximum
number of labeled instances per domain. For details of
data splits, see appendix G.

with all available techniques in section §3, to quan-333

titatively evaluate their performance, and to derive334

best practices as advice to practitioners when ap-335

plying them to real data under various settings. For336

simplicity, we use accuracy as the primary metric337

of evaluation in all our experiments.338

4.1 Data339

Because our primary interest is to evaluate modular340

domain adaptation techniques, we choose datasets341

with instances from multiple known domains, so342

that we can hold out each domain in turn to esti-343

mate performance when adapting to a previously344

unseen domain. In particular, we make use of four345

datasets in our experiments (see Table 1): the Me-346

dia Frame Corpus (MFC; Card et al., 2015) and347

the arXiv Dataset (ARXIV; Clement et al., 2019),348

the Amazon Reviews Dataset (AMAZON; Ni et al.,349

2019), and a collection of sentiment classification350

datasets (SENTI; see below).351

MFC is a dataset of news articles on 6 different352

issues (e.g., “climate change”), and each article is353

labeled to have 1 of 15 possible primary “frames”,354

which are assumed to generalize across issues. As355

intuition would suggest, different frames are em-356

phasized in coverage of different issues (e.g., cli-357

mate change is discussed more in terms of “capac-358

ity and resources” than “crime and punishment”).359

ARXIV is the dataset of all scholarly articles pub-360

lished on arXiv.org. We consider articles in 6 cat-361

egories in the taxonomy relevant to machine learn-362

ing (e.g., cs.CL, “Computation and Language”).363

For each article, we consider the year in which364

it was published, discretised into 4 time periods,365

and try to predict the time period from the abstract,366

using taxonomic categories as domains.7367

AMAZON is a subsampled dataset of product368

reviews from Amazon from the most popular 7369

categories. Each review is associated with a review370

7Divided by the years 2008, 2014, and 2019, which are
rough markers of major machine learning milestones.

score (negative: 1; neutral: 2-4; positive: 5) which 371

we try to predict from the review text. 372

SENTI is a collection of diverse, subsampled sen- 373

timent classification datasets: Twitter US Airline 374

Sentiment (Eight, 2015), Amazon Books Reviews 375

(Ni et al., 2019), IMDb Movie Reviews (Maas et al., 376

2011), Sentiment 140 Tweets (Go et al., 2009), 377

and the Stanford Sentiment Treebank (SST; Socher 378

et al., 2013). The domains included in this dataset 379

differ from each other in various ways (e.g., IMDb 380

reviews are often a few paragraphs long, whereas 381

SST utterances are much shorter), which is in- 382

tended to mimic scenarios in which users might 383

apply off-the-shelf sentiment analysis tools. From 384

each sample we classify instances as positive or 385

negative. 386

4.2 Implementation Details 387

As a linear baseline, we use L1-regularized logistic 388

regression (LogReg) operating on binarized bag of 389

word features, which has been shown to be a com- 390

petitive choice among similar models (Wang and 391

Manning, 2012). We limit ourselves to a vocabu- 392

lary of the 5000 most frequent lowercased words in 393

the training set. We use full-batch gradient descent 394

to optimize the models, with L1 regularization on 395

the weight matrices only. Regularization strength is 396

determined for each configuration using grid search 397

on in-domain cross validation splits, then applied 398

to the full in-domain training set. 399

For contextual embedding classifiers, we use 400

RoBERTa, fine-tuning the publicly available 401

roberta-base from Hugging Face (Wolf et al., 402

2020), using AdamW (Loshchilov and Hutter, 403

2019) with a fixed dropout rate of 0.2. We use 404

early stopping with number of epochs determined 405

for each configuration using in-domain cross val- 406

idation splits, then applied to the full in-domain 407

training set. For additional details, please refer to 408

Appendix I. 409

4.3 Out-of-domain Performance 410

As our primary evaluation, we assess each tech- 411

nique in combination with each of our base mod- 412

els (LogReg vs. RoBERTa). For each domain of 413

each dataset, we create a dedicated held-out test set. 414

During training, for each dataset, we hold out each 415

domain in turn, and use the remaining domains as 416

in-domain training data. We report average per- 417

formance on out-of-domain test sets, along with 418

variance (across domains) in improvement over 419

the baseline model in Table 2. For DSBIAS, we 420

5

arXiv.org


MFC ARXIV AMAZON SENTI
acc σ∆ acc σ∆ acc σ∆ acc σ∆

Most common 0.276 - 0.526 - 0.631 - 0.495 -
L

og
R

eg
Base 0.508 - 0.543 - 0.672 - 0.647 -
DR 0.503 0.009 0.551 0.005 0.674 0.004 0.648 0.003
GR 0.500 0.004 0.541 0.005 0.709 0.001 0.638 0.003
DSBIAS (250) 0.515 0.020 0.564 0.024 0.714 0.004 0.690 0.052
DSNORM+DSBIAS (250) 0.532 0.018 0.568 0.013 0.716 0.006 0.700 0.041

DSBIAS (oracle) 0.524 0.022 0.563 0.013 0.715 0.003 0.695 0.041
DSNORM+DSBIAS (oracle) 0.541 0.015 0.568 0.012 0.717 0.002 0.709 0.039

R
oB

E
R

Ta

Base 0.599 - 0.584 - 0.772 - 0.789 -
DR 0.594 0.014 0.593 0.007 0.782 0.017 0.817 0.012
GR 0.202 0.039 0.512 0.003 0.777 0.012 0.684 0.068
DSBIAS (250) 0.613 0.030 0.599 0.010 0.772 0.036 0.819 0.016
DFT (250) 0.683 0.032 0.615 0.012 0.785 0.025 0.831 0.018

DSBIAS (oracle) 0.622 0.026 0.600 0.013 0.779 0.012 0.819 0.014

Table 2: Average out-of-domain accuracy on four datasets show consistent findings for both LogReg and RoBERTa:
(1) DSBIAS with the oracle label distribution offers a small but reliable gain in accuracy over the Base models; (2)
gains are almost as large when approximating the oracle distribution with 250 labeled examples; (3) DSNORM also
offers a small but reliable benefit for linear models when used in combination with DSBIAS; (4) Deconfounding
techniques (DR and GR) do not improve out-of-domain accuracy over Base; (5) RoBERTa achieves much better
out-of-domain accuracy than LogReg, even without fine tuning to the target domain; (6) Additional fine tuning to
250 labeled example (DFT) offers additional gains, though this may not be an option for some model consumers.
σ∆ is the standard deviation (across held-out domains) of the improvement over the baseline (Base).

evaluate performance both when assuming oracle421

knowledge of the label distribution in the held-out422

domain, and when we estimate it from a random423

sample of 250 instances, which we also use for424

DFT.425

There are four important takeaways from these426

results. First, RoBERTa offers a dramatic improve-427

ment over base logistic regression in out-of-domain428

performance (8-18% improvement), even without429

additional fine-tuning by the model consumer.8430

Thus, although some model consumers may still431

prefer linear models or lexicons for greater inter-432

pretability (see Appendix F), the CSS community433

would greatly benefit from having model produc-434

ers release both linear and contextual embedding435

models. Moreover, fine-tuning RoBERTa to even436

a small amount of in-domain labeled data pro-437

duces another additional improvements (though438

with caveats, which we discuss in §4.5).439

Second, the deconfounding techniques (DR and440

GR) offer little or no benefit over the baseline in441

terms of out-of-domain performance. Thus, while442

they may work for removing the influence of do-443

main in constructing a lexicon, they do not appear444

to produce a domain agnostic lexicon in a way that445

8As expected, both LogReg and RoBERTa show large
drops in performance from the domains in which they were
trained (3-10% on average, depending on dataset; see Table 6
in Appendix D).

is beneficial for model consumers. 446

Third, DSBIAS (using the log label distribution 447

for each domain) offers a small but reliable benefit 448

(2-4%) to model consumers when working with a 449

known label distribution, and this applies to both 450

linear and contextual embedding models. More- 451

over, this still holds when model consumers esti- 452

mate this distribution from a small amount of la- 453

beled data (here 250 instances). A key advantage 454

to DSBIAS is that it requires no additional train- 455

ing by model consumers, and essentially keeps the 456

underlying model unchanged, preserving compara- 457

bility across studies. Moreover, estimating a low- 458

dimensional label distribution requires relatively 459

few samples, with statistically bounded errors given 460

a random sample (see §4.4 below). 461

Fourth, DSNORM (normalizing features by do- 462

main) offers a small additional benefit when used in 463

combination with DSBIAS for linear models, and 464

it can be applied by model consumers based purely 465

on unlabeled data from their domain. 466

Based on what evaluations can be justified using 467

a simple power analysis (Card et al., 2020), we 468

verify that LogReg+DSBIAS+DSNORM is signifi- 469

cantly better than LogReg using McNemar’s test, 470

as is RoBERTa+DSBIAS compared to RoBERTa 471

(see Appendix J). 472

To ensure that our linear classifiers achieve rea- 473
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Figure 3: Average validation accuracy of in unseen do-
mains of MFC, using a varying number of target domain
samples to estimate label distribution for DSBIAS.

sonable performance, we also compare our results474

on the SENTI dataset to several off-the-shelf senti-475

ment lexicons, evaluating them as classifiers with476

fine-tuned classification thresholds, and find that477

none do as well as our best logistic regression clas-478

sifier in terms of out-of-domain performance (see479

Appendix B). Finally, in Appendix C, we verify480

that our findings hold even if the model producer481

is only able to train on a single domain.482

4.4 Estimating the Label Distribution483

DSBIAS achieved the best performance when given484

the oracle label distribution of the target domain,485

but in practice this is unlikely to be known pre-486

cisely. To study the effect of using an estimated487

label distribution with the technique, we here as-488

sume that we only have very few labeled samples489

from the unseen domain. Specifically, we run the490

same experiment in §4.3 where we vary the number491

of samples used to estimate the label distribution492

in the target domain.493

Figure 3 demonstrates that with only as few as494

100 labeled samples, average performance using495

DSBIAS improves from the base model, and ar-496

rives within 1 percent of accuracy from using the497

ground truth distribution. For each heldout domain,498

we run 5 trials each estimating label distribution499

using a fixed number of random samples, evaluate500

performance on the full train set of the heldout do-501

main, then average across all trials and all heldout502

domains. Further including more labeled samples503

in estimating label distribution results in marginal,504

upper-bounded improvements.505

Especially for CSS applications, model con-506

Figure 4: Validation accuracy of calculated from all
holdout samples, and from limited samples, of the Sen-
timent 140 dataset in SENTI. Shaded area denotes 1
standard deviation from mean estimated performance.
For all domains in all datasets, see appendix E.

sumers are likely to care as much about estimating 507

performance in their domain (to ensure validity) as 508

they do about improving performance. An addi- 509

tional advantage of DSBIAS is that one can easily 510

use two-fold estimation to effectively re-use any 511

available labeled data for both estimating the label 512

distribution and evaluating performance. That is, 513

split the available labeled data in two, use half to 514

estimate the label distribution, and the other half 515

to estimate performance. Repeat this (reversing 516

roles), and then take the average performance as 517

an estimate of in-domain accuracy, without any 518

model training or hyperparameter tuning required. 519

One can then use all of the labeled data to estimate 520

the label distribution for making predictions on the 521

full unlabeled dataset. As shown in Figure 4, this 522

produces an unbiased estimate, with variance that 523

decreases with the amount of labeled data. 524

4.5 Domain Fine-tuning 525

One major advantage of contextual embedding 526

models like RoBERTa is that one can easily fine- 527

tune to a new domain by simply continuing to train 528

on additional labeled data (Gururangan et al., 2020). 529

Although this may not be a possibility for many 530

model consumers (see §3.5), we evaluate this ap- 531

proach for the sake of completion.9 532

Here, we take the best-performing RoBERTa 533

model from section §4.3, and fine-tune it with a 534

9Importantly, contextual embedding models can easily be
applied with minimal computational requirements, but domain
fine-tuning requires more resources and expertise.
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Figure 5: Mean validation accuracy on held-out do-
mains of a RoBERTa+DSBIAS model on ARXIV, fine-
tuned using a variable number of random samples from
the heldout domain. In our experiments, fine-tuning a
contextual embedding model pretrained for the same
task on other domains is much better than simply fine-
tuning an off-the-shelf model.

small number of samples from the unseen domain535

from the train split in the heldout domain, using a536

variable number of labeled samples, then evaluate537

the model using the validation split in the heldout538

domain. Figure 5 demonstrates that even with a539

relatively small number of labeled samples from540

the unseen domain, a second-pass fine-tuning re-541

sults in a significant performance increase, but that542

the increase flattens out as number of samples in-543

creases. Of course, users will also need additional544

data for evaluating in-domain performance, so this545

underestimates the total amount of labeled data that546

would be required.547

More importantly, we find that fine-tuning a548

model that has already been trained for the same549

task on out-of-domain data does far better than550

fine-tuning a generic off-the-shelf model, even with551

1000 in-domain samples. Thus, despite the power552

of fine-tuning contextual embedding models, there553

is still a clear advantage for the CSS community of554

model producers creating such models for measur-555

ing categories of interest in text.556

5 Discussion and Recommendations557

A key idea of this paper is that domain adapta-558

tion should not be something that only model con-559

sumers have to confront. Rather, we should think of560

domain adaptation as a modular, collaborative pro-561

cess, in which model producers should anticipate562

that model consumer will want to apply models to563

new domains. Ideally, model producers would also564

make training data available to model consumers,565

so as to facilitate domain adaptation. For settings566

in which this is not possible, we have presented 567

two techniques (DSBIAS and DSNORM) which im- 568

proved performance for both logistic regression and 569

contextual embedding models, and we encourage 570

the development of additional techniques. 571

Although it is still useful for model producers 572

to estimate and report model performance in the 573

training domain(s) as part of model documentation 574

(Mitchell et al., 2019), model consumers should 575

not rely on such estimates when making use of 576

off-the-shelf models. Rather, it is essential to have 577

sufficient labeled data in the application domain so 578

as to be able to estimate performance, in addition 579

to any labeled data to be used for adaptation, and 580

this should be budgeted for when planning annota- 581

tions (Baheti et al., 2021). For specific applications, 582

model consumers may also care about metrics be- 583

yond accuracy, and should evaluate models based 584

on what is most relevant. 585

Lexicons such as LIWC have an enduring popu- 586

larity, in part because of their ease of use. As the 587

results above demonstrate, however, simple logistic 588

regression models can do as well (in terms of classi- 589

fication accuracy). Contextual embedding models 590

derived from the same data are considerably more 591

accurate, and need not be any more difficult for 592

practitioners to apply. Thus, we encourage CSS 593

researchers to produce and share such models, even 594

if the raw data itself cannot be shared. 595

6 Conclusion 596

Using off-the-shelf text classification models for 597

computational social science requires careful 598

thought regarding domain shift. In this paper, we 599

propose to treat this as a modular process in which 600

model producers can apply techniques of antici- 601

patory domain adaptation to facilitate adaptation 602

by model consumers. We demonstrate that us- 603

ing domain-specific bias (DSBIAS) and domain- 604

specific normalization (DSNORM) produces a reli- 605

able performance boost for the model consumers, 606

and that this applies to both linear and contex- 607

tual embedding models. Finally, for cases where 608

accuracy is more important than interpretability, 609

we demonstrate the superior out-of-domain perfor- 610

mance of contextual embedding models when com- 611

pared to linear models, even without additional fine- 612

tuning, and encourage model producers to make 613

multiple types of models available. 614
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A Full Heldout Domain Accuracy 815

For each model-technique combination, for each dataset, and for each domain in the dataset, we train a 816

model using the training split of all domains except the single heldout domain, then evaluate the model 817

on the heldout domain, then average accuracy across these domains. These data were used to determine 818

which model comparisons to test for significance, though we include all results on test data in the main 819

paper for completeness. 820

MFC ARXIV AMAZON SENTI
acc σ∆ acc σ∆ acc σ∆ acc σ∆

LogReg

Base 0.501 - 0.541 - 0.672 - 0.647 -
GR 0.502 0.002 0.542 0.003 0.709 0.001 0.638 0.003
DSB 0.520 0.02 0.565 0.014 0.715 0.003 0.695 0.041
DR 0.493 0.006 0.552 0.005 0.674 0.004 0.648 0.003
DSN 0.452 0.013 0.483 0.033 0.682 0.012 0.595 0.044
DSN+GR 0.453 0.013 0.483 0.033 0.681 0.012 0.595 0.044
DSN+DSB 0.536 0.017 0.570 0.013 0.717 0.002 0.712 0.039
DSN+DR 0.451 0.015 0.358 0.035 0.491 0.016 0.609 0.044

RoBERTa

Base 0.581 - 0.583 - 0.772 - 0.803 -
DR 0.585 0.014 0.587 0.005 0.782 0.017 0.817 0.012
GR 0.204 0.046 0.510 0.01 0.778 0.012 0.684 0.068
DSB 0.615 0.031 0.605 0.011 0.779 0.012 0.819 0.014

Table 3: Validation accuracy of models trained holding out one domain per trial, then evaluated on the heldout
domain, for all configurations of each model. σ∆ is the standard deviation of accuracy difference in each domain
over the corresponding baseline (“Base”).

B Comparison to Off-the-shelf Sentiment Models and Lexicons 821

To ensure that our linear model achieve reasonable performance, we compare our best logistic regression 822

classifiers (using DSN+DSB) to several off-the-shelf sentiment lexicons and models, applied to the SENTI 823

dataset. For each lexicon, we use the available (weighted or unweighted) word list as features, and 824

introduce a learnable threshold, which we fine tune to each target domain in turn, using the same 250 825

samples from that domain as we use to estimate label distribution for our best model. 826

Results are shown in Table 4. Notably, not only does performance vary across lexicons (showing the 827

sensitivity of results to which lexicon is chosen), but none do as well as our best linear mode, indicating that 828

even commercial packages such as LIWC (Tausczik and Pennebaker, 2010) are no better at generalizing 829

to new domains that a regularized logistic regression model. 830

Model / Lexicon Untuned Acc Tuned Acc (250 samples)

VADER (Hutto and Gilbert, 2014) 0.631 -
General Inquirer (Stone et al., 1966) 0.635 0.675
SentiWordNet (Baccianella et al., 2010) 0.608 0.680
LIWC (Tausczik and Pennebaker, 2010) 0.648 0.689
Opinion Lexicon (Hu and Liu, 2004) 0.680 0.706
LogReg 0.647 0.712

Table 4: Validation accuracy in unseen domains of popular off-the-shelf sentiment lexicons in comparison to our
best model. For LogReg, “untuned” refers to its baseline, and “tuned” is the model with DSN and DSB applied
with estimated label distribution. VADER is not tuned as it is distributed as a classifier [DC: dbl check].

C Single Domain Training 831

Similar to the previous experiment where we held out a single domain, here we train only on a single 832

domain, and evaluate with all non-training domains. 833
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MFC ARXIV AMAZON SENTI
acc σ∆ acc σ∆ acc σ∆ acc σ∆

LogReg

Base 0.426 - 0.555 - 0.653 - 0.574 -
GR 0.425 0.0 0.554 0.0 0.652 0.001 0.572 0.002
DSB 0.447 0.006 0.596 0.008 0.681 0.016 0.670 0.018
DR 0.423 0.002 0.574 0.012 0.605 0.002 0.571 0.006
DSN 0.366 0.01 0.417 0.019 0.629 0.015 0.545 0.013
DSN+GR 0.366 0.012 0.415 0.02 0.629 0.015 0.545 0.013
DSN+DSB 0.472 0.008 0.598 0.007 0.683 0.015 0.670 0.018
DSN+DR 0.378 0.005 0.349 0.018 0.481 0.025 0.549 0.015

RoBERTa

Base 0.48 - 0.539 - 0.727 - 0.622 -
DR 0.510 0.023 0.542 0.004 0.736 0.028 0.620 0.014
GR 0.168 0.034 0.448 0.074 0.647 0.026 0.548 0.062
DSB 0.540 0.029 0.560 0.008 0.751 0.023 0.699 0.039

Table 5: Validation accuracy of models trained with a single domain, then evaluated on all other domains combined,
for all configurations of each model. σ∆ is the standard deviation of accuracy difference in each domain over the
corresponding baseline (Base).

In single domain training, since no deconfounding between training domain is possible, gradient834

reversal (GR) and deep residualization (DR) fails to meaningfully improve performance.835

Comparing table 5 to table 3, not only do we observe a very similar trend of performance differ-836

ences, where our recommended model-technique combinations (Lexicon+DSN+DSB, RoBERTa+DSB)837

consistently outperforms the rest, but the difference is more pronounced.838

D Out-of-domain Performance Drop839

MFC ARXIV AMAZON SENTI
ID OOD σ∆ ID OOD σ∆ ID OOD σ∆ ID OOD σ∆

LogReg 0.607 0.508 0.036 0.583 0.542 0.012 0.722 0.672 0.062 0.756 0.649 0.060
RoBERTa 0.703 0.600 0.071 0.608 0.571 0.021 0.797 0.772 0.021 0.837 0.789 0.073

Table 6: Test accuracy of models trained on all domains then evaluated on the test split of each domain (in-domain
“ID"), and trained on all but one held-out domain then evaluated on the test split of that held-out domain (out-of-
domain “OOD”). σ∆ is the standard deviation of accuracy difference in each domain.
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E Estimating Performance 840

Figure 6: Validation accuracy calculated from all holdout samples, and from limited samples, of each topic (do-
main) in the Media Frame Corpus (MFC). Shaded area denotes 1 standard deviation from mean estimated perfor-
mance
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Figure 7: Validation accuracy calculated from all holdout samples, and from limited samples, of each category
(domain) in ARXIV. Shaded area denotes 1 standard deviation from mean estimated performance
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Figure 8: Validation accuracy calculated from all holdout samples, and from limited samples, of each category
(domain) in AMAZON. Shaded area denotes 1 standard deviation from mean estimated performance
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Figure 9: Validation accuracy calculated from all holdout samples, and from limited samples, of each sub-dataset
(domain) in SENTI. Shaded area denotes 1 standard deviation from mean estimated performance
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F Example Lexicon 841

Economic
Capacity

and
Resources

Morality
Fairness

and
Equality

Legality,
Constitutionality,

Jurisdiction

Policy
Prescription

and
Evaluation

Crime
and

Punishment

Security
and

Defense

economic applications moral discrimination asylum ordinance criminals terrorist
financial shortage church fairness lawsuit rid deport security
budget species pope black justices punishment deported terrorists

business capacity catholic equality sued vehicles allegedly border
economy ocean churches innocent suing policy injection military

fund handle leaders race constitution penalty minors patrol
jobs process christian racial plaintiffs citizenship smuggling fbi
costs surge religious equal lawsuits effect kill terror

economists science rev innocence visa plan crackdown threats
sales resources francis evidence suit bill deportation pentagon

corporate scientists bishop unfair court ban fine intelligence
company foreign faith fair visas would police terrorism

companies wait rabbi blacks judge policies investigators protect
tax critical churchs testimony attorney smokefree firstdegree guard
cost waiting jewish facts antonin proposal prison war

revenue years society civil militia bans maximum secure
stores tons clergy racist shall supporters arrested airports

treasury growing christians true lawyers designated sentenced attacks
dollars used nicotine equally licenses buildings scheme russian
money lines bible treated granted homeland executed defense

Health
and

Safety

Quality
of

Life

Cultural
Identity

Public
Sentiment Political

External
Regulation

and
Reputation

Other

mentally daughter documentary poll governor countries hillary
health loved film protesters republicans minister chris

condition benefits movie rally bloombergs mexican gop
medical quit culture protest conservatives foreign annual
disease mother actor marched sen european paid
doctors weather cultural demonstrators clinton un brother
suicide college book voters reelection mexicans cultural
hospital families ethnic activists bipartisan visit money

pain tears executions organizers gop france supporting
safe temperatures population organized mayor states stores

safety felt english gathered hillary china accused
mental family movies protests statements negotiations interests
lung everything history mom rep agreement governors

coverage temperature players polls cuomo united candidate
locks living tv polling mayors talks fund

retarded married census mothers endorsement mexico endorsement
lungs conditions league attitudes obama summit didnt
risk life decline nra referendum australia economic

illness classes star signatures ryan mexicos reelection
diseases father smoked organization republican canadian shortly

Table 7: Top weighted 20 words from each class in a lexicon elicited from the Media Frame Corpus (MFC), with
a logistic regression model and using Domain-Specific Bias (DSB) and Domain-Specific Normalization (DSN).
Weight value associated with each word not included.
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-2008 2009-2014 2015-2018 2019-

rules web recurrent covid19
grammar bayesian deep bert
presented belief convolutional federated

logic variables neural transformer
described markov lstm selfsupervised
grammars graphical big fewshot

theory svm adversarial pandemic
statistical technique pascal transformerbased
describes probabilistic endtoend fairness
parsing words embeddings selfattention

information propagation reinforcement sota
linguistic probabilities nonconvex transformers
general convex stateoftheart ai

syntactic recognition dataset explainable
disambiguation svms propose downstream

shown database sentiment explainability
sense independence convnet outofdistribution

definition conditional stochastic nas
discussed uncertainty mnist learningbased

tested basis dropout embeddings
class immune atari code

notion em rnn backbone
semantics sparse sequencetosequence gnns
presents dictionary generative gnn

programming wavelet train augmentation
programs sound gradient quantum

order collaborative embedding continual
algorithm extraction convnets lightweight

classes management explore neural
two coding machine unet

noun techniques jointly module

Table 8: Top weighted 30 words from each class in a lexicon elicited from the abstract texts in the arXiv dataset
(ARXIV), with a logistic regression model and using Domain-Specific Bias (DSB) and Domain-Specific Normal-
ization (DSN). Weight value associated with each word not included.
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Negative (1 star) Neutral (2-4 stars) Positive (5 stars)

waste ok love
poor stars perfect
junk okay excellent

horrible however awesome
terrible disappointing loves
worst otherwise perfectly
awful unfortunately great
return complaint highly

returned overall glad
cheaply downside loved
useless returned amazing
boring bit pleased
poorly reason beautiful
broke cute thank

garbage returning wonderful
disappointed little thanks

nothing wish happy
disappointing though fantastic

died good favorite
apart slow comfortable
cheap decent compliments
crap flimsy wait

defective annoying gorgeous
refund stiff exactly

returning runs best
money issue worried
month liked admit
beware missing happier

uncomfortable interesting wow
fell nice worry

stopped alright adorable
star overpriced faster

disappointment except nice
completely problem helps

weak expected incredible
description awkward classic

even gave satisfied
bad thinner originally

within flaw charm
minutes cons classy
broken concept durable
cannot sometimes needed
shame seems fast
worse mechanism comfy
unless bulky beautifully
piece lack truly
barely pretty recently
stuck narrow easier
ripped meh ram
please careful cleans

Table 9: Top weighted 50 words from each class in a lexicon elicited from amazon review texts (AMAZON), with
a logistic regression model and using Domain-Specific Bias (DSB) and Domain-Specific Normalization (DSN).
Weight value associated with each word not included.
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Negative Positive

poorly thank
annoying thanks

worst superb
boring hi
hurts amazing
waste brilliant
dislike excellent

ugh subtle
finale smooth

disappointed awesome
sad wonderfully

poor outstanding
wooden hahaha

redeeming yay
cancelled excited

sucks hilarious
wanna notice

disappointment seemingly
bag funniest

unfortunately safe
ugly noir

mediocre impressed
laughable extraordinary

crappy haha
lousy powerful
turkey humorous
claims loved
sorry solid
junk helpful
arms higher
sick germany

awful dvd
disappointing ideal

pointless sweet
shots twenty
barely great

confused pleasure
headache friday

ruined happy
ticket independent

potential involve
obnoxious masterpiece

luggage captures
shallow welcome

pain rare
anymore cool
nowhere south
terrible incredible

miss best
min gripping

Table 10: Top weighted 50 words from each class in a lexicon elicited from a collection of multiple sentiment clas-
sification datasets (SENTI), with a logistic regression model and using Domain-Specific Bias (DSB) and Domain-
Specific Normalization (DSN). Weight value associated with each word not included.
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G Data Splits 842

For the Media Frame Corpus (MFC), we a fixed number of 400 random samples from each news issue 843

(domain) as the test set, and do not use them for any training or hyperparameter tuning until the end for 844

reporting test performance. Validation data for hyperparameter tuning in experiments is either from a 845

held-out source, or k-fold validation. 846

Climate Gun control Death penalty Immigration Same-sex
marriage Tobacco Total

Train 3795 3777 8498 5533 3956 3251 28810
Test 400 400 400 400 400 400 2400
Total 4195 4177 8898 5933 4356 3651 31210

Table 11: Sample sizes of each domain and each split from the Media Frame Corpus (MFC)

For the arXiv dataset (ARXIV), we take a fixed proportion of 10% of random samples from each paper 847

category (domain) as the test set, and do not use them for any training or hyperparameter tuning until the 848

end for reporting test performance. Validation data for hyperparameter tuning in experiments is either 849

from a held-out source, or k-fold validation. 850

Artificial
intelligence

(cs.AI)

Computation
and

language
(cs.CL)

Computer
vision

(cs.CV)

Machine
learning
(cs.LG)

Neural
and

evolutionary
computing

(cs.NE)

Social
and

Information
Networks

(cs.SI)

Total

Train 18294 21131 46008 53647 4798 11086 154986
Test 2034 2350 5113 5962 534 1233 17226
Total 20328 23481 51121 59609 5332 12319 172212

Table 12: Sample sizes of each domain and each split from the arXiv dataset (ARXIV)

For the Amazon reviews dataset AMAZON, we first subsample to keep only 0.2% of the original dataset 851

size to simulate a data-scarce setting. We then take a fixed proportion of 10% of random samples from 852

each category (domain) as the test set, and do not use them for any training or hyperparameter tuning until 853

the end for reporting test performance. Validation data for hyperparameter tuning in experiments is either 854

from a held-out source, or k-fold validation. 855

Clothing, Shoes and Jewelry Electronics Home and Kitchen Kindle Store Movies and TV Total

Train 20315 12132 12418 4002 6140 55007
Test 2258 1350 1382 446 683 6119
Total 22573 13482 13800 4448 6823 61126

Table 13: Sample sizes of each domain and each split from the Amazon review dataset (AMAZON)

For SENTI, we take a fixed proportion of 10% of random samples from each data source (domain) as 856

the test set, and do not use them for any training or hyperparameter tuning until the end for reporting test 857

performance. Validation data for hyperparameter tuning in experiments is either from a held-out source, 858

or k-fold validation. 859

Airline Tweets Amazon Books IMDb Movie Reviews Sentiment 140 Stanford Sentiment
Treebank Total

Train 7080 7843 8977 9002 2778 35680
Test 788 873 999 1001 310 3971
Total 7868 8716 9976 10003 3088 39651

Table 14: Sample sizes of each domain and each split from the sentiment classification dataset collection (SENTI)
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H Data Preprocessing860

Sample texts are preprocessed before used to train models and perform experiments. For both types of861

models, urls are first removed from the text. If the text is from a Tweet, then Twitter handlers (tokens862

starting with @) and emojis are also identified and removed.863

For RoBERTa models, this sanitized text is then passed into a tokenized as-is without any additional864

processing. For logistic regression models, we then build a bag-of-word feature vector by first removing865

all punctuation, special symbols, English stopwords, pure numbers, and tokens including both alphabetical866

and numeric characters. Finally, we build a vocabulary of a fixed size of 5000 most frequent tokens, and867

convert the preprocessed texts into feature vectors.868

I Experiment Setup and Hyperparameter Tuning869

As in section §4.3 and section §4.5 we train multiple models of various configurations using different870

combination of training domains, we maintain a consistent strategy for hyperparameter tuning to ensure871

performance comparability.872

Logistic regression models have one hyperparameter, the L1 regularization constant λ. For each873

experiment and each model configuration, we first run k-fold validation within the train set, and conduct a874

search for λ = 1−5 × 2k, k ∈ (0, 4), while optimizing for lowest loss on the main prediction target on the875

validation set. Then we use the same optimal λ to train with the full train set until convergence.876

RoBERTa models have one hyperparameter, the number of epochs E to train or fine-tune. Since877

deep contextual embedding models are very powerful in the context of our small datasets, we early-stop878

during training to ensure it does not overfit to the training data. For each experiment and each model879

configuration, we first run k-fold validation within the train set, and conduct a search for E ∈ (1, 8) for880

the out-of-domain experiments, and for E ∈ (1, 15) the domain fine-tuning experiments, while optimizing881

for lowest loss on the main prediction target on the validation set. Then we use the full train set and train882

for the same optimal E epochs.883

J Power Analysis884

Model A LogReg LogReg+DSB RoBERTa
Model B LogReg+DSB+DSN LogReg+DSB+DSN RoBERTa+DSB

McNemar’s p Power McNemar’s p Power McNemar’s p Power

MFC 2.18e-06 1.0 0.0327 0.362 0.009 0.908
ARXIV 1.66e-24 1.0 0.0055 0.281 9.62e-11 1.0
AMAZON 0.0039 0.491 0.0787 0.414 3.58e-06 0.952
SENTI 6.52e-18 1.0 5.13e-05 0.968 0.0002 0.934

Table 15: Power analysis values for pitting different configurations of interest against each other. McNemar’s p is
calculated using the test split. Statistical power is calculated per Card et al. (2020) using all validation samples,
with dataset size equivalent to that of the test split.
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