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ABSTRACT

Robust visual recognition under adverse weather conditions is of great importance
in real-world applications. In this context, we propose a new method for learning
semantic segmentation models robust against fog. Its key idea is to consider the
fog condition of an image as its style and close the gap between images with
different fog conditions in neural style spaces of a segmentation model. In par-
ticular, since the neural style of an image is in general affected by other factors
as well as fog, we introduce a fog-pass filter module that learns to extract a fog-
relevant factor from the style. Optimizing the fog-pass filter and the segmentation
model alternately gradually closes the style gap between different fog conditions
and allows to learn fog-invariant features in consequence. Our method substan-
tially outperforms previous work on three real foggy image datasets. Moreover,
it improves performance on both foggy and clear weather images, while existing
methods often degrade performance on clear scenes.

1 INTRODUCTION

We have witnessed great advances in semantic segmentation for the last decade. However, most of
existing models and datasets focus merely on improving accuracy under controlled environments,
without considering image degradation caused by adverse weather conditions (e.g., fog, rain, and
snow), over- and under-exposure, motion blur, sensor noise, etc. The robustness of semantic seg-
mentation models against these factors is of great importance in safety-critical applications and
recently has gained increasing attention (Sakaridis et al., 2018a; Dai et al., 2020; Sakaridis et al.,
2019; Zendel et al., 2018; Sakaridis et al., 2018b; Son et al., 2020; Choi et al., 2021).

Motivated by this, we study semantic segmentation of foggy scenes. The task is challenging since
fog often damages visibility of images seriously, leading to substantial performance degradation.
Attaching a fog removal network to the front of an existing model is not always useful for mitigating
this issue (Pei et al., 2018; Sakaridis et al., 2018b) as well as being heavy in computation and
memory. The other reason for the difficulty is the absence of fully annotated data for the task.
Collecting a large set of foggy scenes is not straightforward since they can be captured under only a
specific condition, and it is hard to label them due to their limited visibility.

Existing methods (Sakaridis et al., 2018b;a; Dai et al., 2020) tackle these issues through synthetic
foggy image datasets, which are obtained by applying realistic fog effects to fully annotated clear
weather images and are used for supervised learning of semantic segmentation. Furthermore, they
introduce curriculum learning approaches (Sakaridis et al., 2018a; Dai et al., 2020) that gradually
adapt a model from light synthetic fog to dense real fog using unlabeled real foggy images addition-
ally. Although these methods have achieved impressive robustness, there remains room for further
improvement in that their training strategies are limited to ordinary supervised learning. In addi-
tion, the curriculum adaptation demands external modules to control the fog density of real foggy
images in training, and tends to make the final model biased to foggy scenes; it thus imposes extra
computation cost and often degrades performance on clear images.

To resolve the above issues, we proposed a new method that learns Fog-Invariant features for FOggy
scene segmentation, dubbed FIFO. Its overall pipeline is illustrated in Fig. 1. FIFO considers the fog
condition of an image as its style, ideally independent of its content, and aims to learn a segmentation
model insensitive to fog style variation of input image. To this end, we first define three different
domains of training images, i.e., clear weather (CW), synthetic fog (SF), and real fog (RF), where

1



Under review as a conference paper at ICLR 2022

Segmentation
Network

Forward pass
Backward pass

Frozen weights

Segmentation
Network

Fog-pass
Filtering
Module

Fog-pass
Filtering
Module

Figure 1: Overall pipeline of FIFO. For each iteration of training, the fog-pass filtering module
and the segmentation network are updated alternately. (top) Given Gram matrices of feature maps
of the segmentation network as input, the fog-pass filtering module learns to extract fog factors,
which are drawn together if they are from the same fog domain so that fog conditions of images are
discriminated by their fog factors. (bottom) The segmentation network is trained by reducing the
gap between fog factors of images with different fog conditions as well as by the segmentation loss.

images of the first two domains are labeled while those of the last one are not. FIFO then encourages
the segmentation network to close the style discrepancy between different fog domains in feature
spaces so that it learns fog-invariant features.

Then the success of FIFO depends heavily on the quality of the fog style representation. Unfor-
tunately, existing style representation schemes (Gatys et al., 2016; Ulyanov et al., 2016b) are not
desirable for our task since they are manually designed to capture the holistic style of an image that
is affected also by factors other than fog (e.g., when and where the image was taken) and even the
content of the image (Choi et al., 2021); the direct use of these neural styles thus may introduce
side-effects like content alteration and result in suboptimal solutions consequently.

To address this issue, we present fog-pass filters, learnable modules that take an ordinary neural
style—the Gram matrix of a feature map (Gatys et al., 2016) as input and extract only a fog-relevant
information from the style precisely in the form of embedding vectors, called fog factors. In partic-
ular, they learn to draw fog factors of the same domain together and hold those of different domains
apart so that they discriminate fog conditions of input images through their fog factors. The segmen-
tation model is in turn encouraged to reduce the gap between fog factors of images from different
domains during training. The alternating optimization of the fog-pass filter and the segmentation
network enables to gradually close the fog style gap between different domains and eventually to
learn fog-invariant features.

In summary, we present a new perspective on the effect of fog in semantic segmentation and propose
FIFO, a new method based on fog-invariant feature learning for semantic foggy scene segmentation.
FIFO has advantages over the previous work (Sakaridis et al., 2018b;a; Dai et al., 2020) in terms of
both efficiency and efficacy. It is more efficient since it allows end-to-end learning of a segmentation
model and does not demand extra modules for controlling fog density of real foggy images. Also,
it clearly outperforms existing records, and improves performance on both foggy and clear weather
domains while existing methods often degrade performance on clear scenes.

2 RELATED WORK

Semantic Foggy Scene Segmentation. Previous work (Sakaridis et al., 2018b;a; Dai et al., 2020)
has developed fog simulators that are applied to clear images with full annotations to obtain labeled
synthetic foggy images. Since supervised learning on the synthetic data limits performance due to
the visual gap between synthetic and real foggy images, recent methods (Dai et al., 2020; Sakaridis
et al., 2018a) further employ curriculum learning to gradually adapt a model from light synthetic fog
to dense real fog. However, the curriculum adaptation often degrades performance on clear weather
images and demands extra modules to control density levels of real foggy images during training.
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FIFO also utilizes the synthetic dataset yet is free from the above limitations. It allows models to
keep accurate on clear images while improving their performance on foggy scenes substantially. It
also demands no extra module and enables end-to-end training.

Image Dehazing. Fog damages visibility of image, and accordingly, degrades visual recognition
performance substantially. Numerous dehazing algorithms have been proposed so far to restore
latent clean image from foggy input (Fattal, 2008; He et al., 2010; Fattal, 2014; Berman et al., 2016;
Li et al., 2017a; Zhang & Patel, 2018; Chen et al., 2019; Liu et al., 2019). However, they are
usually too heavy in computation to be attached to the front of recognition models. Further, recent
studies (Pei et al., 2018; Sakaridis et al., 2018b) suggest that most dehazing models do not help
improve recognition performance on foggy scenes. Our work instead learns a segmentation model
whose features are invariant to fog. Such a model is more efficient as it does not require a separate
dehazing model and is effective since its features are learned for both semantic segmentation and
robustness against fog.

Robustness. Robustness of visual recognition networks against adverse conditions has been actively
studied due to its importance in real-world applications (Goodfellow et al., 2015; Hendrycks &
Dietterich, 2019; Zendel et al., 2018; Hendrycks et al., 2018; Sakaridis et al., 2021), and a variety
of methods have been proposed to improve robustness (Son et al., 2020; Schneider et al., 2020; Shi
et al., 2020; Wang et al., 2016; Lee et al., 2017; Choi et al., 2021). FIFO shares a similar idea
with RobustNet (Choi et al., 2021) that regards adverse condition of input as its style. Specifically,
RobustNet removes the effect of photometric transform of input from a neural style representation of
a recognition model so that the model becomes invariant to the transform. Compared to RobustNet,
FIFO more explicitly quantifies the effect of adverse condition through a learnable module (i.e.,
fog-pass filter), so is able to more precisely manipulate the adverse effects during training.

Style Transfer. Neural style transfer has been studied to comprehend the style of an image apart
from its content (Berger & Memisevic, 2016; Ulyanov et al., 2016a; Gatys et al., 2017; Huang &
Belongie, 2017; Dumoulin et al., 2016; Li et al., 2017c; Song et al., 2019). In particular, Gatys et al.
(2016) studied the Gram matrix of a feature map as a neural style representation and showed that
the style of an image can be transferred to another by approximating its Gram matrix; the efficacy
of Gram matrix has been proven further in later studies (Johnson et al., 2016; Luan et al., 2017).
Also, Li et al. (2017b) proved that matching Gram matrices is useful for domain adaptation since it
is equivalent to minimizing maximum mean discrepancy between domains. However, we found that
Gram matrix is not appropriate as-is for quantifying the effect of fog in our task since it is affected
other style factors or even content (Choi et al., 2021) as well as fog. We thus introduce the fog-pass
filter to precisely capture only a fog-relevant factor from the Gram matrix of a feature map.

Unsupervised Domain Adaptation (UDA). Our work is also relevant to UDA since both adapt
models to an unlabeled target domain. UDA methods for semantic segmentation can be categorized
by the level at which adaptation is performed: Input-level (Murez et al., 2018; Hoffman et al., 2018;
Pizzati et al., 2020; Kang et al., 2020), feature-level (Wang et al., 2020; Tsai et al., 2018; Luo et al.,
2019a), and output-level (Zou et al., 2018; 2019; Luo et al., 2019b). FIFO is related in particular to
the feature-level adaptation that learns domain-invariant features. Most of existing methods in this
category (Wang et al., 2020; Tsai et al., 2018; Luo et al., 2019a) train a discriminator together with
a segmentation model so that the discriminator maximizes a discrepancy between source and target
domains while the segmentation model learns to minimize the discrepancy. FIFO shares a similar
idea with these methods, but as will be demonstrated, closing the gap between fog factors in FIFO
is more effective than fooling a fog domain classifier in fog-invariant feature learning.

3 CONFIGURATION OF TRAINING DATA

Training images for FIFO are categorized into three different domains according to their fog types:
clear weather (CW), synthetic fog (SF), and real fog (RF). For CW images, we adopt the Cityscapes
dataset (Cordts et al., 2016), which is fully annotated for supervised learning of semantic segmen-
tation. Meanwhile, as SF images, we utilize the Foggy Cityscapes-DBF dataset (Sakaridis et al.,
2018a), which is constructed by simulating realistic fog effects on images of the Cityscapes dataset,
thus also fully annotated. Finally, RF images are taken from the Foggy Zurich dataset (Sakaridis
et al., 2018a), which is a collection of unlabeled foggy scenes captured in the real world.
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Figure 2: A schematic of FIFO. (a) The fog-pass filtering modules. Each of them takes as input
the upper triangular part of a Gram matrix and returns a fog factor. The loss pulls or pushes a pair
of fog factors according to the equivalence of their fog conditions. (b) Training of the segmentation
network with the frozen fog-pass filters. Given a pair of images with different fog conditions as
input, the network is trained by closing the gap between their fog factors and that between their
segmentation predictions as well as by the ordinary segmentation loss.

Note that the way FIFO uses the two foggy image datasets is different from that of existing meth-
ods (Sakaridis et al., 2018a; Dai et al., 2020). First, in the Foggy Cityscapes-DBF dataset, FIFO fixes
the density level of synthetic fog by a single value (i.e., the attenuation coefficient β = 0.005) and
utilizes the entire dataset. On the other hand, the previous work adopts only a refined, high-quality
subset of the dataset and varies the fog level during training for the curriculum learning. Second,
FIFO utilizes the Foggy Zurich dataset as a whole, whereas the previous work divides it into multi-
ple sets of different density levels using extra modules that estimate the fog density of the images.
These differences allow the pipeline of FIFO to be more concise and efficient.

4 PROPOSED METHOD

The training procedure for the fog-pass filters and the segmentation network is illustrated in Fig. 1
and their structures are presented in Fig. 2. The segmentation network is first pretrained on the
Cityscapes dataset (Cordts et al., 2016), and fog-pass filters initialized randomly are attached to dif-
ferent feature maps of the network. Thereafter, on the dataset of the three fog domains introduced in
Sec. 3, the two parts of FIFO are trained alternately per mini-batch, except for the first 5K iterations
where the fog-pass filters are solely trained to avoid cold-start. Note that the fog-pass filters are used
only in training for fog-invariant feature learning of the segmentation network.

To construct a mini-batch, we randomly sample the same number of images from CW and RF do-
mains, and choose SF counterparts of the sampled CW images. Given such a mini-batch, the fog-
pass filters are learned to draw fog factors of the same fog domain together and hold those of different
domains apart so that they discriminate input according to its fog domain. On the other hand, the
segmentation network is optimized for closing the distance between fog factors of different domains
as well as for minimizing the ordinary segmentation loss. This alternating optimization closes the
fog style gap between different domains precisely, leading to fog-invariant features.

The remaining part of this section first gives details of training the fog-pass filtering modules and
the segmentation network, then empirically verify the key ideas of FIFO.

4.1 FOG-PASS FILTERING MODULES

Instead of a raw feature map of the segmentation network, a fog-pass filtering module takes a holistic
style representation of the feature map as input in order to focus more on the style of image by filter-
ing out most of its content information. In this context, the style representation can be considered as
a hardwired layer (Ji et al., 2010) that encodes our prior knowledge. We in particular adopt the Gram
matrix of the feature map (Gatys et al., 2016) as the style representation as it provides richer style
information than other methods, e.g., channel-wise feature statistics (Ulyanov et al., 2016b). The
Gram matrix, denoted by G ∈ Rc×c, captures correlations between c channels of its input feature
map. The (i, j) element of G indicates the correlation between ith and jth feature channels and is
computed by Gi,j = a>i aj , where ai is the vector form of the ith channel of the input feature map.
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Specifically, since the Gram matrix is symmetric, the vector form of only the upper triangular part
of the matrix is used as input to the fog-pass filtering module.

Let Ia and Ib be a pair of images from the mini-batch and F l denote the fog-pass filter attached to
the lth layer of the segmentation network. Then the fog factors of the two images are computed by
fa,l = F l(ua,l) and fb,l = F l(ub,l), respectively, where ua,l and ub,l denote the vectorized upper
triangular parts of the Gram matrices computed from their lth intermediate feature maps. The role
of the fog-pass filter is to inform the segmentation network how Ia and Ib are different in terms of
fog condition through fa,l and fb,l. For this purpose, the fog-pass filter learns a space of fog factors
where those of the same fog domain are grouped closely together and those of different domains are
far from each other. The loss function for F l is designed accordingly as follows:

LF l =
∑

(a,b)∈P

{(
1− I(a, b)

)[
m− d

(
fa,l, fb,l

)]2
+
+ I(a, b)

[
d
(
fa,l, fb,l

)
−m

]2
+

}
, (1)

where P denotes the set of every image pair in the mini-batch and I(a, b) is the indicator function
that returns 1 if Ia and Ib are of the same fog domain and 0 otherwise.

4.2 SEGMENTATION NETWORK

The segmentation network is trained using three different objectives, which are designed for seman-
tic segmentation, fog-invariant feature learning, and consistent prediction regardless of fog condition
of input, respectively. We elaborate on each of the loss functions below.

Segmentation Loss. For learning semantic segmentation, we apply the pixel-wise cross-entropy
loss to individual images. To be specific, the loss is given by

Lseg(P,Y) = − 1

n

∑
i

∑
j

Yi,j logPi,j , (2)

where Pi,j ∈ R and Yi,j ∈ {0, 1} denote the predicted score and groundtruth label of class j at
pixel i, respectively, while n is the number of pixels.

Fog Style Matching Loss. Given a pair of images from different fog domains, the segmentation
network learns fog-invariant features that close the distance between their fog factors. To this end,
the second loss matches the two fog factors given by the frozen fog-pass filters. Let fa,li and fb,li be
the fog factors of the images computed by the fog-pass filter F l. Then the loss is given by

Ll
fsm(f

a,l, fb,l) =
1

4d2l n
2
l

dl∑
i=1

(
fa,li − fb,li

)2
, (3)

where dl and nl denote the dimension of their fog factors and the spatial size of the lth feature map,
respectively.

Prediction Consistency Loss. A CW image and its SF counterpart have exactly the same semantic
layout. By forcing predictions for these images being identical, we can align the CW and SF domains
more aggressively in the learned representation. Hence, only for CW and SF images of the same
origin, we encourage the model to predict the same segmentation map. Let PCW

i ∈ Rc and PSF
i ∈ Rc

denote their class probability vectors predicted by the segmentation model for pixel i, where c is the
number of classes. The third loss is designed to force the consistency between PCW

i and PSF
i for all

pixels, and is given by

Lcon(P
CW,PSF) =

∑
i

KLdiv(PCW
i ,PSF

i ), (4)

where KLdiv(·, ·) is the Kullback–Leibler divergence. This loss shares the same goal with the fog
style matching loss in Eq. (3), but more strongly forces fog-invariance in the prediction level through
a small number of CW–SF pairs. Also, it is complementary to the segmentation loss in Eq. (2) since
the class probability distribution in Eq. (4) provides information beyond the categorical labels used
by the segmentation loss.

5



Under review as a conference paper at ICLR 2022

Clear Weather Synthetic Fog Real Fog (FZ v2)(a)

Fog factorsGram matrices

0.6

0.7

0.8

0.9

1

1000 iter 3000 iter 5000 iter

ADJUSTED RAND INDEX

 Gram matrices  Fog factors

1
.4

0
e+

0
2

 

1
.6

2
e+

0
2

 

7
.8

5
e

-0
1

 

5
.3

5
e+

0
1

7
.9

2
e+

0
1

2
.2

4
e

-0
1

SF-RF CW-RF CW-SF

AVERAGE HAUSDORFF
DISTANCE

Before
After

(c)(b)

Figure 3: Empirical analysis on the impact of FIFO. (a) 2D visualization of distributions of Gram
matrices and their fog factors. (b) Comparison between the quality of k-means clustering of the
Gram matrices and that of the corresponding fog factors in adjusted Rand index. (c) The fog-style
gap between different domains before and after training with FIFO, where the gap is measured by
the average Hausdorff distance between two sets of fog factors.

Training Strategy. Given a mini-batch, the same number of image pairs are sampled from each of
the three different domain pairs, i.e., CW–SF, CW–RF, and SF–RF. Note that images of each CW–
SF pair are of the same semantic layout so that the prediction consistency loss is applied to them.
For CW–SF pairs, the segmentation network is optimized by

LCW-SF
S = Lseg(P

CW,YCW) + Lseg(P
SF,YSF) + λfsm

∑
l

Ll
fsm(f

CW,l, fSF,l) + λconLcon(P
CW,PSF),

(5)
where λfsm and λcon are balancing hyper-parameters and Y CW = Y SF. On the other hand, for
the other pairs of input domains including RF, the loss consists of the segmentation and fog style
matching terms only, and is given by

LD-RF
S = Lseg(P

D,YD) + λfsm

∑
l

Ll
fsm(f

D,l, fRF,l), (6)

where D ∈ {CW,SF}. Note that Lseg is not applied to the prediction for real foggy image PRF due
to the absence of its segmentation label.

4.3 EMPIRICAL VERIFICATION

Impact of Fog-pass Filtering Modules. To justify the use of the fog-pass filters, we compare Gram
matrices and their fog factors computed by a fog-pass filter in how well they disentangle the fog
condition and the other aspects of an image. To this end, we examine distributions of Gram matrices
and fog factors of CW, SF, and RF. To be specific, training images of the Cityscapes dataset (Cordts
et al., 2016), their synthetic foggy counterparts given by the fog simulator of Dai et al. (2020) with
the attenuation coefficient β = 0.005, and those of the Foggy Zurich-test v2 dataset (Sakaridis et al.,
2018a) are adopted as CW, SF, and RF images, respectively; their Gram matrices are computed
from ResBlock1 outputs of RefineNet-lw (Nekrasov et al., 2018) pre-trained on the Cityscapes, and
the corresponding fog factors are computed from the Gram matrices through the fog-pass filtering
module. Fig. 3(a) presents t-SNE visualization (van der Maaten & Hinton, 2008) of the distributions,
in which Gram matrices of CW and SF largely overlap each other while fog factors are well separated
according to their fog domains. This result suggests that Gram matrices are affected substantially by
image content while fog factors represent only fog-relevant information as desired. The same trend
is observed in Fig. 3(b) that quantitatively evaluates the quality of k-means clusters of the Gram
matrices and fog factors via adjusted Rand index (Hubert & Arabie, 1985).

Fog-invariance Learned by FIFO. To investigate the impact of FIFO on fog-invariance learning,
we first demonstrate that FIFO effectively reduces the gap between fog domains in the space of fog
factors. To this end, each domain is represented as the set of fog factors of its images, and the gap
between a pair of domains is measured by the average Hausdorff distance (Dubuisson & Jain, 1994)
between such sets of the domains before and after training with FIFO. Fig. 3(c) shows that FIFO
closes the fog-style gap in all three domain pairs. The impact is also verified qualitatively through
images reconstructed from intermediate features of the segmentation network trained by FIFO. As a
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Figure 4: Images reconstructed by the baseline, a variant of
FIFO closing the gap between Gram matrices, and FIFO.

reconstruction model, we adopt
RefineNet-lw with two additional
upsampling layers; its decoder is first
trained to reconstruct images while
freezing its encoder pretrained on the
Cityscapes dataset, then the encoder
is replaced with that of the segmenta-
tion network trained by FIFO. Also,
for comparisons, we reconstruct
images using a baseline (i.e., training
only on the Cityscapes) and a variant
of FIFO with no fog-pass filter (i.e.,
training by directly reducing the gap
between Gram matrices) in the same
manner. Fig. 4 presents examples of
the reconstructed images, which demonstrate that FIFO allows to sharpen images effectively, well
emphasize object boundaries in particular, and make fewer artifacts.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Network Architecture. We adopt RefineNet-lw (Nekrasov et al., 2018) with ResNet-101 (He et al.,
2016) backbone as our segmentation network. Two fog-pass filtering modules are then respectively
attached to the outputs of Conv1 and ResBlock1 layers of the segmentation network. As illustrated in
Fig. 2(a), the two modules are implemented by multi-layer perceptrons with leaky ReLU activation
functions (Maas et al., 2013).

Optimization and Hyper-parameters. The segmentation network is trained by SGD with a mo-
mentum of 0.9 and the initial learning rate of 6e−4 for the encoder and 6e−3 for the decoder; both
learning rates are decreased by polynomial decay with a power of 0.5. The two fog-pass filtering
modules are trained by Adamax (Kingma & Ba, 2015) with initial learning rates of 5e−4 (Conv1)
and 1e−3 (ResBlock1), respectively; the dimensionality of fog factors is set to 64. Each mini-batch
is constructed by sampling 4 images from each fog domain, thus its size is 12. During training,
images are resized, cropped to 600 × 600, and flipped horizontally at random. Finally, the hyper-
parameters λfsm, λcon, and m are set to 5e−8, 1e−4 and 0.1, respectively.

5.2 DATASETS FOR EVALUATION

FIFO is evaluated and compared to previous work on three real foggy datasets: Foggy Zurich (FZ)
test v2 (Sakaridis et al., 2018a), Foggy Driving (FD) (Sakaridis et al., 2018b), and Foggy Driving
Dense (FDD) (Sakaridis et al., 2018a), where FDD is a subset of FD. Images of these datasets are
foggy, captured in the real world, and fully annotated. Also, they share the same class set with the
Cityscapes dataset, thus allow to validate models trained on the (Foggy) Cityscapes dataset. We
further apply FIFO and previous work to an unseen clear dataset, Cityscapes lindau 40 introduced
in (Dai et al., 2020), to evaluate their performance on clear weather scenes.

5.3 QUANTITATIVE ANALYSIS

Quantitative results of FIFO and previous arts are summarized in Table 1. As shown in the table,
FIFO largely outperforms CMAda3+ (Dai et al., 2020), the current best performing model based on
RefineNet backbone (Nekrasov et al., 2018), on all the three foggy image datasets. These results
indicate that our method of closing the fog style gap is superior to the curriculum adaptation.

We also validate the performance of the models on the clear weather dataset. In this experiment,
the accuracy of CMAda3+ drops substantially; we suspect this is a side effect of the curriculum
adaptation, which may lead to overfitting to foggy scenes due to catastrophic forgetting. On the other
hand, FIFO enhances performance on clear weather, probably because of the data augmentation
effects of using the three domains altogether during training.
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Table 1: Quantitative results in mean intersection over union (mIoU) on three real foggy datasets—
Foggy Zurich (FZ) test v2, Foggy Driving Dense (FDD), Foggy Driving (FD), and a clear weather
dataset—Cityscapes lindau 40.

Method
Clear-weather Synthetic&Real fog FZ test v2 FDD FD C-lindau 40

Cityscapes SDBF GoPro mIoU (%) mIoU (%) mIoU (%) mIoU (%)
RefineNet X 34.6 35.8 44.3 67.2
RefineNet-lw X 28.5 35.9 43.6 63.8
AdSegNet X X 25.0 15.8 29.7 -
AdvEnt X X 39.7 41.7 46.9 61.7
FDA X X 22.2 29.8 21.8 39.3
DANN X X 43.1 41.4 46.0 60.1
DANN-Gram X X 43.4 43.3 47.3 67.1
CMAda2+ X X 43.4 40.1 49.9 -
CMAda3+ X X 46.8 43.0 49.8 59.6
FIFO X X 48.4 48.9 50.7 64.8

(a)

(b)

(c)

(d)

(e)

Foggy Zurich test v2 Foggy Driving

Figure 5: Qualitative results on the real foggy datasets. (a) Input images. (b) Baseline. (c) FIFO
without the fog-pass filtering. (d) FIFO. (e) Groundtruth.

5.4 QUALITATIVE RESULTS

FIFO is qualitatively compared with two other methods. One is RefineNet-lw trained only on the
Cityscapes dataset, which we call baseline. The other is a reduced version of FIFO using no fog-
pass filtering module; this method learns the segmentation network while closing the gap between
Gram matrices from different domains. Qualitative examples of their predictions are presented in
Fig. 5. The baseline yields poor results in most cases. The reduced version of FIFO outperforms
the baseline, especially for car, road, and vegetation classes, but FIFO using the fog-pass filtering
modules clearly demonstrates the best segmentation results.

5.5 COMPARISON TO UNSUPERVISED DOMAIN ADAPTATION

The task of FIFO is ostensibly identical to that of unsupervised domain adaptation (UDA) since
both of them adapt models to an unlabeled target domain. Hence, one may wonder how well UDA
models work for semantic foggy scene segmentation under the setting of FIFO. In this context,
FIFO is compared to multiple UDA methods based on various levels of adaptation: FDA (Yang
& Soatto, 2020) for input-level adaptation, AdSegNet (Tsai et al., 2018) and AdvEnt (Vu et al.,
2019) for output-level adaptation, and DANN (Ganin et al., 2016) for feature-level adaptation. We
also evaluate a variant of DANN whose domain classifier takes as input a Gram matrix, instead
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Table 2: Analysis on the impact of domain pairs.
C, S and R denote CW, SF and RF, respectively.

C–S C–R S–R FZ FDD FD CW
X 43.7 38.6 46.1 67.6

X 37.7 40.3 47.2 66.0
X 39.3 42.8 49.7 61.6

X X 49.7 46.0 49.9 65.8
X X 46.0 47.6 50.0 62.3
X X 47.4 38.2 47.0 64.3
X X X 48.4 48.9 50.7 64.8

Table 3: Analysis on the impact of the fog style
matching loss, the prediction consistency loss, and
the fog-pass filtering.

Method FZ FDD FD CW

Baseline 28.5 35.9 43.6 63.8
FIFO w/o Lfsm 31.7 38.5 45.1 62.4
FIFO w/o Lcon 41.6 45.4 48.9 63.5
FIFO w/ Gram 41.3 43.8 49.1 63.1
FIFO 48.4 48.9 50.7 64.8

of a raw feature map, like FIFO; this variant of DANN is denoted by DANN-Gram. The UDA
models are trained using the same datasets, i.e., CW, SF, and RF. To be specific, input- and output-
level adaptation models are first pretrained on CW, then trained using SF while adapting to RF.
Meanwhile, DANN and DANN-Gram are trained using CW, SF, and RF at once like FIFO: Their
discriminators are optimized to maximize the discrepancy of fog domains like the fog-pass filtering
modules in FIFO while their segmentation networks are learned to minimize the discrepancy.

The performance of these UDA methods is reported in Table 1. As shown in the table, the UDA
models are all inferior to FIFO and CMAda3+, which suggests that, even though it is apparently
similar to UDA for semantic segmentation, semantic foggy scene segmentation is of a different
nature and has its own challenges. In the typical UDA setting, each of source and target domain
has its own style, by which it can be defined. However, the style of a foggy scene is not determined
only by its fog condition, rather is the result of the chemical combination of fog and other style
factors of the scene. The UDA methods that consider SF and RF as domains with unique styles are
thus not well suited to the task. Moreover, fog substantially damages visibility, and enlarges intra-
domain variations since the effect of fog varies significantly according to the 3D configuration of the
scene (Dai et al., 2020). Due to these differences and challenges, semantic foggy scene segmentation
demands dedicated solutions like FIFO.

5.6 ABLATION STUDY

We conduct extensive experiments while varying domain pairs of FIFO to investigate their effects.
Table 2 summarizes the results. We found that the model trained using the CW pair has better
performance than the model learned without the CW pair (i.e., RF and SF). Also, using every domain
pair contributes to performance on real foggy datasets as FIFO using all 3 pairs beats most variants
using only 2 pairs.

We also investigate contributions of the fog-pass filtering modules and the prediction consistency
loss Lcon to the performance. Table 3 compares FIFO with its variants with and without the fog-pass
filters and Lcon in terms of segmentation quality on real foggy images. Note that, during training
the segmentation network, FIFO w/o Lfsm completely drops fog style matching between different
fog domains, while FIFO w/ Gram uses Gram matrices instead of fog factors when matching fog
styles. The results in the tables suggest that all the losses and the fog-pass filtering contribute to
the performance on all the three real foggy datasets, but the impact of the fog style matching is
substantially larger than the others. Also, the gap between FIFO and FIFO w/ Gram demonstrates
the superiority of fog factors over Gram matrices, which justifies the use of the fog-pass filters.

6 CONCLUSION

We have presented a new approach to learning fog-invariant features for foggy scene segmentation.
It precisely quantifies the fog style of an image through the fog-pass filtering modules and learns
a segmentation network for closing the gap between images of different fog conditions in the fog
style space. Its efficacy has been demonstrated on public benchmarks for semantic foggy scene
segmentation, where it beats every previous art without sacrificing performance on clear weather
images. Moreover, unlike the current best-performing method, it enables end-to-end learning of
segmentation models and demands no extra module nor human intervention for training.

9
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7 REPRODUCIBILITY

In our paper, the detailed architectures of the fog-pass filtering modules and the segmentation net-
work are shown in Fig. 2, the overall training pipeline is elaborated in Algorithm A.1, and imple-
mentation details are presented in Sec. 5.1.

8 CODE OF ETHICS

The semantic segmentation models dealing with robustness issues are related to safety-critical ap-
plications such as autonomous driving. FIFO can be also applied to the safety-critical situations, so
there is a problem regarding the responsibility when applied to.
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A APPENDIX

A.1 ALGORITHM OF FIFO

We present detailed training procedure of FIFO in Algorithm 1.

Algorithm 1 : Training FIFO
Input: Pretrained fog-pass filtering module for the lth layer: F l(·), Segmentation network: S(·),
Number of layers: L, Batch size per domain: m, Segmentation prediction: P , Segmentation label:
Y , Input image set {ICW, ISF, IRF}: x, Subset of two elements from domain set {CW,SF,RF}:
{a, b} and Segmentation label set {Y CW, Y RF}: y.
Output: Optimized segmentation network S(·).

1: for {1, . . . , # of training iterations} do
2: Sample mini-batch {xi}mi=1
3: for {l← 1 to L} do
4: LFl ← LFl({fli}mi=1) . Eq. 1
5: Update the fog-pass filtering module F l

6: end for
7: Sample mini-batch {xj}mj=1 and {yj}mj=1

8: for {l← 1 to L} do
9: {flj}mj=1,← {F l(ul

j)}mj=1

10: Ll
fsm ← {Ll

fsm(f
a,l
j , fb,lj )}mj=1 . Eq. 3

11: end for
12: Sample the pair {Ia, Ib} ∈ xj
13: if {a, b} == {CW,SF} then
14: Lcon ←

∑
i KLdiv(P a

i , P
b
i ) . Eq. 4

15: end if
16: if {a, b} ∩ {CW,SF} 6= ∅ then
17: Lseg ← − 1

n

∑
Y logP . Eq. 2

18: end if
19: LS ←

∑
l Ll

fsm + Lcon + Lseg . Eq. 5, 6
20: Update the segmentation network S
21: end for

Consequently, the total objective of FIFO is following:∑
l

min
F l
Ll
F l +min

S
(
∑
l

Ll
fsm + Lcon + Lseg), (7)

where l is the layer index.

A.2 INDEPENDENCE ANALYSIS OF FOG FACTORS

In this section, we quantitatively evaluate the independence of the fog factors and Gram matrices,
with related to image content. To this end, we design content-pass filtering module which is opti-
mized to extract content-relevant information; which we call content factors.

Training Content-pass Filtering Module Let Ia and Ib be a pair of images from the mini-batch
andCl denote the content-pass filtering module attached to the lth layer of the segmentation network.
Then the content factors of the two images are computed by ca,l = Cl(ua,l) and cb,l = Cl(ub,l). In
contrast to the fog-pass filtering module, this module is optimized to learn an embedding space of
content factors where the pairs having the same content, i.e., CW–SF are grouped closely and else
pairs are far from each other. The loss function for Cl is designed accordingly as follows:

LCl =
∑

(a,b)∈P

{(
1− I(a, b)

)[
m− d

(
fa,l, fb,l

)]2
+
+ I(a, b)

[
d
(
fa,l, fb,l

)
−m

]2
+

}
, (8)
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where P denotes the set of every image pair in the mini-batch and I(a, b) is the indicator function
that returns 1 if the pair of Ia and Ib is a CW–SF pair and 0 otherwise.
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Figure 6: Independence score
of fog factors and Gram ma-
trices on content factors.

Independence Analysis of Fog Factors We design an indepen-
dence score to quantitatively evaluate the independence of fog fac-
tors with relation to content factors. The score is measured as an
intersection of the similarity relationship of elements within each
embedding space of fog factors and content factors. For each em-
bedding space, we select one factor and search k th most simi-
lar factors having high cosine similarity with the selected factor.
Then, for each space, we check which image the k factors were
extracted from, and compute the proportion of the corresponding
images overlapped between embedding spaces. Finally, we repeat
the process for all of the fog factors in the fog embedding space
and define the average proportion for all of the fog factors as an
independence score.

Let I , f and c be an image, a fog factor and a content factor. Consequently, the independence score
is calculated as follows:

score(F , C) = 1

N

N∑
i=1

|{In|fn ∈ F , d(fi, fn) ≤ d(fi, fk)} ∩ {Im|cm ∈ C, d(ci, cm) ≤ d(ci, ck)}|
k

,

(9)

where k is a number of selecting similar factors and set to 200, fk and ck are the k th most similar
fog factor from fi and content factor from ci, then F and C denote the set of fog factors and content
factors, respectively.

Fig. 6 presents an independence score computed from fog factors and Gram matrices, with relation
to content factors. Note that the experiment settings for Gram matrices, fog factors, and dataset
configurations are all the same as in the main paper. The scores show fog factors are more indepen-
dent of content factors compared to Gram matrices, as we desired. These indicate that the fog-pass
filtering module extracts only fog-relevant information apart from the image content.

A.3 CLASS-WISE QUANTITATIVE RESULTS

We evaluate class-wise IoU for baseline, RefineNet-lw trained on Cityscapes, and FIFO as presented
in Tab. 4 and Tab. 5, respectively. The ’-’ means the image of that class does not exist in the
corresponding evaluation dataset. FIFO shows better performance on most classes compared to
baseline, which indicates the superiority of our method.

Table 4: Classwise performance of baseline model, i.e., RefineNet-lw pretrained Cityscapes dataset.
We report IoU for each class and mIoU as the evaluation metric.

Baseline roa sid bui wal fen pol tli tsi veg ter sky per rid car tru bus tra mot bic mean
FZ 53.2 51.6 35.1 28.6 19.4 36.8 54.0 56.1 24.5 34.7 57.7 0.0 3.6 79.7 - 0.0 - 0.0 5.7 28.5
FDD 83.7 0.0 27.0 - - 67.0 8.3 73.2 51.7 - 77.9 91.1 - 44.7 14.4 0.0 - - - 35.9
FD 88.0 26.6 68.1 28.6 14.6 42.5 44.3 54.5 63.0 9.1 86.9 64.5 46.7 65.0 6.8 13.0 27.5 28.6 49.2 43.6
C-Lindau 91.5 58.3 92.1 45.7 68.4 53.7 46.4 83.4 89.9 74.0 94.4 84.1 67.1 90.0 74.5 18.2 - - 79.7 63.8

Table 5: Classwise performance of FIFO. We report IoU for each class and mIoU as the evaluation
metric.

Ours roa sid bui wal fen pol tli tsi veg ter sky per rid car tru bus tra mot bic mean
FZ 65.5 57.7 54.3 49.9 25.8 44.1 60.2 61.6 73.1 63.6 70.4 6.3 45.5 84.9 - 46.7 - 46.7 15.1 48.4
FDD 89.3 2.48 46.7 - - 62.0 29.3 80.8 67.2 - 88.6 91.1 - 67.0 34.3 75.3 - - - 48.9
FD 90.8 39.1 72.9 24.2 19.9 42.3 51.0 59.1 72.0 9.4 90.2 64.7 48.5 71.0 25.4 65.7 43.5 24.8 49.1 50.7
C-Lindau 90.2 55.7 91.5 43.7 57.7 50.1 55.2 80.5 89.0 61.9 93.7 83.0 70.6 86.5 63.6 12.0 - - 80.9 64.8
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Table 6: Performance of FIFO trained with different density levels of synthetic fog images. β =
0.005 denotes FIFO in the main paper, and β = 0 indicates the model trained only with clear
weather and real foggy images. The reported scores are mIoU on the Foggy Zurich (FZ) test v2,
Foggy Driving Dense (FDD), Foggy Driving (FD).

β FZ test v2 FDD FD C-Lindau

0 37.7 40.3 47.2 66.0
0.0025 45.5 40.4 45.0 67.5
0.01 42.4 45.4 50.0 61.9
0.02 42.9 42.5 48.6 60.6

0.005 48.4 48.9 50.7 64.8

Table 7: Ablation study on layers where fog style matching loss is applied. FIFO utilizes the output
of the first convolutional layer and first residual blocks to apply the fog style matching loss. We
report mIoU as the evaluation metric.

Conv1 Res Block1 FZ test v2 FDD FD C-Lindau

C1 X 45.3 41.0 48.3 60.6
R1 X 45.1 39.1 47.0 61.8
Ours (C1:R2) X X 48.4 48.9 50.7 64.8

A.4 EFFECT OF SYNTHETIC FOG DENSITY

This section demonstrates the effect of our chosen value of β, which is the attenuation coeffi-
cient used for generating synthetic fog Sakaridis et al. (2018b). Note that, unlike the previous
work Sakaridis et al. (2018a); Dai et al. (2020), our method fixes the thickness of synthetic fog by
a single value to resolves issues of the curriculum adaptation. The value of β thus has to be well
defined in our model; overly dense fog blinds images too much, while overly light fog is not enough
to simulate real foggy scenes. To investigate the impact of β on the semantic segmentation perfor-
mance on real foggy images, we design and evaluate variants of our model trained using different
values of β. In all experiments, we train FIFO as proposed in the main paper, but with different
synthetic foggy images generated from various values of β. Note that the larger the value of β, the
thicker the generated fog, and vice versa.

Table. 6 show that 0.005 is the most optimal value for FIFO. For light synthetic fog (β=0.0025), the
performance is lower since the synthetic fog does not simulate real fog well enough due to the fog
density discrepancy between them. Especially, the performance is poor on FDD and FD datasets
since they are dense foggy datasets. The performance obtained using dense synthetic foggy images
(β=0.02) is also poorer because they are hard to be recognized due to limited visibility from the
dense fog and artifacts.

A.5 EFFECT OF LAYER SELECTION

This section presents an ablation study regarding layers of the segmentation network. To this end,
we present the segmentation performance of FIFO, changing the layer to apply fog style matching
loss (Lfsm). Specifically, we start by applying fog style matching loss to the output of the first
convolutional layer of ResNet and denote it as C1. Also, applying fog style matching loss to the
output of the first residual block layer of ResNet and denote it as R1. Then we apply fog style
matching loss to the output of all of them and denote it as C1:R1. FIFO and its variants are evaluated
on real foggy images in Table. 7

As summarized in Table. 7, the semantic segmentation performance improves as more feature map
outputs are involved in FIFO. Overall, C1:R2, which is our final model, shows the best performance
compared to other alternatives.
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Figure 7: Additional qualitative results on the real foggy datasets. (a) Real foggy images. (b)
Baseline. (c) FIFO closing the gap between gram matrices. (d) FIFO. (e) Groundtruth.

A.6 ADDITIONAL QUALITATIVE RESULTS

This section presents additional qualitative results omitted in the main sections due to the space limit.
More segmentation results of FIFO are illustrated in Fig. 7. We compare the results between FIFO,
a variant of FIFO by reducing directly the gap between gram matrices, and baseline. Overall, FIFO
offers higher quality segmentation results than the baseline regardless of fog density and datasets.
Specifically, FIFO seems best performing on parts where dense fog is laid while other models fail,
which indicates FIFO working as desired. Fig 8 exihibits additional qualitative results on image
reconstruction. Likewise, the image quality where dense fog is laid is improved, which implies
FIFO extract fog-invariant features. In addition, clear weather images, as well as foggy images,
become more clear when the features are trained by FIFO.
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Figure 8: Additional qualitative results on image reconstruction. (a) Real foggy images. (b)
Baseline. (c) FIFO closing the gap between gram matrices. (d) FIFO.
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