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Abstract

Uncertainty quantification (UQ) is a perspec-001
tive approach to detecting Large Language002
Model (LLM) hallucinations and low quality003
output. In this work, we address one of the004
challenges of UQ in generation tasks that arises005
from the conditional dependency between the006
generation steps of a LLM. We propose to learn007
this dependency from data. We train a regres-008
sion model, which target variable is the gap009
between the conditional and the unconditional010
generation confidence. During LLM inference,011
we use this learned conditional dependency012
model to modulate the uncertainty of the cur-013
rent generation step based on the uncertainty of014
the previous step. Our experimental evaluation015
on nine datasets and three LLMs shows that016
the proposed method is highly effective for un-017
certainty quantification, achieving substantial018
improvements over rivaling approaches.019

1 Introduction020

Uncertainty quantification (UQ) (Gal and Ghahra-021

mani, 2016; Baan et al., 2023; Geng et al., 2023;022

Fadeeva et al., 2023) is of growing interest in the023

Natural Language Processing (NLP) community024

for dealing with Large Language Models (LLMs)025

hallucinations (Fadeeva et al., 2024) and low qual-026

ity generations (Malinin and Gales, 2021) in an027

efficient manner. For example, high uncertainty028

could serve as an indicator that the entire genera-029

tion should be discarded (selective generation) to030

prevent potential harms to users, or that part of031

the generation should be highlighted to the user as032

untrustworthy.033

There are many approaches for detecting halluci-034

nations and low-quality outputs of LLMs (Manakul035

et al., 2023; Min et al., 2023; Chen et al., 2023).036

However, the majority of them leverage external037

knowledge sources or a second LLM. Knowledge038

sources are generally patchy in coverage while cen-039

soring the outputs of a small LLM using a bigger040

one has a high computational cost and is imprac- 041

tical. We argue that models inherently contain in- 042

formation about their own knowledge limitations, 043

and that there should be an efficient way to access 044

this information, which can enable LLM-based ap- 045

plications that are both safer and easy to use in 046

practice. 047

For general classification and regression tasks 048

and for text classification in particular, there is a 049

well-developed battery of UQ techniques (Zhang 050

et al., 2019; He et al., 2020; Xin et al., 2021; Wang 051

et al., 2022; Vazhentsev et al., 2023). For text gen- 052

eration tasks, UQ is much more complicated. The 053

complexity is multifold: (1) there is an infinite num- 054

ber of possible generations, which complicates the 055

normalization of the uncertainty scores; (2) in the 056

general case, there are an infinite number of correct 057

answers; (3) decisions are generally based on im- 058

precise sampling and inference algorithms such as 059

beam search; (4) there is not one, but multiple pre- 060

dictions, and the uncertainty of these predictions 061

need to be aggregated; and (5) finally, the predic- 062

tions at each generation step are not conditionally 063

independent (Zhang et al., 2023). 064

This last problem is the focus of the present 065

work. During generation, the LLM conditions on 066

the previously-generated tokens. Thus, if the LLM 067

has hallucinated and generated an incorrect claim 068

at the beginning of the sequence, all subsequently 069

generated claims might also be incorrect. Even in 070

the case when the first claim was generated with 071

high uncertainty, this is not taken into account dur- 072

ing the subsequent generation process. This means 073

that while the first error could be implicitly recog- 074

nized as such with high uncertainty, all subsequent 075

mistakes will be overlooked, because the genera- 076

tion process conditioned on this error will be very 077

confident. 078

Below, we suggest a theoretically-motivated 079

data-driven solution to this problem. We note 080

that the attention between generated tokens pro- 081
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Spanish is the language with the highest number of total speakers in the world that is not an official language of the U.S.

Figure 1: An illustration of the proposed method TAD. The figure depicts generated tokens, uncertainty scores,
and probabilities assigned by a LLM (represented with bars). The output was generated by Gemma 7b for the
question What is the language with the highest number of total speakers in the world that is not an official language
of the U.S.? The LLM starts with generating a token Spanish that leads to the erroneous answer. The probabilities
estimated by the LLM are high for all tokens except for the first one, which makes the uncertainty scores based on
raw probabilities misleadingly low. On the contrary, TAD takes into account uncertainty from the previous step
using a trainable model G(·) based on attention, resulting in a high overall uncertainty for the generated answer.

vides information about the conditional depen-082

dency between the generation steps. Previously,083

there have been several attempts to suggest heuris-084

tic approaches to model this dependency (Zhang085

et al., 2023). We argue that the particular algorith-086

mic function would be too difficult to engineer, and087

thus we propose to learn this dependency from data.088

For this purpose, we generated a training dataset089

with a target variable that represents the gap be-090

tween the conditional generation confidence and091

the unconditional generation confidence. Using092

attention-based features, we trained an ML-based093

regression model to predict this gap that is further094

used for modifying the certainty of the current gen-095

eration. We use attention-based features to ensure096

the generalizability of such an approach, support-097

ing the training of a robust conditional dependency098

model. We call the proposed approach trainable099

attention-based dependency (TAD). Figure 1 illus-100

trates the idea behind the proposed method on the101

real output of an LLM. Our extensive experiments102

demonstrate that TAD offers substantial improve-103

ments in UQ over the baselines in tasks where the104

LLM is required to generate long sequences.105

The contributions of this work are as follows:106

• A new data-driven approach to uncertainty107

quantification that models the conditional de-108

pendency between the individual token pre-109

dictions of an LLM.110

• A computationally-efficient implementation111

of the method that leverages simple linear re-112

gression, making it practical for real-world113

applications based on LLMs.114

• An empirical demonstration that our proposed115

method outperforms previous approaches116

across nine datasets and three LLMs.117

2 Related Work 118

With the advent of LLMs, UQ has become an ur- 119

gent research problem in NLP. As previously men- 120

tioned, this area not only offers promising practical 121

benefits, but it also presents several intriguing re- 122

search challenges. The majority of the work on UQ 123

has been unsupervised, with a smaller number of 124

recently-proposed supervised methods. 125

Unsupervised UQ methods. The challenge of 126

multiple predictions, which we mentioned above, 127

has been previosuly tackled by aggregating the 128

logits of the generated tokens in various ways 129

and by adapting information-based UQ techniques. 130

Fomicheva et al. (2020) experimented with per- 131

plexity and mean token entropy for MT quality 132

estimation. Takayama and Arase (2019) adapted 133

point-wise mutual information (PMI), and van der 134

Poel et al. (2022) extended this approach to con- 135

ditional PMI. The advantages of these techniques 136

are their simplicity, usually minimal computational 137

overhead, and robust performance. A well-known 138

approach to UQ in general is ensembling (Laksh- 139

minarayanan et al., 2017) and Monte Carlo (MC) 140

dropout (Gal and Ghahramani, 2016). Malinin and 141

Gales (2021) and Fomicheva et al. (2020) adapted 142

it to sequence generation problems. In particular, 143

lexical similarity (Fomicheva et al., 2020) is a very 144

competitive baseline that can be applied to black- 145

box models (without any access to logits or internal 146

model representations). 147

The problem of multiple correct generations was 148

explicitly addressed in (Kuhn et al., 2023; Nikitin 149

et al., 2024; Cheng and Vlachos, 2024) and in a 150

series of black-box generation methods (Lin et al., 151

2023). The main idea is to sample multiple genera- 152
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tions from a LLM, extract semantically equivalent153

clusters from the outputs, and to analyze the di-154

versity of the generated meanings instead of the155

surface forms.156

Fadeeva et al. (2024) addressed the problem of157

multiple sources of uncertainty present in the LLM158

probability distribution that are irrelevant for hal-159

lucination detection and fact-checking. In addition160

to dealing with multiple correct generations, they161

also suggested mitigating the influence of the un-162

certainty related to the type of generated claims.163

Zhang et al. (2023) and Duan et al. (2023) em-164

phasized that not all generated tokens should con-165

tribute to the uncertainty score for the entire gener-166

ated text, and proposed various heuristics to select167

only relevant tokens.168

Zhang et al. (2023) also modeled the condi-169

tional dependency between the generation steps170

by adding a penalty to an uncertainty score that de-171

pends on the uncertainties of previously-generated172

tokens in the form of max-pooled attention to cor-173

responding tokens from the current step.174

Overall, most previous work on UQ has not ad-175

dressed the conditional dependency between the176

predictions, or has addressed it using heuristics.177

We argue that the conditional dependency is an im-178

portant aspect of UQ for text generation tasks and179

we propose a data-driven approach to it. We also180

note that techniques based on sampling multiple181

answers from LLMs usually introduce prohibitive182

computational overhead. We argue that for UQ183

methods to be practical, they should also be com-184

putationally efficient.185

Supervised UQ methods. Supervised regression-186

based confidence estimators are well-known for187

classification problems, primarily from the com-188

puter vision domain (Lahlou et al., 2022; Park and189

Blei, 2024). One of their key benefits is computa-190

tional efficiency.191

A handful of papers applied this approach to text192

generation tasks. Lu et al. (2022) proposed to train193

a regression head of a model to predict confidence.194

They noted that the probability distribution of a195

language model is poorly calibrated and cannot196

be used directly to spot low quality translations.197

They trained an additional head by modifying the198

loss function and adding a regularizer. However,199

their approach is only applicable when fine-tuning200

language models for Machine Translation (MT),201

and is not suitable for general-purpose instruction-202

tuned LLMs. In a similar vein, Azaria and Mitchell203

(2023) approached the task of UQ by training a 204

multi-layer perceptron (MLP) on the activations of 205

the internal layers of LLMs. For this purpose, they 206

annotated a dataset of true and false statements, and 207

used forced LM decoding to generate them. They 208

evaluated the ability of the trained MLP to classify 209

the statements as true or false, and demonstrated 210

that it outperformed other supervised baselines and 211

few-shot prompting of the LLM itself. However, 212

due to the reliance on forced decoding, their exper- 213

imental setup is far from real-world hallucination 214

detection, where an LLM can perform unrestricted 215

generation. Another limitation is that their method 216

can provide veracity scores only for the entire gen- 217

erated text. 218

Unlike these methods, besides learning uncer- 219

tainty scores directly from data, we also learn the 220

conditional dependency between the generation 221

steps. Our method is also flexible as it can be 222

used on various levels: for the entire text, at the 223

sub-sentence level, or for individual tokens. 224

3 Trainable Attention-Based Conditional 225

Dependency 226

In this section, we present our approach to learn 227

the conditional dependency between the generation 228

steps and our UQ method based on it. 229

3.1 Theoretical Background and Motivation 230

When an LLM generates a sequence of tokens ti, 231

it provides us a conditional probability distribution 232

p(ti|t<i). This essentially means the LLM believes 233

that everything generated so far is correct, which 234

might not be the case. In practice, we would like to 235

somehow propagate its uncertainty from previous 236

generation steps. 237

Assume for simplicity that we already have some 238

statements s1, s2, ..., sn and a prompt x, and we 239

have trained a generative LLM to predict the prob- 240

ability of truthfulness of the statements (‘T’ or 241

‘F’) via a Markov process. At each step the LLM 242

provides us p(s1 = T | x), p(s2 = T | s1 = 243

T), . . . , p(sn = T | sn−1 = T). These probabil- 244

ity distributions are conditionally dependent on the 245

previous ones. However, to estimate the correct- 246

ness of some statement si, we need to obtain an un- 247

conditional probability p(si = T). The LLM does 248

not provide us such probability during standard 249

generation process. There are some heuristic tech- 250

niques such as P(true) (Kadavath et al., 2022) that 251

can estimate the unconditional probability through 252
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rerunning LLM on the generated text. However,253

it introduces expensive overhead, which approxi-254

mately doubles the generation time.255

We would like to have a computationally effi-256

cient approach that does not need rerunning the257

LLM. Let us expand p(si = T) according to the258

formula of full probability and express it using con-259

ditional probability:260

p(si = T)261

= p(si = T, si−1 = T) + p(si = T, si−1 = F)262

= p(si = T | si−1 = T) p(si−1 = T)+263

+ p(si = T | si−1 = F) p(si−1 = F)264

= p(si = T | si−1 = T) p(si−1 = T)+265

+ p(si = T | si−1 = F)
(
1− p(si−1 = T)

)
.

(1)
266

In the obtained formula, p(si = T | si−1 = T) is267

what the LLM provides during the current genera-268

tion step. Consider that we know p(si−1 = T) as269

it is calculated on the previous generation step. We270

still do not know the remaining term: p(si = T |271

si−1 = F). Let us express it from the equation:272

p(si = T | si−1 = F) (2)273

=
p(si = T)− p(si = T | si−1 = T) p(si−1 = T)

1− p(si−1 = T)
.274

This expression still requires p(si = T), which is275

not known during the inference. However, we can276

replace it with some surrogate and use this expres-277

sion to approximate p(si = T | si−1 = F) with278

a trainable model G(Atteni, p(si−1 = T), p(si =279

T | si−1 = T)). This function in fact measures the280

conditional dependency of the current generation281

step i on the previous one i−1. For model features,282

we suggest using attention from the step i to i− 1:283

Atteni. The training data for this model could be284

obtained using Equation (2) in the “offline” mode,285

where we do not care about efficiency of obtaining286

p(si = T). We also note that if the implementa-287

tion of G is a linear regression or a small neural288

network, it will not introduce much overhead to289

compute during the inference of the main LLM.290

Finally, to obtain the confidence estimate, we291

replace p(si = T | si−1 = F) with G in Equa-292

tion (1):293

p(si = T) = p(si = T | si−1 = T) p(si−1 = T)294

+G
(
Atteni, p(si−1 = T), p(si = T | si−1 = T)

)
295

·
(
1− p(si−1 = T)

)
. (3)296

We note that, in order to implement G, we need an 297

effective way of obtaining unconditional probabil- 298

ities p(si = T) and we also need to deal with the 299

fact that real LLMs produce actually tokens. We 300

address these problems and suggest the implemen- 301

tation of G below. 302

3.2 Implementation 303

Despite some strong assumptions, we argue that the 304

presented motivation could be applied to individual 305

tokens t1, t2, ..., tn as well. We implement the pro- 306

posed method for the token-level uncertainty scores 307

and then we aggregate these token-level scores into 308

a score for the whole sequence. 309

Obtaining unconditional probability. To obtain 310

the surrogate for the unconditional confidence p̂(ti) 311

for a generated token ti during the training phase, 312

we use two strategies. The first one relies solely 313

on the strict criterion of the presence of an existing 314

token ti in the ground truth text y: 315

p̂(ti) =

{
1, ti ∈ y,

0, otherwise.
(4) 316

The second strategy also leverages AlignScore (Zha 317

et al., 2023) sim(., .) between the generated text ỹ 318

and the ground-truth y: 319

p̂(ti) =

{
1+sim(ỹ,y)

2 , ti ∈ y,

sim(ỹ, y), otherwise.
(5) 320

This strategy aims to correct the target when a gen- 321

erated token is not present in the expected text, but 322

the AlignScore is high, indicating that the gener- 323

ated text has the similar meaning as the training 324

sentence. In the inverse situation, when the token 325

is present, but the whole generation according to 326

AlignScore is wrong, it penalizes the target. 327

Generating training data for TAD. We generate 328

the training data for TAD using the original textual 329

training dataset in the following way: 330

1. For the input prompt xk and the target text yk, 331

using a LLM, we generate a text ỹk of some 332

length nk and token probabilities p(ti|t<i). 333

2. For the first generated token t1 in each text, 334

we define its unconditional confidence as a 335

ground truth surrogate p(t1) = p̂(t1) accord- 336

ing to formulas (4) or (5). 337

3. For each generated token ti, i = 2, . . . , nk: 338

(a) We obtain p(ti−1) from the previous gen- 339

eration step. 340
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(b) We define its unconditional confidence341

as a ground truth surrogate p(ti) = p̂(ti)342

according to equations (4) or (5).343

(c) We compute the target variable for the344

function G using equation (2):345

G̃i =
p(ti)−p(ti|t<i)p(ti−1)

1−p(ti−1)
.346

As a result, for each instance in the training347

dataset, we generate a sequence of target variables348

G̃k
i k = 1, . . . ,K, i = 1, . . . , nk. We further train349

the model G on these targets.350

Model for G and its training procedure. We ex-351

periment with several regression models for TAD:352

liner regression (LinReg), CatBoost regression353

(Prokhorenkova et al., 2018), and a multi-layer354

perceptron (MLP). The hyperparameters of the re-355

gressors are obtained using cross-validation with356

five folds on the training dataset. We select the357

optimal values of the hyperparameters based on358

the best average PRR-AlignScore. Finally, we use359

these values to train the regression model on the360

full training set. The selected hyperparameters for361

the TAD modules are presented in Appendix C.1.362

Inference procedure. During inference, we ob-363

tain predictions from the LLM as always, but we364

also extract features from the attention outputs. The365

features are used to compute G and a confidence366

score based on Equation (3).367

4 Experiments368

4.1 Experimental Setup369

For experimental evaluation, we use the LM-370

Polygraph framework (Fadeeva et al., 2023). We371

focus on the task of selective generation (Ren et al.,372

2023) where we “reject” generated sequences due373

to low quality based on uncertainty scores. Reject-374

ing means that we do not use the model output, and375

the corresponding queries are processed differently:376

e.g., they could be further reprocessed manually or377

sent to a more advanced LLM.378

Metrics. Following previous work on UQ in text379

generation (Malinin and Gales, 2021; Fadeeva et al.,380

2023), we compare UQ methods using the Predic-381

tion Rejection Ratio (PRR) metric. PRR quantifies382

how well an uncertainty score can identify and383

reject low-quality predictions according to some384

quality metric. The PRR scores are normalized385

to the range [0, 1] by linearly scaling the area un-386

der the PR curve between the values obtained with387

random selection (corresponding to 0) and oracle388

selection (corresponding to 1). Higher PRR values 389

indicate better quality of selective generation. We 390

use ROUGE-L, Accuracy, and AlignScore (Zha 391

et al., 2023) as generation quality metrics. 392

Datasets. We consider three text generation tasks: 393

text summarization (TS), QA with long free-form 394

answers, and QA with free-form short answers, 395

and for each task, we consider three datasets. 396

Statistics about the datasets are provided in Ta- 397

ble 18 in Appendix D. For TS, we experiment with 398

CNN/DailyMail (See et al., 2017), XSum (Narayan 399

et al., 2018) (summarization of news articles), 400

and SamSum (Gliwa et al., 2019) (summariza- 401

tion of dialogues). For the long answer QA 402

task, we use PubMedQA (Jin et al., 2019), a 403

QA dataset in the biomedical domain, with the 404

task to answer biomedical research questions us- 405

ing the corresponding abstracts. We further use 406

MedQUAD (Abacha and Demner-Fushman, 2019), 407

which consists of real medical questions, and Truth- 408

fulQA (Lin et al., 2022), which consists of ques- 409

tions that some people would answer incorrectly 410

due to a false belief or a misconception. For the QA 411

task with short answers, we follow previous work 412

on UQ (Kuhn et al., 2023; Duan et al., 2023; Lin 413

et al., 2023) and we use three datasets: SciQ (Welbl 414

et al., 2017), CoQA (Reddy et al., 2019), and Trivi- 415

aQA (Joshi et al., 2017). 416

LLMs. We experiment with three LLMs: 417

Gemma 7b (Mesnard et al., 2024), LLaMA 8b v3, 418

and StableLM 12b v2 (Bellagente et al., 2024). The 419

inference hyperparameters of the LLMs are given 420

in Table 17 in Appendix C.2. 421

UQ baselines. We compare TAD to Maximum 422

Sequence Probability (MSP), Mean Token En- 423

tropy, and Perplexity (Fomicheva et al., 2020), 424

which are considered simple yet strong and robust 425

baselines for selective generation across various 426

tasks (Fadeeva et al., 2023). We also compare our 427

method to more complex techniques, considered 428

to be state-of-the-art UQ methods for LLMs: Lex- 429

ical Similarity based on ROUGE-L (Fomicheva 430

et al., 2020), Monte Carlo Sequence Entropy (MC 431

SE), Monte Carlo Normalized Sequence Entropy 432

(MC NSE; Kuhn et al. (2023)), black-box methods 433

(NumSemSets, DegMat, Eccentricity, EigValLapla- 434

cian; Lin et al. (2023)), Semantic Entropy (Kuhn 435

et al., 2023), hallucination detection with stronger 436

focus (Focus; Zhang et al. (2023)), and Shifting 437

Attention to Relevance (SAR; Duan et al. (2023)). 438
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UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.329 -.116 .234 .177 -.039 .043 -.455 -.154 -.454 .008 .520 .268 .699 .626 .806 .744 .828 .805 8.61
Perplexity -.358 -.179 .206 .291 .071 -.012 .527 .159 .801 .346 .381 .318 .458 .439 -.321 -.399 .820 .791 7.78
Mean Token Entropy -.350 -.181 .172 .281 .082 -.017 .524 .147 .776 .330 .228 .290 .327 .339 -.368 -.398 .806 .786 8.94
Focus -.324 -.161 .169 .232 .023 .008 -.357 -.146 -.408 -.100 .306 .298 .322 .250 -.098 .070 .651 .702 13.00

NumSemSets .054 .049 .176 .176 .029 .052 .041 .017 -.067 .047 .132 .231 .203 .349 .132 .275 .677 .714 10.72
DegMat .025 .060 .141 .161 .072 .088 .028 .008 -.063 .087 .211 .285 .345 .496 .401 .553 .740 .770 8.61
Eccentricity -.055 .010 .059 .052 .028 -.005 -.016 -.011 -.144 .027 .116 .213 .514 .559 .487 .570 .737 .739 11.11
EigValLaplacian .024 .063 .140 .156 .071 .087 .016 .004 -.155 .064 .200 .279 .479 .538 .507 .603 .727 .760 9.00
Lexical Similarity .076 -.024 .256 .233 .108 .066 .068 .023 .240 -.024 .145 .117 .504 .499 .488 .538 .730 .734 8.78
MC NSE -.005 -.023 .212 .195 .108 .102 .074 .012 -.000 .011 .076 .221 .440 .432 .357 .398 .727 .715 10.00
MC SE .035 -.001 .251 .195 .123 .086 -.014 -.007 -.099 .013 .160 .141 .553 .514 .542 .557 .723 .712 9.11
Semantic Entropy .034 .001 .250 .195 .110 .082 -.019 -.003 -.097 .019 .158 .159 .583 .566 .589 .605 .752 .745 8.28
SentenceSAR -.077 -.037 .168 .133 .061 .090 -.072 -.033 -.221 .013 .305 .199 .643 .605 .700 .692 .792 .786 9.06
SAR .042 -.006 .248 .245 .123 .103 .111 .014 .066 .035 .155 .263 .477 .503 .453 .515 .769 .770 7.11

TAD (LinReg) .502 .257 .329 .263 .177 .078 .576 .242 .787 .376 .563 .294 .671 .608 .820 .751 .782 .760 3.00
TAD (LinReg+AlignScore) .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .671 .600 .834 .777 .784 .766 2.89

Table 1: PRR↑ of UQ methods for the Gemma 7b model. Warmer colors indicate better results. The best method is
in bold, the second best is underlined.

For these methods, we generate five samples.439

4.2 Main Results440

Fine-grained comparison with the baselines.441

Tables 1, 8 and 9 in Appendix A present the re-442

sults for Gemma 7b, Llama 8b v3, and StableLM443

12b v2 models respectively.444

We can see that for all summarization datasets,445

in the majority of cases, TAD outperforms the state-446

of-the-art methods by a large margin in terms of447

both considered metrics. The only exception is448

the case of PRR-AlignScore for StableLM on the449

XSum dataset, where SAR and Lexical Similar-450

ity are marginally better. At the same time, TAD451

confidently outperforms them in terms of PRR-452

ROUGE-L. In experiments with two other models453

on XSum, TAD also demonstrates large improve-454

ments in terms of both metrics over the baselines,455

which typically perform no better than a random456

choice. For example, TAD LinReg+AlignScore457

outperforms the second best baseline by .317 PRR-458

AlignScore and by .465 PRR-ROUGE-L absolute.459

For QA with long answer datasets (PubMedQA,460

MedQUAD, and TruthfulQA), we see that TAD461

also confidently outperforms the baselines for all462

considered settings except for the experiment on463

TruthfulQA with LLaMA 8b v3 and for PRR-464

ROUGE-L measured on MedQUAD for Gemma.465

For example, in the experiment with LLaMA 8b v3466

on PubMedQA, TAD outperforms the second best467

baseline – Perplexity by .190 of PRR-ROUGE-L468

and by .187 of PRR-AlignScore. For StableLM, the469

improvement is .049 of PRR-ROUGE-L and .083470

of PRR-AlignScore. Additionally, we can see that471

on this task, the majority of sophisticated UQ base-472

lines consistently fall behind simple techniques.473

Finally, for QA with short answers (CoQA, SciQ,474

and TriviaQA), we can see that TAD notably out-475

performs baselines for all considered LLMs only476

on the SciQ dataset. TAD also marginally out-477

performs baselines in the experiments on CoQA 478

with StableLM and Llama 8b v3. The lower per- 479

formance on tasks with short answers is expected, 480

since TAD primarily aims at improving the perfor- 481

mance for tasks with long generations and complex 482

conditional dependencies. Moreover, we can see 483

that in the short-answer setting on TriviaQA and 484

CoQA, the simplest baseline MSP demonstrates 485

very strong performance, which is often the best. 486

When comparing the two strategies for obtaining 487

the unconditional probability during training, we 488

see that adding AlignScore usually helps for sum- 489

marization tasks, but it could negatively impact the 490

performance for QA. 491

Overall results. Table 2 presents the mean rank 492

of each method aggregated over all datasets for 493

each model separately. The lower rank is better. 494

The column “Mean Rank” corresponds to the mean 495

rank of the ranks across all models. Figure 2 addi- 496

tionally summarizes all experimental setups. Each 497

cell presents a win rate for a method from a row 498

compared to a method from a column. The aggre- 499

gated results emphasize the significance of the per- 500

formance improvements of the proposed method. 501

Despite that some baseline methods might show 502

good results in several individual cases, they usu- 503

ally are quite unstable resulting in poor overall 504

ranking. At the same time, TAD demonstrates 505

more robust improvements across multiple tasks 506

and LLMs, making it a better choice overall. 507

Generalization of TAD on unseen datasets. Ta- 508

bles 3, 10 and 11 in Appendix A.2 compare the 509

results of TAD trained on a single in-domain train- 510

ing dataset to the results of TAD trained on all 511

training datasets except one that represents the in- 512

domain dataset for testing (we designate it as Gen 513

TAD). This setting evaluates the out-of-domain per- 514

formance of TAD. We can see that TAD without 515

the AlignScore target demonstrates good general- 516
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Figure 2: Summary of 54 experimental setups with
various models and datasets. Each cell in the diagram
presents the fraction of experiments where a method
from a row outperforms a method from a column.
Warmer colors indicate better results.

UQ Method Gemma 7b Llama-3 8b StableLM 12b Mean Rank

MSP 8.61 7.17 6.83 4.50
Perplexity 7.78 8.44 8.33 5.33
Mean Token Entropy 8.94 9.11 9.00 9.00
Focus 13.00 9.50 10.50 13.67
NumSemSets 10.72 10.78 12.83 15.00
DegMat 8.61 8.83 9.33 8.17
Eccentricity 11.11 11.33 11.61 15.33
EigValLaplacian 9.00 7.94 8.78 7.67
Lexical Similarity 8.78 9.22 8.56 8.33
MC NSE 10.00 10.72 10.22 13.00
MC SE 9.11 10.22 10.67 13.00
Semantic Entropy 8.28 9.06 9.06 7.67
SentenceSAR 9.06 9.39 8.22 9.00
SAR 7.11 7.78 6.33 3.33

TAD (LinReg) 3.00 3.72 3.50 2.00
TAD (LinReg+AlignSc.) 2.89 2.78 2.22 1.00

Table 2: Mean ranks of UQ methods aggregated over all
datasets for each LLM separately (the lower the better).
The column “Mean Rank” corresponds to the mean rank
of the ranks across all LLMs. The best method is in
bold, the second best is underlined.

ization for QA with long answers. Despite the517

results degrade on the unseen dataset, TAD con-518

fidently outperforms other baselines. Adding the519

AlignScore for QA worsens the results probably520

due to overfitting.521

For the TS task, on the contrary, adding Align-522

Score helps to achieve some generalization. The523

results substantially degrade, but are still better524

than for other baselines. On the short-answer QA525

task, training on out-of-domain data slightly im-526

proves PRR-Accuracy. More details about these527

experiments are presented in Appendix A.2.528

4.3 Ablation Studies529

Regression models and aggregation approaches.530

Detailed results with various regression models and531

UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc.

MSP -.356 -.153 -.024 .033 .648 .557 5.33
Focus -.356 -.110 .045 -.063 .336 .261 6.50
SAR -.029 .038 .075 .012 .474 .489 5.17

TAD (LinReg) .358 .223 .429 .220 .639 .561 2.17
TAD (LinReg+AlignSc.) .579 .345 -.018 .083 .657 .567 2.67

Gen. TAD (LinReg) .006 -.032 .256 .208 .672 .541 3.33
Gen. TAD (LinReg+AlignSc.) .210 .108 .179 .096 .675 .547 2.83

Table 3: The comparison of TAD trained on in-domain
data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, Llama 8b v3 model).
Warmer colors indicate better results. The best method
is in bold, the second best is underlined.

aggregation approaches are presented in Table 4 532

and in Tables 12 and 13 in Appendix A. The op- 533

timal values of the hyper-parameters of TAD for 534

all experimental setups are presented in Tables 14 535

to 16 in Appendix C.1 for Gemma 7b, LLaMA 8b 536

v3, and StableLM 12b v2 models, respectively. 537

The results show that TAD based on regression 538

using MLP and LinReg consistently outperform 539

TAD based on CatBoost (Prokhorenkova et al., 540

2018). However, there is no big difference between 541

MLP and LinReg. Therefore, for simplicity, we 542

use LinReg as a regression method for TAD. 543

We investigate two strategies for aggregation of 544

token-level TAD scores: the mean of the scores and 545

the sum of the log scores inspired by perplexity. For 546

the majority of the considered settings, the mean of 547

the probabilities yields the best results. However, 548

for QA with short answers, the sum of the log 549

probabilities performs slightly better. 550

Comparison of features. Table 6 presents the 551

experiments with various features for the regres- 552

sion model. For “TAD Embeds.”, we utilize the 553

embeddings from the last hidden state from the de- 554

coder. For “TAD Probs.”, we use only generated 555

probabilities for current and previous tokens, and 556

p(si−1 = T). For “TAD Attn. Only”, we use at- 557

tention, but without probabilities. TAD trained on 558

attention weights with probabilities substantially 559

outperforms all other options. We also note that 560

TAD trained only on embeddings performs is much 561

worse than other versions, emphasizing the impor- 562

tance of usage attention and probabilities. 563

Comparison to directly learning the uncondi- 564

tional probability. Table 5 compares TAD to di- 565

rectly learning the unconditional probability, where 566

instead of using the target from equation 2, we sim- 567

ply try to approximate p(si = T). These results 568

demonstrate that the attention weights contain a lot 569

of information about the unconditional probability 570
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UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .496 .215 .201 .248 .064 -.011 .540 .181 .792 .382 .414 .283 .632 .578 .687 .634 .816 .800 5.89

TAD (CatBoost+AlignScore) 1
K

∑K
k=1 pk .332 .146 .211 .269 .052 -.012 .556 .215 .665 .357 .382 .310 .603 .550 .550 .529 .818 .801 6.67

TAD (CatBoost)
∑K

k=1 log pk .324 .284 .100 .075 -.078 .107 -.373 -.112 -.461 .011 .452 .163 .669 .609 .810 .736 .792 .776 7.33
TAD (CatBoost+AlignScore)

∑K
k=1 log pk .249 .297 .057 .039 -.169 .093 -.573 -.190 -.472 -.001 .310 .083 .717 .626 .830 .774 .789 .775 8.28

TAD (LinReg) 1
K

∑K
k=1 pk .502 .257 .329 .263 .177 .078 .576 .242 .787 .376 .563 .294 .510 .488 .619 .585 .811 .789 5.39

TAD (LinReg+AlignScore) 1
K

∑K
k=1 pk .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .471 .441 .484 .462 .805 .782 5.17

TAD (LinReg)
∑K

k=1 log pk .396 .319 .072 .090 -.029 .092 -.387 -.116 -.460 .012 .573 .224 .671 .608 .820 .751 .782 .760 7.22
TAD (LinReg+AlignScore)

∑K
k=1 log pk .373 .351 .176 .121 -.099 .101 -.569 -.198 -.473 .000 .430 .187 .671 .600 .834 .777 .784 .766 7.22

TAD (MLP) 1
K

∑K
k=1 pk .504 .249 .246 .210 .180 .080 .564 .217 .794 .369 .577 .298 .665 .605 .686 .641 .813 .794 4.50

TAD (MLP+AlignScore) 1
K

∑K
k=1 pk .536 .349 .321 .327 .118 .092 -.059 .021 .624 .418 .419 .298 .614 .559 .608 .590 .804 .781 5.56

TAD (MLP)
∑K

k=1 log pk .380 .301 .052 .042 -.020 .090 -.359 -.112 -.461 .010 .509 .183 .675 .613 .821 .754 .787 .764 7.28
TAD (MLP+AlignScore)

∑K
k=1 log pk .363 .340 .162 .105 -.100 .099 -.567 -.199 -.474 -.001 .220 .050 .713 .629 .836 .780 .789 .770 7.50

Table 4: Comparison of various considered regression models and aggregation strategies for TAD (PRR↑, Gemma
7b model). Warmer colors indicate better results. The best method is in bold, the second best is underlined.

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Median
Rel. Impr.ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc. Acc. AlignSc. Acc. AlignSc. Acc. AlignSc.

Learning p(si = T ) .526 .345 .279 .314 .182 .079 -.014 .015 .577 .471 .460 .389 .657 .591 .809 .774 .743 .760 -
TAD (LinReg+AlignSc.) .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .671 .600 .834 .777 .784 .766 +3.1%

Table 5: The comparison of TAD with directly learning the unconditional probability p(si = T) (PRR↑, Gemma
7b model). The best method is in bold, the second best is underlined.

UQ Method XSUM PubMedQA CoQA Mean
RankRouge-L AlignSc. Rouge-L AlignSc. Acc. AlignSc.

MSP -.329 -.116 -.455 -.154 .699 .626 3.83
TAD Embeds. (LinReg, +AlignScore) .191 .070 .025 .015 .606 .548 3.50
TAD Probs. (LinReg, +AlignScore) .265 .234 -.360 -.142 .712 .613 2.83
TAD Attn. Only (LinReg+AlignScore) .369 .252 -.345 -.112 .675 .608 2.67
TAD (LinReg+AlignScore) .541 .380 .007 .064 .671 .600 2.17

Table 6: The comparison of various features for TAD
(PRR↑, Gemma 7b model). The best method is in bold,
the second best is underlined.

UQ Method Runtime
per batch Overhead

MSP 10.26 ±2.78 —
Mean Token Entropy 10.29 ±2.79 0.26%
Focus 10.55 ±2.84 2.80%
EigValLaplacian 44.90 ±9.55 340%
MC SE 44.72 ±9.53 340%
Semantic Entropy 44.87 ±9.54 340%
SAR 57.63 ±12.57 460%

TAD (CatBoost) 10.34 ±2.80 0.80%
TAD (LinReg) 10.27 ±2.78 0.10%
TAD (MLP) 10.27 ±2.78 0.11%

Table 7: The evaluation of the runtime of UQ methods
measured on 900 instances from all datasets with pre-
dictions from Llama 8b v3. The best results are in bold.

itself. Nevertheless, TAD’s superior results show571

that taking into account the conditional dependency572

on previous generation steps and their uncertainty573

is also important.574

4.4 Computational Efficiency575

To demonstrate the computational efficiency of576

TAD, we compare its runtime to other UQ meth-577

ods. We conducted experiments on 100 randomly578

sampled texts from each of our nine evaluation579

datasets using the LLaMA 8b v3 model on a single580

80GB A100 GPU. The inference is implemented581

as a single-batch model call for all tokens in the582

output text. We use the LM-Polygraph (Fadeeva583

et al., 2023) implementation for other UQ methods.584

Table 7 presents the average runtime per text585

sample for each UQ method, along with the per- 586

centage overhead over the standard LLM inference 587

with MSP. As we can see, many state-of-the-art 588

UQ methods such as (black-box, MC SE, Seman- 589

tic Entropy, SAR) introduce huge computational 590

overhead (340-460%) because they need to per- 591

form sampling from the LLM multiple times. On 592

the contrary, TAD introduces minimal overhead 593

(0.1-0.8%), which is much more practical. 594

5 Conclusion and Future Work 595

We have presented a new uncertainty quantifica- 596

tion method based on learning conditional depen- 597

dencies between the predictions made on multiple 598

generation steps. The method relies on attention 599

to construct features for learning this functional 600

dependency and leverages this dependency to al- 601

ter the uncertainty on subsequent generation steps. 602

This yields improved results in selective generation 603

tasks, especially when the LLM output is long. Our 604

experimental study shows that our proposed tech- 605

nique usually outperforms other state-of-the-art UQ 606

methods (such as SAR) resulting in the best overall 607

performance across three LLMs and nine datasets. 608

TAD does not introduce much computational over- 609

head due to the simplicity of the regression model 610

(linear regression), which makes it a potentially 611

practical choice for LLM-based applications. 612

In future work, we aim to apply the suggested 613

method to quantifying the uncertainty of retrieval- 614

augmented LLMs. TAD potentially could be used 615

to take into account the credibility of the retrieved 616

evidence. 617
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Limitations618

In the motivation of our approach, we assume a619

strict Markov chain property between the genera-620

tion steps. However, in reality, this property does621

not hold as the current generation step usually de-622

pends on multiple previous steps. This limitation623

of our method could be addressed by estimating the624

conditional dependency between multiple previous625

steps, e.g., by using a Transformer layer instead626

of the linear regressor. Nevertheless, our current627

implementation that makes the Markov assumption628

already yields strong results, and thus we leave629

investigation of more complex modifications for630

future work.631

We also did not test our method on extra large632

LLMs such as LLaMA 3 70b. We only used 7-12b633

models due to limitations in our available computa-634

tional resources.635

Ethical Considerations636

In our work, we considered open-source LLMs and637

datasets not aimed at harmful content. However,638

LLMs may generate potentially damaging texts for639

various groups of people. Uncertainty quantifica-640

tion techniques can help create more reliable use641

of neural networks. Moreover, they can be applied642

to detecting harmful generation, but this is not our643

intention.644

Moreover, despite that our proposed method645

demonstrates significant performance improve-646

ments, it can still mistakenly highlight correct and647

not dangerous generated text with high uncertainty648

in some cases. Thus, as with other uncertainty649

quantification methods, it has limited application650

for various tasks.651
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A Additional Experimental Results931

A.1 Comparison with other UQ Methods932

Here, we present the main results with Llama and StableLM.933

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.356 -.153 .358 .133 .002 .022 -.024 .033 .417 .493 .324 .174 .648 .557 .671 .590 .752 .706 7.17
Perplexity -.388 -.124 -.088 .231 .130 .196 .239 -.023 .489 .513 .166 .129 .439 .413 -.456 -.457 .749 .696 8.44
Mean Token Entropy -.385 -.124 -.114 .230 .132 .189 .233 -.035 .489 .509 .122 .119 .350 .353 -.498 -.481 .756 .708 9.11
Focus -.356 -.110 -.024 .253 .112 .201 .045 -.063 .554 .540 .262 .274 .336 .261 -.469 -.377 .586 .587 9.50

NumSemSets .011 .062 .154 .185 .070 .099 .005 .037 -.022 .098 .032 .168 .146 .288 .154 .232 .563 .657 10.78
DegMat .048 .085 .191 .215 .076 .100 .013 .027 .069 .174 .112 .145 .306 .440 .317 .405 .633 .697 8.83
Eccentricity -.009 .036 .034 .073 .042 .054 -.012 -.008 .048 .062 .086 .046 .484 .476 .386 .443 .643 .652 11.33
EigValLaplacian .050 .086 .183 .217 .081 .100 .004 .029 .063 .172 .137 .166 .436 .478 .388 .450 .638 .687 7.94
Lexical Similarity .011 .038 .302 .182 .105 .093 .099 .025 .272 .143 -.012 .012 .482 .473 .372 .414 .652 .647 9.22
MC NSE -.058 .006 .216 .167 .117 .083 .070 -.006 .304 .217 .013 .012 .441 .407 .038 .071 .656 .637 10.72
MC SE .029 .024 .253 .151 .071 .048 .029 .017 .101 .019 .134 .024 .511 .446 .425 .432 .633 .618 10.22
Semantic Entropy .029 .026 .256 .157 .066 .050 .031 .015 .102 .022 .121 .023 .521 .483 .444 .459 .686 .675 9.06
SentenceSAR -.095 -.005 .167 .125 .053 .033 -.028 .000 .033 .106 .203 .091 .584 .531 .547 .517 .729 .715 9.39
SAR -.029 .038 .288 .208 .115 .112 .075 .012 .328 .237 .012 .085 .474 .489 .149 .181 .718 .721 7.78

TAD (LinReg) .358 .223 .336 .219 .210 .111 .429 .220 .500 .501 .189 .130 .639 .561 .868 .758 .707 .671 3.72
TAD (LinReg, +AlignScore) .579 .345 .404 .369 .207 .150 -.018 .083 .613 .544 .251 .235 .657 .567 .914 .824 .715 .691 2.78

Table 8: PRR↑ of UQ methods for the Llama 8b v3 model. Warmer colors indicate better results. The best method
is in bold, the second best is underlined.

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.144 -.060 .498 .341 -.027 .062 -.429 -.168 .478 .596 .450 .224 .680 .597 .717 .685 .738 .715 6.83
Perplexity -.257 -.034 .434 .351 .092 .044 .409 .099 .492 .592 .219 .179 .385 .373 -.340 -.385 .732 .700 8.33
Mean Token Entropy -.250 -.028 .409 .340 .108 .034 .410 .085 .503 .593 .139 .181 .312 .329 -.403 -.423 .747 .713 9.00
Focus -.173 .019 .300 .228 .040 .011 .214 .080 .559 .639 .217 .215 .147 .105 -.165 -.097 .643 .649 10.50

NumSemSets .001 .054 .179 .187 .005 .074 .081 .051 -.007 .055 .060 .167 .221 .303 .110 .200 .576 .636 12.83
DegMat -.000 .057 .309 .326 .017 .120 .052 .039 .136 .242 .214 .194 .342 .489 .452 .561 .653 .698 9.33
Eccentricity -.034 .004 .235 .250 .023 .049 -.025 .007 .146 .179 .165 .047 .527 .557 .496 .568 .643 .660 11.61
EigValLaplacian -.008 .063 .292 .311 .012 .115 .049 .038 .116 .226 .227 .215 .500 .557 .513 .581 .661 .697 8.78
Lexical Similarity .111 .079 .381 .285 .119 .098 .094 .026 .296 .271 .141 .090 .508 .524 .489 .545 .656 .670 8.56
MC NSE .068 .048 .371 .263 .073 .088 .161 .059 .370 .372 .123 .126 .437 .421 .273 .310 .623 .615 10.22
MC SE .066 -.006 .393 .291 .059 .068 .034 .026 .209 .234 .164 .051 .565 .527 .515 .537 .623 .616 10.67
Semantic Entropy .067 -.003 .412 .317 .066 .071 .033 .024 .215 .247 .152 .047 .578 .565 .545 .578 .674 .670 9.06
SentenceSAR .005 .001 .392 .330 .010 .044 -.052 .001 .255 .307 .280 .157 .642 .603 .630 .644 .713 .713 8.22
SAR .079 .079 .412 .341 .080 .119 .177 .059 .405 .401 .209 .196 .494 .531 .398 .460 .702 .714 6.33

TAD (LinReg) .375 .024 .459 .282 .163 .137 .493 .284 .511 .610 .368 .222 .707 .624 .850 .786 .688 .671 3.50
TAD (LinReg+AlignScore) .459 .068 .519 .419 .145 .127 .249 .219 .696 .674 .462 .367 .698 .614 .863 .803 .696 .691 2.22

Table 9: PRR↑ of UQ methods for the StableLM 12b v2 model. Warmer colors indicate better results. The best
method is in bold, the second best is underlined.

A.2 Generalization Experiments934

Tables 3, 10 and 11 present the comparison of the TAD trained on the in-domain training dataset with the935

TAD trained on all out-of-domain datasets for Gemma 7b, Llama 8b v3, and StableLM 12b v2 models936

respectively. In this experiment, we examine how our approach can be generalized on the unseen datasets.937

For each dataset, we create a general training dataset by using 300 samples from the training datasets from938

each of the eight other datasets used in the experiments. Thus, we evaluate TAD that is not trained on the939

target dataset. We conduct experiments on one dataset from each task: XSUM, PubMedQA, and CoQA.940

We compare the results with three strongest baseline methods: MSP, Focus, and SAR. Overall, we can see941

that the TAD method can be generalized on the unseen datasets and outperform all other baselines in most942

settings.943

UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc.

MSP -.329 -.116 -.455 -.154 .699 .626 5.00
Focus -.324 -.161 -.357 -.146 .322 .250 6.50
SAR .042 -.006 .111 .014 .477 .503 4.50

TAD (LinReg) .502 .257 .576 .242 .671 .608 2.17
TAD (LinReg+AlignSc.) .541 .380 .007 .064 .671 .600 2.67

Gen. TAD (LinReg) -.061 -.068 .288 .101 .703 .594 3.17
Gen. TAD (LinReg+AlignSc.) .132 .096 -.124 -.074 .696 .589 4.00

Table 10: The comparison of TAD trained on in-domain data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, Gemma 7b model). Warmer colors indicate better results. The best method is in
bold, the second best is underlined.
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UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore

MSP -.144 -.060 -.429 -.168 .680 .597 5.83
Focus -.173 .019 .214 .080 .147 .105 5.83
SAR .079 .079 .177 .059 .494 .531 4.67

TAD (LinReg) .375 .024 .493 .284 .707 .624 1.67
TAD (LinReg, +AlignScore) .459 .068 .249 .219 .698 .614 2.50

Gen. TAD (LinReg) -.032 -.015 .433 .217 .701 .584 4.00
Gen. TAD (LinReg, +AlignScore) .023 -.008 .288 .143 .709 .592 3.50

Table 11: The comparison of TAD trained on in-domain data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, StableLM 12b v2 model). Warmer colors indicate better results. The best method
is in bold, the second best is underlined.

A.3 Ablation Studies 944

Here, we present ablation studies for regression models and aggregation techniques with additional LLMs. 945

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .349 .183 -.064 .211 .180 .101 .366 .150 .448 .476 .208 .146 .605 .536 .741 .665 .743 .710 6.78

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk .250 .097 -.013 .258 .137 .192 .255 .002 .448 .492 .234 .179 .576 .509 .605 .558 .746 .714 6.94

TAD (CatBoost)
∑K

k=1 log pk .357 .244 .279 .026 -.068 -.036 -.429 -.056 .293 .411 .323 .191 .647 .557 .813 .708 .715 .680 7.89
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk .272 .227 .269 .015 -.115 -.050 -.461 -.070 .099 .239 .305 .189 .672 .566 .875 .795 .712 .683 8.61

TAD (LinReg) 1
K

∑K
k=1 pk .358 .223 .336 .219 .210 .111 .429 .220 .500 .501 .189 .130 .535 .507 .742 .671 .739 .702 6.11

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk .579 .345 .404 .369 .207 .150 -.018 .083 .613 .544 .251 .235 .509 .473 .637 .591 .738 .708 4.89

TAD (LinReg)
∑K

k=1 log pk .438 .291 .307 .082 .005 -.021 -.402 -.049 .310 .421 .396 .261 .639 .561 .868 .758 .707 .671 6.61
TAD (LinReg, +AlignScore)

∑K
k=1 log pk .466 .334 .367 .098 -.040 -.041 -.447 -.065 .175 .256 .273 .195 .657 .567 .914 .824 .715 .691 6.11

TAD (MLP) 1
K

∑K
k=1 pk .496 .256 .317 .221 .215 .119 .408 .166 .509 .488 .189 .132 .587 .525 .751 .664 .738 .701 5.72

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk .572 .326 .303 .346 .206 .145 .294 .251 .563 .487 .255 .276 .551 .494 .675 .635 .739 .712 4.89

TAD (MLP)
∑K

k=1 log pk .448 .303 .310 .069 .008 -.021 -.419 -.056 .301 .407 .355 .238 .646 .566 .879 .757 .718 .682 6.28
TAD (MLP, +AlignScore)

∑K
k=1 log pk .435 .326 .352 .088 -.052 -.046 -.453 -.063 .153 .220 .191 .146 .662 .575 .912 .822 .717 .693 7.17

Table 12: Comparison of various considered regression models and different aggregation strategies for TAD by
PRR↑ for the Llama 8b v3 model for various tasks. Warmer colors indicate better results. The best method is in
bold, the second best is underlined.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .374 .019 .409 .296 .117 .071 .495 .278 .500 .586 .394 .242 .637 .574 .710 .678 .725 .701 6.67

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk .262 .036 .440 .311 .076 .060 .295 .107 .525 .589 .418 .297 .585 .529 .676 .650 .726 .703 6.94

TAD (CatBoost)
∑K

k=1 log pk .320 -.029 .442 .296 -.030 .151 -.565 -.188 .452 .586 .539 .236 .703 .619 .826 .763 .710 .675 7.39
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk .248 -.021 .380 .255 -.105 .110 -.582 -.192 .316 .410 .451 .199 .715 .620 .862 .802 .702 .681 8.94

TAD (LinReg) 1
K

∑K
k=1 pk .375 .024 .459 .282 .163 .137 .493 .284 .511 .610 .368 .222 .594 .555 .734 .710 .712 .686 5.83

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk .459 .068 .519 .419 .145 .127 .249 .219 .696 .674 .462 .367 .526 .488 .684 .661 .710 .693 5.06

TAD (LinReg)
∑K

k=1 log pk .368 .011 .450 .279 .013 .154 -.556 -.185 .463 .599 .500 .228 .707 .624 .850 .786 .688 .653 6.50
TAD (LinReg, +AlignScore)

∑K
k=1 log pk .358 .036 .442 .324 -.023 .135 -.567 -.186 .429 .436 .453 .243 .698 .614 .863 .803 .696 .674 6.89

TAD (MLP) 1
K

∑K
k=1 pk .401 .018 .473 .301 .166 .149 .488 .283 .516 .606 .397 .237 .605 .554 .728 .708 .711 .684 5.61

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk .460 .065 .500 .383 .135 .114 .249 .236 .722 .662 .525 .414 .528 .488 .733 .710 .705 .692 4.67

TAD (MLP)
∑K

k=1 log pk .363 .009 .458 .292 .024 .169 -.557 -.186 .475 .600 .507 .259 .701 .624 .843 .779 .695 .663 6.39
TAD (MLP, +AlignScore)

∑K
k=1 log pk .343 .032 .441 .325 -.014 .136 -.571 -.186 .404 .396 .450 .227 .706 .621 .848 .790 .703 .684 7.11

Table 13: Comparison of various considered regression models and different aggregation strategies for TAD by
PRR↑ for StableLM 12b v2 model for various tasks. Warmer colors indicate better results. The best method is in
bold, the second best is underlined.

B Computational Resources 946

All experiments were conducted on a single NVIDIA A100 GPU. On average, training a single model 947

across all datasets took over 750 GPU hours, while inference on the test set took 260 GPU hours. 948

C Hyperparameters 949

C.1 Optimal Hyperparameters for TAD 950

The optimal hyperparameters for TAD for various considered regression models and different aggregation 951

strategies are presented in Tables 14 to 16 for Gemma 7b, Llama 8b v3, and StableLM 12b v2 models 952

respectively. These hyperparameters are obtained using cross-validation with five folds using the training 953

dataset. We train a regression model on k − 1 folds of the training dataset and estimate uncertainty on 954

the remaining fold. The optimal hyperparameters are selected according to the best average PRR for 955

AlignScore. Finally, we use these hyperparameters to train the regression model on the entire training set. 956

The hyperparameter grid for the CatBoost is the following: 957

Num. of trees: [100, 200]; 958
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Learning rate: [1e-1, 1e-2];959

Tree depth: [3, 5].960

The hyperparameter grid for the linear regression is the following:961

L2 regularization: [1e+1, 1, 1e-1, 1e-2, 1e-3, 1e-4].962

The hyperparameter grid for the MLP is the following:963

Num. of layers: [2, 4];964

Num. of epochs: [10, 20, 30];965

Learning rate: [1e-5, 3e-5, 5e-5];966

Batch size: [64, 128].967

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 3 100, 0.01, 5 100, 0.1, 5 100, 0.01, 3 100, 0.01, 3 100, 0.01, 3 100, 0.01, 5

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 5 200, 0.01, 3 100, 0.01, 3 100, 0.1, 5 100, 0.01, 3 100, 0.01, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 3 200, 0.1, 5 200, 0.1, 5 200, 0.01, 3 200, 0.1, 5 200, 0.1, 5 100, 0.1, 5 200, 0.1, 3 200, 0.1, 5
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 5 200, 0.1, 5 100, 0.01, 3 100, 0.1, 5 100, 0.01, 5 200, 0.1, 3 100, 0.01, 5 100, 0.01, 3 100, 0.01, 5

TAD (LinReg) 1
K

∑K
k=1 pk 1 10.0 0.01 1 10.0 0.0001 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.01 0.001 0.001 0.1 0.001 0.01 10.0 1 10.0

TAD (LinReg)
∑K

k=1 log pk 10.0 0.0001 0.0001 10.0 0.0001 0.01 10.0 1 1
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.01 0.001 0.0001 0.0001 0.001 0.001 10.0 1 1

TAD (MLP) 1
K

∑K
k=1 pk 2, 30, 3e-05, 128 2, 10, 1e-05, 128 2, 30, 5e-05, 128 4, 10, 3e-05, 64 2, 10, 1e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 128 2, 10, 1e-05, 128 2, 10, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 2, 30, 3e-05, 64 2, 30, 3e-05, 128 2, 30, 5e-05, 128 4, 10, 5e-05, 128 2, 10, 1e-05, 128 2, 10, 3e-05, 64 2, 10, 1e-05, 128 4, 10, 5e-05, 64 4, 10, 5e-05, 64

TAD (MLP)
∑K

k=1 log pk 2, 20, 5e-05, 64 2, 10, 1e-05, 128 4, 30, 5e-05, 128 4, 10, 1e-05, 128 4, 30, 3e-05, 128 4, 20, 3e-05, 64 4, 10, 1e-05, 64 4, 30, 3e-05, 128 4, 30, 1e-05, 64
TAD (MLP, +AlignScore)

∑K
k=1 log pk 4, 20, 5e-05, 128 4, 30, 5e-05, 128 4, 20, 5e-05, 128 4, 30, 5e-05, 64 4, 30, 5e-05, 64 4, 30, 5e-05, 128 2, 20, 1e-05, 128 4, 20, 3e-05, 128 4, 30, 1e-05, 64

Table 14: Optimal hyperparameters for the TAD methods for the Gemma 7b model.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 5 100, 0.01, 3 200, 0.1, 5 100, 0.01, 3 100, 0.01, 3 200, 0.1, 5 100, 0.01, 5 100, 0.01, 3 100, 0.01, 3

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 5 200, 0.01, 3 100, 0.01, 3 100, 0.01, 5 200, 0.01, 5 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 5 100, 0.01, 3 200, 0.1, 5 200, 0.1, 5 200, 0.1, 5 200, 0.1, 5 200, 0.1, 3 200, 0.1, 3 200, 0.1, 3
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 5 100, 0.01, 3 100, 0.01, 5 100, 0.01, 5 100, 0.01, 5 200, 0.1, 5 100, 0.1, 3 200, 0.1, 5 100, 0.01, 5

TAD (LinReg) 1
K

∑K
k=1 pk 0.0001 10.0 0.01 0.1 0.0001 10.0 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.001 0.0001 0.01 0.01 0.0001 0.1 10.0 1 10.0

TAD (LinReg)
∑K

k=1 log pk 0.01 1 0.001 0.0001 0.0001 0.0001 10.0 1 10.0
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.0001 0.0001 0.0001 0.1 0.0001 0.1 10.0 1 10.0

TAD (MLP) 1
K

∑K
k=1 pk 2, 10, 1e-05, 64 4, 30, 5e-05, 128 2, 30, 5e-05, 128 4, 10, 5e-05, 64 2, 20, 5e-05, 128 2, 30, 3e-05, 128 2, 10, 1e-05, 128 2, 30, 1e-05, 128 4, 30, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 4, 10, 3e-05, 128 4, 20, 1e-05, 128 2, 20, 5e-05, 128 4, 10, 5e-05, 64 4, 30, 1e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 128 2, 20, 5e-05, 64 4, 10, 5e-05, 64

TAD (MLP)
∑K

k=1 log pk 4, 10, 1e-05, 128 4, 10, 1e-05, 128 4, 30, 5e-05, 64 4, 20, 5e-05, 64 2, 30, 5e-05, 128 4, 30, 3e-05, 64 4, 10, 1e-05, 64 2, 10, 3e-05, 128 4, 20, 5e-05, 128
TAD (MLP, +AlignScore)

∑K
k=1 log pk 2, 30, 1e-05, 128 4, 30, 3e-05, 64 2, 30, 5e-05, 64 2, 20, 5e-05, 64 4, 30, 1e-05, 128 4, 30, 3e-05, 128 2, 10, 3e-05, 128 2, 30, 3e-05, 128 4, 10, 5e-05, 128

Table 15: Optimal hyperparameters for the TAD methods for the Llama 8b v3 model.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 5 100, 0.01, 3 100, 0.01, 3 200, 0.1, 5 200, 0.1, 5 200, 0.1, 3 100, 0.01, 3 100, 0.01, 3 200, 0.1, 3

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 5 200, 0.01, 3 100, 0.1, 3 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 5 100, 0.1, 3 200, 0.1, 5 200, 0.1, 3 200, 0.1, 5 200, 0.1, 5 100, 0.1, 5 100, 0.01, 5 200, 0.1, 3
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.1, 3 100, 0.01, 5 200, 0.1, 3

TAD (LinReg) 1
K

∑K
k=1 pk 0.01 10.0 1 10.0 0.0001 0.0001 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.01 0.1 0.1 0.0001 0.001 0.1 10.0 10.0 10.0

TAD (LinReg)
∑K

k=1 log pk 1 10.0 1 1 0.01 0.001 10.0 10.0 10.0
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.1 0.001 0.01 1 0.1 0.001 10.0 10.0 10.0

TAD (MLP) 1
K

∑K
k=1 pk 4, 10, 1e-05, 128 4, 10, 5e-05, 64 2, 30, 1e-05, 128 2, 30, 1e-05, 128 4, 30, 3e-05, 64 4, 30, 1e-05, 128 2, 10, 1e-05, 128 4, 10, 3e-05, 64 4, 30, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 2, 30, 3e-05, 128 4, 10, 1e-05, 128 4, 30, 5e-05, 64 4, 10, 1e-05, 128 4, 10, 5e-05, 128 4, 30, 1e-05, 64 2, 10, 3e-05, 128 4, 10, 3e-05, 64 4, 10, 3e-05, 64

TAD (MLP)
∑K

k=1 log pk 2, 20, 1e-05, 128 4, 10, 5e-05, 64 4, 30, 5e-05, 64 4, 20, 5e-05, 64 4, 20, 5e-05, 64 4, 20, 5e-05, 64 4, 10, 3e-05, 64 2, 10, 1e-05, 64 4, 10, 3e-05, 64
TAD (MLP, +AlignScore)

∑K
k=1 log pk 2, 30, 1e-05, 64 2, 30, 3e-05, 64 4, 30, 5e-05, 64 4, 20, 1e-05, 64 4, 30, 3e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 64 4, 10, 1e-05, 128 4, 10, 3e-05, 64

Table 16: Optimal hyperparameters for the TAD methods for the StableLM 12b v2 model.
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C.2 LLM Generation Hyperparameters 968

Dataset Task Max Input Length Generation Length Temperature Top-p Do Sample Beams Repetition Penalty

XSum
TS

-

56

1.0 1.0 False 1 1

SamSum 128
CNN 128
PubMedQA

QA
Long answer

128
MedQUAD 128
TruthfulQA 128
CoQA

QA
Short answer

20
SciQ 20
TriviQA 20

Table 17: Text generation hyperparameters for all LLMs used in the experiments.

D Dataset Statistics 969

Task Dataset N-shot Train texts
for TAD

Evaluation
texts

Text
Summarization

CNN/DailyMail 0 2,000 2,000
XSum 0 2,000 2,000
SamSum 0 2,000 819

QA
Long answer

PubMedQA 0 2,000 2,000
MedQUAD 5 1,000 2,000
TruthfulQA 5 408 409

QA
Short answer

SciQ 0 2,000 1,000

CoQA all preceding
questions 2,000 2,000

TriviaQA 5 2,000 2,000

Table 18: The statistics of the datasets used for evaluation.
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