
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UPT++: LATENT POINT SET NEURAL OPERATORS
FOR MODELING SYSTEM STATE TRANSITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Particle methods comprise a wide spectrum of numerical algorithms, ranging from
computational fluid dynamics governed by the Navier-Stokes equations to molec-
ular dynamics governed by the many-body Schrödinger equation. At its core,
these methods represent the continuum as a collection of discrete particles, on
which the respective PDE is solved. We introduce UPT++, a latent point set neural
operator for modeling the dynamics of such particle systems by mapping a par-
ticle set back to a continuous (latent) representation, instead of operating on the
particles directly. We argue via what we call the discretization paradox that con-
tinuous modeling is advantageous even if the reference numerical discretization
scheme comprises particles. Algorithmically, UPT++ extends Universal Physics
Transformers – a framework for efficiently scaling neural operators – by novel
importance-based encoding and decoding. Furthermore, our encoding and decod-
ing enable outputs that remain consistent across varying input sampling resolu-
tions, i.e., UPT++ is a neural operator. We discuss two types of UPT++ opera-
tors: (i) time-evolution operator for fluid dynamics, and (ii) sampling operator for
molecular dynamics tasks. Experimentally, we demonstrate that our method reli-
ably models complex physics phenomena of fluid dynamics and exhibits beneficial
scaling properties, tested on simulations of up to 200k particles. Furthermore, we
showcase on molecular dynamics simulations that UPT++ can effectively explore
the metastable conformation states of unseen peptide molecules.

1 INTRODUCTION

In both science and engineering, substantial efforts have led to the formulation of complex math-
ematical models that accurately represent physical phenomena. Prominent examples include the
Navier-Stokes equations, which describe fluid dynamics, and the Schrödinger equation, fundamen-
tal to quantum mechanics.

Timestep: 0 Timestep: 30 Timestep: 60 Timestep: 90 Timestep: 120 Timestep: 150

Pr
ed

ic
te

d
Pr

ed
ic

te
d

R
ef

er
en

ce
ve

lo
ci

ty
oc

cu
pa

nc
y

ve
lo

ci
ty

Figure 1: Visualization of a DamBreak3D trajectory. UPT++ successfully captures the character-
istics of the evolving fluid, both in terms of predicted occupancy field, and – conditioned on the
occupancy field – predicted velocity field. Lighter colors correspond to higher absolute velocities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Points -> Continuous Continuous -> Continuous Continuous -> Points

Importance-based encoding

Application: fluid dynamics

Application: molecular dynamics

Time-evolution operator

Sampling operator

Latent space operator Importance-based decoding

...Time-evolution

operator

Time-evolution

operator

Sampling

operator

Figure 2: The UPT++ modeling paradigm. UPT++ encodes point-cloud information into a con-
tinuous latent space representation and decodes this representation at arbitrary query points. This
framework enables new ways of simulating particle systems. For example, in our fluid dynamics
experiments, particle velocities are sampled at particle positions, whereas in our molecular sam-
pling experiments, densities around atoms are sampled and encoded. The respective latent space
operators model the time evolution of the fluid or allow to sample new conformations, respectively.
The resulting latent representations are point-wise decoded to occupancies and the corresponding
physics information.

The Navier-Stokes equations are the cornerstone of fluid mechanics, and – despite being formulated
in the 19th century – continue to present significant challenges to mathematicians and physicists.
Most notably, the proof of existence and smoothness of solutions to the Navier-Stokes equations
in three dimensions is one of the seven “Millennium Prize Problems” set by the Clay Mathematics
Institute (Carlson et al., 2006), with a 1 million prize offered for a solution. What the Navier-Stokes
equations are for fluid mechanics, the Schrödinger equation is for quantum mechanics, i.e., the fun-
damental building block to describe the behavior of particles at atomic and subatomic scales. Unlike
classical mechanics, which deals with deterministic paths, the Schrödinger equation (Schrödinger,
1926) embraces the probabilistic nature of quantum phenomena, allowing for the superposition of
states and the emergence of phenomena like quantum entanglement and tunneling.

Solving PDEs numerically is also not straightforward, particularly due to the potential for numer-
ical instabilities, which can lead to inaccurate results or convergence issues. A successful class of
numerical methods to solve certain types of PDEs are particle methods (Pahlke & Sbalzarini, 2023),
which represent the underlying continuum media as a collection of discrete particles. For example,
for many complex phenomena modeled by the Navier-Stokes equations, e.g., free surface dynamics,
or multi-phase flows, Lagrangian discretization schemes are prevalent. Lagrangian methods employ
finite material points, often termed particles, whose movement aligns with the local deformation
of the continuum (Gingold & Monaghan, 1977; Lucy, 1977; Cundall & Strack, 1979; Brackbill &
Ruppel, 1986). Similarly, for molecular dynamics, the Born-Oppenheimer approximation (Born &
Oppenheimer, 1927) separates the dynamics of electrons and nuclei, which allows one to move the
nuclei – when seen as point particles – according to the laws of classical Newtonian dynamics.

The discretization paradox. Contrasting numerical discretization schemes and recent advances in
deep learning reveal a subtle paradox. While particle-based discretization schemes are often used to
model the most complex natural phenomena, deep learning shines at learning continuous representa-
tion, e.g., neural fields (Sitzmann et al., 2020; Mildenhall et al., 2021; Xie et al., 2022), at modeling
continuous transformation, e.g., diffusion models (Ho et al., 2020) and flow matching (Lipman et al.,
2022), and at continuous modulation (Perez et al., 2018; Peebles & Xie, 2023). Naturally, the ques-
tion arises, why – if the underlying nature is continuous anyway – we don’t leverage the power of
deep learning on continuous representations?

Towards this end, we introduce UPT++, which builds on Universal Physics Transformers (Alkin
et al., 2024), a latent space neural operator framework for efficiently scaling neural operators to
larger physics systems. UPT++ extends Universal Physics Transformers by importance-based en-
coding and importance-based decoding schemes, which allows us to convert point cloud represen-
tations of particle methods into continuous latent space representations. Most importantly, encod-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ing and decoding enable outputs that remain consistent across varying input sampling resolutions,
which qualifies UPT++ as a neural operator. The UPT++ operator types we are discussing are time-
evolution operators – as used for the time-evolution of the Navier-Stokes equations, and sampling
operators – applicable to molecular dynamics simulations.

Our contributions are summarized as follows:

• We connect particle-based numerical discretization schemes and latent space modeling.
UPT++ allows us to suggest new modeling paradigms – demonstrated on particle-based
fluid dynamics and molecular dynamics simulations.

• We introduce novel importance-based encoding and importance-based decoding schemes
to switch between discretized physics space and continuous latent space.

• We demonstrate the efficacy and scaling properties of UPT++ on fluid simulations of up to
200k particles, and strong sampling performance on molecular dynamics data.

2 BACKGROUND: PARTICLE METHODS AND NEURAL OPERATORS

Example: SPH discretization in fluid dynamics. The incompressible Navier-Stokes equa-
tions (Temam, 2001) are defined for the velocity flow field u : X × [0, T]→ R3, X ⊂ R3, and entail

momentum and mass conservation, i.e., ρ
du
dt

= µ∇2u − ∇p + ρf , and ∇ · u = 0, respectively.

Here, ρ is the density, du/dt is the material derivative, i.e., the rate of change of u of a material
element, µ∇2u is the viscosity, i.e., the diffusion of u modulated by the viscosity parameter µ, p is
the pressure, and f an external force. Lagrangian discretization schemes discretize the continuum
via finite material points that move according to the local deformation of the continuum. A famous
example is given by smoothed particle hydrodynamics (SPH) proposed by Lucy (1977) and Gingold
& Monaghan (1977). SPH approximates the field properties using radial kernel interpolations over
adjacent particles at the location of each particle. The strength of the SPH method is that it does not
require connectivity constraints, e.g., meshes, which is particularly useful for simulating systems
with large deformations, complex fluid-boundary interactions, or free surface flows.

Example: Nuclei discretization in molecular dynamics. The temporal evolution of quantum sys-
tems is governed by the many-body Schrödinger equation, for which analytic solutions are hardly
known and are only available for simple systems like free particles or hydrogen atoms. Classical
molecular dynamics (MD) enables the simulation of large atomic systems by various approxima-
tions reducing the degrees of freedom used to describe the system. A well-known example is the
Born–Oppenheimer approximation, where the time-evolving solution is separated into components
for the heavier atomic nuclei and the lighter, faster-moving electrons. Further, the positions of the
nuclei are updated using numerical integration, where forces on the nuclei are obtained via the nega-
tive gradient of the potential energy given by an approximate solution of the electronic Schrödinger
equation. The potential energy is a parameterized sum of intra- and intermolecular interaction terms;
we refer to Appendix B.1 and Frenkel & Smit (2002) for more details on MD. A common applica-
tion of MD is for sampling conformation states of biomolecules from the Boltzmann distribution,
which is also an active area of research in machine learning (Noé et al., 2019). From ergodic theory,
we know that, in most cases, MD generates samples from the Boltzmann distribution when the sim-
ulation is long enough (Frenkel & Smit, 2002), which, unfortunately, for biomolecules often means
simulating for 1015 integration steps. Data-driven approaches could accelerate this sampling process
by either simulating with larger integration steps or directly sampling from the target distribution.

Operator learning. The operator learning paradigm (Lu et al., 2019; 2021; Li et al., 2020b;a; Ko-
vachki et al., 2021) targets the approximation of mappings between function spaces. Such function
spaces can e.g., comprise the solutions of partial differential equations (PDEs). Following Kovachki
et al. (2021), we assume U ,V to be Banach spaces of functions on compact domains X ⊂ Rdx or
Y ⊂ Rdy , mapping into Rdu or Rdv , respectively. Operator learning aims to approximate the ground
truth operator G : U → V via Ĝ : U → V , typically framed as a supervised learning problem, where
input-output pairs are i.i.d. sampled. However, the notable difference is that in operator learning,
the space sampled from is not finite-dimensional. More precisely, with a given data set consisting
of N function pairs (ui,vi) = (ui,G(ui)) ⊂ U × V , i = 1, ...N , we aim to learn Ĝ : U → V , so
that G can be approximated in a suitably chosen norm.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A widely adopted approach is to approximate G via three maps (Seidman et al., 2022; Alkin et al.,
2024): G ≈ Ĝ := D ◦ A ◦ E , comprising encoder E , approximator A, and decoder D. In recent
works (Wang et al., 2024; Alkin et al., 2024), the decoder D has been formulated via point-wise
queries at the output grid or mesh. In this work, we focus on two instances of the approximator A:

• Time-evolution operators (Seidman et al., 2022; Alkin et al., 2024; Wang et al., 2024),
which approximate the deterministic time evolution of a system.

• Sampling operators, which are trained to represent the molecular conformation space (Xu
et al., 2022; Jing et al., 2022).

Neural operators for particle systems. Whereas most state-of-the-art neural operator methods are
tailored for grid-based, predominantly regular domains, neural operator formulations for particle- or
mesh-based dynamics remain limited. In such cases, graph neural networks (GNNs) (Scarselli et al.,
2008; Kipf & Welling, 2017) with graph-based latent space representations offer a promising alter-
native. Often, predicted node accelerations are numerically integrated to simulate the time evolution
of multi-particle systems (Sanchez-Gonzalez et al., 2020; Mayr et al., 2023; Toshev et al., 2023a).
GNNs inherently possess a strong inductive bias for Lagrangian dynamics, which, however, also
presents a significant downside since the number of nodes, and thus the computational complexity
grows with the number of Lagrangian particles. Thus, computational complexity becomes quickly
infeasible for an increasing number of particles (Alkin et al., 2024; Musaelian et al., 2023), see Fig-
ure 3. Furthermore, the effective degrees of freedom of a particle system are sometimes orders of
magnitude less than the degrees of freedom arising from the discretization, especially in simulations
showcasing bulk behavior. Lastly, for particle systems, a neural operator formulation is harder, es-
pecially with respect to the discretization convergence property (Li et al., 2020a), whereas a neural
network is expected to show consistency for increasing input sampling resolutions.

4k 8k 16
k

32
k

65
k

13
1k

26
2k

52
4k

10
48

k
20

97
k

Number of particles

0.25

0.5

1

2

4

8

16

40

M
em

or
y

[G
B]

UPT++
GNS-10-128
GNS-5-64
DamBreak3D

Figure 3: Qualitative exploration of scaling limits when modeling particle systems. Starting from
4k input points, we compared training time memory requirements of popular Graph Network-based
Simulators (Sanchez-Gonzalez et al., 2020) against UPT++. We compare two GNS versions of 5
and 10 layers with hidden dimensions of 64 and 128, respectively. The tested UPT++ model has
30M parameters and can be trained with up to 2M particles on a single A100 40GB GPU.

3 UPT++

Our work builds on Universal Physics Transformers (UPTs) (Alkin et al., 2024) – a recently in-
troduced framework for scaling neural operators, which follows the encoder-approximator-decoder
approach. UPT flexibly encodes different grids, and/or a different number of particles into a uni-
fied latent space representation and introduces a decoder that queries the latent representation at
different locations. We adopt the approach of composite neural operators G ≈ Ĝ := D ◦ A ◦ E ,
where E : U → Rnlatent×h maps a solution state ut ∈ U to a latent space state representation
zt := E(ut) ∈ Rnlatent×h, i.e., to nlatent tokens of dimension h, A : Rnlatent×h → Rnlatent×h maps the
latent state zt to a successor latent state zt′ := A(zt) ∈ Rnlatent×h, t′ > t, and D : Rnlatent×h → U
reconstructs a solution state ut

′ ∈ U from the latent space state representation zt′ ∈ Rnlatent×h, i.e.
ut′ := D(zt′) ∈ U .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Deterministic time-evolution: application to fluid dynamics. We consider fluid dynamics prob-
lems where the fluid is contained within a domain Ω ⊂ X ⊂ R3 but does not fill the entire domain
X . The regions of the domain occupied by the fluid Ω change over time governed by the velocity
field of the fluid at each given time. Equivalently, we can consider that we are given two disjoint fluid
sets (e.g., air and water) filling the entire domain. Then, we consider the solution state ut to be a
compound function, consisting of a velocity field vt and an occupancy field ot, i.e., ut = (vt,ot)T .
The velocity field vt maps a certain coordinate x ∈ X to a point-wise velocity at this coordinate, i.e.,
vt : X 7→ R3. The occupancy field ot maps a certain coordinate x ∈ X to whether a fluid particle
is at this coordinate or not, i.e., ot : X 7→ {0, 1}. ut is therefore a function ut : X 7→ R3 × {0, 1}.
Stochastic conformation sampling: application to molecular dynamics. We assume that a
molecule is spatially located in X ⊂ R3 and the specific conformation of a certain molecule is
represented by a vector of continuous density fields, i.e., each component of ut represents one
specific density field associated with the conformation of the molecule at time t. Each density field
represents some specific characteristics of the molecular conformation, i.e., it might, for example,
be specific to a certain atom type. We construct each density field analogously to Pinheiro et al.
(2024) and Dumitrescu et al. (2024). Appendix B.2.1 gives further details on the construction of
the density fields. When we make use of d density fields to represent the overall conformation of a
molecule, then ut is a function ut : X 7→ Rd.

When applying UPT to such settings, we need to address three main questions, leading to UPT++:

1. How to encode complex point-cloud representations into continuous representations, and
how to decode point-wise from continuous representations?

2. How to formulate deterministic and sampling operators in the latent space?
3. How to efficiently train UPT++?

3.1 IMPORTANCE-BASED ENCODING, IMPORTANCE-BASED DECODING

Importance-based encoding. We introduce importance-based encoding, which consists of four
conceptual steps, see Figure 4. We start with occupancy-based selection, which accounts for the fact
that in many simulations, disjoint sets fill the entire domain. For example, for many fluid dynamics
phenomena, the state ut is a compound state of a materialized fluid field, and either obstacles or a
second fluid, potentially in the gaseous phase. Similarly, for molecular dynamics, molecules are rep-
resented within a box, where not the entire box is filled. Secondly, via importance-based sampling
we emphasize information within the occupied regions. For example, a sampling strategy for particle
methods could be to upsample denser regions to account for the larger concentration of mass there.
Similarly, we sample points around atoms according to density fields consisting of 3D Gaussian
density distribution centered at each atomic position. After importance-based sampling, the encoder
E first embeds the selected k points into hidden dimension h, adding positional encoding (Vaswani
et al., 2017) to the different nodes, i.e., ut

k ∈ Rk×d → Rk×h. Next, via local aggregation we
propagate neighboring information to the respective supernodes (radius graph for connectivity to
keep discretization convergence), and finally global information aggregation pools the information
into a fixed size and uniform latent space via perceiver blocks (Jaegle et al., 2021a;b). The resulting
continuous latent space contains nlatent latent tokens of dimension h, i.e., zt := E(ut) ∈ Rnlatent×h.

Importance-based decoding. Importance-based decoding reverses the conceptual steps of
importance-based encoding. First, via occupancy decoding (Mescheder et al., 2019), we decode
an occupancy field to identify where particles or atoms are located in space. Secondly, we point-
wise decode a field quantity and consider only the occupied points. For example, for fluid dynamics,
we consider only the flow velocity in regions where occupancy is predicted. Similarly, for molecular
dynamics, we decode whether regions are occupied, and consider our density predictions on those.
Analogous to Alkin et al. (2024), the decoder is implemented via a perceiver-like cross-attention
layer using a positional embedding of the output positions as query and the latent representation
as keys and values. Since there is no interaction between queries, the latent representation can be
queried at arbitrarily many positions without large computational overhead. To train the occupancy
field and enable positive and negative learning signals, we sample points at all locations of the do-
main. During inference, we simultaneously predict the occupancy field and the corresponding field
quantities and only keep the field at occupied points. For the reconstruction of molecular graph
structures, we adopt a method similar to that of Pinheiro et al. (2024); Dumitrescu et al. (2024),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Importance-based encoding Importance-based decoding

Importance-based

sampling

Global information

aggregation

Occupancy-based

selection

Occupancy

decoding

Point-wise

decoding

Figure 4: Importance-based encoding and decoding schemes of UPT++, which allow us to encode
complex point-cloud representations into continuous representations, and reversely enable point-
wise decoding of continuous representations.

utilizing an efficient peak-finding algorithm to identify atom positions, and OpenBabel (O’Boyle
et al., 2011) to reconstruct the corresponding molecular bonds.

3.2 LATENT SPACE APPROXIMATOR

In UPT++, A : Rh → Rh is a latent operator, which maps the latent state zt to a successor latent
state zt′ := A(zt) ∈ Rh (in the case of a deterministic time-evolution operator) or which samples a
successor latent state zt′ ∈ Rh from a conditional probability distribution p(.|zt), i.e., zt′ ∼ p(.|zt)
(in the case of a stochastic sampling operator).

Time-evolution operator. The time-evolution operator, implemented as a transformer (Alkin et al.,
2024), A : zt ∈ Rnlatent×h → zt′ ∈ Rnlatent×h, propagates the compressed representation forward
in time. As nlatent is small, forward propagation in time is fast. Notably, the approximator can be
applied multiple times, propagating the signal forward in time by ∆t corresponding to each call of
the approximator. After inferring one timestep, it is not necessary to decode the latent state and
encode it again to compute the result of a further timestep. Instead, in inference mode, we can
keep the latent representation and apply the forward operator again. We call this process latent
rollout. Especially when working with many particles, the benefits of latent space rollouts, i.e., fast
inference, pay off. However, to enable latent rollouts, the responsibilities of encoder E , approximator
A, and decoder D need to be decoupled, which is further discussed in Section 3.3. It should be
mentioned that our integration timestep ∆t is a multiple of the simulation steps used for dataset
generation (sometimes up to a factor thousand larger).

Sampling operator. The sampling operator that is implemented via flow matching (Lipman
et al., 2022), samples zt′ from a conditional distribution p(.|zt), i.e., sampling is conditioned
on the latent state zt. The learning objective for the approximator is to construct a parameter-
ized (θ) distribution pθ(.|zt) ≈ p(.|zt). At inference, we draw samples from pθ(.|zt). Thereby
we assume an atomistic timestep ∆t, which is the minimum timestep for which pθ(.|zt) was
trained to generate meaningful predictions. ∆t is usually equal to or a multiple of simulation
timesteps. The actual time difference t′ − t between prediction time and condition time is usu-
ally again a multiple of ∆t. We implement rectified flow match (Liu et al., 2022) with adap-
tions according to Li et al. (2024) to include the conditioning on zt using classifier-free guid-
ance (Ho & Salimans, 2022). Appendix B.3 details the training and sampling procedures of the
UPT++ sampling operator. In contrast to the time-evolution operator, we extend the sampling op-
erator to also explicitly depend on the number of atomistic timesteps, i.e., we aim to directly learn
pθ(z

t′ |zt, N) = pθ(z
N ∆t+t|zt, N) ≈ p(zt′ |zt) to draw zt

′
after N ∆t steps instead of drawing a

chain of N consecutive samples zt+∆t ∼ p(.|zt), . . . , zt+N ∆t ∼ p(.|zt+(N−1)∆t).

3.3 UPT++ TRAINING PROCEDURE

Training. We make use of the decomposition D ◦ A ◦ E and split up training into 2 stages,
keeping in mind the motivation to enable latent rollouts, for which the responsibilities of encoder
E , approximator A, and decoder D need to be decoupled. Therefore, at the first training stage, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Encode

Decode Decode Decode DecodeDecode Decode

Time-

evolution

operator

Time-

evolution

operator

Time-

evolution

operator

Time-evolution operator Sampling operator

Encode
Sampling

operator

Figure 5: Sketch of the two types of latent operators we use: PDE forward operator for modeling
the time-evolution of the Navier-Stokes equations and the sampling operator applicable to molecular
dynamics simulations.

train E and D by sampling k input points, and – not necessarily related – k′ output points. At this
stage, we don’t apply the forward operator (therefore t′ = t), and the encoder-decoder training can
be considered as the training of an autoencoder for the compound state ut. In the second training
stage, we freeze the encoder and the decoder weights, and make use of different timesteps t and
t′, t′ > t, to only train the approximator A given the fixed latent space input zt and target output
zt′ . Additionally, for training the latent sampling operator, we regularize the latent space via KL-
divergence (Zhang et al., 2023; Rombach et al., 2022).

3.4 RELATED WORK

In recent years, deep learning has started to make a significant impact in the field of computational
fluid dynamics (Guo et al., 2016; Li et al., 2020a; Thuerey et al., 2021; Kochkov et al., 2021; Vinuesa
& Brunton, 2022; Gupta & Brandstetter, 2022; Lam et al., 2022; Bi et al., 2022; Brandstetter et al.,
2022b;a; Andrychowicz et al., 2023; Bodnar et al., 2024; Herde et al., 2024). Several of those works
have applied Transformers to physical systems. Galerkin Transformer (Cao, 2021) uses Galerkin-
type attention to address attention complexity, GNOT (Hao et al., 2023) employs linear attention,
OFormer (Li et al., 2023a) uses recurrent MLPs to propagate solutions over time and FactFormer
(Li et al., 2023b) uses multidimensional factorized attention. However, all these methods apply
attention directly to the input points, which is not scalable in our setting. Transolver (Wu et al.,
2024) reduces the number of tokens by learning a mapping to physics-aware tokens, a concept
similar to our use of supernodes. However, their mapping is recomputed in each Transformer layer,
whereas we operate within a fixed latent space. OFormer (Li et al., 2023a) also employs a positional
embedding combined with a perceiver to query at arbitrary points and perform decoding. However,
their approach applies this process directly to the input, followed by a push forward operation,
resulting in fixed queries that cannot be altered, thus not suitable for our problem setting. CViT
(Wang et al., 2024) is the most similar to our decoding method, but it replaces positional embeddings
with learned grid features and uses interpolation to generate the queries.

Recent advancements in deep learning have led to an increased interest in its application to
molecules. Boltzmann generators (Noé et al., 2019; Köhler et al., 2021) employ flows to draw
asymptotically unbiased samples from the Boltzmann distribution, but lack the ability to general-
ize across multiple molecules. Unlike UPT++, current approaches apply sampling either in tor-
sion (Jing et al., 2022) or Euclidean space (Klein et al., 2024a;b; Midgley et al., 2024). Recent
breakthroughs in computer vision using compact latent spaces have achieved high sampling quality
(Rombach et al., 2022), suggesting the potential of analogous approaches in the molecular domain.

4 EXPERIMENTS

4.1 LAGRANGIAN FLUID SIMULATION

We conducted experiments on two material point method (MPM) (Sulsky et al., 1995) datasets for
our 2D experiments, namely WaterDrop and WaterDrop-XL from Sanchez-Gonzalez et al. (2020),
which consist of a maximum of 1.1k and 7k particles, respectively, see Appendix A.4. Additionally,
we introduce a new dataset of 3D dam break simulations called DamBreak3D generated using the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Riemann SPH method (Zhang et al., 2017) and the SPHinXsys library (Zhang et al., 2021). This
dataset has between 145k-215k fluid particles and consists of 800/100/100 trajectories of length 250
steps, obtained after temporal subsampling at every 100th SPH step, more details in Appendix A.7.

Metrics. We evaluate the performance of the models in terms of 1) the intersection over union IoU
of occupancies and 2) the velocity MSE denotedMSE. To compute these metrics, we evaluate both
occupancies and velocities on a regular grid spanning the full computational domain with a spacing
of around twice the average particle spacing. While these grid values can be directly evaluated by
querying the UPT++ decoder, we apply an SPH interpolation to compute them from the dataset and
also for the GNN baselines.

GNNs for large particle systems. As our main baseline, we choose the established particle-based
fluid mechanics surrogate GNS introduced by Sanchez-Gonzalez et al. (2020). However, as seen
in Figure 3, such GNN-based approaches do not scale well. To the best of our knowledge, there
are three main directions for scaling GNNs to larger particle systems: A) evaluating subgraphs and
combining the solutions (Bonnet et al., 2022), B) limiting the receptive field of the neural network
and applying domain decomposition (Musaelian et al., 2023; Kozinsky et al., 2023), and C) using a
hierarchy of coarser graphs (Qi et al., 2017; Fortunato et al., 2022; Lino et al., 2022). Regarding A,
to cover a mesh with 150k nodes, AirFRANS (Bonnet et al., 2022) evaluates 100 randomly sampled
subgraphs of 32k nodes covering the whole domain and averages the outputs on the nodes that
have been evaluated multiple times. Regarding B, Allegro (Musaelian et al., 2023) proposes a novel
paradigm which, in contrast to message passing, operates on strictly local neighborhoods to allow for
straightforward domain decomposition. Although Allegro allows for simulating systems of arbitrary
size, the compute requirement scales linearly with the system size – in a scaling example, Allegro
distributes 100M atoms over 5k GPUs or roughly 20k atoms per GPU (Kozinsky et al., 2023). Thus,
both A and B approaches have a linear or worse scaling of compute with respect to system size.
As we aim to develop a framework that scales to at least 200k particles (in our experiments), the
hierarchical approach C seems most suitable. Thus, to have a competitive baseline, we develop a
multi-scale version of GNS, called MS-GNS, which couples the finer (original) particles with coarser
particles consisting of randomly subsampled 12.5% of the finer particles. Our approach is inspired
by MS-MGN (Fortunato et al., 2022) and connects the two point clouds by a k-nearest neighbors
graph with k = 4 from the fine to the coarse nodes, see Appendix A.5 for more details.

Model details. In our experiments, UPT++ encodes the first two velocities of the trajectory and
the time-evolution operator acts only in the latent space. In contrast, GNS encodes the first five
velocities and then autoregressively predicts and integrates the accelerations. Based on the GNS
ablation studies in Sanchez-Gonzalez et al. (2020) and Toshev et al. (2023b), we choose to train
a model with 10 message-passing (MP) steps and a latent size of 128, denoted by GNS-10-128 in
Table 1. With MS-GNS-15, we denote an MS-GNS model with a processor consisting of: 1 MP
layer on the fine particles with a latent size 64, 1 downsampling layer, 11 MP layers on the coarse
graph with a latent size 128, 1 upsampling layer, and 1 MP layer as the first one.

Results. Our main results are summarized in Table 1, showing that UPT++ performs comparably to
GNNs in terms of both IoU and MSE, but can offer more than 50x greater speedups. Notably, we
work with the smaller GNS-5-64 model on DamBreak3D as this is the biggest GNS model we could
train with one sample per 40GB GPU, compare Figure 3. Qualitatively, the lower IoU of UPT++
on the 2D datasets is related to the lack of mass conversation (equivalently volume conservation,
as we work with incompressible fluids) in the latent state representation, which manifests itself
in having too little or too much fluid along a trajectory. We note that volume conservation is a
problem that GNNs also have, as recently discussed in Neural SPH (Toshev et al., 2024), but in
contrast to UPT++, GNNs, by construction, preserve the mass, i.e. the number of particles. On the
other hand, UPT++ learns a better representation of the velocity field, which we suspect is easier to
learn as a continuous function. Figure 1 shows one exemplary trajectory rollout of DamBreak3D,
demonstrating that UPT++ can adequately model a 3D particle simulation with 200k particles.

4.2 SAMPLING MOLECULAR CONFORMATIONS

We apply UPT++ to the task of sampling molecular conformations. Molecular conformations are,
e.g., important when studying interactions between different molecules or when deriving certain

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: MSE denotes the mean-squared error of the velocity prediction. IoU and MSE are averaged
over all timesteps and all trajectories in the test set of each dataset. UPT++ can model the complex
dynamics while providing a significant speedup.

Dataset Method Hardware Rollout time Speedup IoU (↑) MSE (↓)
MPM 6 CPUs 50s 1x - -

WaterDrop GNS-10-128 A40 4.0s 13x 0.91 0.047
UPT++ A40 0.53s 94x 0.87 0.036
MPM 6 CPUs 170s 1x - -

WaterDrop-XL GNS-10-128 A40 44s 4x 0.83 0.16
UPT++ A40 0.65s 262x 0.81 0.16

DamBreak3D

SPH 32 CPUs 1200s 1x - -
GNS-5-64 A40 100s 12x 0.83 0.54
MS-GNS-15 A6000 150s 8x 0.91 0.18
UPT++ A40 2.7s 444x 0.93 0.14

properties for molecules. This might be especially relevant for biomedical chemistry and drug dis-
covery.

We benchmark UPT++ on two small peptide datasets from Klein et al. (2024a), namely the alanine
dipeptide dataset (AD), containing a single molecule of 22 atoms, and, further on a small peptide
dataset (2AA) containing 400 different peptides, with varying number of atoms (20-50) and different
atom types per molecules. We stick to the suggested train/test split provided with 2AA and either
evaluate on the whole test set or on an exemplary molecule (AN) from the test set.

Metrics. We evaluate the performance of UPT++, implemented via a latent sampling operator, by
investigating associated Ramachandran plots (Ramachandran et al., 1963) for the sampled molecule
conformations. These plots show the distribution of peptide dihedral angles ϕ and ψ. We quantify
the differences of marginalized distributions of angles between our sampled molecule conformations
and those ones from a reference simulation in analogy to Yu et al. (2024) by means of the Jenson-
Shannon divergence.

Model specific details and training details. We use a guided flow-matching model (as explained
above) with the same diffusion transformer backbone (Peebles & Xie, 2023) as for the time-evolution
operator. As outlined above, we do not only condition on a previous molecule conformation at time
t, but also on the number of atomistic timesteps N . The idea is partly based on ITO (Schreiner
et al., 2023). Further, we apply an MD relaxation step before reconditioning (see Appendix B.2.3).
Details on importance-based sampling for molecules and on data augmentation we use can be found
in Appendices B.2.2 and B.2.4.

Results. Figure 6 shows Ramachandran plots and free energy projection plots for AD conforma-
tions for 13.6k UPT++ sampled conformations and 800k MD reference simulation conformations,
respectively. The Ramachandran plots indicate that modes of reference conformation angles are
faithfully restored by sampled UPT++ conformations. The free energy projections show that our
model also captures energy minima very well, and that less likely regions in conformation space
are explored. For exemplary molecules (AN) from the test set of 2AA Ramachandran plots and free
energy projection plots are shown in Figures B2 and B3 in Appendix B.5. All AN plots rely on
10k UPT++ sampled conformations and 9.8k MD reference simulation conformations. We inves-
tigate the influence of the flow-matching guidance parameter and observe that less guidance seems
to capture modes of conformation angles better than high guidance. This is also reflected by the
Jensen–Shannon divergences shown in Table 2.

Extracting molecule graphs after decoding signals from latent space. To assess if molecule
graph extraction from the latent space happens uniquely, we evaluate the graph extraction perfor-
mance of UPT++ in two scenarios: first, as a strict autoencoder, i.e. encoding and decoding without
the sampling operator, and second, with the sampling operator applied. We consider the extraction
(for details on the final graph extraction see Appendix B.4) of a molecule as valid when encoded
and decoded versions have equal InChI (Landrum, 2016) codes, utilizing the RDKit library (Karol,
2018). This ensures chemical identity is preserved. Table 2 shows that the molecule encoder and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Summary of results on molecular sampling. We show the reconstruction success rate
without applying the sampling operator (“enc-dec”), and with sampling (“sampling+dec”).

Dataset Guidance
scale

Reconstr. success rate (↑) JS Ramachandran (↓)
(sampling)enc-dec sampling + dec

AD 3.5 1.0 0.97 0.18
2AA: AN 1.0 1.0 0.20 0.30
2AA: AN 3.5 1.0 0.50 0.17

decoder of UPT++ can accurately extract molecules from the latent space for Alanine dipeptide and
all test molecules from the 2AA dataset (success rate 100% when tested with 1000 samples). When
applying the sampling operator, the extraction performance decreases slightly (0.97). Results for the
AN molecule of the 2AA dataset are worse, which results from the fact that the tested molecules
are unseen during training. Further, higher guidance scales increase reconstruction success rates but
yield less diverse samples. This behavior is analogous to classifier-free guidance in other domains.

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure 6: Alanine dipeptide experiments. Left half: Ramachandran plots comparing 14k UPT++
and MD samples. Right half: Free energy surface for the two dihedral angles ψ and ϕ with the same
14k UPT++ samples but 800k MD samples. Our model captures well the energy minima and also
explores less probable regions of sample space.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

We presented UPT++, a generic framework for modeling simulations that are conventionally dis-
cretized with particles. UPT++ maps the state of the system to a fixed-sized latent space with novel
importance-based encoding and importance-based decoding techniques. The strengths of our ap-
proach are its generic architecture, favorable scaling to larger systems, and potential for significant
acceleration of numerical simulations. We demonstrated these strengths by training a Lagrangian
fluid dynamics surrogate on up to 200k particles, as well as on molecular conformer generation
across different peptide molecules.

Amongst others, possible extensions of UPT++ are adoptions to more challenging engineering prob-
lems, e.g., complex geometries, solid-liquid interactions, or multi-physics. The fact that the size of
latent representations is constant in UPT++ and, therefore, in principle independent of concrete
molecule sizes, suggests its application to larger peptides or other larger molecules. One weakness
of a field-based approach like UPT++ is that – by construction – UPT++ is not mass conserving.
This is in contrast to GNNs, which preserve the mass, i.e., the number of particles. Further, for
molecular conformation sampling, we decided to incorporate the conditioning conformations via
a classifier-free guidance approach since directly conditioning on previous conformations is prob-
lematic, as discussed in literature (Li et al., 2024). We leave the exploration of other conditioning
strategies to future work. Lastly, improving the decoding scheme could significantly speed up con-
former sampling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Accuracy and Reliability of Simulations. While UPT++ offers a computationally efficient alter-
native to traditional simulation methods, there is a risk that inaccuracies in the approximations could
lead to unintended consequences. For example, in a civil engineering context, designs for flood pro-
tection could rely significantly on the accuracy of our simulations. We strongly emphasize that our
models should not be blindly relied upon for decision-making in safety-critical areas. Users should
always corroborate machine learning predictions with established physical models or additional em-
pirical data. Similarly for molecular simulations, the output of our models should be checked with
experiments or complemented with classical physical simulations before decision-making.

Transparency and Explainability. Given that UPT++ encodes the system’s state into a continuous
latent representation, it may offer less transparency and explainability compared to methods that
directly operate on the physical state. Our latent space approach can make it difficult for users to
fully understand how certain predictions or decisions are reached. Lack of interpretability could lead
to challenges in trusting and verifying the model’s outputs, particularly in critical applications. To
mitigate these concerns, we advocate for developing methods that enhance explainability and allow
users to inspect and understand the underlying decision processes of UPT++, ensuring its safe and
responsible use in real-world scenarios.

Environmental and Social Impact. Our models could have significant societal and environmental
impacts. For example, in cases like flood prediction or water resource management, inaccurate
predictions may lead to poor planning or resource allocation, disproportionately affecting vulnerable
communities. We urge that such models be used responsibly, with attention to fairness, inclusivity,
and transparency, especially in areas that affect public health, safety, and well-being.

REPRODUCIBILITY STATEMENT

We provide a detailed description of the model in Section A.3 and B.2, along with a comprehensive
table for the hyperparameters used in Lagrangian fluid simulations in Table A1 and the hyperparam-
eters used in sampling molecular conformations in Table B1. The data for experiments conducted on
WaterDrop and WaterDrop-XL can be found in Sanchez-Gonzalez et al. (2020). The DamBreak3D
dataset will be released soon. The data for experiments conducted on the MD experiments can be
found in Klein et al. (2024a). Additionally, we provide the anonymized code in the supplementary
materials. The finalized code, along with all model checkpoints used in the experiments, will be
made publicly available on GitHub.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Stefan Adami, Xiangyu Hu, and Nikolaus A Adams. A generalized wall boundary condition for
smoothed particle hydrodynamics. Journal of Computational Physics, 231(21):7057–7075, 2012.

Stefan Adami, XY Hu, and Nikolaus A Adams. A transport-velocity formulation for smoothed
particle hydrodynamics. Journal of Computational Physics, 241:292–307, 2013.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
tors. arXiv preprint arXiv:2402.12365, 2024.

Marcin Andrychowicz, Lasse Espeholt, Di Li, Samier Merchant, Alex Merose, Fred Zyda, Shreya
Agrawal, and Nal Kalchbrenner. Deep learning for day forecasts from sparse observations. arXiv
preprint arXiv:2306.06079, 2023.

Carla Antoci, Mario Gallati, and Stefano Sibilla. Numerical simulation of fluid–structure interaction
by sph. Computers & structures, 85(11-14):879–890, 2007.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity com-
putational fluid dynamics dataset for approximating reynolds-averaged navier–stokes solutions.
Advances in Neural Information Processing Systems, 35:23463–23478, 2022.

M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik, 389(20):
457–484, 1927. ISSN 0003-3804. doi: 10.1002/andp.19273892002.

Jeremiah U Brackbill and Hans M Ruppel. Flip: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. Journal of Computational physics, 65(2):314–343,
1986.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

James Carlson, Arthur Jaffe, and Andrew Wiles. The Millennium Prize Problems. Clay Mathematics
Institute and American Mathematical Society, 2006.

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti,
T.E. Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, M. Ghaz-
imirsaeed, G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, Z. Huang,
S. Izadi, S.A. Izmailov, K. Kasavajhala, M.C. Kaymak, A. Kovalenko, T. Kurtzman, T.S. Lee,
P. Li, Z. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, M. Manathunga, K.M. Merz,
Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pan-
tano, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen,
C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, J. Wang, X. Wu,
Y. Wu, Y. Xiong, Y. Xue, D.M. York, C. Zhao, Q. Zhu, and P.A. Kollman. Amber 2024, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrea Colagrossi and Landrini Maurizio. Numerical simulation of interfacial flows by smoothed
particle hydrodynamics. Journal of Computational Physics, 191, 2003.

Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assemblies. geotech-
nique, 29(1):47–65, 1979.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexandru Dumitrescu, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas
Garg, and Harri Lähdesmäki. Field-based molecule generation. arXiv preprint arXiv:2402.15864,
2024.

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A.
Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern,
Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. Openmm 7: Rapid development
of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7):
1–17, 07 2017. doi: 10.1371/journal.pcbi.1005659.

GW Ford, M Kac, and P Mazur. Statistical mechanics of assemblies of coupled oscillators. Journal
of Mathematical Physics, 6(4):504–515, 1965.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Appli-
cations. Number 1 in Computational Science Series. Academic Press, San Diego, 2nd ed edition,
2002. ISBN 978-0-12-267351-1.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and applica-
tion to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–389,
1977.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv
preprint arXiv:2405.19101, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In 34th
Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.

Håkon Hoel and Anders Szepessy. Classical langevin dynamics derived from quantum mechanics.
arXiv preprint arXiv:1906.09858, 2019.

XY Hu and Nikolaus A Adams. An incompressible multi-phase sph method. Journal of computa-
tional physics, 227(1):264–278, 2007.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021b.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
fusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

Paul J. Karol. The inchi code. Journal of Chemical Education, 95(6):911–912, Jun 2018. ISSN
0021-9584. doi: 10.1021/acs.jchemed.8b00090.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian
Nowozin, Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular
dynamics by learning time-coarsened dynamics. Advances in Neural Information Processing
Systems, 36, 2024a.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024b.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Jonas Köhler, Andreas Krämer, and Frank Noé. Smooth normalizing flows. Advances in Neural
Information Processing Systems, 34:2796–2809, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Boris Kozinsky, Albert Musaelian, Anders Johansson, and Simon Batzner. Scaling the leading ac-
curacy of deep equivariant models to biomolecular simulations of realistic size. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analy-
sis, pp. 1–12, 2023.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast:
Learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794,
2022.

Greg Landrum. Rdkit: Open-source cheminformatics software. 2016.

Lin Li, Chuan Li, and Emil Alexov. On the modeling of polar component of solvation energy using
smooth gaussian-based dielectric function. Journal of Theoretical and Computational Chemistry,
13(03):1440002, 2014.

Shaoning Li, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang.
F3low: Frame-to-frame coarse-grained molecular dynamics with se (3) guided flow matching.
arXiv preprint arXiv:2405.00751, 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023a. ISSN 2835-8856.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
arXiv preprint arXiv:2305.17560, 2023b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Mario Lino, Stathi Fotiadis, Anil A Bharath, and Chris D Cantwell. Multi-scale rotation-equivariant
graph neural networks for unsteady eulerian fluid dynamics. Physics of Fluids, 34(8), 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Leon B Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal,
vol. 82, Dec. 1977, p. 1013-1024., 82:1013–1024, 1977.

Salvatore Marrone, Matteo Antuono, A Colagrossi, G Colicchio, D Le Touzé, and G Graziani. δ-
sph model for simulating violent impact flows. Computer Methods in Applied Mechanics and
Engineering, 200(13-16):1526–1542, 2011.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 9099–9107, 2023.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

Laurence Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Se (3) equivariant augmented coupling flows. Advances in Neu-
ral Information Processing Systems, 36, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Joe J Monaghan. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):1703,
2005.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai Ko-
rnbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geof-
frey R Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3(1):
1–14, 2011.

Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romaña, Yves Moreau, Joost Schymkowitz,
and Frederic Rousseau. Pyuul provides an interface between biological structures and deep learn-
ing algorithms. Nature Communications, 13, 02 2022. doi: 10.1038/s41467-022-28327-3.

Johannes Pahlke and Ivo F. Sbalzarini. A unifying mathematical definition of particle methods. IEEE
Open Journal of the Computer Society, 4:97–108, 2023. doi: 10.1109/OJCS.2023.3254466.

William Peebles and Saining Xie. Scalable diffusion models with transformers. pp. 4195–4205,
2023.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. pp. 3942–3951. AAAI Press, 2018.

Pedro O Pinheiro, Arian Jamasb, Omar Mahmood, Vishnu Sresht, and Saeed Saremi. Structure-
based drug design by denoising voxel grids. arXiv preprint arXiv:2405.03961, 2024.

Jay W. Ponder and David A. Case. Force fields for protein simulations. Advances in protein chem-
istry, 66:27–85, 2003. ISSN 0065-3233. doi: 10.1016/S0065-3233(03)66002-X.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017.

G N Ramachandran, C Ramakrishnan, and V Sasisekharan. Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, pp. 95–99, 1963.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685. IEEE, 2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: multiple
time-resolution surrogates for molecular dynamics. arXiv preprint arXiv:2305.18046, 2023.

E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Physical Review,
28(6):1049–1070, 1926. ISSN 0031-899X. doi: 10.1103/PhysRev.28.1049.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear man-
ifold decoders for operator learning. Advances in Neural Information Processing Systems, 35:
5601–5613, 2022.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS, 2020.

Julian Suk, Christoph Brune, and Jelmer M Wolterink. Se (3) symmetry lets graph neural networks
learn arterial velocity estimation from small datasets. In International Conference on Functional
Imaging and Modeling of the Heart, pp. 445–454. Springer, 2023.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. Application of a particle-in-cell method to
solid mechanics. Computer physics communications, 87(1-2):236–252, 1995.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based deep learning. arXiv preprint arXiv:2109.05237, 2021.

Artur P Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, and Nikolaus A Adams.
Learning lagrangian fluid mechanics with e (3)-equivariant graph neural networks. arXiv preprint
arXiv:2305.15603, 2023a.

Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams. La-
grangebench: A lagrangian fluid mechanics benchmarking suite. In 37th Conference on Neural
Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks, 2023b.

Artur P Toshev, Jonas A Erbesdobler, Nikolaus A Adams, and Johannes Brandstetter. Neural sph:
Improved neural modeling of lagrangian fluid dynamics. arXiv preprint arXiv:2402.06275, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

Damien Violeau and Benedict D Rogers. Smoothed particle hydrodynamics (sph) for free-surface
flows: past, present and future. Journal of Hydraulic Research, 54(1):1–26, 2016.

Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J Pappas, and Paris
Perdikaris. Bridging operator learning and conditioned neural fields: A unifying perspective.
arXiv preprint arXiv:2405.13998, 2024.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
ing and beyond. In Computer Graphics Forum, volume 41, pp. 641–676. Wiley Online Library,
2022.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

Ziyang Yu, Wenbing Huang, and Yang Liu. Force-guided bridge matching for full-atom time-
coarsened dynamics of peptides. arXiv preprint arXiv:2408.15126, 2024.

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d shape rep-
resentation for neural fields and generative diffusion models. ACM Transactions on Graphics, 42
(4):1–16, July 2023. ISSN 1557-7368. doi: 10.1145/3592442.

Chi Zhang, XY Hu, and Nikolaus A Adams. A weakly compressible sph method based on a low-
dissipation riemann solver. Journal of Computational Physics, 335:605–620, 2017.

Chi Zhang, Massoud Rezavand, and Xiangyu Hu. Dual-criteria time stepping for weakly compress-
ible smoothed particle hydrodynamics. Journal of Computational Physics, 404:109135, 2020.

Chi Zhang, Massoud Rezavand, Yujie Zhu, Yongchuan Yu, Dong Wu, Wenbin Zhang, Jianhang
Wang, and Xiangyu Hu. Sphinxsys: An open-source multi-physics and multi-resolution library
based on smoothed particle hydrodynamics. Computer Physics Communications, 267:108066,
2021.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Robert Zwanzig. Nonlinear generalized langevin equations. Journal of Statistical Physics, 9(3):
215–220, 1973.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

CONTENTS

A Lagrangian fluid simulation 19

A.1 Smoothed Particle Hydrodynamics (SPH) . 19

A.2 Scaling limits . 19

A.3 Implementation details . 20

A.4 Dataset-specific details . 22

A.5 Baselines . 22

A.6 Additional results . 23

A.7 Dam break 3D dataset . 23

B Molecular Conformation Sampling 26

B.1 Molecular Dynamics (MD) . 26

B.2 Implementation details . 28

B.2.1 Density representation . 28

B.2.2 Importance-based sampling for molecules 29

B.2.3 Refinement . 29

B.2.4 Data augmentation . 29

B.3 Neural Sampling Operator . 30

B.4 Molecular Graph Reconstruction . 32

B.5 Additional Results . 33

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A LAGRANGIAN FLUID SIMULATION

A.1 SMOOTHED PARTICLE HYDRODYNAMICS (SPH)

In contrast to Eulerian approaches, where discretization of the continuous space is achieved through
spatially fixed finite nodes, control volumes, cells, or elements, Lagrangian methods employ finite
material points, often termed particles, whose movement aligns with the local deformation of the
continuum. One of the most prominent Lagrangian discretization schemes is smoothed particle
hydrodynamics (SPH), originally proposed by Lucy (1977) and Gingold & Monaghan (1977) for
applications in astrophysics. SPH approximates the field properties using radial kernel interpolations
over adjacent particles at the location of each particle. The strength of the SPH method is that it does
not require connectivity constraints, e.g., meshes, which is particularly useful for simulating systems
with large deformations. Since its foundation, SPH has been greatly extended and is the preferred
method to simulate problems with (a) free surfaces (Marrone et al., 2011; Violeau & Rogers, 2016),
(b) complex boundaries (Adami et al., 2012), (c) multi-phase flows (Hu & Adams, 2007), and (d)
fluid-structure interactions (Antoci et al., 2007). SPH approximates the incompressible Navier-
Stokes equations (NSE) by the so-called weakly compressible NSE, where the weak compressibility
assumption typically allows for up to ∼ 1% density deviation Monaghan (2005). This ∼ 1% is
enforced for the weakly compressible SPH method while evolving density and momentum:

d

dt
(ρ) = −ρ (∇ · u) , (A.1)

d

dt
(u) = −1

ρ
∇p︸ ︷︷ ︸

pressure

+
1

Re
∇2u︸ ︷︷ ︸

viscosity

+ f︸︷︷︸
ext. force

. (A.2)

Herein, ρ is the density, u the velocity, p the pressure, f an external force, Re ∝ 1/µ the Reynolds
number. Solving these equations with standard SPH methods may still produce artifacts, most no-
tably when particle clumping exceeds the 1% density-fluctuation restriction (Adami et al., 2013;
Toshev et al., 2024).

The Material Point Method (MPM) is another particle-based technique that represents material as an
assembly of material points. The motion of each material point is determined by solving Newton’s
laws of motion. MPM adopts a hybrid Eulerian-Lagrangian scheme, which uses moving material
points and a fixed computational grid. MPM is particularly useful in the context of large deforma-
tions including fracture and contact scenarios, where traditional mesh-based methods might yield
unrealistic or undesired outcomes due to mesh distortions.

A.2 SCALING LIMITS

In Figure 3, we compare the memory consumption between UPT++, GNS-10-128, and GNS-5-64
during training. We construct a toy setting based on DamBreak3D, positioning points on a regular
three-dimensional grid with the same particle spacing ∆x used in DamBreak3D (see Section A.7
for details). We start with a grid of 16x16x16 points and double the last dimension repeatedly,
increasing the size from 16x16x16 to 16x16x8192. This results in configurations ranging from 4k
points to over 2 million points. For UPT++, we scale the number of input points selected, the number
of supernodes nS, and the number of points where we decode the velocity and the occupancy based
on the number of particles. We select 25% of the points as input points, use 2.5% as supernodes,
decode the velocity at 10% and decode the occupancy at 20%, which is similar to our setting used
for DamBreak3D, compare Section A1). We fix the number of latent tokens to nlatent = 4096. We
focus on memory consumption during the first training stage, where the encoder and decoder are
trained, as the second stage requires less memory.

The main memory consumption that can be attributed to UPT++ is the query MLP in the decoder,
which scales linearly with the number of points to decode, both for decoding the occupancy and the
velocity. We can further reduce the memory footprint by decoding a smaller fraction of the points,
as can be seen in Figure A1, where we add two scaling plots where we decode only 5% and only
1% of the points.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

4k 8k 16
k

32
k

65
k

13
1k

26
2k

52
4k

10
48

k
20

97
k

41
94

k

Number of particles

0.25
0.5

1
2
4
8

16

40

M
em

or
y

[G
B]

UPT++
UPT++, 5% decode
UPT++, 1% decode

Figure A1: Memory usage of UPT++ variants with a reduced number of decoding points.

A.3 IMPLEMENTATION DETAILS

The following outlines the implementation details for UPT++. Table A1 gives a detailed overview of
the hyperparameters used in training. If there is a change in the dimensions between different blocks,
we perform a learnable linear projection. All transformer (Vaswani et al., 2017) and perceiver (Jaegle
et al., 2021b) blocks use standard pre-norm architecture as used in ViT Dosovitskiy et al. (2020)
and are modulated by the timestep using DiT modulation (Peebles & Xie, 2023). We use layer
normalization Ba et al. (2016) in the output of the encoder as well as in the input and output of the
forward operator to always keep the latent representation normalized.

All experiments use the AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) and
follow a learning rate schedule that begins with a linear warmup and transitions to cosine decay
(Loshchilov & Hutter, 2017). We perform early stopping and use the best checkpoint in terms of
IoU evaluated on the validation set of each dataset respectively.

Encoder. First we sample a subset out of all particles and project two consecutive velocities
into a higher dimension using a linear layer. Then we sample nS supernodes from the input point
cloud and perform message passing to points within a radius rS to process the local information. In
message passing, the features of the supernode and the point are concatenated along with a positional
embedding that captures their relative distance. The supernode features are then processed by a
transformer to capture global information. To further reduce the number of tokens in the latent
space, we apply perceiver pooling with learned queries, followed by layer normalization, producing
a normalized latent representation.

Latent space operator. We apply layer normalization to the latent representation before passing
it into the transformer blocks. The output is then added to the original latent representation (after
normalization) and passed through another layer normalization step, ensuring the latent represen-
tation remains consistently normalized throughout the process. The timestep conditioning of the
transformer blocks uses the timestep of the latent representation in the input.

Decoder. The decoder takes the latent representation and processes it with a small Transformer,
which is then fed into two perceiver blocks, one for decoding the state and one for decoding the
occupancy. The positions where we want to query the latent representation are transformed into a
positional embedding and fed through an MLP, resulting in the query used by the perceiver. The
keys and values are the outputs of the Transformer, and the result of the perceiver is projected into
the input dimension of the physical state or into a two-dimensional output for the occupancy.

Timestep modulation. To incorporate information from the timestep, we encode the current
timestep into a positional embedding. We use the transformer positional encoding Vaswani et al.
(2017); Gupta & Brandstetter (2022), and, therefore rescale all timesteps to the range [0, 200]. The
resulting timestep embedding is then used to perform DiT modulation (Peebles & Xie, 2023) for all
transformer and perceiver blocks. DiT modulation involves applying dimension-wise scaling, shift-
ing, and gating operations to both the attention and MLP modules of the transformer and perceiver
blocks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table A1: UPT++ hyperparameters for the application to Navier-Stokes equations.

Hyperparameter WaterDrop WaterDrop-XL DamBreak3D

General model parameters
Number of latent tokens nlatent 128 128 512
Timestep embedding dim 192 192 192
DiT conditioning dim 768 768 768

Encoder
Range of input points selected k 400 - 800 1k-3k 32k-64k
Input features 4 4 6
Node features 96 96 96
Num. supernodes nS 128 512 4096
Supernode radius rS 0.05 0.05 0.15
Max supernode neighbours 8 8 32
Relative positional embedding dim 96 96 96
Message passing MLP dims 288/96 288/96 288/96
Transformer dim / layers / heads 96/4/2 96/4/2 96/4/2
Perceiver dim / num heads 192/3 192/3 192/3

Forward operator
Transformer dim / layers / heads 192/12/3 192/12/3 192/12/3

Decoder
Transformer dim / layers / heads 192/4/3 192/4/3 192/4/3
Query MLP dims 768/768/192 768/768/192 768/768/192
Perceiver dim / num heads 192/3 192/3 192/3
Output features 4 4 6
Number of points to decode (velocity) k′ 125 500 16k
Number of points to decode (occupancy) k′o 250 1000 32k
Occupancy radius of a particle 0.01 0.01 0.05

First training stage
Num. epochs 10 10 10
Learning rate 5e-3 5e-4 5e-4
Weight decay rate 0.05 0.05 0.05
Warmup epochs 2 2 2
Batch size 1024 256 32

Second training stage
Num. epochs 10 10 10
Learning rate 5e-4 5e-4 5e-4
Weight decay rate 0.05 0.05 0.05
Warmup epochs 2 2 2
Batch size 256 256 64

Training. In the first training stage, we train both the encoder and decoder without the time-
evolution operator. We do this by sampling states from a trajectory at timestep t, selecting k input
points, decoding at k′ output points, and regressing the velocity at these points using an MSE ob-
jective. Additionally, we randomly sample k′o points within the domain to obtain the ground truth
occupancy. If a coordinate x lies outside the occupancy radius of all particles, it is labeled as un-
occupied; otherwise, it is marked as occupied by the fluid. We train using a CE loss. In the second
training stage, we freeze the encoder and encode two consecutive timesteps, t and t′, into latent
space representations zt and zt′ . The time-evolution operator uses zt as input to predict zt′ , and
we train the time-evolution operator using an MSE objective.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.4 DATASET-SPECIFIC DETAILS

In the following Table A2, we summarize the size of the used datasets, emphasizing that we work
with a median number of particles all the way from 500 through 4,000 to 180,000. Each dataset
consists of 1000 trajectories in the training set and 100 trajectories in both the validation and test
sets.

Table A2: Statistics of particle counts and trajectory length in our Lagrangian fluid dynamics
datasets.

Dataset number of particles Trajectory length
min median max

WaterDrop 195 548 1,108 1000
WaterDrop-XL 1,948 4,031 7,184 1000
DamBreak3D 144,133 179,312 215,661 250

A.5 BASELINES

Our baselines on the Lagrangian fluid dynamics problems are GNS (Sanchez-Gonzalez et al.,
2020) and its multi-scale version MS-GNS. We adopt the Pytorch implementation of GNS from
github.com/wu375/simple-physics-simulator-pytorch-geometry to our codebase and reuse most
building block in MS-GNS. In the following, we provide more details about MS-GNS and the train-
ing hyperparameters.

MS-GNS. To the best of our knowledge, our baseline model MS-GNS is the first multi-scale GNN
for Lagrangian fluid dynamics, and it combines ideas from Fortunato et al. (2022) and our own
importance-based encoder approach. We acknowledge that there are various multi-scale GNNs that
operate on static objects like point sets (Qi et al., 2017; Lino et al., 2022) or meshes (Fortunato et al.,
2022; Suk et al., 2023), but because these discretizations are static, one can precompute coarser ver-
sions thereof using various different algorithms. However, in Lagrangian numerical methods, we
need to compute a coarse graph at every timestep of the autoregressive rollout evolution, making
advanced algorithms like furthest point sampling (FPS) (Qi et al., 2017) unfeasible – see tested FPS
on DamBreak3D –, taking 10x more time than the model forward evaluation. Thus, for constructing
the coarser graph, we resort to what we do in the sampling-based UPT++ encoding, namely ran-
domly picking a subset of the nodes. The only difference to the encoder is that we do not have a
fixed number of supernodes, but rather a relative ratio of subsampled nodes, which we set to 0.5dim,
which essentially means that we go to particles with 2x the radius of the finer particles, which also
means that we can just double the cutoff radius for the coarser graph. The obvious disadvantage of
this method is that some fine particles might be far away from the coarser particles, which we rem-
edy by constructing the mapping from finer to coarser graph using k-nearest neighbors with k = 4
– 4 basically means that a fine particle sees either its corresponding coarse particle and 3 others, or
just 4 coarse particles. This way every fine node is guaranteed to get access to information from the
coarser nodes, and because we subsample the coarse nodes anew at every timestep, the information
propagation is well distributed. Other than the coarse graph generation and the fine-coarse mapping
graph, our approach is almost equivalent to MS-MGN by Fortunato et al. (2022), with the only dif-
ference being that all latent vectors connected with the original finely resolved graph have half the
size of the latent vectors of the coarse graph; this adjustment significantly reduces the memory of
the forward pass. Overall, the message-passing steps that operate only on the fine or coarse graphs
are exactly the GNS layers, and the mapping between the resolutions happens along the same k-NN
graph.

The hyperparameter setting for MS-GNS is one of what Fortunato et al. (2022) found to work well,
namely a simple V-shaped processor scheme which we call MS-GNS-15 consisting of: 1 MP layer
on the fine scale, downsampling layer, 11 MP layers on the coarse graph, upsampling layer, and 1
more MP layer on the fine graph. Regarding the training protocol, we train GNS and MS-GNS with
the same optimizer and learning rate scheduler as our other models. A summary of the hyperparam-
eters used for training the GNN baselines is given in Table A3, which complements Appendix A.3.

22

https://github.com/wu375/simple-physics-simulator-pytorch-geometry

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table A3: GNN hyperparameters overview.

Hyperparameter GNS-10-128/GNS-5-64 MS-GNS-15

Physical input/output features
Num. input velocities 5 5
Node input features velocity, boundary dist. velocity, boundary dist.
Edge input features displacement displacement
Node output features acceleration acceleration
Include magnitudes yes yes

GNN architecture
MP layers (if appl. fine) 10/5 2
Upsampling layers - 1
Downsampling layers - 1
MP layers coarse - 11
Latent dimension (if appl. fine) 128/64 64
Latent dimension coarse - 128
Num. MLP layers 2 2
Noise std 6.7e-4 6.7e-4

Training configuration
Num. epochs 10 10
Learning rate 1e-4 1e-4
Weight decay rate 0.05 0.05
Warmup epochs 2 2
Batch size {WaterDrop: 2, WaterDrop-XL: 10, DamBreak3D: 4}

A.6 ADDITIONAL RESULTS

In Figure A2 we present the IoU and the velocity error for full rollouts on the test set. At the
start of the trajectory, GNS has an advantage by numerically integrating the accelerations. However,
during the highly dynamic phase between timesteps 200 and 500, the difference becomes negligible.
Figure A3 and A4 illustrate this by presenting snapshots of a trajectory rollout for both Waterdrop
and Waterdrop-XL. Similarly, as demonstrated for DamBreak3D in Figure 1, UPT++ captures the
overall fluid dynamics in both the smaller Waterdrop and Waterdrop-XL scenarios. In the end of
each trajectory, as the fluid settles at the bottom of the box, GNS inherently preserves mass, or the
number of particles, which enables it to more accurately capture the volume. In contrast, UPT++
latent propagation lacks such constraints, making it unable to accurately capture the fluid’s volume.

A.7 DAM BREAK 3D DATASET

We generated the dataset by modifying the 3D dam break test case in the SPHinXsys library (Zhang
et al., 2021)1. In particular, we modify a) the numerical integration scheme and b) the initial geom-
etry of the fluid.

Regarding the integrator, we modify the adaptive-step dual-criteria time stepping scheme (Zhang
et al., 2020) by fixing the step size ∆tinner = 0.0008 of the inner pressure and density relaxation
loop and also by fixing the number of iterations in this inner loop to 5. The reason for this is that we
want equidistantly spaced samples in time to not have to deal with conditioning on the timestep size
in the ML problem formulation. The chosen ∆tinner is close to the worst-case adaptively estimated
one but still does not significantly change the number of integration steps to reach the end time of 20.
Note that we omit units here as the simulation is of the non-dimensionalized NSE. With the temporal
coarsening level of 100 relative to the inner loop steps, each simulation has 20/(0.0008 ·100) = 250
steps (to be more precise, 251 steps, as we record both the very first and last states).

Regarding the parametrization of the geometry, we sample 12 random numbers determining the
shape of the top and front of the wave, and after the fluid volume is filled with particles, we add

1https://github.com/Xiangyu-Hu/SPHinXsys

23

https://github.com/Xiangyu-Hu/SPHinXsys

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 200 400 600 800
Timestep

0.8

0.9

1.0

Io
U

WaterDrop

0 200 400 600 800
Timestep

0.0

0.2

Ve
lo

cit
y

er
ro

r

WaterDrop
UPT++
GNS

0 200 400 600 800
Timestep

0.8

1.0

Io
U

WaterDrop-XL

0 200 400 600 800
Timestep

0.0

0.2

0.4

0.6

Ve
lo

cit
y

er
ro

r

WaterDrop-XL
UPT++
GNS

0 50 100 150 200
Timestep

0.7

0.8

0.9

1.0

Io
U

DamBreak3D

0 50 100 150 200
Timestep

0.0

0.5

1.0

Ve
lo

cit
y

er
ro

r

DamBreak3D
UPT++
GNS
MS-GNS

Figure A2: Mean and standard deviation of the IoU and the velocity error during the rollout of
all trajectories in the test set. For WaterDrop and WaterDrop-XL, the first simulation steps are
better predicted by GNS, which is expected because GNS numerically integrates accelerations, and
also, the last steps, where the fluid is resting at the bottom, are better predicted. During the highly
dynamic part, GNS and UPT++ are on par, while UPT++ better predicts the correct velocity. For
DamBreak3D, GNS is not able to predict the rollout of the large-scale trajectory, but UPT++ and
MS-GNS can handle this task.

Timestep: 10 Timestep: 110 Timestep: 210 Timestep: 310 Timestep: 410

U
PT

++
G

N
S

R
ef

er
en

ce

Figure A3: Various timesteps along the WaterDrop trajectory are evaluated on a regular grid for
comparison purposes. The presence of a point on the grid represents its occupancy, while its color
indicates the magnitude of the velocity.

Gaussian noise to the coordinates. The standard deviation of the noise is σ = 0.1 ·∆x with ∆x =
0.025 being the particle spacing. The computational domain begins at (0, 0, 0) and spans L×H ×
W = 5.366 × 2 × 2, with the number 5.366 coming from the original dam break experiments
by Colagrossi & Maurizio (2003). The fluid always fills the bottom left part of the domain (at
x = 0, y = 0) spanning the full width, and we modulate the top and front sides by the mentioned
12 numbers defining sinusoidal waves by their amplitude a, period p, and shift s. The top surface of
the fluid is defined by its height htop(x, z) as a function of the length and width (x and z axes), and
the x-coordinate (length) of the front lfront(z, y) is defined as a function of the width and height.

htop(x, z) = Have + atop,x · sin (2π(ptop,x · x/Lave + stop,x))

+ atop,z · sin (2π(ptop,z · z/Wave + stop,z))

lfront(z, y) = Lave + afront,z · sin (2π(pfront,z · z/Wave + sfront,z))

+ afront,y · sin (2π(pfront,y · y/Have + sfront,y))

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Timestep: 10 Timestep: 110 Timestep: 210 Timestep: 310 Timestep: 410

U
PT

++
G

N
S

R
ef

er
en

ce

Figure A4: Various timesteps along the WaterDrop-XL trajectory are evaluated on a regular grid for
comparison purposes. The presence of a point on the grid represents its occupancy, while its color
indicates the magnitude of the velocity.

The values of the average length, height, and width of the fluid are Lave = 2, Have = 0.7,
and Wave = 2, respectively. The random numbers for a, p, s are sampled uniformly from
a ∼ U(0, 0.15), p ∼ U(0.25, 2), s ∼ U(0, 1). We visualize the first 10 trajectories from the
train split in Figure A5.

Figure A5: Frames 1, 100, and 250 from the first 10 training trajectories of DamBreak3D. The color
is the velocity magnitude estimated by subtracting the previous positions from the current ones.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B MOLECULAR CONFORMATION SAMPLING

B.1 MOLECULAR DYNAMICS (MD)

The most fundamental concepts nowadays to describe the dynamics of molecules are given by the
laws of quantum mechanics. The Schrödinger equation is a partial differential equation, that gives

the evolution of the complex-valued wave function ψ over time t: iℏ
∂ψ

∂t
= Ĥ(t)ψ. Here i is

the imaginary unit with i2 = −1, ℏ is reduced Planck constant, and, Ĥ(t) is the Hamiltonian
operator at time t, which is applied to a function ψ and maps to another function. It determines how
a quantum system evolves with time and its eigenvalues correspond to measurable energy values
of the quantum system. The solution to Schrödinger’s equation in the many-body case (particles
1, . . . , N) is the wave function ψ(x1, . . . ,xN , t) :×N

i=1
R3 × R → C which we abbreviate as

ψ({x} , t). It’s the square modulus |ψ({x} , t)|2 = ψ∗({x} , t)ψ({x} , t) is usually interpreted as
a probability density to measure the positions x1, . . . ,xN at time t, whereby the normalization
condition

∫
. . .
∫
|ψ({x} , t)|2 dx1 . . . dxN = 1 holds for the wave function ψ.

Analytic solutions of ψ for specific operators ˆH(t) are hardly known and are only available for sim-
ple systems like free particles or hydrogen atoms. In contrast to that are proteins with many thou-
sands of atoms. However, already for much smaller quantum systems approximations are needed.
A famous example is the Born–Oppenheimer approximation, where the wave function of the multi-
body system is decomposed into parts for heavier atom nuclei and the light-weight electrons, which
usually move much faster. In this case, one obtains a Schrödinger equation for electron movement
and another Schrödinger equation for nuclei movement. A much faster option than solving a sec-
ond Schrödinger equation for the motion of the nuclei is to use the laws from classical Newtonian
dynamics. The solution of the first Schrödinger equation defines an energy potential, which can
be utilized to obtain forces Fi on the nuclei and to update nuclei positions according to Newton’s
equation of motion: Fi = mi q̈i(t) (with mi being the mass of particle i and qi(t) describing the
motion trajectory of particle i over time t).

Additional complexity in studying molecule dynamics is introduced by environmental conditions
surrounding molecules. Maybe the most important is temperature. For bio-molecules it is often
of interest to assume that they are dissolved in water. To model temperature, a usual strategy is
to assume a system of coupled harmonic oscillators to model a heat bath, from which Langevin
dynamics can be derived (Ford et al., 1965; Zwanzig, 1973). The investigation of the relationship
between quantum-mechanical modeling of heat baths and Langevin dynamics still seems to be a
current research topic, where there there are different aspects like the coupling of the oscillators or
Markovian properties when stochastic forces are introduced. For instance, Hoel & Szepessy (2019),
studies how canonical quantum observables are approximated by molecular dynamics. This includes
the definition of density operators, which behave according to the quantum Liouville-von Neumann
equation.

The forces in molecules are usually given as the negative derivative of the (potential) energy: Fi =
−∇E. In the context of molecules, E is usually assumed to be defined by a force field, which is a
parameterized sum of intra- and intermolecular interaction terms. An example is the Amber force
field (Ponder & Case, 2003; Case et al., 2024):

E =
∑

bonds r

kb(r − r0)2 +
∑

angles θ

kθ(θ − θ0)2+ (B.1)

∑
dihedrals ϕ

Vn(1 + cos(nϕ− γ)) +
N−1∑
i=1

N∑
j=i+1

(
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ϵRij

)

Here kb, r0, kθ, θ0, Vn, γ, Aij , Bij , ϵ, qi, qj serve as force field parameters, which are found either
empirically or which might be inspired by theory.

Newton’s equations of motions for all particles under consideration form a system of ordinary dif-
ferential equations (ODEs), to which different numeric integration schemes like Euler, Leapfrog,
or, Verlet can be applied to obtain particle position trajectories for given initial positions and ini-
tial velocities. In case temperature is included, the resulting Langevin equations form a system of

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

stochastic differential equations (SDEs), and Langevin integrators can be used. It should be men-
tioned, that it is often necessary to use very small integration timesteps to avoid large approximation
errors. This, however, increases the time needed to find new stable molecular configurations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.2 IMPLEMENTATION DETAILS

We use the same implementation as outlined in Chapter A.3. The differences specific to the MD set-
ting are explained below. Table B1 summarizes the hyperparameters used in the molecular sampling
experiments.

Table B1: UPT++ hyperparameters for the application to molecular sampling.

Hyperparameter AD 2AA

General Model Parameters
Number of latent tokens nlatent 32 64
Timestep embedding dim 192 192
DiT conditioning dim 768 768

Encoder
Range of input points selected 2.7k 6k
Input features 4 4
Node features 96 96
Num. supernodes nS 128 512
Supernode radius rS 0.05 0.05
Max supernode neighbours 8 8
Relative positional embedding dim 96 96
Message passing MLP dims 288/96 288/96
Transformer dim / layers / heads 96/4/2 96/4/2
Perceiver dim / num heads 192/3 192/3

Forward operator
Transformer dim / layers / heads 32/22/3 32/22/3

Decoder
Transformer dim / layers / heads 192/4/3 192/4/3
Query MLP dims 768/768/192 768/768/192
Perceiver dim / num heads 192/3 192/3
Output features 5 5
Number of points to decode (velocity) 125 500
Number of points to decode (occupancy) 250 1000

First stage training
Num. epochs 1.7k 73
Learning rate 1e-4 1e-4
Schedule Cosine -
Batch size 1024 1024

Second stage training
Num. epochs 4.6k 53
Learning rate 1e-4 1e-4
Batch size 2048 256

B.2.1 DENSITY REPRESENTATION

We represent molecules as density fields, following an approach similar to Pinheiro et al. (2024) and
Dumitrescu et al. (2024). Each atom is represented by a 3D Gaussian-like density (Orlando et al.,
2022; Li et al., 2014)

D(d, r) = exp

(
− d2

(0.93 · r)2

)
, (B.2)

where D is the fraction of occupied volume by an atom with radius r at distance d from its center.
While different occupancy radii could be considered for various atom types, we use a uniform radius
of r = 0.5 Å for all atom types. The signal of the field for atom type a, with Ia being an index array
of all atoms within the molecule corresponding to atom type a, is defined as:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

uta(x) = 1−
|Ia|∏
n=1

(
1−D

(∥∥∥x−mt
Ia[n]

∥∥∥ , ra)) , (B.3)

where mt
Ia[n]

is the center location of atom Ia[n] at time t and ra is the radius for atom type a. With
that, we obtain one density field ua per atom type a (with a ∈ {H,C, . . .}) and the joint signal for
all atom types can be summarized by a vector of density fields ut(x):

ut(x) = (utH(x), u
t
C(x), . . .). (B.4)

B.2.2 IMPORTANCE-BASED SAMPLING FOR MOLECULES

We sample points from the density field vector ut by first sampling sets of NIS points
({x1, . . . ,xNIS}), where each point xi is from a normal distribution centered around one of the
input molecule atom locations mt

k at time t (with k ∈ {1, . . . , Natoms}, where Natoms is the number
of atoms for the considered molecule):

xi ∼ N (mt
k,σ

2) (B.5)

Then we compute the associated signal vectors corresponding to the sampled points xi, i.e., ut(xi).
We use σ = 0.5 Å in all experiments, and add global nodes at the initial atom positions. Additionally,
we randomly sample points in the input space and compute their signal.

B.2.3 REFINEMENT

In autoregressive sampling, errors accumulate across inference steps, causing out-of-distribution
issues. To mitigate this, we employed the energy minimization procedure described in (Yu et al.,
2024), implemented using OpenMM (Eastman et al., 2017).

B.2.4 DATA AUGMENTATION

During training we apply random rotation, uniform between [0, 2π) along the three Euler angles to
each training sample.During training we apply random rotation, uniform between [0, 2π) along the
three Euler angles to each training sample.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

B.3 NEURAL SAMPLING OPERATOR

In accordance with literature (Lipman et al., 2022; Liu et al., 2022), we assume a flow Φ to be
created via a parameterized (θ) vector field vθ:

dΦ(s, z)

ds
= vθ(s,Φ(s,z), zcond, Ncond)

Φ(0, z) = z

Here s serves as the diffusion time. We build upon the idea of classifier-free guidance (Ho & Sali-
mans, 2022) for flow matching (Zheng et al., 2023) to incorporate previous molecule conformations
as condition a (zcond). We further build upon ITO (Schreiner et al., 2023) to predict for more than one
atomistic time step into the future and therefore also condition on a number of time steps (Ncond).
Algorithm 1 shows how vθ can be trained given a series of MD trajectories. Algorithm 2 then shows
how new samples can be generated using the trained flow matching velocity field vθ and a given pre-
vious conformation state as well as the number of atomistic time steps. The flow matching guidance
parameter ω and the employed number of ODE steps (NODE) serve as hyperparameters.

Algorithm 1 Training UPT++ sampling operator

1: Inputs:
• nZ MD-trajectories Z =

{
ẑ0
j , . . . , ẑ

i
j , . . . , ẑ

Nj

j

}nZ

j=0
with samples ẑi

j taken at times i∆t

• max lag Nmax

• pcond probability of conditional training
2: Initialize UPT++ flow matching model vθ
3: Z ′

= Concatenate
({

ẑ0
j , . . . , ẑ

Nj−Nmax

j

}nZ

j=0

)
4: while not converged do
5: ẑi

j ∼ Choice
(
Z ′
)

6: N ∼ DiscreteUniform(1, Nmax)

7: (z̃cond, Ñcond)← (ẑi
j , N) with probability pcond else ∅

8: s̃ ∼ ContinuousUniform(0, 1)
9: z̃0 ∼ N (0, 1)

10: z̃s ← (1− s̃)z̃0 + s̃ẑi+N
j

11: Take gradient step on ∇θ

∥∥∥vθ(s̃, z̃s, z̃cond, Ñcond)−
(
ẑi+N
j − z̃0

)∥∥∥2
12: end while
13: Output:

• UPT++ flow matching model vθ

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm 2 Sampling UPT++ sampling operator

1: Inputs:
• trained UPT++ flow matching model vθ
• Condition state zcond

• Forward sampling timesteps Ncond

• Number of ODE steps NODE

• Guidance parameter ω
2: z̃0 ∼ N (0, 1)
3: h← 1

NODE

4: vθ,guided(., .)← (1− ω) vθ(., ., ∅) + ω vθ(., ., zcond, Ncond)
5: for s=1,. . . ,NODE do
6: z̃sh ← ODEStep(vθ,guided((s− 1)h, z̃(s−1)h), h)
7: end for
8: Output:

• Sample z̃1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

B.4 MOLECULAR GRAPH RECONSTRUCTION

We present a systematic procedure for reconstructing the molecular graph, from the predicted den-
sity distribution. Figure B1 provides a visual representation of certain steps.

1. Evaluate positions on our occupancy field and remove all values below a threshold of 0.5
(used throughout our experiments). Note that reconstructing the molecule based solely on
the density channels yields similar results.

2. Peak finding: Identify local maxima in the thresholded occupancy map using a maximum
filter.

3. For each density channel, select the top Nα values, where Nα is the expected number of
atoms of element α in the molecule.

4. Reconstruct bonds 2 using OpenBabel (O’Boyle et al., 2011).
5. Validate the chemical equivalence of the encoded molecule using InChI codes (Landrum,

2016).

Figure B1: Top row: Densities across all channels in a single plot, distinct colors represent different
atomic channels. All values exceeding an occupancy threshold are assigned a uniform value. Top
left: Original molecular conformation obtained by applying the encoder/decoder only. Bottom left:
Raw density maps for each channel, predicted by our latent sampling operator. The density values
increase concentrically towards the atomic positions. Bottom right: Extracted peaks indicating
atomic positions.

2https://github.com/guanjq/targetdiff/blob/main/utils/reconstruct.py

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

B.5 ADDITIONAL RESULTS

In Figures B2, B3, we visualize results corresponding to those in Table 2 analogously to Figure 6.

2 0 2
Phi

2

0

2

Ps
i

MD

2 0 2
Phi

UPT++

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure B2: 2AA: AN (3.5). Left half: Ramachandran plots comparing 10k UPT++ and 9.8k MD
samples. Right half: Free energy surface of the same UPT++ and MD samples.

2 0 2
Phi

2

0

2

Ps
i

MD

2 0 2
Phi

UPT++

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure B3: 2AA: AN (1.0). Left half: Ramachandran plots comparing 10k UPT++ and 9.8k MD
samples. Right half: Free energy surface of the same UPT++ and MD samples.

33

	Introduction
	Background: particle methods and neural operators
	UPT++
	Importance-based encoding, importance-based decoding
	Latent space approximator
	UPT++ training procedure
	Related work

	Experiments
	Lagrangian fluid simulation
	Sampling molecular conformations

	Conclusion, limitations and future work
	Lagrangian fluid simulation
	Smoothed Particle Hydrodynamics (SPH)
	Scaling limits
	Implementation details
	Dataset-specific details
	Baselines
	Additional results
	Dam break 3D dataset

	Molecular Conformation Sampling
	Molecular Dynamics (MD)
	Implementation details
	Density representation
	Importance-based sampling for molecules
	Refinement
	Data augmentation

	Neural Sampling Operator
	Molecular Graph Reconstruction
	Additional Results

